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Abstract: We prove various results in infinite-dimensional differential calculus that relate the
differentiability properties of functions and associated operator-valued functions (e.g., differentials).
The results are applied in two areas: (1) in the theory of infinite-dimensional vector bundles, to
construct new bundles from given ones, such as dual bundles, topological tensor products, infinite
direct sums, and completions (under suitable hypotheses); (2) in the theory of locally convex Poisson
vector spaces, to prove continuity of the Poisson bracket and continuity of passage from a function
to the associated Hamiltonian vector field. Topological properties of topological vector spaces are
essential for the studies, which allow the hypocontinuity of bilinear mappings to be exploited.
Notably, we encounter kR-spaces and locally convex spaces E such that E× E is a kR-space.

Keywords: vector bundle; dual bundle; direct sum; completion; tensor product; cocycle; smoothness;
analyticity; hypocontinuity; k-space; compactly generated space; infinite-dimensional Lie group;
Poisson vector space; Poisson bracket; Hamiltonian vector field; group action; multilinear map
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1. Introduction

We study questions of infinite-dimensional differential calculus in the setting of
Keller’s Ck

c -theory [1] (going back to [2]). Applications to infinite-dimensional vector bun-
dles are given, and also applications in the theory of locally convex Poisson vector spaces.

Differentiability properties of operator-valued maps. Our results are centred around
the following basic problem: Consider locally convex spaces X, E and F, an open set U ⊆ X
and a map f : U → L(E, F)b to the space of continuous linear maps, endowed with the
topology of uniform convergence on bounded sets. How are the differentiability properties
of the operator-valued map f related to those of

f∧ : U × E→ F , f∧(x, v) := f (x)(v) ?

We show that if f∧ is smooth, then also f is smooth (Proposition 1). Conversely,
exploiting the hypocontinuity of the bilinear evaluation map

L(E, F)b × E→ F , (α, v) 7→ α(v) ,

we find natural hypotheses on E and F ensuring that smoothness of f entails smoothness
of f∧ (Proposition 2; likewise for compact sets in place of bounded sets). Without extra
hypotheses on E and F, this conclusion becomes false, e.g., if U = X is a non-normable,
real, locally convex space with dual space X′ := L(X,R). Then, f := idX′ : X′b → X′b is
continuous linear and thus smooth, but f∧ : X′b × X → R is the bilinear evaluation map
taking (λ, x) to λ(x), which is discontinuous for non-normable X (see [3] (p. 2)) and hence
not smooth in the sense of Keller’s C∞

c -theory. We also obtain results concerning finite-order
differentiability properties, as well as real and complex analyticity. Furthermore, L(E, F) can
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be replaced with the space Lk(E1, . . . , Ek, F) of continuous k-linear maps E1× · · · × Ek → F,
if E1, . . . , Ek are locally convex spaces. (Related questions also play a role in the comparative
study of differential calculi [1].) As a very special case of our studies, the differential

f ′ : U → L(E, F)b

is Cr−2, for each r ∈ N ∪ {∞} with r ≥ 2, locally convex spaces E and F, and Cr-map
f : U → F on an open set U ⊆ E (see Corollary 1).

Applications to infinite-dimensional vector bundles. Apparently, mappings of the
specific form just described play a vital role in the theory of vector bundles: If F is a
locally convex space, M a (not necessarily finite-dimensional) smooth manifold and (Ui)i∈I
an open cover of M, then the smooth vector bundles E → M, with fibre F, which are
trivial over the sets Ui, can be described by cocycles gij : Ui ∩ Uj → GL(F) such that
Gij := g∧ij : (Ui ∩Uj) × F → F, (x, v) 7→ gij(x)(v) is smooth (Proposition 3, Remark 7).
Then, gij is smooth as a mapping to the space L(F)b := L(F, F)b (see Proposition 1). In
various contexts—for example, when trying to construct dual bundles—we are in the
opposite situation: we know that each gij is smooth, and would like to conclude that
also the mappings Gij are smooth. Although this is not possible in general (as examples
show), our results provide additional conditions ensuring that the conclusion is correct in
the specific situation at hand. Notably, we obtain conditions ensuring the existence of a
canonical dual bundle (Proposition 13). Without extra conditions, a canonical dual bundle
need not exist (Example 2).

Besides dual bundles, we discuss a variety of construction principles of new vector
bundles from given ones, including topological tensor products, completions, and finite
or infinite direct sums. More generally, given a (finite- or infinite-dimensional) Lie group
acting on the base manifold M, we discuss the construction of new equivariant vector
bundles from given ones. Most of the constructions require specific hypotheses on the base
manifold, the fibre of the bundle, and the Lie group.

As to completions, complementary topics were considered in the literature: Given an
infinite-dimensional smooth manifold M, completions of the tangent bundle with respect
to a weak Riemannian metric occur in [4] (p. 549), in hypotheses for a so-called robust
Riemannian manifold.

We mention that multilinear algebra and vector bundle constructions can be performed
much more easily in an inequivalent setting of infinite-dimensional calculus, the convenient
differential calculus [3]. However, a weak notion of vector bundles is used there, which
need not be topological vector bundles. Our discussion of vector bundles intends to
pinpoint additional conditions ensuring that the natural construction principles lead to
vector bundles in a stronger sense (which are, in particular, topological vector bundles).

The work [5] was particularly important for our studies. For an open subset U of a Fréchet
space E, smoothness of f∧ : U × Ek → R is deduced from smoothness of f : U → Λk(E′)b
in the proof of [5] (Proposition IV.6). A typical hypocontinuity argument already appears
in the proof of [5] (Lemma IV.7). In contrast to the local calculations in charts, the global
structure on a dual bundle (and bundles of k-forms) asserted in the first remark of [5] (p. 339)
is problematic if Keller’s C∞

c -theory is used, without further hypotheses.
Applications related to locally convex Poisson vector spaces. In the wake of works

by Odzijewicz and Ratiu on Banach–Poisson vector spaces and Banach–Poisson mani-
folds [6,7], certain locally convex Poisson vector spaces were introduced [8], which gen-
eralise the Lie–Poisson structure on the dual space of a finite-dimensional Lie algebra
going back to Kirillov, Kostant and Souriau. By now, the latter spaces can be embedded
in a general theory of locally convex Poisson manifolds (see [9]; for generalisations of
finite-dimensional Poisson geometry with a different thrust, cf. [10]). Recall that many
important examples of bilinear mappings between locally convex topological vector spaces
are not continuous, but at least hypocontinuous (cf. [11] for this classical concept). In
Sections 12 and 13, we provide the proofs for two fundamental results in the theory of lo-
cally convex Poisson vector spaces which are related to hypocontinuity. (These proofs were
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stated in the preprint version of [8], but not included in the actual publication.) We show
that the Poisson bracket associated with a continuous Lie bracket is always continuous
(Theorem 1) and that the linear map C∞(E,R) → C∞(E, E) taking a smooth function to
the associated Hamiltonian vector field is continuous (Theorem 2). Ideas from [8] and the
current article were also taken further in [12] (Section 13).

2. Preliminaries and Notation

We describe our setting of differential calculus and compile useful facts. Either refer-
ences to the literature are given or a proof; the proofs can be looked up in Appendix A.

Infinite-dimensional calculus. We work in the framework of infinite-dimensional
differential calculus known as Keller’s Ck

c -theory [1]. Our main reference is [13] (see
also [14–17]). If K ∈ {R,C}, we let D := {t ∈ K : |t| ≤ 1} and Dε := {t ∈ K : |t| ≤ ε} for
ε > 0. We write N := {1, 2, . . .} and N0 := N∪{0}. All topological vector spaces considered
in the article are assumed Hausdorff, unless the contrary is stated. For brevity, Hausdorff
locally convex topological vector spaces will be called locally convex spaces. As usual, a
subset M of a K-vector space is called balanced if tx ∈ M for all x ∈ M and t ∈ D. The subset
M is called absolutely convex if it is both convex and balanced. If q : E→ [0, ∞] is a seminorm
on a K-vector space E, we write Bq

ε (x) := {y ∈ E : q(y− x) < ε} for x ∈ E and ε > 0. We
also write ‖x‖q in place of q(x). If E is a locally convex K-vector space, we let E′ be the dual
space of continuous K-linear functionals λ : E→ K. We write M◦ := {λ ∈ E′ : λ(M) ⊆ D}
for the polar of a subset M ⊆ E. If α : E→ F is a continuous K-linear map between locally
convex K-vector spaces, we let α′ : F′ → E′, λ 7→ λ ◦ α be the dual linear map. We say
that a mapping f : X → Y between topological spaces is a topological embedding if it is a
homeomorphism onto its image. We recall:

Definition 1. Let E and F be locally convex K-vector spaces over K ∈ {R,C} and U ⊆ E be an
open subset. A map f : U → F is called C0

K if it is continuous, in which case we set d0 f := f .
Given x ∈ U and y ∈ E, we define

d f (x, y) := (Dy f )(x) := lim
t→0

f (x + ty)− f (x)
t

if the limit exists (using t ∈ K× such that x + ty ∈ U). Let r ∈ N ∪ {∞}. We say that a
continuous map f : U → F is a Cr

K-map if the iterated directional derivative

dk f (x, y1, . . . , yk) := (Dyk · · ·Dy1)( f )(x)

exists for all k ∈ N such that k ≤ r and all (x, y1, . . . , yk) ∈ U × Ek, and if the mappings
dk f : U × Ek → F so obtained are continuous. Thus, d1 f = d f . If K is understood, we write Cr

instead of Cr
K. As usual, C∞-maps are also called smooth.

