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Abstract: We study the Hadamard product features of certain subclasses of p-valent meromorphic
functions defined in the punctured open-unit disc using the q-difference operator. For functions
belonging to these subclasses, we obtained certain coefficient estimates and inclusion characteristics.
Furthermore, linkages between the results given here and those found in previous publications
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1. Introduction

LetMp stand for the class of functions of the form:

f (z) = z−p +
∞

∑
k=−p+1

akzk, (1)

which are analytic in the perforated unit disc U∗ = U\{0} = {z : z ∈ C : 0 < |z| < 1}. The
classMp refers to the a class of p-valent meromorphic functions. It is worth noting that
M1 =M, which is the class of univalent meromorphic functions. If the function g ∈ Mp
is given by

g(z) = z−p +
∞

∑
k=−p+1

bkzk,

then the Hadamard product (or convolution) of f and g is provided by

( f ∗ g)(z) = z−p +
∞

∑
k=−p+1

akbkzk = (g ∗ f )(z).

Interesting traits such as coefficient estimates, subordination relations and univalence
features related some subclasses of p-valent functions were obtained in [1–3] (see also, [4]).
With the help of the q-differential operator, a new subclass of meromorphic multivalent
functions in the Janowski domain were introduced by Bakhtiar et al. in [5] (see also, [6]).
Moreover, new subclasses of meromorphically p-valent functions were defined using
q-derivative operator and investigations related to geometric properties of the class are
conducted in [7–9].

If f and g are analytic in the open unit disc U, we say that f is subordinate to g, written
as f ≺ g in U or f (z) ≺ g(z)(z ∈ U), if there exists a Schwarz function w(z), which (by
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definition) is analytic in U with w(0) = 0 and |w(z)| < 1, (z ∈ U) such that f (z) = g(w(z))
(z ∈ U) [10].

For 0 < q < 1, the q-difference operator, which was introduced by Jackson [11], is
characterised with

∂q f (z) =


f (qz)− f (z)
(q−1)z , z 6= 0,

f
′
(0), z = 0.

The Jackson q-difference operator is another name for the q-difference operator. Addi-
tionally, for f given by (1), one can write

∂q f (z) = −q−p[p]qz−p−1 +
∞

∑
k=−p+1

[k]qakzk−1(z ∈ U∗), (2)

where [k]q =
(

1− qk
)

/(1− q) is the well-known q-bracket, limq→1− [k]q = k and

limq→1− ∂q f (z) = f ′(z).
Now, for n ∈ N0 = N∪ {0}, we define the operator Dn

p,q :Mp −→Mp with the help
of the q-difference operator, as follows:

D0
p,q f (z) = f (z),

D1
p,q f (z) = z−p∂q

(
zp+1 f (z)

)
,

Dn
p,q f (z) = z−p∂q

(
zp+1Dn−1

p,q f (z)
)
(n ∈ N),

then

Dn
p,q f (z) = z−p +

∞

∑
k=−p+1

[k + p + 1]nq akzk (n ∈ N0), (3)

which satisfies the following recurrence relation:

qp+1z∂q

(
Dn

p,q f (z)
)
= Dn+1

p,q f (z)− [p + 1]qD
n
p,q f (z). (4)

Definition 1. Utilising the q-derivative ∂q f (z), the subclassesMS∗p,q(A, B) andMKp,q(A, B)
are introduced as follows:

MS∗p,q(A, B) =

{
f ∈ Mp :

−qpz∂q f (z)
[p]q f (z)

≺ 1 + Az
1 + Bz

}
, (5)

(0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U),

and

MKp,q(A, B) =

{
f ∈ Mp :

−qp∂q
(
z∂q f (z)

)
[p]q∂q f (z)

≺ 1 + Az
1 + Bz

, z ∈ U

}
, (6)

(0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U).

