
Citation: Zhang, J.; Wu, B. Randić
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Abstract: The Randić index of a graph G, denoted by R(G), is defined as the sum of 1/
√

d(u)d(v)
for all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this note, we show that
R(L(T)) > n

4 for any tree T of order n ≥ 3. A number of relevant conjectures are proposed.
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1. Introduction

Let G = (V(G), E(G)) be a graph. For a vertex v ∈ V(G), dG(v) (simply by d(v))
denotes the degree of v in G. The symbol NG(v) presents the set of neighbors of the vertex
v. The minimum degree and the maximum degree of G are denoted by δ(G) and ∆(G),
respectively. In 1975, the Randić index R(G) of a graph G was introduced by Randić [1] as
the sum of 1√

d(u)d(v)
over all edges uv of G, i.e.

R(G) = ∑
uv∈E(G)

1/
√

d(u)d(v).

This parameter is quite useful in mathematical chemistry and has been extensively studied,
see the monograph [2]. We refer to [3–7] for some recent results. As usual, Pn, Cn and Kn
denote the path, the cycle and the complete graphs of order n, respectively. In addition,
Km,n represents the complete bipartite graph with m and n vertices in its two parts.

Let us recall two classical results on the Randić index of graphs, which are a lower
bound and an upper bound in terms of their orders.

Theorem 1 (Bollobás and Erdős [8]). For a connected graph G of order n, R(G) ≥
√

n− 1,
with equality, if and only if G ∼= K1,n−1.

Theorem 2 (Fajtlowicz [9]). For a graph G of order n, R(G) ≤ n
2 with equality, if and only if

each component of G has order at least two and is regular.

The line graph of a graph G, denoted by L(G), is the graph with V(L(G)) = E(G),
in which two vertices are adjacent, if and only if they share a common end vertex in G.
The relation between Wiener index of a graph and that of its line graph was investigated
in [10–13].

Interestingly, for a graph G, R(L(G)) is usually large contrast to R(G) (with some
exception, Pn for instance). In this note, we investigate the Randić indices of the line graphs
of graphs with order given. The following results illustrate that L(Kn) has the maximum
Randić index among all line graphs of graphs with order n.

Theorem 3. For any graph G of order n ≥ 3, R(L(G)) ≤ n(n−1)
4 , with equality, if and only if

G ∼= Kn.
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Proof. Observe that Kn has the maximum number of edges among all graphs of order n.
Thus, the result is an immediate consequence of Theorem 2.

Our main contribution is to show that R(L(T)) > n
4 for any tree T of order n ≥ 3. A

number of relevant conjectures are proposed.

2. Results

We begin with a wider family of graphs than line graphs. A graph G is called claw-free
if it contains no induced subgraph isomorphic to K1,3. It is well-known that every line
graph is claw-free. The following lemma is one of our main tools proving Theorem 5.

Lemma 1. Let G1 and G2 be two disjoint nontrivial connected graphs. If G is a graph obtained
from G1 and G2 by identifying a vertex v1 ∈ V(G1) and v2 ∈ V(G2), then

R(G) = R(G1) + R(G2)− (a + b− c),

where
a =

1√
dG1(v1)

∑
x∈NG1

(v1)

1√
dG1(x)

,

b =
1√

dG2(v2)
∑

y∈NG2 (v2)

1√
dG2(y)

,

c =
1√

(dG1(v1) + dG2(v2))
( ∑

x∈NG1
(v1)

1√
dG1(x)

+ ∑
y∈NG2 (v2)

1√
dG2(y)

).

Furthermore, if G is claw-free, then a + b− c < 1.

Proof. The first part of the result is obvious. Next we show the second part. For con-
venience, let di = dGi (vi) for each i ∈ {1, 2} and ∑x∈NG1

(v1)
1√

dG1
(x)

= ∑d1
i=1

1√
ai

and

∑x∈NG1
(v1)

1√
dG2 (y)

= ∑d2
j=1

1√
bj

.

