Article

Randić Index of a Line Graph

Jiangfu Zhang (©) and Baoyindureng Wu * ©

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China; jfzhangxju@163.com

* Correspondence: baoywu@163.com

Abstract

The Randić index of a graph G, denoted by $R(G)$, is defined as the sum of $1 / \sqrt{d(u) d(v)}$ for all edges $u v$ of G, where $d(u)$ denotes the degree of a vertex u in G. In this note, we show that $R(L(T))>\frac{n}{4}$ for any tree T of order $n \geq 3$. A number of relevant conjectures are proposed.

Keywords: Randić index; trees; line graphs; claw-free graphs

1. Introduction

Let $G=(V(G), E(G))$ be a graph. For a vertex $v \in V(G), d_{G}(v)$ (simply by $d(v)$) denotes the degree of v in G. The symbol $N_{G}(v)$ presents the set of neighbors of the vertex v. The minimum degree and the maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. In 1975, the Randić index $R(G)$ of a graph G was introduced by Randić [1] as the sum of $\frac{1}{\sqrt{d(u) d(v)}}$ over all edges $u v$ of G, i.e.

$$
R(G)=\sum_{u v \in E(G)} 1 / \sqrt{d(u) d(v)} .
$$

This parameter is quite useful in mathematical chemistry and has been extensively studied, see the monograph [2]. We refer to [3-7] for some recent results. As usual, P_{n}, C_{n} and K_{n} denote the path, the cycle and the complete graphs of order n, respectively. In addition, $K_{m, n}$ represents the complete bipartite graph with m and n vertices in its two parts.

Let us recall two classical results on the Randić index of graphs, which are a lower bound and an upper bound in terms of their orders.

Theorem 1 (Bollobás and Erdős [8]). For a connected graph G of order $n, R(G) \geq \sqrt{n-1}$, with equality, if and only if $G \cong K_{1, n-1}$.

Theorem 2 (Fajtlowicz [9]). For a graph G of order $n, R(G) \leq \frac{n}{2}$ with equality, if and only if each component of G has order at least two and is regular.

The line graph of a graph G, denoted by $L(G)$, is the graph with $V(L(G))=E(G)$, in which two vertices are adjacent, if and only if they share a common end vertex in G. The relation between Wiener index of a graph and that of its line graph was investigated in [10-13].

Interestingly, for a graph $G, R(L(G))$ is usually large contrast to $R(G)$ (with some exception, P_{n} for instance). In this note, we investigate the Randić indices of the line graphs of graphs with order given. The following results illustrate that $L\left(K_{n}\right)$ has the maximum Randić index among all line graphs of graphs with order n.

Theorem 3. For any graph G of order $n \geq 3, R(L(G)) \leq \frac{n(n-1)}{4}$, with equality, if and only if $G \cong K_{n}$.

Copyright: © 2022 by the authors Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
check for updates

Citation: Zhang, J.; Wu, B. Randić Index of a Line Graph. Axioms 2022, 11, 210. https://doi.org/10.3390/ axioms11050210

Academic Editors: Xueliang Li, Jiaao Li and Federico G. Infusino

Received: 14 March 2022
Accepted: 26 April 2022
Published: 29 April 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof. Observe that K_{n} has the maximum number of edges among all graphs of order n. Thus, the result is an immediate consequence of Theorem 2.

Our main contribution is to show that $R(L(T))>\frac{n}{4}$ for any tree T of order $n \geq 3$. A number of relevant conjectures are proposed.

2. Results

We begin with a wider family of graphs than line graphs. A graph G is called claw-free if it contains no induced subgraph isomorphic to $K_{1,3}$. It is well-known that every line graph is claw-free. The following lemma is one of our main tools proving Theorem 5.

