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Abstract: For an abelian topological group G, the sequence group `1(G) of all absolutely summable
sequences in G is studied. It is shown that `1(G) is a Pontryagin reflexive group in case G is a reflexive
metrizable group or an LCA group. Further, `1(G) has the Schur property if and only if G has it and
`1(G) is a Schwartz group if and only if G is linearly topologized.
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1. Preliminaries
1.1. Introduction

It is a well-known result in the theory of locally convex vector spaces that for a
metrizable locally convex space (E, τ), the underlying topology τ is the finest locally
convex topology giving rise to the dual space (E, τ)′ in all continuous linear forms ([1],
p. 263). The idea of a finest compatible topology was generalized in [2] to locally quasi-
convex groups. More precisely, for a locally quasi-convex group (G, τ), the topology τ is
called the Mackey topology (see [2] for details) if it is the finest among all locally quasi-
convex group topologies giving rise to the character group (G, τ)∧. For several years, it
was an open question as to whether every metrizable locally quasi-convex group topology
is a Mackey topology. The first example giving a negative answer to this question was the
group of all null-sequences in the torus c0(T) = {(zn) ∈ TN : zn → 0} endowed with
the topology of uniform convergence. The important observation was that the dual group
of c0(T) is isomorphic to Z(N); in particular, it is countable. This implies that the weak
topology σ(c0(T), c0(T)∧) is metrizable and precompact. Because this topology is strictly
weaker than the topology of uniform convergence on c0(T), the metrizable weak topology
cannot be the Mackey topology. In [3], this was generalized to c0(G) where G is a compact
connected abelian metrizable group. The main idea was to show that the character group
of such a group has a countable dual group. In [4] (Theorem 3.4), an alternative proof for
this was given, the structure of the character group of c0(G) was described, and many
properties of these groups have been studied since then (cf. [4–7]).

In [7] (Theorem 1.3), Gabriyelyan proves that for an LCA group G, the following
assertions are equivalent: G is totally disconnected iff c0(G) is a nuclear group iff c0(G) is a
Schwartz group iff c0(G) respects compactness. Further, in [4] (Theorem 1.2), he generalized
the results from [5] and shows that c0(G) is a reflexive group.

In [5], groups of the form `p(T) = {(zn) ∈ TN : ∑∞
n=1 |1− zn|p < ∞} were investi-

gated and it was shown that for 0 < p < ∞, `p(T) is a monothetic Polish group which is
topologically isomorphic to `p/Z(N) ([5] Proposition 5/Theorem 1) and `1(T) is reflexive.

Because in the theory of Banach spaces, the sequence space c0 of (real or complex) null-
sequences, the space `1 of all absolutely summable sequences, and the space `∞ of bounded
sequences play an important role, it is natural to generalize them to the corresponding
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sequence groups for abelian Hausdorff groups G. This was performed in the case c0(G)
by Gabriyelyan and will now be carried out for the groups `1(G) of absolutely summable
sequences (Definition 3).

Alternatively, unconditionally Cauchy sequences and absolutely summable sequences
(suitably defined) were studied in the realm of topological vector spaces in order to char-
acterize nuclear vector spaces (cf. ([8], 21.2.1) and ([9], p.73)). This idea was picked up
by Domínguez Pérez and Tarieladze in [10,11] in order to characterize nuclear groups
(see below).

Our main interest is to find sufficiency conditions for a group G such that `1(G) is reflexive.
We prove that a metrizable group G is reflexive if and only if the sequence group `1(G)
is reflexive (Corollary 6). Moreover, for every LCA group G, the group `1(G) is reflexive
(Theorem 4).

A normed vector space has the Schur property if every sequence which converges
in the weak vector space topology is also convergent with respect to the norm. As the
vector space `1 has the Schur property ([12], 27.13), it is natural to ask whether `1(G) also
has a similar property. It turns out that for a locally quasi-convex group G, `1(G) has the
(analogue of the) Schur property for groups if and only if G has this property (Theorem 6).

In [13], Banaszczyk introduced nuclear groups, a Hausdorff variety of groups which
contains all locally convex nuclear vector spaces and all LCA groups. In [14], Schwartz
groups were defined, examples were given, and first properties were shown. Because no
infinite-dimensional normed space is neither a Schwartz space nor a nuclear vector space,
it is not surprising that the hypotheses on a group G such that `1(G) is a Schwartz group or
a nuclear group must be rather restrictive. Indeed, we show that for a locally quasi-convex
group G, the group `1(G) is a Schwartz group iff `1(G) is a nuclear group iff G is linearly
topologized (Theorem 8). This is an analogue of Gabriyelyan’s result for c0(G) as every
totally disconnected LCA group is linearly topologized.

The paper is organized as follows:
In Section 1.2, we gather material concerning reflexive groups, and in Section 1.3,

we study properties of the Minkowski functional for groups. Section 2 is dedicated to
the study of the sequence group `1(G), the focus of the paper. We start in Section 2.1
with the definition and basic properties of the topological group `1(G). We show that,
on the one hand, G can be embedded in `1(G) and, on the other, G is a quotient group
of `1(G) (Lemma 1). Thus, it is not surprising that G and `1(G) have many properties in
common in the sense that G satisfies property P iff `1(G) satisfies P. For example, this
holds for cardinal invariants, separation axioms, completeness, and local quasi-convexity.
The mapping G → `1(G) is a covariant functor from the category of abelian topological
groups into itself (Lemma 6). Further, the compact subsets of `1(G) are characterized
(Proposition 8). In Section 2.2, the dual group of `1(G) is described and it is shown that G
is a locally quasi-convex group if and only if `1(G) has this property. Further, sufficiency
conditions are established for the continuity of α`1(G), the canonical mapping in the bidual
group G∧∧ (see Section 1.2 for a precise definition). In Theorem 2, it is shown that α`1(G) is
continuous if G is reflexive and G∧ is complete with a countable point-separating subgroup.
In Section 2.3, the second character group is studied. It is shown that under mild conditions
on the group G (e.g., if G is reflexive), `1(G)∧∧ can be canonically identified with `1(G∧∧),
from which it follows that `1(G) is reflexive if G is a metrizable reflexive group or an
LCA group.

In Section 2.4, we recall first the Schur property for groups (Definition 4) and prove
for G locally quasi-convex that `1(G) has the Schur property if and only if G does. In
Section 2.5 of this chapter, we recall the definition of Schwartz groups, properties of nuclear
groups, and classify locally quasi-convex groups for which `1(G) is a Schwartz group,
respectively, a nuclear group.

Finally, in Section 3, we present some open questions related to this article.
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1.2. Notation and Preliminaries

Let N = {1, 2, . . .} denote the natural numbers. For m ∈ N, put m := {1, . . . , m} and
denote by ℵ0 the cardinality of N. As usual, R is the set of real numbers and Z denotes the
set of integers.

For a topological group G, let NG(0) denote the set of all symmetric neighborhoods
of 0. If the group G is clear from context, the index G will be omitted.

The compact torus T = R/Z is isomorphic to the complex numbers of modulus one.
For technical reasons, we prefer the additive notation.

Let G be an abelian Hausdorff group. The set of all continuous characters (i.e., contin-
uous homomorphisms from G into the torus T) is called the character group of G, denoted
G∧. With pointwise addition, G∧ is an abelian group; endowed with the compact-open
topology, it is an abelian Hausdorff group, allowing us to form the second character group
(G∧)∧ =: G∧∧. An abelian Hausdorff group G is called (Pontryagin) reflexive if the
evaluation homomorphism

αG : G → G∧∧, x 7→ (αG(x) : χ 7→ χ(x))

is a topological isomorphism. The famous Pontryagin–van Kampen duality theorem states
that every locally compact abelian group (abbreviated LCA group) is Pontryagin reflexive.
It was shown by Smith [15] that every reflexive topological vector space and every Banach
space are Pontryagin reflexive groups. The latter result depends deeply on the fact that,
in the character group (which can be algebraically identified with the dual space), the
compact-open and strong topologies do not agree in general. However, this implies that
the real or complex vector spaces c0, `1, and `∞, well-known to be non-reflexive topological
vector spaces, are Pontryagin reflexive groups. All other notation and terminology not
recalled here can be found in [16] or [17].

Let T+ = {x + Z ∈ T : |x| ≤ 1
4}. For a subset A of G, we call the set A. = {χ ∈

G∧ : χ(A) ⊆ T+} the polar of A, and for a subset B ⊆ G∧, we consider B/ = {x ∈ G :
χ(x) ∈ T+ ∀χ ∈ B}, the prepolar of B. A subset A of an abelian topological group G is
called quasi-convex if, for every x ∈ G \ A, there exists a continuous character χ ∈ A.

such that χ(x) /∈ T+. An abelian topological group G is named locally quasi-convex
(abbreviated lqc) if there is a neighborhood base at 0 consisting of quasi-convex sets.
According to ([13], 2.4), a topological vector space is lqc (as an abelian topological group) if
and only if it is locally convex.

A subset B of the character group G∧ is called equicontinuous if B ⊆ U. for a suitable
neighborhood U ∈ NG(0). It is well known that the polar of each neighborhood U is
a compact subset of G∧. The canonical mapping αG is continuous if and only if every
compact subset of G∧ is equicontinuous. By a result of Kye ([18]), αG restricted to every
compact subset of G is continuous ([17], 13.4.1). In particular, if G is metrizable (more
generally, a k-space), then αG is continuous.

If G is reflexive, then the sets α−1
G (U..) = U./ form a neighborhood base at 0. Hence,

every reflexive group is lqc. The set U./ =: qc(U) is called the quasi-convex hull of U. It
is the smallest quasi-convex set containing U.

If a group G is lqc and Hausdorff, then the characters of G separate points; in other
words, αG is injective or, equivalently, G is a maximally almost periodic group (abbreviated
MAP group). Further, it is straightforward to prove that if G is an lqc Hausdorff group,
then the mapping α−1

G : αG(G)→ G, αG(x) 7→ x is continuous.
Thus, in order to prove that G is reflexive, one has to verify that:

• G is an lqc Hausdorff group;
• Every compact subset of G∧ is equicontinuous;
• αG is surjective.