Remark 1. For k ∈ N, it is known that a map f : U → F as before is Ck
K if and only if f is C1

K and
d f : U × E→ F is Ck−1

K (cf. [13] (Proposition 1.3.10)).

Remark 2. If K = C, it is known that a map f : E ⊇ U → F as before is C∞
C if and only if it is

complex analytic in the sense of [18] (Definition 5.6): f is continuous and for each x ∈ U, there
exists a 0-neighbourhood Y ⊆ E such that x + Y ⊆ U and f (x + y) = ∑∞

n=0 βn(y) for all y ∈ Y
as a pointwise limit, where βn : E→ F is a continuous homogeneous polynomial over C of degree n,
for each n ∈ N0 [13] (Theorem 2.1.12). Furthermore, f is complex analytic if and only if f is C∞

R
and d f (x, ·) : E→ F is complex linear for all x ∈ U (see [13] (Theorem 2.1.12)). Complex analytic
maps will also be called C-analytic or Cω

C .

Definition 2. If K = R, then a map f : U → F as before is called real analytic (or R-analytic,
or Cω

R ) if it extends to a complex analytic mapping Ũ → FC on some open neighbourhood Ũ of U in
the complexification EC of E.
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In the following, r ∈ N0 ∪{∞, ω}, unless the contrary is stated. We use the conventions
∞ + k := ∞− k := ∞ and ω + k := ω − k := ω, for each k ∈ N. Furthermore, we extend
the order on N0 to an order on N0 ∪ {∞, ω} by declaring n < ∞ < ω for each n ∈ N0.

Remark 3. Compositions of composable Cr
K-mappings are Cr

K-mappings (see Proposition 1.3.4,
Remark 2.1.13, and Proposition 2.2.4 in [13]). Thus, Cr

K-manifolds modelled on locally convex
K-vector spaces can be defined in the usual way (see [13] (Chapter 3) for a detailed exposition). In
this article, the word “manifold” (resp., “Lie group”) always refers to a manifold (resp., Lie group)
modelled on a locally convex space.

The following basic fact will be used repeatedly.

Lemma 1. For k ∈ N, let X, E1, . . . , Ek, and F be locally convex K-vector spaces, U ⊆ X be an
open subset and

f : U × E1 × · · · × Ek → F

be a C1
K-map such that f∨(x) := f (x, ·) : E1 × · · · × Ek → F is k-linear, for each x ∈ U. Let

x ∈ U and q be a continuous seminorm on F. Then, there exists a continuous seminorm p on X
with Bp

1 (x) ⊆ U, and continuous seminorms pj on Ej for j ∈ {1, . . . , k} such that

‖ f (y, v1, . . . , vk)‖q ≤ ‖v1‖p1 · · · ‖vk‖pk and (1)

‖ f (y, v1, . . . , vk)− f (x, v1, . . . , vk)‖q ≤ ‖y− x‖p‖v1‖p1 · · · ‖vk‖pk (2)

for all y ∈ Bp
1 (x) and (v1, . . . , vk) ∈ E1 × · · · × Ek.

We shall also use the following fact:

Lemma 2. Let E and F be locally convex K-vector spaces, k ≥ 2 be an integer and f : U× Ek → F
be a mapping such that f (x, ·) : Ek → F is k-linear and symmetric for each x ∈ U. Let r ∈
N0 ∪ {∞, ω}. If

h : U × E→ F, (x, y) 7→ f (x, y, . . . , y)

is Cr
K, then also f is Cr

K. Notably, f is continuous if h is continuous.

k-spaces, kR-spaces, k∞-spaces, and kω-spaces. Recall that a topological space X is
said to be completely regular if it is Hausdorff and its topology is initial with respect to the
set C(X,R) of all continuous real-valued functions on X. Every locally convex space is
completely regular, as with every Hausdorff topological group (cf. [19] (Theorem 8.2)).
Compare [20,21] for the following.

A topological space X is called a k-space if it is Hausdorff and a subset A ⊆ X is
closed if and only if A ∩ K is closed in K for each compact subset K ⊆ X. Every metrisable
topological space is a k-space, and every locally compact Hausdorff space. A Hausdorff
space X is a k-space if and only if, for each topological space Y, a map f : X → Y is
continuous if and only if f is k-continuous in the sense that f |K is continuous for each
compact subset K ⊆ X. If X is a k-space, then also every subset M ⊆ X which is open or
closed in X, when the induced topology is used on M.

A topological space X is called a kR-space if it is Hausdorff and a function f : X → R
is continuous if and only if f is k-continuous. Then also a map f : X → Y to a completely
regular topological space Y is continuous if and only if it is k-continuous (as the latter
condition implies continuity of g ◦ f for each g ∈ C(Y,R)). For more information, cf. [22].

Every k-space is a kR-space. The converse is not true: RI is known to be a kR-space for
each set I (see [22]). If I has cardinality ≥ 2ℵ0 , then RI is not a k-space. (If RI was a k-space,
then a certain non-discrete subgroup G of (RR,+) constructed in [23] would be discrete,
which is a contradiction (see [13] (Remark A.6.16 (a)) for more details). Compare also [22].)

The following facts are well known (cf. [22]):
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Lemma 3. (a) If a kR-space X is a direct product X1 × X2 of Hausdorff spaces and X1 6= ∅,
then X2 is a kR-space.

(b) Every open subset U of a completely regular kR-space X is a kR-space in the induced topology.

Notably, U is a kR-space for each open subset U of a locally convex space E which is a
kR-space. If E× E is a kR-space, then also E.

Following [8], a topological space X is called a k∞-space if the Cartesian power Xn

is a k-space for each n ∈ N, using the product topology. A Hausdorff space X is called
hemicompact if X =

⋃
n∈N Kn for a sequence K1 ⊆ K2 ⊆ · · · of compact subsets Kn ⊆ X

such that each compact subset of X is a subset of some Kn. Hemicompact k-spaces are
also called kω-spaces. If X and Y are kω-spaces, then the product topology makes X×Y a
kω-space. Notably, every kω-space is a k∞-space. See [24,25] for further information. Finite
products of metrisable spaces being metrisable, every metrisable topological space is a
k∞-space. Recall that a locally convex space E is said to be a Silva space or (DFS)-space if it
is the locally convex inductive limit of a sequence E1 ⊆ E2 ⊆ · · · of Banach spaces such
that each inclusion map En → En+1 is a compact operator. Every Silva space is a kω-space
(see, e.g., [13] (Proposition B13.13(g))).

Spaces of multilinear maps. Given k ∈ N, locally convex K-vector spaces E1, . . . , Ek
and F, and a set S of bounded subsets of E1 × · · · × Ek, we write Lk(E1, . . . , Ek, F)S or
Lk
K(E1, . . . , Ek, F)S for the space of continuous k-linear maps E1 × · · · × Ek → F, endowed

with the topology OS of uniform convergence on the sets B ∈ S . Recall that finite intersec-
tions of sets of the form

bB, Uc := {β ∈ Lk(E1, . . . , Ek, F) : β(B) ⊆ U}

yield a basis of 0-neighbourhoods for this (not necessarily Hausdorff) locally convex
vector topology, for U ranging through the 0-neighbourhoods in F and B through S .
If
⋃

B∈S B = E1 × · · · × Ek, then OS is Hausdorff. If E1 = · · · = Ek, we abbreviate
Lk(E, F)S := Lk(E, . . . , E, F)S . If k = 1 and E := E1, we abbreviate L(E, F)S := L1(E, F)S ,
LK(E, F)S := L1

K(E, F)S and L(E)S := L(E, E)S . We write GL(E) = L(E)× for the group
of all automorphisms of the locally convex K-vector space E. If S is the set of all bounded,
compact, and finite subsets of E1 × · · · × Ek, respectively, we shall usually write “b,” “c,”
and “p” in place of S . For example, we shall write Lk(E1, . . . , Ek, F)b, Lk(E1, . . . , Ek, F)c, and
Lk(E1, . . . , Ek, F)p.