Using (5) and (6), we have the following equivalence relation:

f (z) ∈ MKp,q(A, B)⇐⇒ −
qpz∂q f (z)

[p]q
∈ MS∗p,q(A, B). (7)

Remark 1. We list the following subclasses by specialising the parameters p, q, A and B:

(i)MS∗p,q(1− 2α,−1) =MS∗p,q(α) = { f ∈ Mp : Re
(
− qpz∂q f (z)

[p]q f (z)

)
> α; 0 ≤ α < 1, z ∈ U}

the subclass of p-valent meromorphic q-starlike functions, andMKp,q(1− 2α,−1) =MKp,q(α) =
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{ f ∈ Mp : Re
(
− qp∂q(z∂q f (z))

[p]q∂q f (z)

)
> α; 0 ≤ α < 1, z ∈ U} the subclass of p-valent meromorphic

q-convex functions;

(ii)MS∗1,q(1− 2α,−1) = MS∗q(α) = { f ∈ M : Re
(
− qz∂q f (z)

f (z)

)
> α; 0 ≤ α < 1, z ∈ U}

the subclass of meromorphic q-starlike functions, andMK1,q(1− 2α,−1) =MKq(α) = { f ∈

M : Re
(
− q∂q(z∂q f (z))

∂q f (z)

)
> α; 0 ≤ α < 1, z ∈ U} the subclass of meromorphic q-convex

functions;
(iii) limq→1−MS∗p,q(A, B) =MS∗p(A, B) = { f ∈ Mp : − z f ′(z)

p f (z) ≺
1+Az
1+Bz ; −1 ≤ B < A ≤

1, z ∈ U}, and limq→1−MKp,q(A, B) = MKp(A, B) = { f ∈ Mp : − 1
p

(
1 + z f ′′(z)

f ′(z)

)
≺

1+Az
1+Bz ; −1 ≤ B < A ≤ 1, z ∈ U}, were introduced and studied by Ali and Ravichandran [12];

(iv) limq→1−MS∗1,q(1 − 2α,−1) = MS∗(α) = { f ∈ M : Re
(
− z f ′(z)

f (z)

)
> α; 0 ≤ α <

1, z ∈ U}, and limq→1−MKp,q(1− 2α,−1) =MK(α) = { f ∈ M : Re
(
−1− z f ′′(z)

f ′(z)

)
> α;

0 ≤ α < 1, z ∈ U}, were introduced and studied by Kaczmarski [13];
(v) limq→1−MS∗1,q(1,−1) = MS∗, and limq→1−MK1,q(1,−1) = MK, which are well-
known function classes of meromorphic starlike and meromorphic convex functions, respectively; see
Pommerenke [14], Clunie [15] and Miller [16] for more details.

Definition 2. For n ∈ N0 and 0 < q < 1, we define the following subclasses:

MS∗p,q(n; A, B) =
{

f ∈ Mp : Dn
p,q f (z) ∈ MS∗p,q(A, B)

}
, (8)

(n ∈ N0; 0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U),

and
MKp,q(n; A, B) =

{
f ∈ Mp : Dn

p,q f (z) ∈ MKp,q(A, B)
}

, (9)

(n ∈ N0; 0 < q < 1;−1 ≤ B < A ≤ 1; z ∈ U).

It is easy to show that

f (z) ∈ MKp,q(n; A, B) ⇐⇒ −
qpz∂q f (z)

[p]q
∈ MS∗p,q(n; A, B). (10)

There is extensive literature dealing with convolution properties of different fami-
lies of analytic and meromorphic functions; for details, see [17–23]. More recently, the
quantum derivative was utilised by Seoudy and Aouf [24] (see also [25]) to introduce the
convolution features for certain classes of analytic functions. Here, we use the quantum
derivative to obtain some convolution properties of the meromorphic functions. For this
purpose, we defined the new classes MS∗p,q(A, B) and MKp,q(A, B). The convolution
results are followed by some consequences such as necessary and sufficient conditions, the
estimates of coefficients and inclusion characteristics of the subclassesMS∗p,q(n; A, B) and
MKp,q(n; A, B).

2. Convolution Properties

Theorem 1. The function f given by (1) is in the classMS∗p,q(A, B), if and only if

zp
[

f (z) ∗ 1 + (C− q)z
zp(1− z)(1− qz)

]
6= 0 (z ∈ U), (11)

for all

C =
B + e−iθ

A− [p]qB− q[p− 1]qe−iθ ; θ ∈ [0, 2π), (12)
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and also for C = 0.

