

Article Randić Index of a Line Graph

Jiangfu Zhang 🗈 and Baoyindureng Wu *🗈

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China; jfzhangxju@163.com * Correspondence: baoywu@163.com

Abstract: The Randić index of a graph *G*, denoted by R(G), is defined as the sum of $1/\sqrt{d(u)d(v)}$ for all edges *uv* of *G*, where d(u) denotes the degree of a vertex *u* in *G*. In this note, we show that $R(L(T)) > \frac{n}{4}$ for any tree *T* of order $n \ge 3$. A number of relevant conjectures are proposed.

Keywords: Randić index; trees; line graphs; claw-free graphs

1. Introduction

Let G = (V(G), E(G)) be a graph. For a vertex $v \in V(G)$, $d_G(v)$ (simply by d(v)) denotes the degree of v in G. The symbol $N_G(v)$ presents the set of neighbors of the vertex v. The minimum degree and the maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. In 1975, the Randić index R(G) of a graph G was introduced by Randić [1] as the sum of $\frac{1}{\sqrt{d(u)d(v)}}$ over all edges uv of G, i.e.

$$R(G) = \sum_{uv \in E(G)} 1/\sqrt{d(u)d(v)}$$

This parameter is quite useful in mathematical chemistry and has been extensively studied, see the monograph [2]. We refer to [3–7] for some recent results. As usual, P_n , C_n and K_n denote the path, the cycle and the complete graphs of order n, respectively. In addition, $K_{m,n}$ represents the complete bipartite graph with m and n vertices in its two parts.

Let us recall two classical results on the Randić index of graphs, which are a lower bound and an upper bound in terms of their orders.

Theorem 1 (Bollobás and Erdős [8]). *For a connected graph G of order n,* $R(G) \ge \sqrt{n-1}$, *with equality, if and only if* $G \cong K_{1,n-1}$.

Theorem 2 (Fajtlowicz [9]). For a graph G of order n, $R(G) \leq \frac{n}{2}$ with equality, if and only if each component of G has order at least two and is regular.

The line graph of a graph *G*, denoted by L(G), is the graph with V(L(G)) = E(G), in which two vertices are adjacent, if and only if they share a common end vertex in *G*. The relation between Wiener index of a graph and that of its line graph was investigated in [10–13].

Interestingly, for a graph *G*, R(L(G)) is usually large contrast to R(G) (with some exception, P_n for instance). In this note, we investigate the Randić indices of the line graphs of graphs with order given. The following results illustrate that $L(K_n)$ has the maximum Randić index among all line graphs of graphs with order *n*.

Theorem 3. For any graph G of order $n \ge 3$, $R(L(G)) \le \frac{n(n-1)}{4}$, with equality, if and only if $G \cong K_n$.

Citation: Zhang, J.; Wu, B. Randić Index of a Line Graph. *Axioms* 2022, *11*, 210. https://doi.org/10.3390/ axioms11050210

Academic Editors: Xueliang Li, Jiaao Li and Federico G. Infusino

Received: 14 March 2022 Accepted: 26 April 2022 Published: 29 April 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Proof.** Observe that K_n has the maximum number of edges among all graphs of order *n*. Thus, the result is an immediate consequence of Theorem 2. \Box

Our main contribution is to show that $R(L(T)) > \frac{n}{4}$ for any tree *T* of order $n \ge 3$. A number of relevant conjectures are proposed.

2. Results

We begin with a wider family of graphs than line graphs. A graph *G* is called *claw-free* if it contains no induced subgraph isomorphic to $K_{1,3}$. It is well-known that every line graph is claw-free. The following lemma is one of our main tools proving Theorem 5.