Next, we collect some elementary properties applied later.
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Proposition 1. If G is a second countable Hausdorff group, then G∧ is separable.

Proof. Because G is a second countable regular space, it is separable and metrizable ([16],
4.2.9), in particular, first countable. Thus, G∧ =

⋃
n∈N U.

n where (Un) is a countable
neighborhood base at 0. It suffices, therefore, to prove that every U.

n is separable. However,
on the compact set U.

n , the compact-open topology coincides with the point-separating
topology σ(G∧, D) for D, a countable dense subset of G. Thus, each polar U.

n , whence G is
separable.

Note that the character group of a separable group need not be separable, as TR shows.
It is separable by the Pondiczery theorem ([16], 2.3.16), but its discrete character group
is uncountable.

Proposition 2. Let G be an abelian MAP group. If G∧ endowed with the compact-open topology
is separable, then G∧ has a countable point-separating subgroup.

Proof. The weak topology σ(G∧, G), induced by the mapping G∧ → TG, χ 7→ (χ(x))x∈G,
is coarser than the compact-open topology on G∧ and hence also separable. Let D ≤ G∧ be
a countable dense subgroup and let H =

⋂
χ∈D ker(χ). We have to show that H = {0} is

the trivial subgroup of G. Thus, assume there exists 0 6= x ∈ H. Because G is a MAP group,
there exists χ ∈ G∧ which satisfies χ(x) 6= 0T. Because D is dense in (G∧, σ(G∧, G)), there
exists a net (χα)α∈A in D such that (χα(x)) converges to χ(x). Hence, χα(x) 6= 0T for some
α ∈ A, which shows that D separates the points of G.

Definition 1 ([19]). A subset A of a topological group G is called qc-precompact if for every
U ∈ N (0) there exists a finite subset F of G such that A ⊆ qc(F + U).

Proposition 3 ([19], Corollary 3.7). If G is a locally quasi-convex group, then every qc-precompact
subset of G is precompact.

Remark 1 ([20], 6.3.10). Let C be a compact subset of a reflexive group G, then also qc(C) is
compact.

Indeed, qc(C) = C./ = α−1
G (C..) holds. Because C. is a neighborhood of 0 in

G∧, its polar C.. is a compact subset of G∧∧. Because αG is a topological isomorphism,
qc(C) = α−1

G (C..) is a compact subset of G.

1.3. The Minkowski Functional for Groups

We define an analogue of the Minkowski functional for groups:

Definition 2 ([13], p.8). Let G be an abelian group and let S ⊆ G be a symmetric subset
containing 0. Set

κS : G → R, x 7→
{

2 : x /∈ S
inf{ 1

m : kx ∈ S ∀1 ≤ k ≤ m} : x ∈ S.

We omit an index indicating the group, because κS depends only on S ⊆ G and not on
the group containing S.

In [13], κS was only defined for elements of S. Kaplan defined a generalization of the
Minkowski functional slightly differently in [21].

For n ∈ N, we define Tn = {x +Z : − 1
4n ≤ x ≤ 1

4n} and we put T1 =: T+.

Fact 1. For w ∈ T and n ∈ N the following assertions are equivalent:

(a) w ∈ Tn;
(b) kw ∈ T+ for all 1 ≤ k ≤ n.
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Thus, Fact 1 can be reformulated as follows: κT+
(w) ≤ 1

n for some w ∈ T is equivalent
to w ∈ Tn.

Lemma 1.

(a) If A ⊆ B are symmetric sets containing 0, then κB ≤ κA.
(b) Let A and B be symmetric subsets of G and k ∈ N such that 0 ∈ A and A + . . . + A︸ ︷︷ ︸

k summands

⊆ B.

Then, κB(x) ≤ 1
k κA(x) holds for all x ∈ A.

(c) If A is quasi-convex, then κA(x) ≤ 1
m for some m ∈ N if and only if χ(x) ∈ Tm for all

χ ∈ A..
(d) If A is a subgroup of G, then κA(x) = 0 if x ∈ A and κA(x) = 2 for x /∈ A.
(e) If H is a subgroup of G and A ⊆ G is a symmetric set containing {0}, then κA(x) = κA∩H(x)

holds for all x ∈ H.
(f) If A1 ⊆ G1 and A2 ⊆ G2 are symmetric subsets containing the respective neutral elements,

then κA1×A2(x1, x2) = max{κA1(x1), κA2(x2)} for all (x1, x2) ∈ G1 × G2.

Proof. The proofs of (a) and (b) are straightforward.
(c) Fix m ∈ N and x ∈ G with κA(x) ≤ 1

m . This means, kx ∈ A for all 1 ≤ k ≤ m.
Because A is quasi-convex, y ∈ A if and only if χ(y) ∈ T+ for all χ ∈ A.. Thus, we obtain
kχ(x) = χ(kx) ∈ T+ for all 1 ≤ k ≤ m and all χ ∈ A.. By Fact 1, this is equivalent to
χ(x) ∈ Tm.

(d) and (e) are trivial.
(f) Fix m ∈ N. Assume that κA1×A2(x1, x2) ≤ 1

m . This is equivalent to kx1 ∈ A1 and
kx2 ∈ A2 for all 1 ≤ k ≤ m. Thus, κA1(x1) ≤ 1

m and κA2(x2) ≤ 1
m . This shows that

κA1×A2(x1, x2) ≥ max{κA1(x1), κA2(x2)}. Conversely, if max{κA1(x1), κA2(x2)} ≤ 1
m , then

k(x1, x2) ∈ A1 × A2 for all 1 ≤ k ≤ m and consequently κA1×A2(x1, x2) ≤ 1
m . This implies

κA1×A2(x1, x2) ≤ max{κA1(x1), κA2(x2)}.

κS does, in general, not satisfy the triangle inequality, as the following example shows:
Let A = [−1, 1] ⊆ R;
κA(

3
2 ) = 2 > 1 + 1

2 = κA(1) + κA(
1
2 ).

However, we have:

Proposition 4. If 0 ∈ A ⊆ G is symmetric, then κA+A(x + y) ≤ max{κA(x), κA(y)} ≤
κA(x) + κA(y).

Proof. It is sufficient to prove the first inequality. If x /∈ A or y /∈ A, the assertion trivially
holds. Thus, let us assume that x, y ∈ A. Fix m ∈ N. If κA(x), κA(y) ≤ 1

m , then kx, ky ∈ A
for all 1 ≤ k ≤ m and hence k(x + y) ∈ A + A. This implies κA+A(x + y) ≤ 1

m .

Lemma 2. If A ⊆ G is quasi-convex, m ∈ N, and x, y ∈ G satisfy κA(x), κA(y) ≤ 1
2m , then

κA(x + y) ≤ 1
m .

Proof. By Lemma 1 (c), κA(x), κA(y) ≤ 1
2m is equivalent to χ({x, y}) ⊆ T2m for all χ ∈ A..

Thus, χ(x + y) ∈ Tm for all χ ∈ A., which is equivalent to κA(x + y) ≤ 1
m .

Lemma 3. For A ⊆ G and χ ∈ G∧ and m ∈ N, the following holds:

(a) κA.(χ) = 1
m if and only if χ(A) ⊆ Tm but χ(A) * Tm+1;

(b) κA.(χ) = 0 if and only if χ(A) = {0}.
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Proof.

(a) κA.(χ) = 1
m is equivalent to kχ ∈ A. for all 1 ≤ k ≤ m and (m + 1)χ /∈ A.. This

means that kχ(a) ∈ T+ for all 1 ≤ k ≤ m and all a ∈ A and there exists a0 ∈ A such
that (m + 1)χ(a0) /∈ T+. The first assertion is equivalent to χ(A) ⊆ Tm, the second
(combined with the first) is equivalent to χ(A) * Tm+1.

(b) The assertions κA.(χ) = 0 are equivalent to kχ ∈ A. and to kχ(a) ∈ T+ for all a ∈ A
and k ∈ N. The latter is equivalent to χ(A) = {0}.

Lemma 4. Let ϕ : G → H be a homomorphism. Assume that 0 ∈ A ⊆ G and 0 ∈ B ⊆ H are
symmetric subsets such that ϕ(A) ⊆ B holds. Then, κB ◦ ϕ ≤ κA follows.

Proof. Let x ∈ G. WLOG, we may assume that x ∈ A. Assume that κA(x) ≤ 1
m for

some m ∈ N. Hence, kx ∈ A for all 1 ≤ k ≤ m and hence kϕ(x) ∈ B, which implies
κB(ϕ(x)) ≤ 1

m .

Lemma 5. Let G be an abelian topological group and A ⊆ G a symmetric and closed set contain-
ing 0. Then, κA is lower semicontinuous (i.e., κ−1

A (]y, ∞]) is open for all y ∈ R or, equivalently,
κ−1

A ([0, y]) is closed for all y ≥ 0).
For any sequence (An) of closed symmetric subsets of G containing 0, the mapping G →

[0, ∞], x 7→ ∑n∈N κAn(x) is lower semicontinuous as well.

Proof. For y < 0, κ−1
A (]y, ∞[) = G. Fix y ≥ 0 and let x0 ∈ G satisfy κA(x0) > y. If

κA(x0) = 2, then G \ A is an open neighborhood of x0 contained in κ−1
A (]y, ∞[). Otherwise,

κA(x0) =
1
m for some m ∈ N. Thus, (m + 1)x0 /∈ A. For a suitable open neighborhood W

of x0, we have (m + 1)x /∈ A for all x ∈W. This implies κA(x) ≥ 1
m > y for all x ∈W and

hence x0 ∈W ⊆ κ−1
A (]y, ∞[).

Assume now that (An) is a sequence of closed and symmetric sets containing 0. Put
κ := ∑n∈N κAn . Fix y ∈ R. As above, κ−1(]y, ∞[) = G in case y < 0. Thus, assume now that
y ≥ 0 and let x0 ∈ G satisfy κ(x0) > y. Then, there is N ∈ N such that ∑N

n=1 κAn(x0) > y.