Lemma 1. Let G_{1} and G_{2} be two disjoint nontrivial connected graphs. If G is a graph obtained from G_{1} and G_{2} by identifying a vertex $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$, then

$$
R(G)=R\left(G_{1}\right)+R\left(G_{2}\right)-(a+b-c)
$$

where

$$
\begin{gathered}
a=\frac{1}{\sqrt{d_{G_{1}}\left(v_{1}\right)}} \sum_{x \in N_{G_{1}}\left(v_{1}\right)} \frac{1}{\sqrt{d_{\mathrm{G}_{1}}(x)}}, \\
b=\frac{1}{\sqrt{d_{\mathrm{G}_{2}}\left(v_{2}\right)}} \sum_{y \in N_{\mathrm{G}_{2}}\left(v_{2}\right)} \frac{1}{\sqrt{d_{\mathrm{G}_{2}}(y)}}
\end{gathered}, .
$$

Furthermore, if G is claw-free, then $a+b-c<1$.
Proof. The first part of the result is obvious. Next we show the second part. For convenience, let $d_{i}=d_{G_{i}}\left(v_{i}\right)$ for each $i \in\{1,2\}$ and $\sum_{x \in N_{G_{1}}\left(v_{1}\right)} \frac{1}{\sqrt{d_{G_{1}}(x)}}=\sum_{i=1}^{d_{1}} \frac{1}{\sqrt{a_{i}}}$ and $\sum_{x \in N_{\mathrm{G}_{1}}\left(v_{1}\right)} \frac{1}{\sqrt{d_{\mathrm{G}_{2}}(y)}}=\sum_{j=1}^{d_{2}} \frac{1}{\sqrt{b_{j}}}$.

Since $d_{1} \geq 1$ and $d_{2} \geq 1$, we have $\frac{\sqrt{d_{1}}+\sqrt{d_{2}}}{\sqrt{d_{1}+d_{2}}}>1$. In addition, since G is claw-free, both $N_{G_{1}}\left(v_{1}\right)$ and $N_{G_{2}}\left(v_{2}\right)$ are cliques, implying that $a_{i} \geq d_{1}$ for each i and $b_{j} \geq d_{2}$ for each j. Thus, we have

$$
\begin{aligned}
a+b-c & =\left(\frac{1}{\sqrt{d_{1}}}-\frac{1}{\sqrt{d_{1}+d_{2}}}\right) \sum_{i=1}^{d_{1}} \frac{1}{\sqrt{a_{i}}}+\left(\frac{1}{\sqrt{d_{2}}}-\frac{1}{\sqrt{d_{1}+d_{2}}}\right) \sum_{j=1}^{d_{2}} \frac{1}{\sqrt{b_{j}}} \\
& \leq\left(\frac{1}{\sqrt{d_{1}}}-\frac{1}{\sqrt{d_{1}+d_{2}}}\right) \sqrt{d_{1}}+\left(\frac{1}{\sqrt{d_{2}}}-\frac{1}{\sqrt{d_{1}+d_{2}}}\right) \sqrt{d_{2}} \\
& =2-\frac{\sqrt{d_{1}}+\sqrt{d_{2}}}{\sqrt{d_{1}+d_{2}}} \\
& <1 .
\end{aligned}
$$

The proof is completed.
We will also use the following result in the proof of our main theorem.
Theorem 4 (Hansen and Vukicević [14]). Let G be a simple graph. If $d(v)=\delta(G)$, then

$$
R(G)-R(G-v) \geq \frac{1}{2} \sqrt{\frac{\delta(G)}{\Delta(G)}}
$$

By the above theorem, if $\delta(G)>0$, then $R(G)-R(G-v)>0$ for any vertex $v \in V(G)$ with $d(v)=\delta(G)$.

Theorem 5. For any tree T of order $n \geq 3, R(L(T))>\frac{n}{4}$.
Proof. By induction on n. Observe that $L\left(P_{n}\right) \cong P_{n-1}$ and $L\left(K_{1, n-1}\right) \cong K_{n-1}$. Moreover, $R\left(P_{n}\right)=\frac{n-3}{2}+\sqrt{2}$ and $R\left(K_{n}\right)=\frac{n}{2}$. A simple computation shows that the result holds for $T \in\left\{P_{n}, K_{1, n-1}\right\}$. So, assume that $n \geq 5$ and T is neither a star nor a path.