Proof. It is simple to check the following two equalities

f (z) ∗ 1
zp(1− z)

= f (z) (13)

and

f (z) ∗
(

1
qzp(1− z)(1− qz)

−
[1 + p]q

qzp(1− z)

)
= qpz∂q f (z) (14)

In view of (5), f ∈ MS∗p,q(A, B), if and only if (1.4) holds. Since the function 1+Az
1+Bz

is analytic function on U, it follows that f (z) 6= 0, z ∈ U∗; that is zp f (z) 6= 0, z ∈ U, and
using the first identity of (13). That is the same as saying that the relation (11) is satisfied
for C = 0. According to the concept of subordination of two functions in (14), there exists
an analytic function w(z) in U with w(0) = 0, |w(z)| < 1 in such a way that

−qpz∂q f (z)
[p]q f (z)

=
1 + Aw(z)
1 + Bw(z)

(z ∈ U),

which leads to

−qpz∂q f (z)
[p]q f (z)

6= 1 + Aeiθ

1 + Beiθ ( f (z) 6= 0, z ∈ U; 0 ≤ θ < 2π),

or
zp
[(

qpz∂q f (z)
)(

1 + Beiθ
)
+ [p]q f (z)

(
1 + Aeiθ

)]
6= 0 (15)

We may now deduce the following from (13)–(15):

zp

[(
f (z) ∗

1− [1 + p]q(1− qz)

qzp(1− z)(1− qz)

)(
1 + Beiθ

)
+
(

1 + Aeiθ
)(

f (z) ∗ 1
zp(1− z)

)]
6= 0,

zp

 f (z) ∗


(

1− [1 + p]q + q[1 + p]qz
)(

1 + Beiθ)+ q(1− qz)
(
1 + Aeiθ)

qzp(1− z)(1− qz)

 6= 0,

but 1− [1 + p]q = −q[p]q; then, the condition became

zp

 f (z) ∗

 q
(
[1 + p]qz− [p]q

)(
1 + Beiθ)+ q(1− qz)

(
1 + Aeiθ)

qzp(1− z)(1− qz)

 6= 0,

or,

zp

 f (z) ∗


(
[1 + p]qz− [p]q

)(
1 + Beiθ)+ (1− qz)

(
1 + Aeiθ)

zp(1− z)(1− qz)

 6= 0,

or, equivalent to

zp

 f (z) ∗

1− [p]q +
(

A− [p]qB
)

eiθ +
(
[1 + p]q − q +

(
[1 + p]qB− qA

)
eiθ
)

z

zp(1− z)(1− qz)

 6= 0,

or,

zp

 f (z) ∗

−q[p− 1]q +
(

A− [p]qB
)

eiθ +
(
[1 + p]q − q +

(
[1 + p]qB− qA

)
eiθ
)

z

zp(1− z)(1− qz)

 6= 0,
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or,

zp

 f (z) ∗


1 +

(
[1+p]q−q+

(
[1+p]qB−qA

)
eiθ
)

z

−q[p−1]q+
(

A−[p]qB
)

eiθ

zp(1− z)(1− qz)

((
A− [p]qB

)
eiθ − q[p− 1]q

)

 6= 0,

by dividing both sides by the non-zero quantity
(

A− [p]qB
)

eiθ − q[p− 1]q, then we have

zp

 f (z) ∗


1 +

(
[1+p]q−q+

(
[1+p]qB−qA

)
eiθ
)

z

−q[p−1]q+
(

A−[p]qB
)

eiθ

zp(1− z)(1− qz)


 6= 0,

which is the same as

zp

 f (z) ∗


1 +

(
[1+p]q−q+

(
[1+p]qB−qA

)
eiθ+q

(
−q[p−1]q+

(
A−[p]qB

)
eiθ
)

−q[p−1]q+
(

A−[p]qB
)

eiθ
− q

)
z

zp(1− z)(1− qz)


 6= 0,

or,

zp

 f (z) ∗


1 +

(
[1+p]q−q−q2[p−1]q+

(
[1+p]q−q[p]q

)
Beiθ

−q[p−1]q+
(

A−[p]qB
)

eiθ
− q

)
z

zp(1− z)(1− qz)


 6= 0,

but [1 + p]q − q− q2[p− 1]q = [1 + p]q − q[p]q = 1, then the convolution condition became

zp

 f (z) ∗

1 +
(

e−iθ+B
A−[p]qB−q[p−1]qe−iθ − q

)
z

zp(1− z)(1− qz)


 6= 0,

This leads to (11), proving the first part of Theorem 1.
In contrast, because (11) holds for C = 0, it follows that zp f (z) 6= 0 for all z ∈ U, and

hence the function.