Let yn := κAn(x0) and ε := 1
N

(
(∑N

n=1 yn)− y
)

. By what was shown above, there exists an
open neighborhood W of x0 such that κAn(x) > yn − ε for all 1 ≤ n ≤ N and all x ∈ W.
Then, κ(x) ≥ ∑N

n=1 κAn(x) > ∑N
n=1(yn − ε) = ∑N

n=1 yn − Nε = y. This shows that κ is lower
semicontinuous.

2. The Group of Absolutely Summable Sequences `1(G)

2.1. Basic Properties of `1(G)

Definition 3. Let (G, τ) be an abelian topological group. Denote by

`1(G) = `1(G, τ) = {(xn) ∈ GN : ∀U ∈ NG(0) : ∑
n∈N

κU(xn) < ∞}.

The set `1(G) is a group under pointwise addition.
(Indeed, let (xn), (yn) ∈ `1(G). For U ∈ N (0), there exists W ∈ N (0) such that W + W ⊆
U. Then, by Lemma 1 (a) and Proposition 4, ∑n∈N κU(xn + yn) ≤ ∑n∈N κW+W(xn + yn) ≤
∑n∈N κW(xn) + ∑n∈N κW(yn) < ∞ holds.)

The group `1(G) is the group of all absolutely summable sequences in G. The family
of sets (SU)U∈N (0) where

SU = {(xn) ∈ `1(G) : ∑
n∈N

κU(xn) ≤ 1}
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forms a neighborhood base at 0 of a group topology on `1(G).

(Indeed, fix a symmetric neighborhood U ∈ N (0) and let (xn), (yn) ∈ SU . Then,

∑n∈N κU+U+U+U(xn + yn) ≤ ∑n∈N κU+U(xn) + ∑n∈N κU+U(yn)

≤ 1
2 (∑n∈N κU(xn) + ∑n∈N κU(yn)) ≤ 1 by Proposition 4 and Lemma 1 (b).

Thus, the symmetric set SU satisfies SU + SU ⊆ SU+U+U+U).
This topology will be denoted Σ`1(G).
Further, for N ∈ N and U ∈ N (0), let

SN,U := {(xn) ∈ `1(G) : ∑
n≥N

κU(xn) ≤ 1}.

Thus, SU = S1,U for all U ∈ N (0).

Remark 2. The direct sum G(N) is contained in `1(G), while the latter group is a subgroup of
c0(G), the group of all null sequences in G. (The first assertion is trivial. In order to prove
the second one, fix (xn) ∈ `1(G) and U ∈ N (0). Because ∑n∈N κU(xn) < ∞, there exists
n0 ∈ N such that κU(xn) ≤ 1 for all n ≥ n0. However, this means that xn ∈ U for all n ≥ n0.
Hence, xn → 0.)

In case G does not admit any non-trivial convergent sequences, G(N) = `1(G) = c0(G)
holds algebraically. Hrušák, van Mill, Ramos-García, and Shelah [22] proved (under
ZFC) that there exists an infinite countably compact group G of exponent 2 which has no
non-trivial convergent sequences, whence `1(G) = G(N).

Lemma 6. If ϕ : G → H is a continuous homomorphism of topological groups, then ϕ# : `1(G)→
`1(H), (xn) 7→ (ϕ(xn)) is a well-defined continuous homomorphism. More precisely, if ϕ(U) ⊆ V
holds for symmetric neighborhoods U ∈ NG(0) and V ∈ NH(0), then ϕ#(SU) ⊆ SV .

Thus, F1 : ATOP→ ATOP, G 7→ `1(G) and ϕ 7→ ϕ# defines a covariant functor from the
category of all abelian topological groups into itself. In particular, if ϕ is a topological isomorphism,
then so is ϕ#.

Proof. For V ∈ NH(0), there exists U ∈ NG(0) such that ϕ(U) ⊆ V. By Lemma 4,
κV(ϕ(x)) ≤ κU(x) holds for all x ∈ G. Thus, for (xn) ∈ `1(G) this gives ∑n∈N κV(ϕ(xn)) ≤
∑n∈N κU(xn) < ∞. This yields that ϕ# is well-defined and obviously a homomorphism
which satisfies ϕ#(SU) ⊆ SV . Thus, in particular, ϕ# is continuous. It is straightforward to
check that (ϕ ◦ ψ)# = ϕ# ◦ ψ# for an appropriate continuous homomorphism ψ : G0 → G.
Now, the assertion follows easily.

Corollary 1. Let G be a non-necessarily Hausdorff abelian group and denote by N = {0} the
core of G and by π : G → G/N the canonical projection. Then, π# : `1(G) → `1(G/N) is
a projection.

Proof. By Lemma 6, π# is continuous, and for a symmetric neighborhood U ∈ NG(0),
we have π#(SU) ⊆ Sπ(U). Conversely, we are going to show that π#(SU+U) ⊇ Sπ(U)

holds. Therefore, we verify first that κU+U(x) ≤ κπ(U)(π(x)) holds for all x ∈ G. Thus,
assume that κπ(U)(π(x)) ≤ 1

m for some m ∈ N. This implies that kπ(x) ∈ π(U) for all
1 ≤ k ≤ m and hence kx ∈ U + N ⊆ U + U for all 1 ≤ k ≤ m. Thus, κU+U(x) ≤ 1

m .
Next, fix (π(xn)) ∈ Sπ(U). Then, ∑n∈N κU+U(xn) ≤ ∑n∈N κπ(U)(π(xn)) ≤ 1 follows. Thus,
(xn) ∈ SU+U and hence (π(xn)) ∈ π#(SU+U).

Proposition 5. Let G be an abelian topological group and F a finite subset of N. Then:

(a) µF : GF → `1(G), (xn)n∈F 7→ (xn)n∈N, where xn = 0 for all n ∈ N \ F, is an embedding.
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(b) pF : `1(G)→ GF, (xn)n∈N 7→ (xn)n∈F is a projection.
(c) G is Hausdorff if and only if `1(G) is Hausdorff.
(d) G is linearly topologized if and only if `1(G) has this property.

For F = {n}, we write µn and pn instead of µ{n} and p{n}.

Proof. We start with the following observation:
For every U ∈ NG(0) and W ∈ NG(0) such that W + . . .+︸ ︷︷ ︸

|F| times

W ⊆ U one has

µF(WF) = WF × {0}N\F ⊆ SU .

Proof of observation: For x ∈ W, one has κU(x) ≤ 1
|F|κW(x) by Lemma 1 (b); hence,

µF(W× . . .×W) ⊆ SU , because ∑n∈F κU(xn) ≤ ∑n∈F
1
|F| · κW(xn) ≤ 1 for all (xn)n∈F ∈WF,

as desired.

(a) The observation above implies that µF is continuous. In order to show that µF is an em-
bedding, observe the following: µF(GF) ∩ SW ⊆ µF(WF), because µF((xn)n∈F) ∈ SW
if and only if ∑n∈F κW(xn) ≤ 1, which implies xn ∈W for all n ∈ F.

(b) Because pF(SU) ⊆ UF for all U ∈ NG(0), the mapping pF is continuous. In order
to show that pF is open, let U and W be as in the observation. Then, pF(SU) ⊇
pF(WF × {0}N\F) ⊇WF. This shows that pF is open.

(c) Assume that G is Hausdorff. It is straightforward to prove that
⋂

U∈N
SU = {0}. Thus,

`1(G) is also a Hausdorff group. Conversely, because µ1 : G → `1(G) is an embedding
by item (a), G is Hausdorff provided `1(G) has this property.

(d) Assume that G is linearly topologized. If U is an open subgroup of G, then κU = 2 · 1G\U
where 1G\U denotes the indicator function (by Lemma 1 (d)). Thus, SU = {(xn) ∈
`1(G) : xn ∈ U ∀n ∈ N} = UN ∩ `1(G) is a subgroup. Hence, `1(G) is also linearly
topologized.

The converse implication is a consequence of item (a).

A consequence of item (b) is the continuity of the canonical projections pn, which
immediately implies the following.

Corollary 2. The canonical mapping (`1(G), Σ`1(G))→ (GN, τp), where τp denotes the product
topology, is continuous.

Proposition 6.

(a) If H is a subgroup of G and ι : H → G denotes the embedding , then ι# : `1(H) → `1(G)
is an embedding. Furthermore, if H is an open, respectively, closed subgroup of G, then
ι#(`

1(H)) is an open, respectively, closed subgroup of `1(G).
(b) For abelian topological groups G1 and G2, the sequence space `1(G1 × G2) is canonically

topologically isomorphic to `1(G1)× `1(G2).

Proof.

(a) Because for every symmetric neighborhood U ∈ NG(0) the equation ι#(SU∩H) =

SU ∩ ι#(`
1(H)) holds by Lemma 1 (e), this yields that ι# is an embedding. Further,

if H is open, U can be chosen to be contained in H and then SU ⊆ ι#(`
1(H)), so

ι#(`
1(H) is an open subgroup of `1(G). Now, let H be a closed subgroup of G and

let pn : `1(G) → G denote the projection on the n-th coordinate. Then, ι#(`
1(H)) =⋂

n∈N p−1
n (H) is closed in `1(G) by Proposition 5 (b).

(b) For i ∈ {1, 2}, let πi : G1 × G2 → Gi be the canonical projection and consider the
canonical mapping
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ψ = ((π1)# × (π2)#) : `1(G1 × G2) → `1(G1) × `1(G2), ((xn, yn)) 7→ ((xn), (yn)),
which is a continuous monomorphism by Lemma 6.