Let P be a longest path of T. Label the vertices of P as $v_{0}, v_{1}, \ldots, v_{t}$ consecutively. Clearly, $t \geq 3$. Observe that all neighbors of v_{1} except v_{2} have degree 1. Let $T_{v_{1}}$ and $T_{v_{2}}$ be the two components of $T-v_{1} v_{2}$ containing v_{1} and v_{2}, respectively. Let $T_{1}=T \backslash E\left(T_{v_{2}}\right)$ and $T_{2}=T \backslash E\left(T_{v_{1}}\right)$. Let $G_{i}=L\left(T_{i}\right)$ for each $i \in\{1,2\}$, and $G=L(G)$. Note that G is the graph obtained from G_{1} and G_{2} by identifying the vertex $v_{1} v_{2}$. By Lemma 1, we have

$$
R(G)=R\left(G_{1}\right)+R\left(G_{2}\right)-(a+b-c),
$$

where a, b, and c are those defined in the statement of Lemma 1.
By the induction hypothesis, $R\left(G_{2}\right)>\frac{n-d_{1}}{4}$, where $d_{1}=d_{T}\left(v_{1}\right)-1$. In addition, $R\left(G_{1}\right)=\frac{d_{1}+1}{2}$. We consider two cases.
Case 1. $d_{1} \geq 2$
Since G is a line graph (so it is claw-free), by Lemma $1, a+b-c<1$.

$$
\begin{aligned}
R(G) & =R\left(G_{1}\right)+R\left(G_{2}\right)-(a+b-c) \\
& >\frac{d_{1}+1}{2}+\frac{n-d_{1}}{4}-1 \\
& =\frac{n}{4}+\frac{d_{1}}{4}-\frac{1}{2} \\
& \geq \frac{n}{4} .
\end{aligned}
$$

Note that if there exists an edge $u v \in T$ with $d_{T}(u) \geq 3$ such that all neighbors of u except v have degree 1, then by the argument as in Case 1, we can show that $R(G)>\frac{n}{4}$. So, in what follows, we may assume that $d_{T}(u)=2$ for any vertex $u \in V(T)$ with all neighbors but one having degree 1 .
Case 2. $d_{1}=1$
Let $d_{2}=d_{T}\left(v_{2}\right)-1$. We consider two subcases.
Subcase 2.1. $d_{2}=1$
Since $d_{G}\left(v_{1} v_{2}\right)=d_{1}+d_{2}=2$, we have

$$
\begin{aligned}
R(G) & =R\left(G_{1}\right)+R\left(G_{2}\right)-(a+b-c) \\
& >1+\frac{n-1}{4}-\left(2-\frac{\sqrt{d_{1}}+\sqrt{d_{2}}}{\sqrt{d_{1}+d_{2}}}\right) \\
& \geq \frac{n-1}{4}+1-(2-\sqrt{2}) \\
& >\frac{n}{4} .
\end{aligned}
$$

Subcase 2.2. $d_{2} \geq 2$

By the choice of P and the remark before Case 2, the component of $T-v_{2} v_{3}$ containing v_{2} is a wounded spider, as shown in Figure 1. Denote this component by $W_{r, s}$, where r and s are the numbers of neighbors of v_{2} having degrees 1 and 2 , respectively.

Figure 1. The local structure of T.
Let T_{1} be the subtree of T obtained from $W_{r, s}$ by joining v_{3} to v_{2}, and $T_{2}=T \backslash E\left(W_{r, s}\right)$. Moreover, let $G_{i}=L\left(T_{i}\right)$ for each $i \in\{1,2\}$, and let $G=L(T)$. Clearly, G is obtained from G_{1} and G_{2} by identifying the vertex $v_{2} v_{3}$. By the induction hypothesis, $R\left(G_{2}\right)>\frac{n-r-2 s}{4}$. One can see that

$$
\begin{equation*}
R\left(G_{1}\right)=\frac{s}{\sqrt{r+s+1}}+\frac{\binom{s}{2}}{r+s+1}+\frac{\binom{r+1}{2}}{r+s}+\frac{(r+1) s}{\sqrt{(r+s+1)(r+s)}} . \tag{1}
\end{equation*}
$$

Deleting leaves (minimum degree vertices) of G_{1} one-by-one, we end up with K_{r+s+1}. By Theorem 2.2, we have

$$
\begin{equation*}
R\left(G_{1}\right)>R\left(K_{r+s+1}\right)=\frac{r+s+1}{2} \tag{2}
\end{equation*}
$$