Lemma 1. Let G_1 and G_2 be two disjoint nontrivial connected graphs. If G is a graph obtained from G_1 and G_2 by identifying a vertex $v_1 \in V(G_1)$ and $v_2 \in V(G_2)$, then

$$R(G) = R(G_1) + R(G_2) - (a + b - c),$$

where

$$a = \frac{1}{\sqrt{d_{G_1}(v_1)}} \sum_{x \in N_{G_1}(v_1)} \frac{1}{\sqrt{d_{G_1}(x)}},$$

$$b = \frac{1}{\sqrt{d_{G_2}(v_2)}} \sum_{y \in N_{G_2}(v_2)} \frac{1}{\sqrt{d_{G_2}(y)}},$$

$$c = \frac{1}{\sqrt{(d_{G_1}(v_1) + d_{G_2}(v_2))}} (\sum_{x \in N_{G_1}(v_1)} \frac{1}{\sqrt{d_{G_1}(x)}} + \sum_{y \in N_{G_2}(v_2)} \frac{1}{\sqrt{d_{G_2}(y)}}).$$

Furthermore, if G is claw-free, then a + b - c < 1*.*

Proof. The first part of the result is obvious. Next we show the second part. For convenience, let $d_i = d_{G_i}(v_i)$ for each $i \in \{1, 2\}$ and $\sum_{x \in N_{G_1}(v_1)} \frac{1}{\sqrt{d_{G_1}(x)}} = \sum_{i=1}^{d_1} \frac{1}{\sqrt{a_i}}$ and $\sum_{x \in N_{G_1}(v_1)} \frac{1}{\sqrt{d_{G_2}(y)}} = \sum_{j=1}^{d_2} \frac{1}{\sqrt{b_j}}$.

Since $d_1 \ge 1$ and $d_2 \ge 1$, we have $\frac{\sqrt{d_1 + \sqrt{d_2}}}{\sqrt{d_1 + d_2}} > 1$. In addition, since *G* is claw-free, both $N_{G_1}(v_1)$ and $N_{G_2}(v_2)$ are cliques, implying that $a_i \ge d_1$ for each *i* and $b_j \ge d_2$ for each *j*. Thus, we have

$$\begin{aligned} a+b-c &= \left(\frac{1}{\sqrt{d_1}} - \frac{1}{\sqrt{d_1 + d_2}}\right) \sum_{i=1}^{d_1} \frac{1}{\sqrt{a_i}} + \left(\frac{1}{\sqrt{d_2}} - \frac{1}{\sqrt{d_1 + d_2}}\right) \sum_{j=1}^{d_2} \frac{1}{\sqrt{b_j}} \\ &\leq \left(\frac{1}{\sqrt{d_1}} - \frac{1}{\sqrt{d_1 + d_2}}\right) \sqrt{d_1} + \left(\frac{1}{\sqrt{d_2}} - \frac{1}{\sqrt{d_1 + d_2}}\right) \sqrt{d_2} \\ &= 2 - \frac{\sqrt{d_1} + \sqrt{d_2}}{\sqrt{d_1 + d_2}} \\ &< 1. \end{aligned}$$

The proof is completed. \Box

We will also use the following result in the proof of our main theorem.

Theorem 4 (Hansen and Vukicević [14]). *Let G be a simple graph. If* $d(v) = \delta(G)$ *, then*

$$R(G) - R(G - v) \ge \frac{1}{2}\sqrt{\frac{\delta(G)}{\Delta(G)}}.$$

By the above theorem, if $\delta(G) > 0$, then R(G) - R(G - v) > 0 for any vertex $v \in V(G)$ with $d(v) = \delta(G)$.

Theorem 5. For any tree T of order $n \ge 3$, $R(L(T)) > \frac{n}{4}$.

Proof. By induction on *n*. Observe that $L(P_n) \cong P_{n-1}$ and $L(K_{1,n-1}) \cong K_{n-1}$. Moreover, $R(P_n) = \frac{n-3}{2} + \sqrt{2}$ and $R(K_n) = \frac{n}{2}$. A simple computation shows that the result holds for $T \in \{P_n, K_{1,n-1}\}$. So, assume that $n \ge 5$ and *T* is neither a star nor a path.