By Lemma 1 (f), we have for Ui ∈ NGi (0) and x ∈ G1, y ∈ G2 κU1×U2(x, y) ≤
κU1(x) + κU2(y). This implies that ψ is surjective. In order to prove that ψ is open, we are
going to show that ψ(S(U1+U1)×(U2+U2)

) ⊇ SU1 × SU2 for Ui ∈ NGi (0). Thus, fix (xn) ∈ SU1

and (yn) ∈ SU2 . Then, by Lemma 1 (b),
∑

n∈N
κ(U1+U1)×(U2+U2)

((xn, yn)) = ∑
n∈N

max{κU1+U1(xn), κU2+U2(yn)} ≤

≤ ∑
n∈N

κU1+U1(xn) + ∑
n∈N

κU2+U2(yn) ≤ ∑
n∈N

1
2

κU1(xn) + ∑
n∈N

1
2

κU2(yn) ≤ 1.

This shows that ψ is open and completes the proof.

Lemma 7. Let (Cn) be a sequence of complete subsets of a Hausdorff abelian group G and let
((x(α)n )n)α∈A be a Cauchy net in `1(G). Assume that {x(α)n : α ∈ A} ⊆ Cn for every n ∈ N.
Then, ((x(α)n )n)α∈A is convergent.

Proof. By Proposition 5 (b), all pn are continuous, so for every n ∈ N, the net (x(α)n )α∈A is a
Cauchy net in G contained in Cn. Because Cn was assumed to be complete, xn = limα∈A x(α)n
exists for all n ∈ N.

Claim: For every U ∈ N (0), there exists α0 ∈ A such that ∑n∈N κU(x(α)n − xn) ≤ 1 for all
α ≥ α0.

Proof. Fix U ∈ N (0). We choose a closed and symmetric neighborhood W ∈ N (0) such
that W + W + W + W ⊆ U. By assumption, there exists αW ∈ A such that ∑n∈N κW(x(α)n −
x(β)

n ) ≤ 1 holds for all α, β ≥ αW . Because W is closed and x(α)n − x(β)
n ∈ W for all

α, β ≥ αW , we obtain x(α)n − xn ∈ W for all α ≥ αW . Now, fix α ≥ αW and assume
that ∑n∈N κU(x(α)n − xn) > 1. Choose a finite subset F ⊆ N such that κU(x(α)n − xn) > 0
for all n ∈ F and ∑n∈F κU(x(α)n − xn) > 1. For n ∈ F, we have 0 < κU(x(α)n − xn) ≤
κW(x(α)n − xn) ≤ 1. Thus, choose mn ∈ N such that 1

mn
= κW(x(α)n − xn). Because (x(β)

n )β∈A

converges to xn, there exists β ≥ αW such that κW(x(β)
n − xn) ≤ 1

|F| for all n ∈ F. We obtain

1 < ∑
n∈F

κU(x(α)n − xn)

≤ ∑
n∈F

κW+W+W+W(x(α)n − x(β)
n + x(β)

n − xn)

Proposition 4
≤ ∑

n∈F
κW+W(x(α)n − x(β)

n ) + ∑
n∈F

κW+W(x(β)
n − xn)

Lemma 1(b)
≤ 1

2 ∑
n∈F

κW(x(α)n − x(β)
n ) +

1
2 ∑

n∈F
κW(x(β)

n − xn)

≤ 1
2 ∑

n∈N
κW(x(α)n − x(β)

n ) +
1
2 ∑

n∈F

1
|F| ≤

1
2
+

1
2
= 1

This contradiction proves the Claim with α0 = αW .
We now show that (xn) ∈ `1(G). Fix a symmetric closed neighborhood U ∈ N (0).

Choose α0 as in the Claim. We obtain ∑
n∈N

κU+U(xn) ≤ ∑
n∈N

κU(xn− x(α0)
n )+ ∑

n∈N
κU(x(α0)

n ) ≤

1 + ∑
n∈N

κU(x(α0)
n ) < ∞. Thus, (xn) ∈ `1(G). It follows from the Claim that ((x(α)n )n)α∈A

converges to (xn)n.
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Corollary 3. If G is a Hausdorff complete abelian group, then so is `1(G).

Proof. Apply Lemma 7 to Cn = G for all n ∈ N.

Proposition 7. G(N) is dense in `1(G).

Proof. Fix (xn) ∈ `1(G) and U ∈ N (0). Because ∑n∈N κU(xn) < ∞, there exists n0 ∈ N
such that ∑∞

n=n0+1 κU(xn) ≤ 1. This shows that (xn)− µn0(x1, . . . , xn0) ∈ SU .

Proposition 8. Let G be an abelian Hausdorff group. A subset K of `1(G) is compact if and only
if the following three conditions hold:

(a) K is closed;
(b) pn(K) is compact for every n ∈ N;
(c) For every U ∈ N (0), there exists NU ∈ N such that K ⊆ SNU ,U .

Proof. Assume that K ⊆ `1(G) is compact. Then, obviously, conditions (a) and (b) are
satisfied. In order to prove (c), fix U ∈ N (0). Because K is totally bounded and G(N) is
dense in `1(G) by Proposition 7, there exists a finite subset F ⊆ G(N) such that K ⊆ F + SU .
Fix NU ∈ N such that pk((yn)) = 0 for all k ≥ NU and all (yn) ∈ F. Fix (xn) ∈ K. There
exists (yn) ∈ F such that (xn − yn) ∈ SU . Hence, ∑n≥NU

κU(xn) = ∑n≥NU
κU(xn − yn) ≤

∑n≥1 κU(xn − yn) ≤ 1. This shows that K ⊆ SNU ,U .
Conversely, assume that K ⊆ `1(G) satisfies the conditions (a), (b), and (c). By Lemma 7

(with Cn = pn(K)), we conclude that K is complete. In order to prove that K is totally
bounded, we fix U ∈ N (0). By item (c), there exists NU ∈ N such that ∑n≥NU

κU(xn) ≤ 1

for all (xn) ∈ K. Because K ⊆ µNU (∏
NU
n=1 pn(K)) + SU and µNU (∏

NU
n=1 pn(K)) is compact, K

is totally bounded.

Corollary 4. Let G be an abelian Hausdorff group. For the density (the minimal cardinality of a
dense subset), the following holds: d(`1(G)) = max{ℵ0, d(G)} in case d(G) > 1.

Proof. Let D ⊆ G be a dense subset of cardinality d(G). Because µn is an embedding for
every n ∈ N, the closure of D(N) contains the dense set G(N). This shows that D(N) is dense
in `1(G) and hence d(`1(G)) ≤ max{ℵ0, d(G)}. In case d(G) is infinite, d(G) = d(`1(G)),
because p1 maps a dense subset of `1(G) onto a dense subset of G.

Assume now that 1 < d(G) < ∞. Then, G is a finite discrete group and hence
`1(G) = G(N) is a countably infinite discrete group. Hence, d(`1(G)) = ℵ0 in this case.

Proposition 9. Let G be an abelian Hausdorff group. For the character χ (the minimal cardinality
of a neighborhood base at 0) and the weight w (the minimal cardinality of a base), the following holds:

(a) χ(G) = χ(`1(G)).
(b) w(G) = w(`1(G)) if w(G) is infinite.

Proof.

(a) is trivial.
(b) Recall that for every topological group H, one has w(H) = χ(H) · d(H) (Lemma 5.1.7

in [17]). If d(G) were finite, then G would be a finite discrete group and hence w(G)
had to be finite in contradiction to the assumption. Thus, d(G) is infinite. Applying
item (a) and Corollary 4, we obtain

w(`1(G)) = χ(`1(G)) · d(`1(G)) = χ(G) ·max{ℵ0, d(G)} = χ(G) · d(G) = w(G).
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2.2. The Character Group of `1(G)

Proposition 10. The mapping

(µ∧n ) : `1(G)∧ −→ G∧N, χ 7−→ (µ∧n (χ)) = (χ ◦ µn)

is a continuous injective homomorphism. Thus, algebraically, `1(G)∧ can be identified with a
subgroup of G∧N.

Proof. Because µn is continuous for every n ∈ N by Proposition 5 (a), so is (µ∧n ). We are
going to show now that (µ∧n ) is injective: Let χ ∈ `1(G)∧ and assume that µ∧n (χ) = χ ◦ µn
is the trivial character for every n ∈ N. This implies that χ restricted to the subgroup G(N)

is trivial. By Proposition 7, G(N) is dense in `1(G); hence, χ is trivial.

This result allows us to identify a character χ ∈ `1(G)∧ with the sequence
(χn) = (µ∧n (χ))n∈N.

Next, we are going to describe the structure of the dual group of `1(G).

Proposition 11. For an abelian topological group, the following assertions hold:

`1(G)∧ =
⋃

U∈N (0)(U.)N.

and
(SU)

. = (U.)N.

Proof. A homomorphism χ : `1(G) → T is continuous if and only if χ maps a suitable
neighborhood of 0 in `1(G) into T+ or, equivalently, if χ belongs to the polar of a neighbor-
hood of 0. Hence, `1(G)∧ =

⋃
U∈NG(0)(SU)

..
Next, we are going to describe such a polar (SU)

.: Fix χ = (χn) ∈ (SU)
.. Because

µn(U) ⊆ SU for all n ∈ N, we obtain χn = µ∧n (χ) = χ ◦ µn ∈ U.. This shows that
(SU)

. ⊆ (U.)N.
Conversely, assume that χ = (χn) ∈ (U.)N and fix (xn) ∈ SU . Recall that for ψ ∈ U.

and x ∈ U with κU(x) ≤ 1
m , one has kψ(x) ∈ T+ for all 1 ≤ k ≤ m and hence ψ(x) ∈ Tm

(Fact 1). We obtain χ(xn) = ∑n∈N χn(xn) ∈ T+, so χ ∈ (SU)
..

Proposition 12. A topological group G is lqc if and only if `1(G) is lqc.