Remark 4. Let E1, . . . , Ek and F be complex locally convex spaces and f : U→ Lk
C(E1, . . . , Ek, F)

be a map, defined on an open subset U of a real locally convex space. Let S := b or S := c.
Since Lk

C(E1, . . . , Ek, F)S is a closed real vector subspace of Lk
R(E1, . . . , Ek, F)S , the map f is Cr

R
as a map to Lk

C(E1, . . . , Ek, F)S if and only if f is Cr
R as a map to Lk

R(E1, . . . , Ek, F)S (see [13]
(Lemma 1.3.19 and Exercise 2.2.4)).

Given a Cr
K-map f : E ⊇ U → F as in Definition 1, we define f (0) := f and

f (j) : U → Lj
K(E, F), f (j)(x) := (dj f )∨(x) = dj f (x, ·)

for j ∈ N such that j ≤ r.
Hypocontinuous multilinear maps. Beyond normed spaces, typical multilinear maps

are not continuous, but merely hypocontinuous. Hypocontinuous bilinear maps are dis-
cussed in many textbooks. An analogous notion of hypocontinuity for multilinear maps (to
be described presently) is useful to us. It can be discussed similarly to the bilinear case.

Lemma 4. For an integer k ≥ 2, let β : E1 × · · · × Ek → F be a separately continuous k-linear
mapping and j ∈ {2, . . . , k} such that, for each x ∈ E1 × · · · × Ej−1, the map

β∨(x) := β(x, ·) : Ej × · · · × Ek → F
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is continuous. Let S be a set of bounded subsets of Ej × · · · × Ek. Consider the conditions:

(a) For each M ∈ S and each 0-neighbourhood W ⊆ F, there exists a 0-neighbourhood V ⊆
E1 × · · · × Ej−1 such that β(V ×M) ⊆W.

(b) The (j− 1)-linear map β∨ : E1 × · · · × Ej−1 → Lk−j+1(Ej, . . . , Ek, F)S is continuous.
(c) β|E1×···×Ej−1×M : E1 × · · · × Ej−1 ×M→ F is continuous, for each M ∈ S .

Then (a) and (b) are equivalent, and (b) implies (c). If

(∀M ∈ S) (∃N ∈ S) DM ⊆ N, (3)

then (a), (b), and (c) are equivalent.

Definition 3. A k-linear map β which satisfies the hypotheses and Condition (a) of Lemma 4
is called S-hypocontinuous in its arguments (j, . . . , k). If j = k, we also say that β is S-
hypocontinuous in the k-th argument. Analogously, we define S-hypocontinuity of β in the
j-th argument, if j ∈ {1, . . . , k} and a set S of bounded subsets of Ej are given.

We are mainly interested in b-, c-, and p-hypocontinuity, viz., in S-hypocontinuity with
respect to the set S of all bounded subsets of Ej × · · · × Ek, the set S of all compact subsets,
and the set S of all finite subsets, respectively. If S and T are sets of bounded subsets of
Ej × · · · × Ek such that S ⊆ T and β is T -hypocontinuous in its variables (j, . . . , k), then β
is also S-hypocontinuous in the latter. The following is obvious from Lemma 4 (c) (as the
elements of a convergent sequence, together with its limit, form a compact set):

Lemma 5. If β : E1 × · · · × Ek → F is c-hypocontinuous in some argument, or in its arguments
(j, . . . , k) for some j ∈ {2, . . . , k}, then β is sequentially continuous.

In many cases, separately continuous bilinear maps are automatically hypocontinuous.
Recall that a subset B of a locally convex space E is a barrel if it is closed, absolutely convex,
and absorbing. The space E is called barrelled if every barrel is a 0-neighbourhood. See
Proposition 6 in [11] (Chapter III, §5, no. 3) for the following fact.

Lemma 6. If β : E1 × E2 → F is a separately continuous bilinear map and E1 is barrelled, then β
is S-hypocontinuous in its second argument, with respect to any set S of bounded subsets of E2.

Evaluation maps are paradigmatic examples of hypocontinuous multilinear maps.

Lemma 7. Let E1, . . . , Ek and F be locally convex K-vector spaces and S be a set of bounded
subsets of E := E1 × · · · × Ek with

⋃
M∈S M = E. Then, the (k + 1)-linear map

ε : Lk(E1, . . . , Ek, F)S × E1 × · · · × Ek → F , (β, x) 7→ β(x)

is S-hypocontinuous in its arguments (2, . . . , k + 1). If k = 1 and E = E1 is barrelled, then
ε : L(E, F) × E → F is also hypocontinuous in the first argument, with respect to any locally
convex topology O on L(E, F) which is finer than the topology of pointwise convergence, and any
set T of bounded subsets of (L(E, F),O).

Lemma 8. Consider locally convex spaces E1, . . . , Ek and F with k ≥ 2 and a k-linear map
β : E1 × · · · × Ek → F.

(a) If β is sequentially continuous, then the composition β ◦ f is continuous for each continuous
function f : X → E1 × · · · × Ek on a topological space X which is metrisable or satisfies the
first axiom of countability.

(b) If β is c-hypocontinuous in its arguments (j, . . . , k) for some j ∈ {2, . . . , k} and X is a
kR-space, then β ◦ f is continuous for each continuous function f : X → E1 × · · · × Ek.
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Lipschitz differentiable maps. In Section 7, it will be useful to work with certain
Lipschitz differentiable maps, instead of Cr-maps. We briefly recall concepts and facts.

Definition 4. Let E and F be locally convex K-vector spaces, U ⊆ E be open and f : U → F be a
map. We say that f is locally Lipschitz continuous or LC0

K if it has the following property: For
each x ∈ U and continuous seminorm q on F, there exists a continuous seminorm p on E such that
Bp

1 (x) ⊆ U and
q( f (z)− f (y)) ≤ p(z− y) for all y, z ∈ Bp

1 (x).

Given r ∈ N0 ∪ {∞}, we say that f is LCr
K if f is Cr

K and dk f : U× Ek → F is LC0
K for each

k ∈ N0 such that k ≤ r.

Every C1-map is LC0
K (see, for example, [13] (Exercise 1.5.4)). As a consequence, for

each r ∈ N∪ {∞}, every Cr
K-map is LCr−1

K . Notably, every smooth map is LC∞
K . Moreover,

a Cr
K-map with finite r is LCr

K if and only if dr f is LC0
K. The following facts are known, or

part of the folklore.

Lemma 9. For locally convex spaces over K ∈ {R,C} and r ∈ N0 ∪ {∞}, we have:

(a) A map f : E ⊇ U → ∏j∈J Fj to a direct product of locally convex spaces is LCr
K if and only

each component is LCr
K;

(b) Compositions of composable LCr
K-maps are LCr

K;
(c) Let F be a locally convex space and F0 ⊆ F be a vector subspace which is closed in F, or

sequentially closed. Then, a map f : E ⊇ U → F0 is FCr
K if and only if it is FCr

K as a map
to F.

(d) A map E ⊇ U → P to a projective limit P = lim
←−

Fj of locally convex spaces is LCr
K if and

only if pj ◦ f : U → Fj is LCr
K for all j ∈ J, where pj : P→ Fj is the limit map.

Our concept of local Lipschitz continuity is weaker than the one in [13] (Definition 1.5.4).
The compact-open Cr-topology. If E and F are locally convex K-vector spaces, U ⊆ E

is an open set and r ∈ N0 ∪ {∞}, then the vector space Cr
K(U, F) of all Cr

K-maps U → F
carries a natural topology (the “compact-open Cr-topology”), namely the initial topology
with respect to the mappings

Cr
K(U, F)→ C(U × Ej, F)c.o. f 7→ dj f

for j ∈ N0 such that j ≤ r, where the right-hand side is endowed with the compact-open
topology. Then, Cr

K(U, F) is a locally convex K-vector space. If F is a complex locally
convex space, then also Cr

K(U, F). See, e.g., [13] (§1.7) for further information, or [26].

3. Differentiability Properties of Operator-Valued Maps

Let L ∈ {R,C}, K ∈ {R,L}, and r ∈ N0 ∪ {∞, ω}. In this section, we establish the
following proposition.

Proposition 1. Let k ∈ N, r ∈ N0 ∪ {∞, ω}, E1, . . . , Ek and F be locally convex L-vector spaces,
X be a locally convex K-vector space, and U ⊆ X be an open subset. Let f : U → Lk

L(E1, . . . , Ek, F)
be a map such that

f∧ : U × E1 × · · · × Ek → F , f∧(x, v) := f (x)(v) for x ∈ U, v ∈ E1 × · · · × Ek

is Cr
K. Then, the following holds:

(a) f is Cr
K as a map to Lk

L(E1, . . . , Ek, F)c.
(b) If r ≥ 1, then f is Cr−1

K as a map to Lk
L(E1, . . . , Ek, F)b.
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Furthermore,

dj f (x, y1, . . . , yj)(v) = dj( f∧)((x, v), (y1, 0), . . . , (yj, 0)) (4)

for all j ∈ N with j ≤ r (resp., j ≤ r− 1, in (b)), all x ∈ U, v ∈ E1× · · · × Ek, and y1, . . . , yj ∈ X.