Subcase 2.2.1. $r \geq 2$
By (2), $R\left(G_{1}\right)>\frac{r+s+1}{2}$. By Lemma 1, we have

$$
\begin{aligned}
R(G) & >R\left(G_{1}\right)+R\left(G_{2}\right)-1 \\
& >\frac{r+s+1}{2}+\frac{n-r-2 s}{4}-1 \\
& \geq \frac{n}{4} .
\end{aligned}
$$

Subcase 2.2.2. $r=0$
Since $d_{2}=r+s, s=d_{2} \geq 2$. By (1), $R\left(G_{1}\right)=\frac{s}{\sqrt{s+1}}+\frac{s(s-1)}{2(s+1)}+\frac{s}{\sqrt{(s+1) s}}>\frac{s}{2}+1$ for any $s \geq 2$. By Lemma 1,

$$
\begin{aligned}
R(G) & =R\left(G_{1}\right)+R\left(G_{2}\right)-(a+b-c) \\
& >\frac{s}{2}+1+\frac{n-2 s}{4}-1 \\
& =\frac{n}{4} .
\end{aligned}
$$

Subcase 2.2.3. $r=1$

By (1), $R\left(G_{1}\right)=\frac{s}{\sqrt{s+2}}+\frac{s(s-1)}{2(s+2)}+\frac{1}{s+2}+\frac{2 s}{\sqrt{(s+2)(s+1)}} \geq \frac{1+2 s}{4}+1=\frac{r+2 s}{4}+1$. Thus, by Lemma 1,

$$
\begin{aligned}
R(G) & =R\left(G_{1}\right)+R\left(G_{2}\right)-(a+b-c) \\
& >\frac{1+2 s}{4}+1+\frac{n-1-2 s}{4}-1 \\
& =\frac{n}{4} .
\end{aligned}
$$

The proof is completed.

3. Discussion

In this paper, we show that $R(L(T))>\frac{n}{4}$ for any tree T of order $n \geq 3$. For a graph $G, S(G)$ denotes the graph obtained from G by inserting exactly one vertex into each edge of G. For a positive even integer $n, S\left(K_{1, \frac{n}{2}}\right)^{-}$denotes the tree obtained from $S\left(K_{1, \frac{n}{2}}\right)$ by deleting a leaf. Define a function $f(n)$ as

$$
f(n)= \begin{cases}\frac{n-3}{4}+\sqrt{\frac{n-1}{2}}, & \text { if } n \text { is odd } \\ \frac{n}{4}-\frac{3}{2}+\frac{2}{n}+\sqrt{1-\frac{2}{n}}+\sqrt{\frac{n}{2}}-\sqrt{\frac{2}{n}}, & \text { if } n \text { is even } .\end{cases}
$$

Indeed,

$$
f(n)= \begin{cases}R\left(L\left(S\left(K_{\left.1, \frac{n-1}{2}\right)}\right)\right),\right. & \text { if } n \text { is odd } \\ R\left(L\left(S\left(K_{1, \frac{n}{2}}\right)^{-}\right)\right), & \text {if } n \text { is even }\end{cases}
$$

We strongly believe that the following conjectures holds.
Conjecture 1. For any tree T of order $n \geq 3, R(L(T)) \geq f(n)$, with equality, if and only if

$$
T \cong \begin{cases}S\left(K_{\left.1, \frac{n-1}{2}\right),}\right. & \text { if } n \text { is odd } \\ S\left(K_{1, \frac{n}{2}}\right)^{-}, & \text {if } n \text { is even } .\end{cases}
$$

Conjecture 2. For any connected graph G of order $n \geq 3, R(L(G)) \geq f(n)$, with equality holds, if and only if

$$
T \cong \begin{cases}S\left(K_{\left.1, \frac{n-1}{2}\right),}\right. & \text { if } n \text { is odd } \\ S\left(K_{1, \frac{n}{2}}\right)^{-}, & \text {if } n \text { is even } .\end{cases}
$$

Since every line graph is claw-free, we propose a more general conjecture.
Conjecture 3. For any connected claw-free graph of order $n \geq 2, R(G) \geq f(n)$.
A weaker conjecture than the above is the following one.
Conjecture 4. For any connected claw-free graph of order $n \geq 2, R(G)>\frac{n}{4}$.
As we have seen before, $L\left(P_{n}\right) \cong P_{n-1}$ for any $n \geq 2$ and $K_{1,3} \cong K_{3}$. We guess that the following is true.