Proof. Because µ1 : G → `1(G) is an embedding and because subgroups of lqc groups are
again lqc, the condition is necessary. Conversely, assume that G is lqc. Fix a quasi-convex
neighborhood U ∈ NG(0) and choose W ∈ NG(0) quasi-convex such that W +W +W ⊆ U.
We are going to prove that qc(SW) ⊆ SU . Thus, let (xn) /∈ SU , i.e., ∑n∈N κU(xn) > 1. We
have to find χ = (χn) ∈ (SW). = (W.)N such that χ(xn) /∈ T+. In case there is n ∈ N such
that xn /∈W, there exists χn ∈W. such that χn(xn) /∈ T+. Then, χ = p∧n (χn) has the desired
property. Assume now that xn ∈W for all n ∈ N. This implies κU(xn) ≤ 1

3 . Let N ∈ N be
minimal with the property that ∑N

n=1 κU(xn) > 1, F = {n : 1 ≤ n ≤ N, κU(xn) > 0}, and
put κU(xn) =

1
mn

for n ∈ F, where mn ≥ 3 must hold. By the minimality condition, N ∈ F.

For n ∈ F, we choose χn ∈ U. such that χn(xn) = tn + Z where
1

4(mn + 1)
< tn ≤

1
4mn

(cf. Lemma 1 (c)). Because W + W ⊆ U, we obtain U. + U. ⊆ W. (Fact 1). Thus,
χ = p∧F ((2χn)n∈F) ∈ (W.)N. We obtain: χ(xn) = ∑n∈F 2χn(xn) = ∑n∈F 2tn +Z where

1
4
<

1
4 ∑

n∈F
κU(xn) = ∑

n∈F

1
4mn

≤ ∑
n∈F

1
2mn + 2

< ∑
n∈F

2tn ≤

≤ ∑
n∈F

1
2mn

= ∑
n∈F\{N}

1
2mn

+
1

2mN
≤ 1

2
+

1
2mN

≤ 2
3
<

3
4
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because N was chosen to be minimal and hence ∑n∈F\{N}
1

mn
≤ 1; further, because

xN ∈W, we have 1
mN

= κU(xN) ≤ 1
3 . This shows that χ = p∧F ((2χn)n∈F) has the

desired properties.

Proposition 13. Let G be a Hausdorff abelian group. Then, (G∧)(N) is dense in `1(G)∧.

Proof. Fix χ = (χn) ∈ `1(G)∧ and a compact subset K of `1(G). Because χ is continuous,
there exists U ∈ NG(0) such that χ ∈ (SU)

. = (U.)N. Choose NU ∈ N such that K ⊆ SNU ,U
(cf. Proposition 8).

For (xn) ∈ SNU ,U we have
(χ− p∧NU

(χ1, . . . , χNU ))(xn) = ∑n>NU
χn(xn) ∈ T+ because ∑n>NU

κU(xn) ≤ 1 and χn ∈
U. for all n ∈ N, so χ− p∧NU

(χ1, . . . , χNU ) ∈ (SNU ,U)
. ⊆ K., as desired.

Next, we are going to study the continuity of α`1(G) and start with the following obvious

Proposition 14. Let G be a metrizable group. Then, α`1(G) is continuous.

Proof. Because G is first countable, so is `1(G) by Proposition 9 (a). Hence, α`1(G) is
continuous.

Lemma 8. Let G be an abelian Hausdorff group. Then, α`1(G) is continuous if and only if for every

compact subset K ⊆ `1(G)∧ the set TK :=
⋃

m∈N µ∧m(K) ⊆ G∧ is equicontinuous.

Proof. Recall that for an abelian topological group G, the canonical homomorphism αG is
continuous if and only if every compact subset of G∧ is equicontinuous. Thus, α`1(G) is
continuous if and only if for every compact subset K of `1(G)∧ there exists a neighborhood
U ∈ NG(0) such that K ⊆ (SU)

. = (U.)N. This implies µ∧m(K) ⊆ U. for all m ∈ N and
hence TK ⊆ U..

Conversely, assume that for every compact subset K ⊆ `1(G)∧ there exists U ∈ NG(0)
such that TK ⊆ U.. Then, K ⊆ ∏m∈N µ∧m(K) ⊆ (U.)N = (SU)

.. This shows that K is
equicontinuous and hence α`1(G) is continuous.

For a continuous homomorphism ψ : H → G between Hausdorff groups, the ho-
momorphism ψ# : `1(H) → `1(G) is continuous and so is its dual homomorphism
(ψ#)

∧ : `1(G)∧ → `1(H)∧.

Lemma 9. Let ψ : H → G be a continuous homomorphism between abelian Hausdorff groups.
Then, (ψ#)

∧(χn) = (ψ∧(χn)) holds for all (χn) ∈ `1(G)∧.
If K ⊆ `1(G)∧ is compact and TK =

⋃
m∈N µ∧m(K) and T(ψ#)∧(K) is the analogous subset of

H∧ corresponding to the compact set (ψ#)
∧(K), then ψ∧(TK) ⊆ T(ψ#)∧(K).

Proof. By Lemma 6, the mapping ψ# : `1(H) → `1(G) is a continuous homomorphism.
Hence, (ψ#)

∧ : `1(G)∧ → `1(H)∧ is a well-defined continuous homomorphism. Fix
(χn) ∈ `1(G)∧ and (hn) ∈ `1(H). Then, we have (ψ#)

∧((χn))(hn) = (χn)(ψ#(hn)) =
(χn)(ψ(hn)) = ∑n∈N χn(ψ(hn)) = ∑n∈N ψ∧(χn)(hn) = (ψ∧(χn))(hn). Now, the first
assertion follows. This yields

ψ∧(TK) ⊆ {ψ∧(µ∧m(χ)) : χ ∈ K, m ∈ N}

= {ψ∧(χm) : χ = (χn) ∈ K, m ∈ N} = T(ψ#)∧(K).

Theorem 1. For every compact abelian group G, the mapping α`1(G) is continuous.
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Proof. Let K ⊆ `1(G)∧ be compact and let TK be as in Lemma 8. Assume that TK is an
infinite subset of G∧. Let D be the divisible hull of the discrete group G∧ and consider
the embedding G∧ → D. Let D0 be a divisible countably infinite subgroup of D such that
TK ∩ D0 is infinite. Because D0 splits, there is a continuous homomorphism γ : G∧ → D0
such that γ(TK) is infinite. Because G and D0 are reflexive groups, we may consider γ = ψ∧

for a suitable homomorphism ψ : D∧0 → G (after identifying D0 with its second dual group).
Indeed, let γ∧ : D∧0 → G∧∧ be the dual homomorphism and let ψ = α−1

G ◦ γ∧ : D∧0 → G
be the composition of γ∧ with the topological isomorphism α−1

G . (Observe that G is
compact and hence reflexive.) Then, ψ∧ = γ∧∧ ◦ (α−1

G )∧ = γ∧∧ ◦ αG∧ : G∧ → D∧∧0 holds,
because (α−1

G )∧ = αG∧ . Finally, because the discrete group D0 is reflexive, α−1
D0
◦ ψ∧ =

α−1
D0
◦γ∧∧ ◦ αG∧ = γ. We are going to identify D∧∧0 with D0 via the topological isomorphism

α−1
D0

and obtain that ψ∧ = γ. Thus, ψ∧(TK) is an infinite subset of D0.
By Lemma 9, ψ∧(TK) is contained in the set T(ψ#)∧(K). Because D∧0 is metrizable,

α`1(D∧0 )
is continuous by Proposition 14. As (ψ#)

∧(K) is a compact subset of `1(D∧0 )
∧, the

set T(ψ#)∧(K) is an equicontinuous and hence compact subset of the discrete group D∧∧0 by
Lemma 8, and hence finite. This contradiction proves that TK must be finite and hence
equicontinuous. Thus, again by Lemma 8, α`1(G) is continuous.

Lemma 10. Let (G, τ) be a reflexive group such that G∧ has a countable point-separating subgroup.
For a compact subset K of `1(G)∧ and m ∈ N, put Tm = µ∧m(K) and T =

⋃
m∈N Tm. Then, T is

totally bounded.

Recall that the hypothesis that G∧ has a countable point-separating subgroup is
fulfilled in case G is second countable or G∧ is separable by Propositions 1 and 2.

Proof. Let D = {ψk : k ∈ N} be a countable point-separating subgroup of G∧. Because
the topology σ(G, D) induced by the mapping G → TD, x 7→ (ψ(x))ψ∈D is Hausdorff, we
obtain that on every τ-compact subset C of G, the subspace topologies induced by τ and
by σ(G, D) coincide. Denote by F the set of all finite subsets of G∧ containing 0.

Assume that T is not precompact. By Proposition 3, T is not qc-precompact either,
because G∧ is lqc. Thus, there exists a compact subset 0 ∈ C ⊆ G such that for every F ∈ F
we have T * qc(F + C.). Because qc(F ∪ C.) ⊆ qc(F + C.), we even have T * qc(F ∪ C.)
for all F ∈ F . This is equivalent to

qc(T) * qc(F ∪ C.).

As C. = qc(C). and because qc(C) is compact according to Remark 1, we may assume
that C is quasi-convex. Hence, we have

T/. (∗)
= T./ = qc(T) * qc(F ∪ C.) = (F ∪ C.)./

(∗)
= (F ∪ C.)/. = (F/ ∩ C./︸︷︷︸

=qc(C)=C

). = (F/ ∩ C).

The equations marked by (∗) hold because G is reflexive, so αG is surjective. Hence,
we have

∀F ∈ F T/ + F/ ∩ C. (1)

We inductively construct:

(a) A sequence (χ(n))n∈N0 in K where χ(n) = (χ
(n)
k )k∈N;

(b) A strictly increasing sequence (mn)n∈N of natural numbers;
(c) An increasing sequence (Fn)n∈N in F such that ψn ∈ Fn for all n ∈ N;
(d) A sequence (xn)n∈N in C such that for all n ∈ N

(i) xn ∈ C ∩ F/
n

(ii) χ
(n)
mn (xn) /∈ T+;
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(iii) χ
(j)
m (C ∩ F/

n ) ⊆ T2 for all m ∈ N and 0 ≤ j < n.