Corollary 1. Let E and F be locally convex K-vector spaces and f : U → F be a Cr
K-map on an

open subset U ⊆ E, where r ∈ N∪ {∞, ω}. Then, the following holds:

(a) The map f (k) : U → Lk
K(E, F)c, x 7→ f (k)(x) = dk f (x, ·) is Cr−k

K , for each k ∈ N such that
k ≤ r.

(b) The map f (k) : U → Lk
K(E, F)b is Cr−k−1

K , for each k ∈ N such that k ≤ r− 1.

Furthermore, dj( f (k))(x, y1, . . . , yj) = dj+k f (x, ·, y1, . . . , yj), for all j ∈ N with j + k ≤ r
(resp., j + k ≤ r− 1), all x ∈ U, and y1, . . . , yj ∈ E.

Proof. For each k ∈ N such that k ≤ r, the map dk f : U × Ek → F is Cr−k
K (see [13]

(Remark 1.3.13 and Exercise 2.2.7)), and f (k)(x) = dk f (x, ·) is k-linear for each x ∈ U,
by [13] (Proposition 1.3.17). Moreover, ( f (k))∧ = dk f . Thus, Proposition 1 applies with f (k)

in place of f and r− k in place of r.

Given a topological space X and locally convex space F, we endow the space C(X, F)
of continuous F-valued functions on X with the compact-open topology. It is known that
this topology coincides with the topology of uniform convergence on compact sets. The
next lemma will be useful when we discuss mappings to Lk(E, F)c.

Lemma 10. Let X, E, and F be locally convex K-vector spaces, U ⊆ X and W ⊆ E be open
subsets, and f : U ×W → F be a Cr

K-map, with r ∈ N0 ∪ {∞}. Then, also the map

f∨ : U → C(W, F) , x 7→ f (x, ·)

is Cr
K. If K = R and f admits a complex analytic extension h : Ũ × W̃ → FC for suitable open

neighbourhoods Ũ of U in XC and W̃ of W in EC, then f∨ is real analytic.

Proof. We first assume that r ∈ N0, and proceed by induction. For r = 0, the assertion is
well known (see, e.g., [13] (Proposition A.6.17)). Now assume that r ∈ N. Given x ∈ U and
y ∈ X, there exists ε > 0 such that x +D0

ε y ⊆ U, where D0
r := {t ∈ K : |t| < ε}. Consider

g : D0
ε ×W → F , (t, w) 7→

{
f (x+ty,w)− f (x,w)

t if t 6= 0;
d f ((x, w), (y, 0)) if t = 0.

Then, g(t, w) =
∫ 1

0 d f ((x + sty, w), (y, 0)) ds, by the Mean Value Theorem. The inte-
grand being continuous, also g is continuous (by the Theorem on Parameter-Dependent
Integrals, [13] (Lemma 1.1.11)). Hence, g∨ : V → C(W, F) is continuous, by induction,
and hence

f∨(x + ty)− f∨(x)
t

= g∨(t) → g∨(0)

as t→ 0, where g∨(0) = d f ((x, ·), (y, 0)) = k∨(x, y) with

k : (U × E)×W → F , (x, y, w) 7→ d f ((x, w), (y, 0)) .

Since k is Cr−1
K , the map d( f∨) = k∨ is Cr−1

K , by the inductive hypothesis. Notably,
d( f∨) is continuous and hence f∨ is C1

K. Now, f∨ being C1
K with d( f∨) a Cr−1

K -map, f∨

is Cr
K.
The case r = ∞. If f is C∞

K , then f is Ck
K for each k ∈ N0. Hence, f∨ is Ck

K for each
k ∈ N0 (by the case already treated), and thus f∨ is C∞

K .



Axioms 2022, 11, 221 9 of 38

Final assertion. By the C∞
C -case already treated, the map

h∨ : Ũ → C(W̃, FC)

is C∞
C . The restriction map

ρ : C(W̃, FC)→ C(W, FC) , γ 7→ γ|W

being continuous C-linear and thus C∞
C , it follows that the composition

ρ ◦ h∨ : Ũ → C(W, FC) = C(W, F)C

is C∞
C and thus complex analytic. Since ρ ◦ h∨ extends f∨, we see that f∨ is real analytic.

Proof of Proposition 1. (a) Abbreviate E := E1 × · · · × Ek. Because Lk
L(E1, . . . , Ek, F)c is a

closed K-vector subspace of C(E, F) and carries the induced topology, f will be Cr
K as a map

to Lk
L(E1, . . . , Ek, F)c if we can show that f is Cr

K as a map to C(E, F) (see [13] (Lemma 1.3.19
and Exercise 2.2.4)). Since f∧ is Cr

K and f = ( f∧)∨, the latter follows from Lemma 10. This
is obvious unless K = R and r = ω. In this case, the map f∧ admits a C-analytic extension
p : Q→ FC to an open neighbourhood Q of U × E in XC × EC. For each x ∈ U, there exists
an open, connected neighbourhood Ux of x in XC and a balanced, open 0-neighbourhood
Wx ⊆ EC such that Ux ×Wx ⊆ Q and Ux ∩ X ⊆ U. Let D := {z ∈ C : |z| < 1}. Then,

q : Ux ×Wx × D → FC , (y, w, z) 7→ p(y, zw)− zk p(y, w)

is a C-analytic map which vanishes on (Ux ×Wx ×D)∩ (X× E×R). Hence, q = 0, by the
Identity Theorem (see [13] (Theorem 2.1.16 (c))). Then, p(y, zw) = zk p(y, w) for all z ∈ C
such that |z| ≤ 1, by continuity. This implies that the map

g : Ux × EC → FC , (y, w) 7→ zk p(y, z−1w) for some z ∈ C× with z−1w ∈Wx

is well defined. Since g is C-analytic, the final statement of Lemma 10 applies.

(b) We prove the assertion for r ∈ N first; then, also the case r = ∞ follows. If
r = 1, let x ∈ U. Given an open 0-neighbourhood W ⊆ F and bounded subset B ⊆ E :=
E1× · · · × Ek, let q be a continuous seminorm on F such that Bq

1(0) ⊆W. By Lemma 1, there
exist continuous seminorms p on X and pj on Ej for j ∈ {1, . . . , k} such that Bp

1 (x) ⊆ U and

‖ f∧(y, v)− f∧(x, v)‖q ≤ ‖y− x‖p‖v1‖p1 · · · ‖vk‖pk

for all y ∈ Bp
1 (x) and all v = (v1, . . . , vk) ∈ E1 × · · · × Ek. Since B is bounded, we have

C := sup{‖v1‖p1 · · · ‖vk‖pk : v = (v1, . . . , vk) ∈ B} < ∞ .

Choose δ ∈ ]0, 1] such that δC ≤ 1. For each y ∈ Bp
δ (x), we get ‖ f∧(y, v)− f∧(x, v)‖q <

δC ≤ 1 for each v ∈ B and thus f∧(y, v)− f∧(x, v) ∈ Bq
1(0) ⊆W. Hence,

f (y)− f (x) ∈ bB, Wc for each y ∈ Bp
1 (x),

entailing that f is continuous.
Induction step: Now, assume that r ≥ 2. Given x ∈ U and y ∈ X, there exists ε > 0

such that x +D0
ε y ⊆ U, where D0

r := {t ∈ K : |t| < ε}. Consider

g : D0
ε × Ek → F , (t, v) 7→

{
f∧(x+ty,v)− f∧(x,v)

t if t 6= 0;
d( f∧)((x, v), (y, 0)) if t = 0.
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Then, g is Cr−1
K and hence C1

K, as a consequence of [27] (Propositions 7.4 and 7.7). Since
g(t, v) is k-linear in v, it follows that g∨ : U → Lk(E, F)b is continuous, by induction. As a
consequence,

f (x + ty)− f (x)
t

= g∨(t) → g∨(0)

as t→ 0, where g∨(0) = d( f∧)((x, ·), (y, 0)) = h∨(x, y) with

h : (U × Ek)×W → F , h((x, y), v) := d( f∧)((x, v), (y, 0)) .

Since h is Cr−1
K and h((x, y), v) is k-linear in v, the map d f = h∨ is Cr−2

K , by induction.
Hence, d f is continuous and thus f is C1

K. Now, f being C1
K with d f a Cr−2

K -map, f is Cr−1
K .