Conjecture 5. Let G be a connected graph of order $n \geq 3$. If $\delta(G) \geq 2$, then $R(L(G)) \geq R(G)$, with equality, if and only if $G \cong C_{n}$.

The Harmonic index $H(G)$ of a graph G is defined as $H(G)=\sum_{u v \in E(G)} \frac{2}{d(u)+d(v)}$. It is natural that one may consider the same problems for the Harmonic index as we did in this note. Specifically,

Conjecture 6. $H(L(T))>\frac{n}{4}$ for any tree T of order $n \geq 3$.
If the above conjecture is true, it implies the main result of this note, since $R(G) \geq$ $H(G)$ for any graph G.

Recall that for a real number α, the general Randić index of a graph G, denoted by $R_{\alpha}(G)$, is

$$
R_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha}
$$

The sum-connectivity index $\chi(G)$ and the general sum-connectivity index $\chi_{\alpha}(G)$ were proposed by Zhou and Trinajstić in $[15,16]$ and were defined as

$$
\chi(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{-\frac{1}{2}}
$$

and

$$
\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha} .
$$

It is interesting to consider the general Randić index and the general sum-connectivity index of a line graph for different value of α.

Author Contributions: Conceptualization, B.W. and J.Z.; methodology, B.W.; software, B.W.; validation, B.W. and J.Z.; formal analysis, B.W.; investigation, B.W.; resources, B.W.; data curation, B.W.; writing-original draft preparation, B.W.; writing-review and editing, B.W.; visualization, B.W.; supervision, B.W.; project administration, B.W.; funding acquisition, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China (No. 12061073).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609-6615. [CrossRef]
2. Li, X.; Gutman, I. Mathematical aspects of Randić-type molecular structure descriptors. In Mathematical Chemistry Monographs; University of Kragujevac, Faculty of Science, Kragujevac, Serbia, 2006.
3. Alfuraidan, M.R.; Das, K.C.; Vetrík, T.; Balachandran, S. General Randić index of unicyclic graphs with given diameter. Discret. Appl. Math. 2022, 306, 7-16. [CrossRef]
4. Arizmendi, G.; Arizmendi, O. Energy of a graph and Randic index. Linear Algebra Appl. 2021, 609, 332-338. [CrossRef]
5. Bermudo, S.; Nápoles, J.E.; Rada, J. Extremal trees for the Randić index with given domination number. Appl. Math. Comput. 2020, 375, 125122. [CrossRef]
6. Dalfó, C. On the Randić index of graphs. Discret. Math. 2019, 342, 2792-2796. [CrossRef]
7. O, S.; Shi, Y. Sharp bounds for the Randić index of graphs with given minimum and maximum degree. Discret. Appl. Math. 2018, 247, 111-115. [CrossRef]
8. Bollobás, B.; Erdős, P. Graphs of extremal weights. Ars Combin. 1998, 50, 225-233. [CrossRef]
9. Fajtlowicz, S. Written on the Wall, a list of conjectures of Graffiti. Available from the author.
10. Buckley, F. Mean distance of line graphs. Congr. Numer. 1981, 32, 153-162.
11. Cohen, N.; Dimitrov, D.; Krakovski, R.; Škrekovski, R.; Vukašinović, V. On Wiener index of graphs and their line graphs. Match-comтии. Math. Co. 2010, 64, 683-698.
12. Gutman, I.; Pavlovic, L. More on distance of line graphs. Graph Theory Notes N. Y. 1997, 33, 14-18.
13. Wu, B. Wiener index of line graphs. MATCH Commun. Math. Comput. Chem. 2010, 64, 699-706.
14. Hansen, P.; Vukicević, D. On the Randic index and the chromatic number. Discret. Math. 2009, 309, 4228-4234. [CrossRef]
15. Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem. 2009, 46, 1252-1270. [CrossRef]
16. Zhou, B.; Trinajstić, N. On general sum-connectivity index. J. Math. Chem. 2010, 47, 210-218. [CrossRef]