Choose χ(0) ∈ K arbitrarily.
Assume now that for some n ∈ N0 (χ(0), χ(1), . . . , χ(n)), m1 < . . . < mn, F1 ⊆ . . . ⊆

Fn and (x1, . . . , xn) have been constructed, satisfying the above-listed properties.
Because χ(0), χ(1), . . . , χ(n) are continuous, there exists U ∈ NG(0) such that χ(j) ∈

(SU+U)
. for all 0 ≤ j ≤ n, which implies

χ
(j)
m (U) ⊆ T2 for all m ∈ N and 0 ≤ j ≤ n. (2)

As a finite union of compact sets,
⋃mn

k=1 µ∧k (K) is compact. (In case n = 0, this set
is empty and hence compact.) Because αG is assumed to be continuous,

⋃mn
k=1 µ∧k (K) is

equicontinuous. Thus, for a suitable neighborhood W ∈ NG(0), we have

ψ(x) ∈ T+ for all x ∈W and ψ ∈
mn⋃
k=1

µ∧k (K). (3)

Because C is compact, the original topology τ coincides with the weak topology
σ(G, G∧) on C; hence, there exists a finite subset Fn+1 ∈ F such that

0 ∈ C ∩ F/
n+1 ⊆ C ∩U ∩W. (4)

WLOG, we may assume that Fn ∪ {ψn+1} ⊆ Fn+1, so that item (c) is fulfilled. Thus, for
all 0 ≤ j ≤ n and m ∈ N, we have χ

(j)
m (C ∩ F/

n+1) ⊆ χ
(j)
m (U) ⊆ T2 by Equations (2) and (4)

(i.e., (d)(iii) is satisfied).
Because by Equation (1) T/ + C ∩ F/

n+1, there exists xn+1 ∈ C ∩ F/
n+1 \ T/. This means

that there exist χ(n+1) ∈ K and mn+1 ∈ N such that µ∧mn+1
(χ(n+1))(xn+1) = χ

(n+1)
mn+1 (xn+1) /∈

T+. As xn+1 ∈ C ∩ F/
n+1 ⊆W by Equation (4), the index mn+1 must be strictly larger than

mn, because otherwise χ
(n+1)
mn+1 (xn+1) ∈ T+ would follow from Equation (3). Thus, χ(n+1),

xn+1 and mn+1 satisfy the properties stated in (a), (b), (d)(i), and (d)(ii). This completes the
inductive step.

Let S := {0} ∪ {µmn(xn) : n ∈ N}. Applying Proposition 8, we are going to show first
that S is a compact subset of `1(G). Of course, pm(S) consists of at most 2 points, because
the sequence (mn)n∈N is strictly increasing. It can be easily checked that S is closed in the
product topology and by Corollary 2 also in the topology Σ`1(G).

Fix U ∈ NG(0). We have to show that there exists NU ∈ N such that for all (yn) ∈ S
∑n≥NU

κU(yn) ≤ 1 holds. By the special form of the elements of S, this is equivalent to
κU(xn) ≤ 1 for all n such that mn ≥ NU . Because C is compact, there exists a finite subset
F of D such that F/ ∩ C ⊆ U ∩ C. By item (c), there exists n0 ∈ N such that F ⊆ Fn0 ⊆ Fn
for all n ≥ n0. Thus, for n ≥ n0, we have xn ∈ F/

n ∩ C ⊆ F/
n0
∩ C ⊆ U ∩ C ⊆ U by item

(d)(i) and hence κU(xn) ≤ 1 for all n ≥ n0. Now, choose NU := 1 + mn0 . For n, such that
mn ≥ NU , we have (because (mn) is strictly increasing) n > n0 and hence κU(xn) ≤ 1. This
shows that S is compact.

Let us prove that

∀k1, k2 ∈ N k1 6= k2 =⇒ χ(k2) − χ(k1) /∈ (S + S). : (5)

WLOG, we may assume that k1 < k2. Because χ
(k1)
m (F/

k2
∩ C) ⊆ T2 for all m ∈ N by

item (d)(iii) and xk2 ∈ F/
k2
∩ C by item (d)(i) and χ

(k2)
mk2

(xk2) /∈ T+ by item (d)(ii), this implies

(χ(k2) − χ(k1))(µmk2
(xk2)) = χ

(k2)
mk2

(xk2)︸ ︷︷ ︸
/∈T+

− χ
(k1)
mk2

(xk2)︸ ︷︷ ︸
∈T2

/∈ T2. (6)
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Because ψ ∈ (S + S). if and only if ψ(S) ⊆ T2, Equation (5) is an immediate conse-
quence of Equation (6).

Because by item (a) χ(n) ∈ K for all n ∈ N, Equation (5) implies that K is not totally
bounded. This contradiction implies that T is precompact, whence totally bounded.

Theorem 2. Let G be a reflexive group which has the following additional properties:

1. G∧ has a countable point-separating subgroup.
2. G∧ is complete.

Then, α`1(G) is continuous.

Proof. Let K be a compact subset of `1(G)∧. By Lemma 10, T =
⋃

m∈N µ∧m(K) is totally
bounded. Hence, its closure TK = T is also totally bounded and complete by the assumption
that G∧ is complete. Thus, TK is a compact subset of G∧. Because αG is continuous, the
compact subset TK of G∧ is equicontinuous. By Lemma 8, the canonical homomorphism
α`1(G) is continuous.

2.3. The Second Character Group of `1(G)

In this section, we study the second character group of `1(G) and show that each ele-
ment η ∈ `1(G)∧∧ can be identified with a sequence (ηn) in G∧∧. Next, we study necessary
and sufficient conditions for G such that (ηn) belongs to `1(G∧∧). As a consequence, it is
possible to prove the main theorems of this paper, asserting that `1(G) is reflexive if G is
metrizable and reflexive or an LCA group.

Proposition 15. For every abelian topological group G, the mapping

Ψ = (p∧∧n ) : `1(G)∧∧ → (G∧∧)N, η 7→ (p∧∧n (η))n

is a continuous monomorphism. For all (xn) ∈ `1(G), Ψ ◦ α`1(G)(xn) = (αG(xn)) holds. If αG
is continuous, then

Ψ ◦ α`1(G) = (αG)#.

Proof. It is clear that Ψ is a continuous homomorphism. Fix η ∈ `1(G)∧∧ with p∧∧n (η) = 0
for all n ∈ N. Then, η ◦ p∧n is trivial for all n ∈ N. Hence, η vanishes on the subgroup G∧(N)

of `1(G)∧, which is dense by Proposition 13. This implies that η is trivial. Because Ψ is a
homomorphism, we conclude that Ψ is injective.

Observe that for (xn) ∈ `1(G), we have Ψ(α`1(G)((xn))) = (p∧∧m (α`1(G)((xn))))m∈N =

(α`1(G)((xn)) ◦ p∧m)m∈N. Further, for χ ∈ G∧, we have

α`1(G)((xn))(p∧m(χ)) = α`1(G)((xn))(χ ◦ pm) = (χ ◦ pm)((xn)) = χ(xm) = αG(xm)(χ).

Combining these observations yields Ψ(α`1(G)((xn))) = (αG(xn)). If αG is continuous
(and hence (αG)# is well-defined), then Ψ ◦ α`1(G) = (αG)#.

For the remainder, we identify an element η ∈ `1(G)∧∧ with the sequence Ψ(η) = (ηn)
where ηn = p∧∧n (η).

Proposition 16. Let G be an abelian Hausdorff group and let Ψ be as in Proposition 15.

(a) If αG is continuous, then Ψ(`1(G)∧∧) ⊆ `1(G∧∧).
(b) If αG is surjective and G is lqc, then Ψ(`1(G)∧∧) ⊇ `1(G∧∧).

In particular, if G is reflexive, then Ψ(`1(G)∧∧) = `1(G∧∧).

Proof. (a) Assume first that αG is continuous. Fix η ∈ `1(G)∧∧ and let ηn := p∧∧n (η).
Because η is a continuous character of `1(G)∧, there exists—by definition of the compact-
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open topology—a compact subset K ⊆ `1(G) such that η ∈ K... In order to show
that Ψ(η) = (ηn) ∈ `1(G∧∧), we fix a compact subset C of G∧ and wish to prove that
∑n∈N κC.(ηn) < ∞. Because, by assumption, αG is continuous, there exists a neighborhood
U ∈ NG(0) such that C ⊆ U., whence C. ⊇ U... Because K ⊆ `1(G) is compact, there
exists by Proposition 8 NU ∈ N such that K ⊆ SNU ,U . Hence, η ∈ K.. ⊆ (SNU ,U)

.. =(
{0}{1,...,NU−1} × (U.)N\{1,...,NU−1}

).
.

Because p∧n (U.) ⊆ {0}{1,...,NU−1} × (U.)N\{1,...,NU−1} =: M for all n ≥ NU , we obtain
ηn(U.) = p∧∧n (η)(U.) = η(p∧n (U.)) ⊆ T+, which implies that ηn ∈ U.. for all n ≥ NU .
We want to show that

∑
n≥NU

κU..(ηn) < 2.

Assume that this does not hold and let ν ≥ NU be minimal with
ν

∑
n=NU

κU..(ηn) ≥ 2.

Let N = {n ∈ N : NU ≤ n ≤ ν and κU..(ηn) > 0}. For n ∈ N, we have κU..(ηn) =
1

mn
for a suitable natural number mn, because ηn ∈ U... Next, for n ∈ N, choose χn ∈ U.

such that ηn(χn) = tn +Z where
1

4(mn + 1)
< tn ≤

1
4mn

. For k ∈ N \ N, put χk = 0. Then,

χ = (χn)n∈N ∈ M and hence η(χ) = (∑n∈N tn) +Z ∈ T+. Further,

1
4
≤ ∑

n∈N

1
8mn

≤ ∑
n∈N

1
4(mn + 1)

< ∑
n∈N

tn ≤ ∑
n∈N

1
4mn

holds. Because ν was chosen minimal, we conclude that ∑
n∈N

1
4mn

= ∑
n∈N,n 6=ν

1
4mn

+
1

4mν
<

1
2
+

1
4
=

3
4

. This yields η(χ) = ∑n∈N tn +Z /∈ T+ and gives the desired contradiction.