The case K = R, r = ω. By Remark 4, we may assume that L = R (the case
L = C then follows). Given x ∈ U, let g : Ux × EC → FC be as in the proof of (a).
Identifying EC with (E1)C × · · · × (Ek)C, the mapping g is complex k-linear in the sec-
ond variable. Hence g∨ : Ux → Lk

C((E1)C, . . . , (Ek)C, FC)b is C-analytic, by the C∞
C -case

already discussed. Because the map ρ : Lk
C((E1)C, . . . , (Ek)C, FC)b → Lk

R(E1, . . . , Ek, FC)b =

(Lk
R(E1, . . . , Ek, F)b)C, α 7→ α|E is continuous C-linear, the composition ρ ◦ g∨ is C-analytic.

However, this mapping extends f |Ux∩X. Hence, f |Ux∩X is real analytic and hence so is f ,
using that the open sets Ux ∩ X form an open cover of U.

Formula for the differentials: Let j ∈ N with j ≤ r, x ∈ U, v ∈ E1 × · · · × Ek and
y1, . . . , yj ∈ X. Exploiting that evv : Lk

L(E1, . . . , Ek, F)c → F, β 7→ β(v) is continuous and
linear, we deduce that

evv(dj f (x, y1, . . . , yj)) = dj(evv ◦ f )(x, y1, . . . , yj) = dj( f∧(·, v))(x, y1, . . . , yj)

= dj( f∧)((x, v), (y1, 0), . . . , (yj, 0))

for f as a map to Lk
L(E1, . . . , Ek, F)c. If j ≤ r − 1, the same calculation applies to f as a

mapping to Lk
L(E1, . . . , Ek, F)b.

For the special case of (a) when r = 0 and X as well as E1 = · · · = Ek are metrisable,
see already [1] (Lemma 0.1.2).

4. Compositions with Hypocontinuous k-Linear Maps

We study the differentiability properties of compositions of the form β ◦ f , where β is
a k-linear map which need not be continuous.

Lemma 11. Let k ≥ 2 be an integer, E1, . . . , Ek, X, and F be locally convex K-vector spaces,
β : E1 × · · · × Ek → F be a k-linear map, r ∈ N0 ∪ {∞, ω} and f : U → E1 × · · · × Ek =: E be
a Cr

K-map on an open subset U ⊆ X. Assume that

(a) β is sequentially continuous and X is metrisable; or
(b) For some j ∈ {2, . . . , k}, the k-linear map β is c-hypocontinous in its variables (j, . . . , k).

Moreover, X× X is a kR-space, or r = 0 and X is a kR-space, or (r,K) = (∞,C) and X is a
kR-space.

Then, β ◦ f : U → F is a Cr
K-map.

Proof. The case r = 0 was treated in Lemma 8. We first assume that r ∈ N.

(a) Assuming (a), let x ∈ U, y ∈ X, and (tn)n∈N be a sequence in K \ {0} such that
tn → 0 as n→ ∞ and x + tny ∈ U for all n ∈ N. Using the components of f = ( f1, . . . , fk),
we can write the difference quotient 1

tn
(β( f (x + tny))− β( f (x))) as the telescopic sum

k

∑
ν=1

β
(

f1(x + tny), . . . , fν−1(x + tny),
fν(x + tny)− fν(x)

tn
, fν+1(x), . . . , fk(x)

)
,
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which converges to

k

∑
ν=1

β( f1(x), . . . , fν−1(x), d fν(x, y), fν+1(x), . . . , fk(x)) = d(β ◦ f )(x, y) (5)

as n→ ∞, using the sequential continuity of β. By Lemma 8, d(β ◦ f ) is continuous, whence
β ◦ f is C1

K. If r ≥ 2, then

gν : U × X → E, (x, y) 7→ ( f1(x), . . . , fν−1(x), d fν(x, y), fν+1(x), . . . , fk(x))

is a Cr−1
K -map and d(β ◦ f ) = ∑k

ν=1 β ◦ gν is Cr−1
K by induction; thus β ◦ f is Cr

K. If r = ∞,
the preceding shows that β ◦ f is Cs

K for each s ∈ N0, whence β ◦ f is Cr
K.

(b) If X × X is a kR-space, then U × X and U are kR-spaces. By Lemma 5, β is
sequentially continuous. The argument from (a) shows that d(β ◦ f )(x, y) exists for all
(x, y) ∈ U× X and is given by (5). Thus d(β ◦ f ) is continuous, by Lemma 8, and thus β ◦ f
is C1

K. Let f be Cr+1
K now and assume β ◦ f is Cr

K with rth differential of the form

dr(β ◦ f )(x, y1, . . . , yr) = ∑
(I1,...,Ir)

β(d|I1| f1(x, yI1), . . . , d|Ik | fk(x, yIk )) (6)

for x ∈ U and y1, . . . , yr ∈ X, where (I1, . . . , Ik) ranges through k-tuples of (possibly empty)
disjoint sets I1, . . . , Ik with I1 ∪ · · · ∪ Ik = {1, . . . , r}, and the following notation is used: For
ν ∈ {1, . . . , k}, we let |Iν| ∈ N0 be the cardinality of Iν and define yIν := (yi1 , . . . , yim) ∈ Xm

if i1 < i2 < · · · < im are the elements of Iν, abbreviating m := |Ij| (if Iν is empty, the symbol
y∅ is to be ignored). Holding y1, . . . , yr fixed, we can apply the case r = 1 to the function
dr f (·, y1, . . . , yr) and find that, for each x ∈ U and yr+1 ∈ X, the directional derivative at x
in the direction yr+1 exists and is given by

dr+1(β ◦ f )(x, y1, . . . , yr+1) = ∑
(I1,...,Ir)

k

∑
ν=1

β
(
d|I1| f1(x, yI1), . . . , d|Iν−1| fν−1(x, yIν−1),

d|Iν |+1 fν(x, yIν , yr+1), d|Iν+1| fν+1(x, yIν+1), . . . , d|Ik | fk(x, yIk )
)
.

Thus, also dr+1(β ◦ f ) is of the form (6), with r + 1 in place of r. Using Lemma 8, we
deduce from the preceding formula that the map

U × E→ F, (x, y) 7→ dr+1(β ◦ f )(x, y, . . . , y)

is continuous. Thus, dr+1(β ◦ f ) is continuous, by Lemma 2, and thus β ◦ f is Cr+1
K .

If (r,K) = (∞,R), then β ◦ f is Cs
R for each s ∈ N0 and hence C∞

R (still assuming (b)).
If (r,K) = (∞,C) and X is only assumed kR, then β ◦ f is continuous by the case

r = 0. Moreover, the restriction β ◦ f |U∩Y is C∞
C for each finite-dimensional vector subspace

Y ⊆ X, by case (a). Hence, f is Cω
C (and thus C∞

C ) as a mapping to a completion of F (see [18]
(Theorem 6.2)). Then, f is also C∞

C as a map to F, as all of its iterated directional derivatives
are in F.

Both in (a) and (b), it remains to consider the case (r,K) = (ω,R). Then, f admits a
C-analytic extension f̃ : Ũ → (E1)C × · · · × (Ek)C, defined on an open neighbourhood Ũ
of U in XC. The complex k-linear extension βC : (E1)C × · · · × (Ek)C → FC of β is given by

z 7→
1

∑
a1,...,ak=0

ia1+···+ak β(x1,a1 , . . . , xk,ak
)

for z = (x1,0 + ix1,1, . . . , xk,0 + ixk,1) with xν,0 ∈ Eν and xν,1 ∈ Eν for ν ∈ {1, . . . , k}. By the
latter formula, βC is sequentially continuous in the situation of (a), and c-hypocontinuous
in its arguments (j, . . . , k) in the situation of (b). The case (∞,C) shows that βC ◦ f̃ is
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complex analytic. As this mapping extends β ◦ f , the latter map is real analytic. In case (b),
we used here that XC ∼= X× X is a kR-space.

Moreover, the following variant will be useful.

Lemma 12. Let X1, X2, E1, E2 and F be locally convex K-vector spaces, and U1 ⊆ X1, U2 ⊆ X2
be open subsets. Let r ∈ N0 ∪ {∞, ω} and β : E1 × E2 → F be a K-bilinear map. Assume that
X1 is finite-dimensional and β is c-hypocontinuous in its first variable. Then, for all Cr

K-maps
f1 : U1 → E1 and f2 : U1 ×U2 → E2, also the following map is Cr

K:

g : U1 ×U2 → F , (x1, x2) 7→ β( f1(x1), f2(x1, x2)) .