Since d1 ≥ 1 and d2 ≥ 1, we have
√

d1+
√

d2√
d1+d2

> 1. In addition, since G is claw-free, both
NG1(v1) and NG2(v2) are cliques, implying that ai ≥ d1 for each i and bj ≥ d2 for each j.
Thus, we have

a + b− c = (
1√
d1
− 1√

d1 + d2
)

d1

∑
i=1

1√
ai

+ (
1√
d2
− 1√

d1 + d2
)

d2

∑
j=1

1√
bj

≤ (
1√
d1
− 1√

d1 + d2
)
√

d1 + (
1√
d2
− 1√

d1 + d2
)
√

d2

= 2−
√

d1 +
√

d2√
d1 + d2

< 1.

The proof is completed.

We will also use the following result in the proof of our main theorem.

Theorem 4 ( Hansen and Vukicević [14]). Let G be a simple graph. If d(v) = δ(G), then

R(G)− R(G− v) ≥ 1
2

√
δ(G)

∆(G)
.
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By the above theorem, if δ(G) > 0, then R(G)− R(G− v) > 0 for any vertex v ∈ V(G)
with d(v) = δ(G).

Theorem 5. For any tree T of order n ≥ 3, R(L(T)) > n
4 .

Proof. By induction on n. Observe that L(Pn) ∼= Pn−1and L(K1,n−1) ∼= Kn−1. Moreover,
R(Pn) =

n−3
2 +

√
2 and R(Kn) =

n
2 . A simple computation shows that the result holds for

T ∈ {Pn, K1,n−1}. So, assume that n ≥ 5 and T is neither a star nor a path.
Let P be a longest path of T. Label the vertices of P as v0, v1, . . . , vt consecutively.

Clearly, t ≥ 3. Observe that all neighbors of v1 except v2 have degree 1. Let Tv1 and Tv2

be the two components of T − v1v2 containing v1 and v2, respectively. Let T1 = T \ E(Tv2)
and T2 = T \ E(Tv1). Let Gi = L(Ti) for each i ∈ {1, 2}, and G = L(G). Note that G is the
graph obtained from G1 and G2 by identifying the vertex v1v2. By Lemma 1, we have

R(G) = R(G1) + R(G2)− (a + b− c),

where a, b, and c are those defined in the statement of Lemma 1.
By the induction hypothesis, R(G2) > n−d1

4 , where d1 = dT(v1) − 1. In addition,
R(G1) =

d1+1
2 . We consider two cases.

Case 1. d1 ≥ 2
Since G is a line graph (so it is claw-free), by Lemma 1, a + b− c < 1.

R(G) = R(G1) + R(G2)− (a + b− c)

>
d1 + 1

2
+

n− d1

4
− 1

=
n
4
+

d1

4
− 1

2

≥ n
4

.

Note that if there exists an edge uv ∈ T with dT(u) ≥ 3 such that all neighbors of u
except v have degree 1, then by the argument as in Case 1, we can show that R(G) > n

4 . So,
in what follows, we may assume that dT(u) = 2 for any vertex u ∈ V(T) with all neighbors
but one having degree 1.

Case 2. d1 = 1

Let d2 = dT(v2)− 1. We consider two subcases.

Subcase 2.1. d2 = 1

Since dG(v1v2) = d1 + d2 = 2, we have

R(G) = R(G1) + R(G2)− (a + b− c)

> 1 +
n− 1

4
− (2−

√
d1 +

√
d2√

d1 + d2
)

≥ n− 1
4

+ 1− (2−
√

2)

>
n
4

.

Subcase 2.2. d2 ≥ 2

By the choice of P and the remark before Case 2, the component of T− v2v3 containing
v2 is a wounded spider, as shown in Figure 1. Denote this component by Wr,s, where r and
s are the numbers of neighbors of v2 having degrees 1 and 2, respectively.
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Figure 1. The local structure of T.

Let T1 be the subtree of T obtained from Wr,s by joining v3 to v2, and T2 = T \ E(Wr,s).
Moreover, let Gi = L(Ti) for each i ∈ {1, 2}, and let G = L(T). Clearly, G is obtained from
G1 and G2 by identifying the vertex v2v3. By the induction hypothesis, R(G2) >

n−r−2s
4 .