Now, it easily follows that ∑n∈N κC.(ηn) ≤ ∑n∈N κU..(ηn) < ∞.
(b) Assume now that αG is surjective and G is lqc. Then, α−1

G : G∧∧ → G is continuous.
We show that the composition

`1(G∧∧)
(α−1

G )#−→ `1(G)
α
`1(G)−→ `1(G)∧∧

Ψ−→ (G∧∧)N

is the identity on `1(G∧∧). Fix (ηn) ∈ `1(G∧∧). Because αG is surjective, there is a sequence
(xn) ∈ GN such that αG(xn) = ηn for all n ∈ N. Applying Proposition 15, we obtain

Ψ ◦ α`1(G) ◦ (α−1
G )#(ηn) = Ψ ◦ α`1(G)(xn) = (αG(xn)) = (ηn)

This shows `1(G∧∧) ⊆ Ψ(`1(G)∧∧). The final statement is an immediate consequence of
(a) and (b).

Corollary 5. Let G be a reflexive group. Then, α`1(G) is surjective.

Proof. By Proposition 15, Ψ ◦ α`1(G) = (αG)# holds. Because αG is a topological isomor-
phism, Proposition 6 implies that (αG)# : `1(G)→ `1(G∧∧) is a topological isomorphism.
Because Ψ : `1(G)∧∧ → `1(G∧∧) is an isomorphism by Proposition 16, we obtain that
α`1(G) = Ψ−1 ◦ (αG)# is an isomorphism, whence surjective.

Theorem 3. Let G be a reflexive group. Then, α`1(G) is an open isomorphism. If

(a) G is metrizable or
(b) G∧ is complete and has a countable point-separating subgroup,

then `1(G) is reflexive.
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Proof. If G is reflexive, then G is an lqc Hausdorff group. According to Propositions 5 (c)
and 12, `1(G) is lqc and Hausdorff as well and hence α`1(G) is an open isomorphism by
Corollary 5.

It remains to show that α`1(G) is continuous if (a) or (b) holds. In case (a), it is a
consequence of Proposition 14. In case (b), it is a consequence of Theorem 2.

Theorem 4. For every LCA group G, the group `1(G) is reflexive.

Proof. Let G be an LCA group. By the structure theorem for LCA groups, G has an open
subgroup H topologically isomorphic to Rn × K where n ∈ N0 and K is a compact abelian
group. By Proposition 6 (a), `1(H) can be considered to be an open subgroup of `1(G).
Because by Theorem (2.3), in [23], a group is reflexive if and only if it has an open reflexive
subgroup, it is sufficient to show that `1(H) is reflexive, or, by Proposition 6 (b), that
`1(R)n × `1(K) is reflexive. The group `1(R) is reflexive by Theorem 3.

By Corollary 5, α`1(K) is surjective, and by Theorem 1, α`1(K) is continuous. As the
group `1(K) is lqc and Hausdorff by Propositions 12 and 5 (c), the assertion follows.

Recall that a subgroup H of an abelian topological group G is dually closed if for
every x ∈ G \ H there exists a continuous character χ ∈ G∧ such that χ(H) = {0} and
χ(x) 6= 0. The subgroup H is dually embedded if every continuous character of H can be
extended to a continuous character of G; in other words, the dual homomorphism of the
canonical embedding ι : H → G is surjective.

It is straightforward to check that µ1(G) is a dually closed and dually embedded
subgroup of `1(G) provided that G is an MAP group. We are going to apply the following
result of Noble:

Proposition 17 ([24], Theorem 3.1). Let G be an abelian Hausdorff group such that αG is an open
isomorphism. If H is a dually closed and dually embedded subgroup of G, then also αH is an open
isomorphism.

Theorem 5. If `1(G) is Pontryagin reflexive, then so is G.

Proof. Assume that `1(G) is reflexive. Because µ1 is an embedding and µ1(G) is a dually
closed and dually embedded subgroup of `1(G), we obtain from Proposition 17 that αG is an
open isomorphism. Because p1 : `1(G)→ G is a projection (Proposition 5 (b), Lemma (14.7)
in [13]) implies αG is continuous.

Corollary 6. Let G be a metrizable group. Then, G is reflexive if and only if `1(G) is reflexive.

Proof. If G is a metrizable reflexive group, then `1(G) is reflexive by Theorem 3 (a). If
`1(G) is reflexive, then G is reflexive by Theorem 5.

2.4. The Schur Property of `1(G)

A normed space V is said to have the Schur property if a sequence (xn) converges to
0 provided that ( f (xn)) converges to 0 for every continuous linear form. In this section, we
first recall the definition of the Schur property for MAP groups; afterward, having in mind
that `1(R) has the Schur property, we prove that `1(G) has the Schur property for groups if
and only if G has this property (Theorem 6).

Definition 4. For a topological group (G, τ), denote by τ+ the topology on G induced by G →
TG∧ , x 7→ (χ(x))χ∈G∧ . The topology τ+ is called weak topology.

The weak topology τ+ is Hausdorff if and only if the characters of G separate the
points. A subset C of G is called weakly compact if it is compact with respect to τ+.
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Definition 5. A MAP group (G, τ) is said to have the Schur property if every τ+-convergent
sequence converges in τ.

Theorem 6. Let G be an lqc Hausdorff group. Then, G has the Schur property if and only if `1(G)
has the Schur property.

Proof. Assume first that G has the Schur property. Let (x(m))m∈N be a weakly convergent
sequence in `1(G), where x(m) = (x(m)

n )n∈N. WLOG, we may assume that (x(m))m∈N
converges to 0. For χ ∈ G∧ and n ∈ N, the sequence (p∧n (χ)(x(m)))m∈N = (χ(x(m)

n ))m∈N
converges to 0 in T. The assumption that G has the Schur property implies that (x(m)

n )m∈N
converges in the original topology of G to 0 for every n ∈ N.

Assume that the sequence (x(m))m∈N is not convergent in the original topology. This
means that there exists a quasi-convex neighborhood U ∈ NG(0) such that for infinitely
many m ∈ N, x(m) /∈ SU . After passing to a subsequence, we may assume that x(m) /∈ SU for
all m ∈ N. In order to obtain a contradiction, we are going to inductively construct strictly
increasing sequences (mk), (nk) and (Nk) of natural numbers and a sequence (χk) ∈ (U.)N

such that

(a) Nk ≤ nk < Nk+1 for all k ∈ N;

(b) ∑nk
n=1 χn(x(mk)

n ) /∈ T3, and ∑n>nk
κU(x(mk)

n ) < 1
8 for all k ∈ N.

Let m1 = 1. Because x(1) /∈ SU, there exists N1 ∈ N minimal such that ∑N1
n=1 κU(x(1)n ) > 1.

Further, there is n1 ≥ N1 such that ∑n>n1
κU(x(1)n ) < 1

8 . If for some 1 ≤ n ≤ N1 the element

x(1)n /∈ U, then we choose χn ∈ U. such that χn(x(1)n ) /∈ T+ and for j ∈ {1 . . . , n1} \ {n}
we put χj = 0. Otherwise, let F = {n : 1 ≤ n ≤ N1, κU(x(1)n ) > 0}. Fix n ∈ F. Because

x(1)n ∈ U, we have 0 < κU(x(1)n ) ≤ 1; hence, there exists ln ∈ N such that 1
ln
= κU(x(1)n )

for some ln ∈ N. The minimality of N1 implies that N1 ∈ F and ∑n∈F κU(x(1)n ) =

∑N1
n=1 κU(x(1)n ) ≤ 2. For every n ∈ F, choose χn ∈ U. such that χn(x(1)n ) = tn + Z for

some tn ∈] 1
4(ln+1) , 1

4ln
]. Because

1
8
<

1
4 ∑

n∈F

1
2ln
≤ 1

4 ∑
n∈F

1
ln + 1

< ∑
n∈F

tn ≤
1
4 ∑

n∈F

1
ln
≤ 1

2
,

we obtain ∑n∈F χn(x(1)n ) /∈ T3. For n ∈ {1, . . . , n1} \ F, we put χj = 0. Then, conditions (a)
and (b) are satisfied for k = 1.

Assume now that for some k ∈ N, m1, . . . , mk, N1, . . . , Nk, n1, . . . , nk and χ1, . . . , χnk ∈ U.

have been constructed such that (a) and (b) hold. By the initial observation, (κU(x(m)
n ))m∈N

converges to 0 for every n ∈ N; hence, there exists mk+1 > mk such that ∑nk
n=1 κU(x(mk+1)

n ) < 1
8 .

Because x(mk+1) /∈ SU , there exists a minimal Nk+1 > nk such that ∑
Nk+1
n=nk+1 κU(x(mk+1)

n ) > 7
8 .

We choose nk+1 ≥ Nk+1 such that ∑n>nk+1
κU(x(mk+1)

n ) < 1
8 .

Fix s ∈ [− 1
4 , 1

4 ] such that ∑nk
n=1 χn(x(mk+1)

n ) = s +Z. If s +Z /∈ T3, we define χj = 0 for
all nk < j ≤ nk+1.

Assume now that s+Z ∈ T3 and that for some nk < j ≤ Nk+1, the element x(mk+1)
j /∈ U.

Then, we choose χj ∈ U. such that χj(x(mk+1)
j ) /∈ T+ and then ∑nk

n=1 χn(x(mk+1)
n )+χj(x(mk+1)

j )

/∈ T3. Further, for all n ∈ {nk + 1, . . . , nk+1} \ {j}, we put χn = 0.

Finally, assume that s + Z ∈ T3 and x(mk+1)
j ∈ U for all nk < j ≤ Nk+1. The min-

imality of Nk+1 implies ∑
Nk+1
n=nk+1 κU(x(mk+1)

n ) ≤ 15
8 . Let F = {n ∈ N : nk < n ≤ Nk+1

and κU(x(mk+1)
n ) > 0}. For n ∈ F, κU(x(mk+1)

n ) = 1
ln

for suitable ln ∈ N. Hence,
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there exist χn ∈ U. such that χn(x(mk+1)
n ) = tn + Z where |tn| ∈ [ 1

4(ln+1) , 1
4ln

]. Because

∑n∈F
1
ln
= ∑

Nk+1
n=nk+1 κU(x(mk+1)

n ) ∈ [ 7
8 , 15

8 ], we obtain

1
12

<
1
4
· 7

16
<

1
4 ∑

n∈F

1
2ln
≤ 1

4 ∑
n∈F

1
ln + 1

< ∑
n∈F
|tn| ≤

1
4 ∑

n∈F

1
ln
≤ 15

32
<

1
2

.