Proof. We first prove the assertion for r ∈ N0 (from which the case r = ∞ follows). If
r = 0, we have to show that g is continuous. If (x1, x2) ∈ U1 ×U2, then x1 has a compact
neighbourhood W = Wx1 in U1. Then, f1(W) is compact, and thus β| f1(W)×E2

is continuous,
by c-hypocontinuity. Hence, g|W×U2 = β| f1(W)×E2

◦ ( f1 ◦ πW , f2) is continuous, where
πW : W ×U2 →W is the projection onto the first factor. Since (W0

x1
×U2)x1∈U1 is an open

cover of U1 ×U2, the map g is continuous.
Since β is sequentially continuous by Lemma 5, we see as in the preceding proof that

the directional derivative dg(x, y) exists for all x = (x1, x2) ∈ U1 ×U2 and y = (y1, y2) ∈
X1 × X2, and is given by

dg(x, y) = β(d f1(x1, y1), f2(x)) + β( f1(x1), d f2(x, y)) . (7)

Note that (x1, y1) 7→ f1(x1) and d f1 are Cr−1
K -mappings U1 × X1 → E1. Moreover,

((x1, y1), (x2, y2)) 7→ f2(x1, x2) and ((x1, y1), (x2, y2)) 7→ d f2((x1, x2), (y1, y2)) are Cr−1
K -

maps (U1 × X1)× (U2 × X2)→ E2 (cf. Remark 1). By induction, the right-hand side of (7)
is a Cr−1

K -map. Hence, g is Cr
K.

The case (r,K) = (ω,R) follows from the case (∞,C) as in the preceding proof.

Remark 5. In a setting of differential calculus in which continuity on products is replaced with
k-continuity (as championed by E. G. F. Thomas), every bilinear map β which is c-hypocontinuous
in the second factor is smooth (see [28] (Theorem 4.1)); smoothness of β ◦ f for a smooth map f
then follows from the Chain Rule (cf. also [29]). Likewise, β is smooth in the sense of convenient
differential calculus.

5. Differentiability Properties of f∧

For k = 1, the following result is essential for our constructions of vector bundles.

Proposition 2. Let L ∈ {R,C}, r ∈ N0 ∪ {∞, ω}, K ∈ {R,L}, k ∈ N, E1, . . . , Ek and F be
locally convex L-vector spaces, X be a locally convex K-vector space, and U ⊆ X be an open subset.
Then, the following holds.

(a) If (X× E1× · · · × Ek)× (X× E1× · · · × Ek) is a kR-space, or r = 0 and X× E1× · · · × Ek
is a kR-space, or (r,K) = (∞,C) and X × E1 × · · · × Ek is a kR-space, or all of the vector
spaces E1, . . . , Ek are finite dimensional, then

f∧ : U × E1 × · · · × Ek → F , (x, y1, . . . , yk) 7→ f (x)(y1, . . . , yk)

is Cr
K for each Cr

K-map f : U → Lk
L(E1, . . . , Ek, F)c.

(b) If E := E1 = E2 = · · · = Ek holds and, moreover, (X× E)× (X× E) is a kR-space or r = 0
and X× E is a kR-space, or (r,K) = (∞,C) and X× E is a kR-space, then

f∧ : U × Ek → F , (x, y1, . . . , yk) 7→ f (x)(y1, . . . , yk)

is Cr
K for each Cr

K-map f : U → Lk
L(E, F)c such that f (x) is a symmetric k-linear map for

each x ∈ U.
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(c) If X is finite-dimensional, k = 1, and E := E1 is barrelled, then f∧ : U × E→ F, (x, y) 7→
f (x)(y) is Cr

K for each Cr
K-map f : U → LL(E, F)c.

(d) If all of the spaces E1, . . . , Ek are normable, then f∧ : U × E1 × · · · × Ek → F is Cr
K for each

Cr
K-map f : U → Lk

L(E1, . . . , Ek, F)b.

Proof. Let ev : Lk
L(E1, . . . , Ek, F)c × E1 × · · · × Ek → F be the evaluation map, which is

c-hypocontinuous in its arguments (2, . . . , k + 1) by Lemma 7.

(a) Assuming the respective kR-property, the map f∧ = ev ◦( f × idE1×···×Ek ) is
Cr
K, by Lemma 11 (b). If E1, . . . , Ek are finite-dimensional, then Lk

L(E1, . . . , Ek, F)c equals
Lk
L(E1, . . . , Ek, F)b, whence the conclusion of (a) is a special case of (d).

(b) By Lemma 11 (b), the map

g : U × E→ F, (x, y) 7→ f∧(x, y, . . . , y)

is Cr
K, as g = ev ◦( f × δ) with δ : E → Ek, y 7→ (y, . . . , y), which is continuous K-linear.

Then, also f∧ is Cr
K, by Lemma 2.

(c) The bilinear map ev : LK(E, F)c × E→ F is c-hypocontinuous in its first argument,
by Lemma 7. Hence, f∧ = ev ◦( f × idE) is Cr

K, by Lemma 12.

(d) If E1, . . . , Ek are normable, then the evaluation map

ε : Lk
L(E1, . . . , Ek, F)b × E1 × · · · × Ek → F

is continuous (k + 1)-linear and hence Cr
K, whence also f∧ = ε ◦ ( f × idE1×···×Ek ) is Cr

K.

Remark 6. If X and all of E1, . . . , Ek are metrisable, then the topological space
(X × E1 × · · · × Ek) × (X × E1 × · · · × Ek) is metrisable and hence a k-space. If X and all
of E1, . . . , Ek are kω-spaces, then also (X× E1 × · · · × Ek)× (X× E1 × · · · × Ek) is a kω-space
and hence a k-space. In either case, we are in the situation of (a).

6. Infinite-Dimensional Vector Bundles

In this section, we provide foundational material concerning vector bundles modelled
on locally convex spaces (cf. also [13] (Chapter 3)). Notably, we discuss the description of
vector bundles via cocycles, and define equivariant vector bundles.

Let L ∈ {R,C}, K ∈ {R,L}, and r ∈ N0 ∪ {∞, ω}. The word “manifold” always
refers to a manifold modelled on a locally convex space. Likewise, the Lie groups that we
consider need not have finite dimension.

Definition 5. Let M be a Cr
K-manifold and F be a locally convex L-vector space. An L-vector

bundle of class Cr
K over M, with typical fibre F, is a Cr

K-manifold E, together with a surjective
Cr
K-map π : E→ M and endowed with an L-vector space structure on each fibre Ex := π−1({x}),

such that, for each x ∈ M, there exists an open neighbourhood U ⊆ M of x and a Cr
K-diffeomorphism

ψ : π−1(U)→ U × F

(called a “local trivialisation”) such that ψ(Ey) = {y} × F for each y ∈ U and the map
prF ◦ψ|Ey : Ey → F is L-linear (and hence an isomorphism of topological vector spaces, if we
give Ey the topology induced by E), where prF : U × F → F is the projection.

In the situation of Definition 5, let (ψi)i∈I be an atlas of local trivialisations for E, i.e., a
family of local trivialisations

ψi : π−1(Ui)→ Ui × F

of E whose domains Ui cover M. Then, given i, j ∈ I, we have

ψi(ψ
−1
j (x, v)) = (x, gij(x)(v))
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for x ∈ Ui ∩Uj, v ∈ F, for some function

gij : Ui ∩Uj → GL(F) ⊆ L(F).

Here,
Gij : (Ui ∩Uj)× F → F, (x, v) 7→ gij(x)(v)

is Cr
K, as ψi(ψ

−1
j (x, v)) = (x, Gij(x, v)) is Cr

K in (x, v) ∈ (Ui ∩Uj)× F. By Proposition 1,

gij : Ui ∩Uj → L(F)c is a Cr
K-map, and as a map to L(F)b, it is at least Cr−1

K (if r ≥ 1). Note
that the “transition maps” gij satisfy the “cocycle conditions”{

(∀i ∈ I) (∀x ∈ Ui) gii(x) = idF and
(∀i, j, k ∈ I) (∀x ∈ Ui ∩Uj ∩Uk) gij(x) ◦ gjk(x) = gik(x) .

Proposition 3. Let L ∈ {R,C}, K ∈ {R,L}. Assume that

(a) M is a Cr
K-manifold modelled on a locally convex K-vector space Z;

(b) E is a set and π : E→ M a surjective map;
(c) F is a locally convex L-vector space;
(d) (Ui)i∈I is an open cover of M;
(e) (ψi)i∈I is a family of bijections π−1(Ui)→ Ui × F such that ψi(π

−1({x})) = {x} × F for
all x ∈ Ui;

(f) gij(x)(v) := prF(ψi(ψ
−1
j (x, v))) depends L-linearly on v ∈ F, for all i, j ∈ I, x ∈ Ui ∩Uj;

(g) Gij : (Ui ∩Uj)× F → F, Gij(x, v) := gij(x)(v) is a Cr
K-map.