One can see that

R(G1) =
s√

r + s + 1
+

(s
2)

r + s + 1
+

(r+1
2 )

r + s
+

(r + 1)s√
(r + s + 1)(r + s)

. (1)

Deleting leaves (minimum degree vertices) of G1 one-by-one, we end up with Kr+s+1.
By Theorem 2.2, we have

R(G1) > R(Kr+s+1) =
r + s + 1

2
. (2)

Subcase 2.2.1. r ≥ 2

By (2), R(G1) >
r+s+1

2 . By Lemma 1, we have

R(G) > R(G1) + R(G2)− 1

>
r + s + 1

2
+

n− r− 2s
4

− 1

≥ n
4

.

Subcase 2.2.2. r = 0

Since d2 = r + s, s = d2 ≥ 2. By (1), R(G1) =
s√
s+1

+ s(s−1)
2(s+1) +

s√
(s+1)s

> s
2 + 1 for any

s ≥ 2. By Lemma 1,

R(G) = R(G1) + R(G2)− (a + b− c)

>
s
2
+ 1 +

n− 2s
4
− 1

=
n
4

.

Subcase 2.2.3. r = 1
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By (1), R(G1) = s√
s+2

+ s(s−1)
2(s+2) +

1
s+2 + 2s√

(s+2)(s+1)
≥ 1+2s

4 + 1 = r+2s
4 + 1. Thus,

by Lemma 1,

R(G) = R(G1) + R(G2)− (a + b− c)

>
1 + 2s

4
+ 1 +

n− 1− 2s
4

− 1

=
n
4

.

The proof is completed.

3. Discussion

In this paper, we show that R(L(T)) > n
4 for any tree T of order n ≥ 3. For a graph

G, S(G) denotes the graph obtained from G by inserting exactly one vertex into each edge
of G. For a positive even integer n, S(K1, n

2
)− denotes the tree obtained from S(K1, n

2
) by

deleting a leaf. Define a function f (n) as

f (n) =


n−3

4 +
√

n−1
2 , if n is odd

n
4 −

3
2 + 2

n +
√

1− 2
n +

√
n
2 −

√
2
n , if n is even .

Indeed,

f (n) =

{
R(L(S(K1, n−1

2
))), if n is odd

R(L(S(K1, n
2
)−)), if n is even .

We strongly believe that the following conjectures holds.

Conjecture 1. For any tree T of order n ≥ 3, R(L(T)) ≥ f (n), with equality, if and only if

T ∼=
{

S(K1, n−1
2
), if n is odd

S(K1, n
2
)−, if n is even .

Conjecture 2. For any connected graph G of order n ≥ 3, R(L(G)) ≥ f (n), with equality holds,
if and only if

T ∼=
{

S(K1, n−1
2
), if n is odd

S(K1, n
2
)−, if n is even .

Since every line graph is claw-free, we propose a more general conjecture.

Conjecture 3. For any connected claw-free graph of order n ≥ 2, R(G) ≥ f (n).

A weaker conjecture than the above is the following one.

Conjecture 4. For any connected claw-free graph of order n ≥ 2, R(G) > n
4 .

As we have seen before, L(Pn) ∼= Pn−1 for any n ≥ 2 and K1,3
∼= K3. We guess that the

following is true.

Conjecture 5. Let G be a connected graph of order n ≥ 3. If δ(G) ≥ 2, then R(L(G)) ≥ R(G),
with equality, if and only if G ∼= Cn.

The Harmonic index H(G) of a graph G is defined as H(G) = ∑uv∈E(G)
2

d(u)+d(v) . It is
natural that one may consider the same problems for the Harmonic index as we did in this
note. Specifically,
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Conjecture 6. H(L(T)) > n
4 for any tree T of order n ≥ 3.

If the above conjecture is true, it implies the main result of this note, since R(G) ≥
H(G) for any graph G.

Recall that for a real number α, the general Randić index of a graph G, denoted by
Rα(G), is

Rα(G) = ∑
uv∈E(G)

(d(u)d(v))α.

The sum-connectivity index χ(G) and the general sum-connectivity index χα(G) were
proposed by Zhou and Trinajstić in [15,16] and were defined as

χ(G) = ∑
uv∈E(G)

(d(u) + d(v))−
1
2

and
χα(G) = ∑

uv∈E(G)

(d(u) + d(v))α.

It is interesting to consider the general Randić index and the general sum-connectivity
index of a line graph for different value of α.
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