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Abstract: The Randi¢ index of a graph G, denoted by R(G), is defined as the sum of 1/+/d(u)d(v)
for all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this note, we show that
R(L(T)) > % for any tree T of order n > 3. A number of relevant conjectures are proposed.
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1. Introduction

Let G = (V(G),E(G)) be a graph. For a vertex v € V(G), dg(v) (simply by d(v))
denotes the degree of v in G. The symbol N (v) presents the set of neighbors of the vertex
v. The minimum degree and the maximum degree of G are denoted by §(G) and A(G),
respectively. In 1975, the Randi¢ index R(G) of a graph G was introduced by Randi¢ [1] as
the sum of 1 over all edges uv of G, i.e.

VaGTw
Y. 1/4/d(w)d(v).

uveE(G)

R(G) =

This parameter is quite useful in mathematical chemistry and has been extensively studied,
see the monograph [2]. We refer to [3-7] for some recent results. As usual, P,, C;, and K;,
denote the path, the cycle and the complete graphs of order n, respectively. In addition,
Kyu,n represents the complete bipartite graph with m and # vertices in its two parts.

Let us recall two classical results on the Randi¢ index of graphs, which are a lower
bound and an upper bound in terms of their orders.

Theorem 1 (Bollobés and Erdés [8]). For a connected graph G of order n, R(G) > /n—1,
with equality, if and only if G = Ky ,_1.

Theorem 2 (Fajtlowicz [9]). For a graph G of order n, R(G) < 5 with equality, if and only if
each component of G has order at least two and is regular.

The line graph of a graph G, denoted by L(G), is the graph with V(L(G)) = E(G),
in which two vertices are adjacent, if and only if they share a common end vertex in G.
The relation between Wiener index of a graph and that of its line graph was investigated
in [10-13].

Interestingly, for a graph G, R(L(G)) is usually large contrast to R(G) (with some
exception, P, for instance). In this note, we investigate the Randi¢ indices of the line graphs
of graphs with order given. The following results illustrate that L(K};) has the maximum
Randi¢ index among all line graphs of graphs with order 7.

Theorem 3. For any graph G of order n > 3, R(L(G)) < %, with equality, if and only if
G = K.
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Proof. Observe that K;; has the maximum number of edges among all graphs of order 7.
Thus, the result is an immediate consequence of Theorem 2. [

Our main contribution is to show that R(L(T)) > % for any tree T of order n > 3. A
number of relevant conjectures are proposed.

2. Results

We begin with a wider family of graphs than line graphs. A graph G is called claw-free
if it contains no induced subgraph isomorphic to Kj 3. It is well-known that every line
graph is claw-free. The following lemma is one of our main tools proving Theorem 5.

Lemma 1. Let Gy and Gy be two disjoint nontrivial connected graphs. If G is a graph obtained
from Gy and Gy by identifying a vertex vy € V(Gy) and v, € V(Gy), then

R(G) =R(G1) +R(Gy) —(a+b—¢),

where 1 1
=y 1
\/ 4G, (v1) xeNg, (v1) 1/dG, (x)
N B
\/ 46, (v2) yeNG, (v2) 4/dc, (Y)
1 1 1

c= )y —+ )Y —).

\/(d61(01)+d62(v2)) xeNg, (v1) 1/dG, (X)  yeNG,(w) 1/dG, (Y)

Furthermore, if G is claw-free, thena +b —c < 1.

Proof. The first part of the result is obvious. Next we show the second part. For con-
venience, let d; = dg,(v;) for each i € {1,2} and Yen, (0) = = yh
! 1

(1) /dc, (x) Lz l\f

and
1 _ v 1
erNGl(vl) a5, ) —Zji1 \/E

Since d; > 1and dp > 1, we have ‘/\/;JFT‘{; > 1. In addition, since G is claw-free, both

Ng, (v1) and Ng, (v2) are cliques, implying that a; > d; for each i and b; > d, for each j.
Thus, we have

1 1 hooq 1 1 Booq
a+b—c = - — -
V& varn B e (\/cTz AN

1 1
< —I— d
S R == LG e O
_ , VitV

\/dl—i-dz

< 1.

The proof is completed. O

We will also use the following result in the proof of our main theorem.

Theorem 4 ( Hansen and Vukicevic¢ [14]). Let G be a simple graph. If d(v) = 6(G), then
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By the above theorem, if §(G) > 0, then R(G) — R(G —v) > 0 for any vertex v € V(G)
with d(v) = 6(G).

Theorem 5. For any tree T of order n > 3, R(L(T)) >

N

Proof. By induction on n. Observe that L(P,) = P,_jand L(K;,_1) = K,_1. Moreover,
R(P,) = 52 + v/2and R(K,) = %. A simple computation shows that the result holds for
T € {Py,Ky,,—1}. So, assume that n > 5 and T is neither a star nor a path.

Let P be a longest path of T. Label the vertices of P as vy, vy, ..., v; consecutively.
Clearly, t > 3. Observe that all neighbors of v; except v, have degree 1. Let Ty,, and Ty,
be the two components of T — v1v, containing v and vy, respectively. Let Ty = T \ E(Ty,)
and T, = T\ E(Ty, ). Let G; = L(T;) for each i € {1,2}, and G = L(G). Note that G is the
graph obtained from G; and G, by identifying the vertex v1v;. By Lemma 1, we have

R(G) =R(G1)+R(Gy) —(a+b—c),

where a4, b, and ¢ are those defined in the statement of Lemma 1.
By the induction hypothesis, R(G,) > "fl, where d; = dr(v1) — 1. In addition,
R(Gy) = leH. We consider two cases.