For n ∈ {nk + 1, . . . , nk+1} \ F, we put χn = 0.
If s ∈ [0, 1

12 ], then ∑
nk+1
n=1 χn(x(mk+1)) /∈ T3.

If s ∈ [− 1
12 , 0], replace χn by −χn for n ∈ F such that ∑

nk+1
n=1 χn(x(mk+1)) /∈ T3 holds.

We have constructed the subsequence (x(mk))k of (x(m))m∈N and the character χ =
(χn) ∈ (U.)N ⊆ `1(G)∧. We obtain

χ(x(mk)) =
∞

∑
n=1

χn(x(mk)
n ) =

nk

∑
n=1

χn(x(mk)
n )︸ ︷︷ ︸

/∈T3

+ ∑
n>nk

χn(x(mk)
n )︸ ︷︷ ︸

∈T8⊆T6

/∈ T6,

because ∑n>nk
κU(x(mk)

n ) < 1
8 and χn ∈ U. for all n ∈ N (cf. Lemma 1 (c)). This shows

(χ(x(mk))) does not converge to 0 and gives the desired contradiction.
Because µ1 : G → `1(G) is an embedding, and the class of groups having the Schur

property is closed under taking subgroups, the result follows.

An MAP group (G, τ) is said to have the Glicksberg property if every weakly compact
subset is compact.

Every group which has the Glicksberg property also has the Schur property. This
definition honors Glicksberg who proved that every LCA group has this property. Because
then many other examples of groups having the Glicksberg property were established,
for example, it is a consequence of the Eberlein–Šmulian theorem [25] and the Schur
theorem [12] that `1(R) has the Glicksberg property. Further, the class of groups having the
Glicksberg property is stable under taking subgroups and products. In particular, if for an
MAP group G, the sequence group `1(G) has the Glicksberg property, then also G has the
Glicksberg property (as G can be embedded in `1(G)). However, the converse implication
is not clear, see Question 6.

2.5. Schwartz Groups

In this final section, we show that only under very restrictive conditions is the sequence
group `1(G) a Schwartz group, a class of groups introduced in [14] generalizing Schwartz
topological vector spaces (see ([8], p. 201) for the definition).

Notation 1. Let G be an abelian group. For a symmetric subset U of G containing 0, one defines

(1/n)U := {x ∈ G : jx ∈ U ∀ 1 ≤ j ≤ n} = κ−1
U ([0,

1
n
]).

Observe that if U is a symmetric neighborhood of 0 in a topological group, then also
(1/n)U is a neighborhood of 0 for every n ∈ N.

Definition 6 ([14]). An abelian topological group G is called a Schwartz group if for every
symmetric neighborhood U ∈ NG(0) there exists a symmetric neighborhood V ∈ NG(0) and a
sequence (Fn) of finite subsets of G such that V ⊆ (1/n)U + Fn for all n ∈ N.

The class of Schwartz groups is closed under taking subgroups, arbitrary products,
and Hausdorff quotients ([14], 3.6). Every lqc Schwartz group has the Glicksberg property,
in particular, the Schur property ([19]). A topological vector space is a Schwartz space if
and only if the additive group is a Schwartz group ([14], 4.2).
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Definition 7 (Tarieladze). A symmetric subset U containing 0 of an abelian group G is called a
GTG-set (Group Topology Generating set), if the sets ((1/n)U)n∈N form a neighborhood base at
0 of a not-necessarily Hausdorff group topology. An abelian topological group G is called a locally
GTG-group if it has a neighborhood base at 0 consisting of GTG-sets.

The following two statements follow straightforward from the definitions. For a
GTG-set U in G, the intersection U∞ :=

⋂
n∈N(1/n)U is a subgroup of G. It is a direct

consequence of Lemma 1 (c) that every lqc group is locally GTG.
By ([8], 10.4.3), every bounded subset of a Schwartz space is precompact. Hence, a

normed space is a Schwartz space if and only if it is finite-dimensional. Thus, `1(R) is not
a Schwartz space and hence no Schwartz group either. Conversely, if `1(G) is a Schwartz
group, then necessarily G is a Schwartz group, because G embeds in `1(G). However, the
example R→ `1(R) shows that this property is not sufficient.

Theorem 7. For a locally GTG-group G, the following assertions are equivalent:

(a) `1(G) is a Schwartz group.
(b) G is linearly topologized.

Proof. (a) =⇒ (b) Let N0 be a neighborhood base at 0 ∈ G consisting of GTG-sets. Fix a
neighborhood U ∈ N0. There is neighborhood W ∈ N0 such that W + W + W + W ⊆ U.
Because `1(G) is a Schwartz group by assumption, there is a sequence (F̃n) of finite subsets
in `1(G) and a neighborhood V ∈ N0 such that SV ⊆ F̃n + (1/n)SW . Because G(N) is dense
in `1(G) (Proposition 7), there exists for every n ∈ N a finite subset Fn ⊆ G(N) such that
F̃n ⊆ Fn + (1/n)SW . Thus, we have SV ⊆ Fn + (1/n)SW + (1/n)SW . We are going to
show that (1/n)SW + (1/n)SW ⊆ (1/n)SU . Therefore, we fix (xn), (yn) ∈ (1/n)SW . For
1 ≤ j ≤ n, we obtain by Lemma 1 (a) and (b) and Proposition 4

∑n∈N κU(j(xn + yn)) ≤ ∑n∈N κW+W+W+W(jxn + jyn) ≤

≤ ∑n∈N κW+W(jxn) + ∑n∈N κW+W(jyn) ≤ 1
2 ∑n∈N κW(jxn) +

1
2 ∑n∈N κW(jyn) ≤ 1.

It follows that
SV ⊆ Fn + (1/n)SU

for all n ∈ N. Fix n ∈ N. Because Fn is a finite subset of G(N), we can choose Nn ∈ N
such that pm(Fn) = {0} for all m ≥ Nn. For m ≥ Nn, µm(V) ⊆ SV ⊆ Fn + (1/n)SU , or
equivalently because pm(Fn) = {0}, µm(V) ⊆ (1/n)SU . Thus, for all x ∈ V and 1 ≤ j ≤ n,
we have jµm(x) ∈ SU which is equivalent to κU(jx) ≤ 1 for all 1 ≤ j ≤ n. Thus, jx ∈ U
for all 1 ≤ j ≤ n, which means that x ∈ (1/n)U. We have shown that V ⊆ (1/n)U for all
n ∈ N. This yields V ⊆ ⋂n∈N(1/n)U = U∞. As a consequence, U∞ is an open subgroup of
G. Hence, (U∞)U∈N0 is a neighborhood base at 0 for G consisting of open subgroups. This
means that G is linearly topologized.

(b) =⇒ (a) If G is linearly topologized, so is `1(G) by Proposition 5. It is obvious that
every linearly topologized group is a Schwartz group, so the assertion follows.

The class of nuclear groups was introduced by Banaszczyk in [13]. Nuclear groups
include all Schwartz groups ([14], 4.3), all LCA groups ([13], 7.10), and all nuclear locally
convex vector spaces ([13], 7.4). This class of groups is closed under taking products,
subgroups, and Hausdorff quotient groups ([13], 7.5 and 7.6), and every nuclear group is
lqc ([13], 8.5). Because every Hausdorff linearly topologized group can be embedded into a
product of discrete groups, every linearly topologized Hausdorff group is nuclear.

Theorem 8. For an lqc Hausdorff group G, the following are equivalent:

(a) `1(G) is a nuclear group;
(b) `1(G) is a Schwartz group;
(c) G is linearly topologized.
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Proof.

(a)=⇒ (b) holds, because every nuclear group is a Schwartz group ([14], 4.3).
(b)=⇒ (c) is a consequence of Theorem 7.
(c)=⇒ (a) If G is linearly topologized, so is `1(G) by Proposition 5. Hence, `1(G) is a
nuclear group.

3. Open Questions

In this final chapter, we gather some open questions concerning sequence groups.

Question 1. Characterize those abelian Hausdorff groups for which `1(G) = G(N) holds. In
particular, is it possible that c0(G) 6= G(N) = `1(G)?

A dense subgroup H of an abelian Hausdorff group G is said to determine G if the dual
homomorphism ι∧ : G∧ → H∧ of the natural embedding ι is a topological isomorphism.
It was shown in [26] and in ([27], 4.10) that every metrizable abelian group determines its
completion.

Question 2. Assume that H is a dense subgroup of the abelian topological group G which deter-
mines G. Does `1(H) determine `1(G)?

It was shown (Theorem 5) that if `1(G) is reflexive, then G must be reflexive. Con-
versely, if G is reflexive, then α`1(G) is an open isomorphism (Theorem 3). However, we do
not know if α`1(G) is continuous.

Question 3. Let G be an abelian Hausdorff group such that αG is continuous. Is it true that α`1(G)
is continuous?

Or, a bit weaker,

Question 4. Let G be a reflexive group. Is it true that α`1(G) is continuous (and hence `1(G) is
reflexive)?

It was shown in [4] that for every LCA group G, the group of null-sequences c0(G) is
reflexive.

Question 5. Is it true that G is a reflexive group if and only if c0(G) is reflexive?

Question 6. Assume that G has the Glicksberg property. Does `1(G) have the Glicksberg property?

Question 7. What can be said about the groups

`p(G) = {(xn) ∈ GN : ∑
n∈N

(κU(xn))
p < ∞ ∀U ∈ NG(0)}

for 1 ≤ p < ∞? In particular, what are the properties of `2(G)?
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