ϕ(z) =
−qpz∂q f (z)
[p]q f (z)

,

is analytic in U (i.e., it is regular at z0 = 0, with ϕ(0) = 1). We obtain that because the
assumption (11) is equivalent to (15), as shown in the first section of the proof.

−qpz∂q f (z)
[p]q f (z)

6= 1 + Aeiθ

1 + Beiθ (θ ∈ [0, 2π), f (z) 6= 0, z ∈ U), (16)

if we denote
ψ(z) =

1 + Az
1 + Bz

, (17)

therefore ϕ(U) ∩ ψ(∂U) = φ, with the help of the relation (16). Thus, the simply con-
nected domain ϕ(U) is included in a connected component of C\ψ(∂U). As a result,
a connected component of C\ψ(∂U) includes the simply connected domain ϕ(U). The
fact that ϕ(0) = ψ(0) and the univalence of the function ψ lead to the conclusion that
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ϕ(z) ≺ ψ(z). This completes the proof of the second item of Theorem 1 by representing the
subordination (5), i.e., f ∈ MS∗p,q(A, B).

Remark 2. (i) We obtain the results obtained in the paper of Aouf et al. in [17] (Theorem 4, with
λ = 0 and b = 1) by putting p = 1 and q → 1− in Theorem 1. See also, Bulboacă et al. [20]
(Theorem 1, with b = 1) and El-Ashwah [21] (Theorem 1, with p = 1);

(ii) Putting p = 1, q → 1−, A = 1 and B = −1 in Theorem 1, we obtain the result of
Aouf et al. [18] (Theorem 1, with b = m = 1).

In Theorem 1, we have the following corollary if A = 1− 2α and B = −1.

Corollary 1. The function f defined by (1) is in the classMS∗p,q(α), if and only if

zp

 f (z) ∗
1+

(
(1+q2 [p−1]q)e−iθ−q(1−2α+[p]q)

1−2α+[p]q−q[p−1]qe−iθ

)
z

zp(1−z)(1−qz)

 6= 0 (z ∈ U),

Taking q→ 1−, A = 1− 2α and B = −1 in Theorem 1, we obtain the following corollary.

Corollary 2. The function f expressed in (1) belongs toMS∗p(α), if and only if

zp

 f (z) ∗
1 +

[
2(1−α)+p(e−iθ−1)
1−2α+p−(p−1)e−iθ

]
z

zp(1− z)2

 6= 0 (z ∈ U),

Theorem 2. The function f of the form (1) is a member of the classMKp,q(A, B), if and only if

zp

 f (z) ∗
1− (1−qp+2)−q(1−qp−1)(C−q)

1−qp z− q(1−qp+1)(C−q)
1−qp z2

zp(1− z)(1− qz)(1− q2z)

 6= 0 (z ∈ U), (18)

for all C defined by (12), and also for C = 0.

Proof. If

g(z) =
1 + (C− q)z

zp(1− z)(1− qz)
, (19)

then

−
qpz∂qg(z)

[p]q
=
−qpz
[p]q

[
1

(q− 1)z
(g(qz)− g(z))

]
which leads to

−
qpz∂qg(z)

[p]q
=

1−
(
(1−qp+2)−q(1−qp−1)(C−q)

1−qp

)
z−

(
q(1−qp+1)(C−q)

1−qp

)
z2

zp(1− z)(1− qz)(1− q2z)
(20)

The following identity remains true for two functions, f and g, which belong toMp.(
−

qpz∂q f (z)
[p]q

)
∗ g(z) = f (z) ∗

(
−

qpz∂qg(z)
[p]q

)
. (21)

Now, by using equivalence relation (7) and Theorem 1, the proof can be achieved by
applying (20) and (21).
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Remark 3. (i) Putting p = 1 and q→ 1− in Theorem 2, we arrive at the results of Aouf et al. [17]
(Theorem 6, with λ = 0 and b = 1) and Bulboacă et al. [20] (Theorem 2, with b = 1), and
El-Ashwah [21] (Theorem 2, with p = 1);
(ii) Putting p = 1, q → 1−, A = 1 and B = −1 in Theorem 2, we reach the conclusion of
Aouf et al. [18] (Theorem 3, with b = m = 1).