Then, there is a unique L-vector bundle structure of class Cr
K on E making ψi a local trivialisa-

tion for each i ∈ I.

Proof. For i, j ∈ I, let prij : (Ui ∩Uj)× F → Ui ∩Uj be the projection onto the first compo-
nent. As the maps

ψi ◦ ψ−1
j |(Ui∩Uj)×F = (prij, Gij)

are Cr
K, there is a uniquely determined Cr

K-manifold structure on E making ψi a Cr
K-

diffeomorphism for each i ∈ I. Given x ∈ M, we pick i ∈ I with x ∈ Ui; we give
Ex := π−1({x}) the unique L-vector space structure making the bijection prF ◦ψi|Ex : Ex →
F an isomorphism of vector spaces. It is easy to see that the vector space structure on Ex
is independent of the choice of ψi, and it is easily verified that we have turned E into an
L-vector bundle of class Cr

K with the asserted properties.

Remark 7. Let M be a Cr
K-manifold, F be a locally convex L-vector space, (Ui)i∈I be an open cover

of M, and (gij)i,j∈I be a family of maps gij : Ui ∩Uj → GL(F) satisfying the cocycle conditions
and such that

Gij : (Ui ∩Uj)× F → F , (x, v) 7→ gij(x)(v)

is Cr
K, for all i, j ∈ I. Using Proposition 3, the usual construction familiar from the finite-

dimensional case provides an L-vector bundle π : E→ M of class Cr
K, with typical fibre F, and a

family (ψi)i∈I of local trivialisations π−1(Ui)→ Ui × F, whose associated transition maps are the
given gij’s. The bundle E is unique up to canonical isomorphism.

Combining Proposition 3 and Proposition 2, we obtain:

Corollary 2. Retaining the hypotheses (a)–(f) from Proposition 3 but omitting (g), consider the
following conditions:

(g)′ gij(x) ∈ L(F) for all i, j ∈ I, x ∈ Ui ∩Uj, and gij : Ui ∩Uj → L(F)c is Cr
K;

(g)′′ gij(x) ∈ L(F) for all i, j ∈ I, x ∈ Ui ∩Uj, and gij : Ui ∩Uj → L(F)b is Cr
K;

(i) (Z× F)× (Z× F) is a kR-space, or r = 0 and Z× F is a kR-space, or (r,K) = (∞,C) and
Z× F is a kR-space;
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(ii) dim(M) < ∞ and F is barrelled;
(iii) F is normable.

If (g)′ holds as well as (i) or (ii), then the conclusions of Proposition 3 remain valid. They also
remain valid if (g)′′ and (iii) hold.

Example 2 below shows that Conditions (a)–(f) and (g)′ alone are not sufficient for the
conclusion of Proposition 3, without extra conditions on Z and F. Note that (i) is satisfied if
both Z and F are metrisable, or both Z and F are kω-spaces.

Equivariant vector bundles. Beyond vector bundles, we shall discuss equivariant
vector bundles in the following, i.e., vector bundles together with an action of a (finite- or
infinite-dimensional) Lie group G. Choosing G = {e} as a trivial group, we obtain results
about ordinary vector bundles (without a group action), as a special case.

For the remainder of this section, and also in Section 7, let L ∈ {R,C}, K ∈ {R,L},
s ∈ {∞, ω}, and r ∈ N0 ∪ {∞, ω} with r ≤ s. Let G be a Cs

K-Lie group (modelled on a
locally convex K-vector space Y) and M be a Cr

K-manifold. We assume that a Cr
K-action

α : G×M→ M

is given. Then, (M, α) is called a G-manifold of class Cr
K.

Definition 6. An equivariant L-vector bundle of class Cr
K over a G-manifold (M, α) of class

Cr
K is an L-vector bundle π : E→ M of class Cr

K, together with a Cr
K-action

β : G× E→ E

such that β(g, Ex) ⊆ Eα(g,x) for all (g, x) ∈ G×M, and β(g, ·)|Ex : Ex → Eα(g,x) is L-linear.

In other words, β(g, ·) takes fibres linearly to fibres and coincides with α(g, ·) on the
zero section. The mapping π is then equivariant in the sense that α ◦ (idG ×π) = π ◦ β.

Example 1. If M is a G-manifold of class Cr
K, with r ≥ 1, then the tangent bundle TM is an

equivariant L-vector bundle of class Cr−1
K in a natural way, with L := K. In fact, the action

α : G×M → M has a tangent map Tα : T(G×M) → TM, which is Cr−1
K . Let 0G : G → TG

be the 0-section. Identifying T(G×M) with TG× TM in the usual way, we obtain a Cr−1
K -map

β : G× TM→ TM via
β := (Tα) ◦ (0G × idTM) .

It is easy to see that β(g, v) = Tx(α(g, ·))(v) ∈ Tα(g,x)M for g ∈ G and v ∈ Tx M, whence
β(g, Tx M) ⊆ Tα(g,x)M and β(g, ·)|Tx M = Tx(α(g, ·)). Clearly, β is an action making TM an
equivariant K-vector bundle of class Cr−1

K over the G-manifold M.

Induced action on an invariant subbundle. Given an L-vector bundle π : E → M
of class Cr

K, with typical fibre F, we call a subset E0 ⊆ E a subbundle if there exists a
sequentially closed L-vector subspace F0 ⊆ F such that for each x ∈ M there exists a local
trivialisation ψ : π−1(U) → U × F of E such that ψ(E0 ∩ π−1(U)) = U × F0. It readily
follows from [13] (Lemma 1.3.19 and Exercise 2.2.4) that there is a unique L-vector bundle
structure of class Cr

K on π|E0 : E0 → M making ψ|π−1(U)∩E0
: π−1(U) ∩ E0 → U × F0 a

local trivialisation of E0, for each local trivialisation ψ as before. Then, the inclusion map
E0 → E is Cr

K, and a mapping N → E from a Cr
K-manifold N to E with image in E0 is Cr

K
as a mapping to E if and only if its co-restriction to E0 is Cr

K, by the facts just cited. In the
preceding situation, suppose that a Cs

K-Lie group G acts Cs
K on M and E is an equivariant

vector bundle of class Cr
K with respect to the action β : G× E→ E. If E0 is invariant under

the G-action, i.e., if β(G × E0) ⊆ E0, as a special case of the preceding observations, we
deduce from the Cr

K-property of β that β|G×E0 and thus also β|G×E0 : G× E0 → E0 is Cr
K.

We can summarise as follows.
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Proposition 4. If E is an equivariant L-vector bundle of class Cr
K over a G-manifold M, then the

action induced on any G-invariant subbundle E0 is Cr
K and thus makes the latter an equivariant

L-vector bundle of class Cr
K.

7. Completions of Vector Bundles

Let π : E→ M be an equivariant L-vector bundle of class Cr
K, as in Definition 6, with

typical fibre F and G-actions α : G×M→ M and β : G× E→ E. Assume that r ≥ 1. Our
goal is to complete the fibre of the bundle, i.e., to find a G-equivariant vector bundle Ẽ
whose typical fibre is a completion of the locally convex space F, and which contains E as a
dense subset.

Let F̃ be a completion of F such that F ⊆ F̃ and, for each x ∈ M, let Ẽx be a completion
of Ex such that Ex ⊆ Ẽx. We may assume that the sets Ẽx are pairwise disjoint for x ∈ M.
Consider the (disjoint) union

Ẽ :=
⋃

x∈M
Ẽx . (8)

We shall turn Ẽ into an equivariant vector bundle. Consider the map β̃ : G × Ẽ →
Ẽ, defined using the continuous extension (β(g, ·)|Ex )̃ : Ẽx → Ẽα(g,x) of the linear map
β(g, ·)|Ex : Ex → Eα(g,x) via

β̃(g, v) := (β(g, ·)|Ex )̃ (v)

for g ∈ G, x ∈ M, and v ∈ Ẽx. It is clear that β̃ makes Ẽ a G-set. Let

π̃ : Ẽ→ M (9)

be the map taking elements from Ẽx to x. Then, π̃ is G-equivariant. If ψ : π−1(U)→ U × F
is a local trivialisation of E and prF : U × F → F, (x, y) 7→ y, we define

ψ̃ : π̃−1(U)→ U × F̃ , Ẽx 3 v 7→ (x, (prF ◦ψ|Ex )̃ (v)) . (10)

Then, the following holds:

Proposition 5. (Ẽ, β̃) can be made an equivariant L-vector bundle of class Cr−1
K over the G-

manifold M, such that ψ̃ is a local trivialisation of Ẽ for each local trivialisation ψ of E.