Let *P* be a longest path of *T*. Label the vertices of *P* as v_0, v_1, \ldots, v_t consecutively. Clearly, $t \ge 3$. Observe that all neighbors of v_1 except v_2 have degree 1. Let T_{v_1} and T_{v_2} be the two components of $T - v_1v_2$ containing v_1 and v_2 , respectively. Let $T_1 = T \setminus E(T_{v_2})$ and $T_2 = T \setminus E(T_{v_1})$. Let $G_i = L(T_i)$ for each $i \in \{1, 2\}$, and G = L(G). Note that *G* is the graph obtained from G_1 and G_2 by identifying the vertex v_1v_2 . By Lemma 1, we have

$$R(G) = R(G_1) + R(G_2) - (a + b - c),$$

where *a*, *b*, and *c* are those defined in the statement of Lemma 1.

By the induction hypothesis, $R(G_2) > \frac{n-d_1}{4}$, where $d_1 = d_T(v_1) - 1$. In addition, $R(G_1) = \frac{d_1+1}{2}$. We consider two cases.

Case 1. $d_1 \ge 2$

Since *G* is a line graph (so it is claw-free), by Lemma 1, a + b - c < 1.

$$R(G) = R(G_1) + R(G_2) - (a + b - c)$$

> $\frac{d_1 + 1}{2} + \frac{n - d_1}{4} - 1$
= $\frac{n}{4} + \frac{d_1}{4} - \frac{1}{2}$
 $\geq \frac{n}{4}$.

Note that if there exists an edge $uv \in T$ with $d_T(u) \ge 3$ such that all neighbors of u except v have degree 1, then by the argument as in Case 1, we can show that $R(G) > \frac{n}{4}$. So, in what follows, we may assume that $d_T(u) = 2$ for any vertex $u \in V(T)$ with all neighbors but one having degree 1.

Case 2. $d_1 = 1$

Let $d_2 = d_T(v_2) - 1$. We consider two subcases.

Subcase 2.1. *d*₂ = 1

Since
$$d_G(v_1v_2) = d_1 + d_2 = 2$$
, we have

$$\begin{aligned} R(G) &= R(G_1) + R(G_2) - (a+b-c) \\ &> 1 + \frac{n-1}{4} - (2 - \frac{\sqrt{d_1} + \sqrt{d_2}}{\sqrt{d_1 + d_2}}) \\ &\geq \frac{n-1}{4} + 1 - (2 - \sqrt{2}) \\ &> \frac{n}{4}. \end{aligned}$$

Subcase 2.2. $d_2 \ge 2$

By the choice of *P* and the remark before Case 2, the component of $T - v_2v_3$ containing v_2 is a wounded spider, as shown in Figure 1. Denote this component by $W_{r,s}$, where *r* and *s* are the numbers of neighbors of v_2 having degrees 1 and 2, respectively.

Figure 1. The local structure of *T*.

Let T_1 be the subtree of T obtained from $W_{r,s}$ by joining v_3 to v_2 , and $T_2 = T \setminus E(W_{r,s})$. Moreover, let $G_i = L(T_i)$ for each $i \in \{1, 2\}$, and let G = L(T). Clearly, G is obtained from G_1 and G_2 by identifying the vertex v_2v_3 . By the induction hypothesis, $R(G_2) > \frac{n-r-2s}{4}$. One can see that

$$R(G_1) = \frac{s}{\sqrt{r+s+1}} + \frac{\binom{s}{2}}{r+s+1} + \frac{\binom{r+1}{2}}{r+s} + \frac{(r+1)s}{\sqrt{(r+s+1)(r+s)}}.$$
 (1)

Deleting leaves (minimum degree vertices) of G_1 one-by-one, we end up with K_{r+s+1} . By Theorem 2.2, we have

$$R(G_1) > R(K_{r+s+1}) = \frac{r+s+1}{2}.$$
(2)

Subcase 2.2.1. *r* ≥ 2

By (2), $R(G_1) > \frac{r+s+1}{2}$. By Lemma 1, we have

$$\begin{array}{rcl} R(G) &>& R(G_1) + R(G_2) - 1 \\ &>& \frac{r + s + 1}{2} + \frac{n - r - 2s}{4} - 1 \\ &\geq& \frac{n}{4}. \end{array}$$