As a result, we have the following corollary by taking A = 1− 2α and B = −1 in
Theorem 2.

Corollary 3. The function f ∈ MKp,q(α), if and only if

zp
[

f (z) ∗ 1− Dz− Ez2

zp(1− z)(1− qz)(1− q2z)

]
6= 0 (z ∈ U),

where

D =

(
1− qp+2)− q

(
1− qp−1)( (1+q2[p−1]q

)
e−iθ−q(1−2α+[p]q)

1−2α+[p]q−q[p−1]qe−iθ

)
1− qp ,

and

E =
q
(
1− qp+1)((1 + q2[p− 1]q

)
e−iθ − q

(
1− 2α + [p]q

))
(1− qp)

(
1− 2α + [p]q − q[p− 1]qe−iθ

) .

As a result, we have the following corollary by taking q→ 1−, A = 1− 2α and B = −1
in Theorem 2.

Corollary 4. The function f ∈ MKp(α), if and only if

zp

 f (z) ∗
1− 2p(1−2α+p)−(2p2−p−1)e−iθ

p(1−2α+p)−p(p−1)e−iθ z− (p+2)(pe−iθ−(1−2α+p))−1
p(1−2α+p)−p(p−1)e−iθ z2

zp(1− z)3

 6= 0 (z ∈ U).

Theorem 3. The following are necessary and sufficient requirements for the function f ∈ Mp to
be in the classMS∗p,q(n; A, B):

1 +
∞

∑
k=−p+1

[k + p + 1]nq akzk+p 6= 0 (z ∈ U), (22)

or

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p 6= 0 (z ∈ U), (23)

where C is defined by (12).

Proof. Let f ∈ Mp, then, by using Theorem 1 and (8) we have f ∈ MS∗p,q(n; A, B), if and
only if

zp
[(

Dn
q f
)
(z) ∗ 1 + (C− q)z

zp(1− z)(1− qz)

]
6= 0 (z ∈ U), (24)

for all C = B+e−iθ

A−[p]qB−q[p−1]qe−iθ ; θ ∈ [0, 2π), and also for C = 0. Since

1 + (0− q)z
zp(1− z)(1− qz)

= z−p +
∞

∑
k=−p+1

zk, (25)

by using (3) and (25) in (24) in case of C = 0, then we can obtain (22).
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Similarly, it can be shown that

1 + (C− q)z
zp(1− z)(1− qz)

= z−p +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
zk, (26)

then using (3) and (26) in (24), we can obtain (23). The proof is complete.

The next theorem can be established using the same method, and the proof is eliminated.

Theorem 4. The following are necessary and sufficient requirements for the function f ∈ Mp to
be in the classMKp,q(n; A, B):

1−
∞

∑
k=−p+1

q[k]q[k + p + 1]nq akzk+p 6= 0 (z ∈ U), (27)

or

1−
∞

∑
k=−p+1

q[k]q
(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p 6= 0 (z ∈ U). (28)

3. Estimates of Coefficients and Inclusion Characteristics

In this section, as an application of Theorems 3 and 4, we introduce some estimates of
the coefficients ak(k ≥ −p + 1) of functions of the form (1) which belong to the two main
classesMS∗p,q(n; A, B) andMKp,q(n; A, B), respectively. Moreover, we give the inclusion
relationships of the two classes.

Theorem 5. If the function f ∈ Mp fulfills the inequalities

∞

∑
k=−p+1

[k + p + 1]nq |ak| < 1, (29)

and
∞

∑
k=−p+1

(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak| < 1, (30)

then f ∈ MS∗p,q(n; A, B).