Casel.d; >2
Since G is a line graph (so it is claw-free), by Lemma 1,2 +b —c < 1.

R(G) = R(G1> + R(Gz) — ({Il +b— C)

d1—|—1 ﬂ—d1
+— -

d 1
a2
4

1

2
+

>

PSR

Note that if there exists an edge uv € T with dr(u) > 3 such that all neighbors of u
except v have degree 1, then by the argument as in Case 1, we can show that R(G) > %. So,
in what follows, we may assume that dr(u) = 2 for any vertex u € V(T) with all neighbors
but one having degree 1.

Case2. d; =1
Let dy = dr(v;) — 1. We consider two subcases.
Subcase 2.1.d, =1

Since dg(v1v2) = dy + dy = 2, we have

R(G) = R(Gy)+R(Gy)—(a+b—c)
n—1 Vi ++Vdy
> 14 1 —(2—7d1+d2)
> "l v
> Z.

Subcase 2.2. dy, > 2

By the choice of P and the remark before Case 2, the component of T — v,v3 containing
v is a wounded spider, as shown in Figure 1. Denote this component by W, s, where r and
s are the numbers of neighbors of v, having degrees 1 and 2, respectively.
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Figure 1. The local structure of T.

Let T; be the subtree of T obtained from W, s by joining v3 to vp, and T = T\ E(W;).
Moreover, let G; = L(T;) for eachi € {1,2}, and let G = L(T). Clearly, G is obtained from
G; and G, by identifying the vertex v,v;. By the induction hypothesis, R(G,) > =12,
One can see that

s N () (ygl) (r+1)s
Vits+1 r+s+1 r+s  Jr+s+1)(r+s)

R(Gy) = 1

Deleting leaves (minimum degree vertices) of G; one-by-one, we end up with K,;¢1.

By Theorem 2.2, we have

r+s+1
R(G1) > R(Kpasi1) = . @)

Subcase 2.2.1.7r > 2
By (2), R(G1) > “5*L. By Lemma 1, we have

R(G) > R(G1)+R(G2)—1
r+s+1 n—r—2s
> 4 -1
>

n
T
Subcase 2.2.2. r =0

Since dy = r+s,5 = dy = 2. By (1), R(G1) = —25 + ;gz;ﬂ + \/(ss-&-l)s > $ +1for any

s > 2. By Lemma 1,

R(G) = R(G1)+R(G2)—(a+b—c)
S n—2s
> E—l—l—i— 1 -1
_n
= T

Subcase 2.23.7r =1



Axioms 2022, 11, 210

50f6

_ -1 1 2 142 2
By (1, R(G1) = 25+ yg + stz + e 2 P 1 = P L Thus,
by Lemma 1,
R(G) = R(Gy)+R(Gy)—(a+b—c)
1+2s n—1-2s

Tl 1
=
= 7

The proof is completed. O

3. Discussion

In this paper, we show that R(L(T)) > % for any tree T of order n > 3. For a graph
G, 5(G) denotes the graph obtained from G by inserting exactly one vertex into each edge
of G. For a positive even integer n, S(Kll% )~ denotes the tree obtained from S(Klr%) by

deleting a leaf. Define a function f(n) as

3_|_\/> if n is odd
f(n) = n 2
13424 1—f—|—\/7 <, ifniseven.
Indeed,
R(L(S(K , ifnisodd
fly = { R e
R(L(S(K 1%) )), ifniseven.

We strongly believe that the following conjectures holds.
Conjecture 1. For any tree T of order n > 3, R(L(T)) > f(n), with equality, if and only if

s 1/%), if n is odd
S(KL%)_, if n is even .

Conjecture 2. For any connected graph G of order n > 3, R(L(G)) > f(n), with equality holds,
if and only if
s S(Ky 21), if nis odd
S(Kyn)~, ifniseven.

N\

Since every line graph is claw-free, we propose a more general conjecture.
Conjecture 3. For any connected claw-free graph of order n > 2, R(G) > f(n).

A weaker conjecture than the above is the following one.
Conjecture 4. For any connected claw-free graph of order n > 2, R(G) > 1.

As we have seen before, L(P,) = P,_1 for any n > 2 and Kj 3 = K3. We guess that the
following is true.

Conjecture 5. Let G be a connected graph of order n > 3. If 5(G) > 2, then R(L(G)) > R(G),
with equality, if and only if G = C,,.

The Harmonic index H(G) of a graph G is defined as H(G) = L0ck(c W Itis
natural that one may consider the same problems for the Harmonic index as we did in this
note. Specifically,
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Conjecture 6. H(L(T)) > % for any tree T of order n > 3.

If the above conjecture is true, it implies the main result of this note, since R(G) >
H(G) for any graph G.

Recall that for a real number «, the general Randi¢ index of a graph G, denoted by
Ry (G), is
Ry(G) =} (d(u)d(v))".
uveE(G)

The sum-connectivity index x(G) and the general sum-connectivity index x,(G) were
proposed by Zhou and Trinajsti¢ in [15,16] and were defined as

XG) = Y (d(u)+d(v)2

uveE(G)

and

x(G)= )} (d(u)+d(v))"

uveE(G)

It is interesting to consider the general Randi¢ index and the general sum-connectivity
index of a line graph for different value of .
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