Subcase 2.2.2. *r* = 0

Since $d_2 = r + s$, $s = d_2 \ge 2$. By (1), $R(G_1) = \frac{s}{\sqrt{s+1}} + \frac{s(s-1)}{2(s+1)} + \frac{s}{\sqrt{(s+1)s}} > \frac{s}{2} + 1$ for any $s \ge 2$. By Lemma 1,

$$R(G) = R(G_1) + R(G_2) - (a + b - c)$$

> $\frac{s}{2} + 1 + \frac{n - 2s}{4} - 1$
= $\frac{n}{4}$.

Subcase 2.2.3. *r* = 1

By (1), $R(G_1) = \frac{s}{\sqrt{s+2}} + \frac{s(s-1)}{2(s+2)} + \frac{1}{s+2} + \frac{2s}{\sqrt{(s+2)(s+1)}} \ge \frac{1+2s}{4} + 1 = \frac{r+2s}{4} + 1$. Thus, by Lemma 1,

$$\begin{array}{rcl} R(G) & = & R(G_1) + R(G_2) - (a+b-c) \\ & > & \frac{1+2s}{4} + 1 + \frac{n-1-2s}{4} - 1 \\ & = & \frac{n}{4}. \end{array}$$

The proof is completed. \Box

3. Discussion

In this paper, we show that $R(L(T)) > \frac{n}{4}$ for any tree *T* of order $n \ge 3$. For a graph *G*, *S*(*G*) denotes the graph obtained from *G* by inserting exactly one vertex into each edge of *G*. For a positive even integer *n*, $S(K_{1,\frac{n}{2}})^-$ denotes the tree obtained from $S(K_{1,\frac{n}{2}})$ by deleting a leaf. Define a function f(n) as

$$f(n) = \begin{cases} \frac{n-3}{4} + \sqrt{\frac{n-1}{2}}, & \text{if } n \text{ is odd} \\ \frac{n}{4} - \frac{3}{2} + \frac{2}{n} + \sqrt{1 - \frac{2}{n}} + \sqrt{\frac{n}{2}} - \sqrt{\frac{2}{n}}, & \text{if } n \text{ is even} \end{cases}$$

Indeed,

$$f(n) = \begin{cases} R(L(S(K_{1,\frac{n-1}{2}}))), & \text{if } n \text{ is odd} \\ R(L(S(K_{1,\frac{n}{2}})^{-})), & \text{if } n \text{ is even} . \end{cases}$$

We strongly believe that the following conjectures holds.

Conjecture 1. For any tree T of order $n \ge 3$, $R(L(T)) \ge f(n)$, with equality, if and only if

$$T \cong \begin{cases} S(K_{1,\frac{n-1}{2}}), & \text{if } n \text{ is odd} \\ S(K_{1,\frac{n}{2}})^{-}, & \text{if } n \text{ is even} . \end{cases}$$

Conjecture 2. For any connected graph G of order $n \ge 3$, $R(L(G)) \ge f(n)$, with equality holds, *if and only if*

$$T \cong \begin{cases} S(K_{1,\frac{n-1}{2}}), & \text{if } n \text{ is odd} \\ S(K_{1,\frac{n}{2}})^{-}, & \text{if } n \text{ is even} \end{cases}$$

Since every line graph is claw-free, we propose a more general conjecture.

Conjecture 3. For any connected claw-free graph of order $n \ge 2$, $R(G) \ge f(n)$.

A weaker conjecture than the above is the following one.

Conjecture 4. For any connected claw-free graph of order $n \ge 2$, $R(G) > \frac{n}{4}$.

As we have seen before, $L(P_n) \cong P_{n-1}$ for any $n \ge 2$ and $K_{1,3} \cong K_3$. We guess that the following is true.

Conjecture 5. Let G be a connected graph of order $n \ge 3$. If $\delta(G) \ge 2$, then $R(L(G)) \ge R(G)$, with equality, if and only if $G \cong C_n$.