Proof. According to (29), a simple calculation shows that∣∣∣∣∣1 + ∞

∑
k=−p+1

[k + p + 1]nq akzk+p

∣∣∣∣∣ ≥ 1−
∣∣∣∣∣ ∞

∑
k=−p+1

[k + p + 1]nq akzk+p

∣∣∣∣∣
≥ 1−

∞

∑
k=−p+1

[k + p + 1]nq |ak||z|k+p

> 1−
∞

∑
k=−p+1

[k + p + 1]nq |ak| > 0
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which leads to satisfaction of (22), then f ∈ MS∗p,q(n; A, B). Similarly, using the assumption
(30), we conclude that∣∣∣∣∣1 + ∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p

∣∣∣∣∣
≥ 1−

∣∣∣∣∣ ∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p

∣∣∣∣∣
≥ 1−

∞

∑
k=−p+1

(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak||z|k+p

> 1−
∞

∑
k=−p+1

(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak| > 0,

which shows that (23) holds true and f ∈ MS∗p,q(n; A, B); the proof is finished.

Similarly, results regardingMKp,q(n; A, B) can be introduced as follows:

Theorem 6. If the function f ∈ Mp fulfills the inequalities

∞

∑
k=−p+1

q[k]q[k + p + 1]nq |ak| < 1, (31)

and
∞

∑
k=−p+1

q[k]q
(
[k + p]q|C|+ 1

)
[k + p + 1]nq |ak| < 1, (32)

then f ∈ MKp,q(n; A, B).

Now, using the appropriate technique due to Ahuja [26], we introduce the inclusion
relationships ofMS∗p,q(n; A, B) andMKp,q(n; A, B), respectively.

Theorem 7. If n ∈ No, then

MS∗p,q(n + 1; A, B) ⊂MS∗p,q(n; A, B). (33)

Proof. If f ∈ MS∗p,q(n + 1; A, B), then using Theorem 3, we can write

1 +
∞

∑
k=−p+1

[k + p + 1]n+1
q akzk+p 6= 0 (z ∈ U), (34)

or

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]n+1

q akzk+p 6= 0 (z ∈ U), (35)

but (34) and (35) can be written as follows:(
1 +

∞

∑
k=−p+1

[k + p + 1]qzk+p

)
∗
(

1 +
∞

∑
k=−p+1

[k + p + 1]nq akzk+p

)
6= 0, (36)

and(
1 +

∞

∑
k=−p+1

[k + p + 1]qzk+p

)
∗
(

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p

)
6= 0. (37)
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Let us really define the function

h1(z) = 1 +
∞

∑
k=−p+1

[k + p + 1]qzk+p. (38)

We note that the assumption that h1(z) = 0 leads to |z| > 1, Thus, we deduce that
h1(z) 6= 0. Using the property that if h1 ∗ g 6= 0 and h1 6= 0, then g 6= 0. Thus from (36) and
(37) and using the function h1(z) 6= 0, we obtain

1 +
∞

∑
k=−p+1

[k + p + 1]nq akzk+p 6= 0, (39)

and

1 +
∞

∑
k=−p+1

(
[k + p]qC + 1

)
[k + p + 1]nq akzk+p 6= 0, (40)

then Theorem 3 tells us that f ∈ MS∗p,q(n; A, B).

The following theorem gives the inclusion relationship regardingMKp,q(n; A, B).

Theorem 8. For n ∈ N0, we have

MKp,q(n + 1; A, B) ⊂MKp,q(n; A, B). (41)

Our results in Theorems 7 and 8 above can be utilised to introduce the following consequences.

Corollary 5. Suppose that m = n + 1, n + 2, . . . (n ∈ N0). Then

f ∈ MS∗p,q(m; A, B) =⇒ f ∈ MS∗p,q(n; A, B).

Equivalently, if
Dm

q f (z) ∈ MS∗p,q(A, B),

then
f ∈ MS∗p,q(n; A, B).

Corollary 6. Suppose that m = n + 1, n + 2, . . . (n ∈ N0). Then

f ∈ MKp,q(m; A, B) =⇒ f ∈ MKp,q(n; A, B).

Equivalently, if
Dm

q f (z) ∈ MKp,q(A, B),

then
f ∈ MKp,q(n; A, B).

4. Conclusions

We have defined a new operator on the set of meromorphically multivalent functions.
With the help of this operator, we introduced the new subclasses MKp,q(n; A, B) and
MS∗p,q(n; A, B). The study was concentrated on convolution conditions. Our suggestions
for future studies on these subclasses is to use them in studies involving the theories of
differential subordination and superordination. Additionally, one can define the results
concerning the calculation of the bounds of coefficients of the bi-univalent functions, also
obtaining the Fekete–Szegö functionals.
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