The Harmonic index H(G) of a graph G is defined as $H(G) = \sum_{uv \in E(G)} \frac{2}{d(u)+d(v)}$. It is natural that one may consider the same problems for the Harmonic index as we did in this note. Specifically,

Conjecture 6. $H(L(T)) > \frac{n}{4}$ for any tree T of order $n \ge 3$.

If the above conjecture is true, it implies the main result of this note, since $R(G) \ge H(G)$ for any graph *G*.

Recall that for a real number α , the general Randić index of a graph *G*, denoted by $R_{\alpha}(G)$, is

$$R_{\alpha}(G) = \sum_{uv \in E(G)} \left(d(u)d(v) \right)^{\alpha}.$$

The sum-connectivity index $\chi(G)$ and the general sum-connectivity index $\chi_{\alpha}(G)$ were proposed by Zhou and Trinajstić in [15,16] and were defined as

$$\chi(G) = \sum_{uv \in E(G)} (d(u) + d(v))^{-\frac{1}{2}}$$

and

$$\chi_{\alpha}(G) = \sum_{uv \in E(G)} (d(u) + d(v))^{\alpha}$$

It is interesting to consider the general Randić index and the general sum-connectivity index of a line graph for different value of α .

Author Contributions: Conceptualization, B.W. and J.Z.; methodology, B.W.; software, B.W.; validation, B.W. and J.Z.; formal analysis, B.W.; investigation, B.W.; resources, B.W.; data curation, B.W.; writing—original draft preparation, B.W.; writing—review and editing, B.W.; visualization, B.W.; supervision, B.W.; project administration, B.W.; funding acquisition, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China (No. 12061073).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [CrossRef]
- Li, X.; Gutman, I. Mathematical aspects of Randić-type molecular structure descriptors. In *Mathematical Chemistry Monographs*; University of Kragujevac, Faculty of Science, Kragujevac, Serbia, 2006.
- 3. Alfuraidan, M.R.; Das, K.C.; Vetrík, T.; Balachandran, S. General Randić index of unicyclic graphs with given diameter. *Discret. Appl. Math.* **2022**, *306*, 7–16. [CrossRef]
- 4. Arizmendi, G.; Arizmendi, O. Energy of a graph and Randic index. Linear Algebra Appl. 2021, 609, 332–338. [CrossRef]
- 5. Bermudo, S.; Nápoles, J.E.; Rada, J. Extremal trees for the Randić index with given domination number. *Appl. Math. Comput.* 2020, 375, 125122. [CrossRef]
- 6. Dalfó, C. On the Randić index of graphs. Discret. Math. 2019, 342, 2792–2796. [CrossRef]
- O, S.; Shi, Y. Sharp bounds for the Randić index of graphs with given minimum and maximum degree. *Discret. Appl. Math.* 2018, 247, 111–115. [CrossRef]
- 8. Bollobás, B.; Erdős, P. Graphs of extremal weights. Ars Combin. 1998, 50, 225–233. [CrossRef]
- 9. Fajtlowicz, S. Written on the Wall, a list of conjectures of Graffiti. Available from the author.
- 10. Buckley, F. Mean distance of line graphs. Congr. Numer. 1981, 32, 153–162.
- 11. Cohen, N.; Dimitrov, D.; Krakovski, R.; Škrekovski, R.; Vukašinović, V. On Wiener index of graphs and their line graphs. *Match-commun. Math. Co.* **2010**, *64*, 683–698.
- 12. Gutman, I.; Pavlovic, L. More on distance of line graphs. Graph Theory Notes N. Y. 1997, 33, 14–18.
- 13. Wu, B. Wiener index of line graphs. MATCH Commun. Math. Comput. Chem. 2010, 64, 699-706.
- 14. Hansen, P.; Vukicević, D. On the Randic index and the chromatic number. Discret. Math. 2009, 309, 4228–4234. [CrossRef]
- 15. Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem. 2009, 46, 1252–1270. [CrossRef]
- 16. Zhou, B.; Trinajstić, N. On general sum-connectivity index. J. Math. Chem. 2010, 47, 210–218. [CrossRef]