Remark 8. Omitting the hypothesis that r ≥ 1, assume instead that E is an equivariant L-vector
bundle of class LCr

K. That is, both E and M are LCr
K-manifolds (each admitting an atlas with

transition maps of class LCr
K), a family of local trivialisations can be chosen with LCr

K-transition
maps, and the G-actions on E and M are LCr

K. Then, also Ẽ is an equivariant vector bundle of class
LCr

K (and hence of class Cr
K).

Extension of differentiable maps to subsets of the completions. To enable the proof
of Proposition 5, we need to discuss conditions ensuring that a Cr-map f : E ⊇ U → F
(with locally convex spaces E and F) can be extended to a Cr-map Ũ → F̃ on an open
subset of the completion Ẽ of E, or at least to a Cr−1-map. Although this is not possible in
general, it is possible if F is normed and r is finite. This will be sufficient for our purposes.
The natural framework for the discussion of the problem is not Cr-maps, but Lipschitz
differentiable maps, as in Definition 4.

Proposition 6. Let E be a locally convex K-vector space, (F, ‖ · ‖) be a Banach space over K,
U ⊆ E be open and f : U → F be an LCr

K-map, where r ∈ N0. Let Ẽ be a completion of E such that
E ⊆ Ẽ. Then, f extends to an LCr

K-map f̃ : Ũ → F on an open subset Ũ ⊆ Ẽ which contains U as
a dense subset.

The following lemma enables an inductive proof of Proposition 6.
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Lemma 13. Let k ∈ N, X be a locally convex K-vector space, and E1, . . . , Ek, F be locally convex
L-vector spaces, with completions X̃, Ẽ1, . . . , Ẽk and F̃, respectively. Let U ⊆ X be open and
f : U × E1 × · · · × Ek → F be a map such that f∨(x) := f (x, ·) : E1 × · · · × Ek → F is k-linear
over L for each x ∈ U. Assume that there exists an LCr

K-map h : W → F̃ which extends f , defined
on an open set W ⊆ X̃× Ẽ1 × · · · × Ẽk in which U × E1 × · · · × Ek is dense. Then, there exists
an LCr

K-map
f̃ : Ũ × Ẽ1 × · · · × Ẽk → F̃ (11)

which extends f , for some open subset Ũ ⊆ Ẽ in which U is dense. The maps ( f̃ )∨(x) :=
f̃ (x, ·) : Ẽ1 × · · · × Ẽk → F̃ are k-linear over L, for each x ∈ Ũ.

Proof. For each x ∈ U, there exists an open neighbourhood Vx of x in X̃ and a balanced,
open 0-neighbourhood Qx ⊆ Ẽ1 × · · · × Ẽk such that Vx ×Qx ⊆W. After shrinking Vx, we
may assume that X ∩Vx = U, whence U ∩Vx = X ∩Vx is dense in Vx. Given z ∈ L such
that |z| ≤ 1, consider the map

Vx ×Qx → F̃ , (y, v) 7→ h(y, zv)− zkh(y, v) .

This map vanishes, because it is continuous and vanishes on the dense subset
(Vx ∩ X)× (Qx ∩ (E1 × · · · × Ek)). As a consequence, we obtain a well-defined map

fx : Vx × Ẽ1 × · · · × Ẽk → F̃ , (y, v) 7→ z−kh(y, zv)

for y ∈ Vx, v ∈ Ẽ1 × · · · × Ẽk and z ∈ L \ {0} with zv ∈ Qx. As fx(y, v) = z−kh(y, zv) is
LCr

K in (y, v) ∈ Vx × z−1Qx and these sets form an open cover of Vx × Ẽ1 × · · · × Ẽk, we
see that fx is LCr

K. Given x, y ∈ U, the set U ∩Vx ∩Vy = X ∩Vx ∩Vy is dense in the open
set Vx ∩ Vy ⊆ X̃. Since fx, fy, and f coincide on the set (U ∩ Vx ∩ Vy)× E1 × · · · × Ek, it
follows that the continuous maps fx and fy coincide on the set (Vx ∩Vy)× Ẽ1 × · · · × Ẽk in
which the former set is dense. Hence, setting Ũ :=

⋃
x∈U Vx, a well-defined map f̃ as in (11)

is obtained if we set

f̃ (y, v) := fx(y, v) if x ∈ U, y ∈ Vx and v ∈ Ẽ1 × · · · × Ẽk.

The final assertion follows by continuity from the k-linearity of the mappings f∨(x)
for x ∈ U.

Proof of Proposition 6. We proceed by induction on r ∈ N0.
The case r = 0. Given x ∈ U, there exists a continuous seminorm q on E such that

Bq
1(x) ⊆ U and

‖ f (z)− f (y)‖ ≤ q(z− y) for all y, z ∈ Bq
1(x). (12)

Then, Nq := {y ∈ E : q(y) = 0} is a closed vector subspace of E and ‖y + Nq‖q := q(y)
for y ∈ E defines a norm on Eq := E/Nq making the map αq : E → Eq, y 7→ y + Nq

continuous linear. By (12), we have ‖ f (z) − f (y)‖ = 0 for all y, z ∈ Bq
1(x) such that

y− z ∈ Nq. Hence,
h : αq(Bq

1(x))→ F , y + Nq 7→ f (y)

is a well-defined map. Note that αq(Bq
1(x)) is the open ball B := {y ∈ Eq : ‖y− αq(x)‖q < 1}

in Eq. Let Ẽq be the completion of the normed space Eq; the extended norm will again be
denoted by ‖.‖q. Applying (12) to representatives, we see that

‖h(z)− h(y)‖ ≤ ‖z− y‖q for all y, z ∈ B.

Hence, h satisfies a global Lipschitz condition (with Lipschitz constant 1), and hence h is
uniformly continuous, entailing that h extends uniquely to a uniformly continuous map

h̃ : B̃→ F
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on the corresponding open ball B̃ in Ẽq. Then, ‖h̃(z)− h̃(y)‖ ≤ ‖z− y‖q for all y, z ∈ B̃, by
continuity. Let α̃q : Ẽ → Ẽq be the continuous extension of the continuous linear map αq.
Then, Vx := (α̃q)−1(B̃) is an open neighbourhood of x in Ẽ such that Vx ∩ E = Bq

1(x) ⊆ U.
Moreover, fx := h̃ ◦ α̃q|Vx is a continuous map extending f |Vx∩E, which furthermore satisfies

‖ fx(z)− fx(y)‖ ≤ q̃(z− y) for all y, z ∈ Vx, (13)

where we use the continuous seminorm q̃ := ‖.‖q ◦ α̃q : Ẽ→ [0, ∞[ extending q. Then

Ũ :=
⋃

x∈U
Vx

is an open subset of Ẽ and E ∩ Ũ = U is dense in Ũ. Given x, y ∈ U, the set U ∩Vx ∩Vy =

E ∩Vx ∩Vy is dense in the open set Vx ∩Vy ⊆ Ẽ. Since

fx|U∩Vx∩Vy = f |U∩Vx∩Vy = fy|U∩Vx∩Vy ,

it follows that fx|Vx∩Vy = fy|Vx∩Vy . Hence

f̃ : Ũ → F , z 7→ fx(z) for x ∈ U such that z ∈ Vx

is a well-defined map. Since f̃ |Vx = fx is LC0
K for each x ∈ U (by (13)), the map f̃ is LC0

K.
Furthermore, f̃ extends f by construction.

Induction step. If f is LCr+1
K , then f extends to an LC0

K-map f̃ : Ũ → F on an open
subset Ũ ⊆ Ẽ such that Ũ ∩ E = U, and d f : U × E→ F extends to an LCr

K-map h : W → F
on an open subset W of Ẽ× Ẽ, by induction. Using Lemma 13, we find an open neighbour-
hood V of U in Ẽ and an LCr

K-map g : V × Ẽ → F which extends d f . After replacing Ũ
and V with their intersection, we may assume that Ũ = V. If x0 ∈ Ũ and y0 ∈ Ẽ, there exist
open neighbourhoods Q of x0 and P of y0 in Ẽ, and ε > 0 such that Q +DεP ⊆ Ũ. Then,
the map

` : Q× P×Dε → F, (x, y, t) 7→
∫ 1

0
g(x + sty, y) ds

is continuous, being given by a parameter-dependent weak integral with continuous
integrand. For (x, y, t) in the dense subset (Q ∩ E) × (P ∩ E) × (Dε \ {0}) of the set
Q× P× (Dε \ {0}), the Mean Value Theorem implies that

`(x, y, t) =
f (x + ty)− f (x)

t
=

f̃ (x + ty)− f̃ (x)
t

.

Then, `(x, y, t) = f̃ (x+ty)− f̃ (x)
t for all (x, y, t) ∈ Q× P× (Dε \ {0}), by continuity. Thus,

f (x0 + ty0)− f (x0)

t
= `(x0, y0, t) → `(x0, y0, 0) = g(x0, y0)

as t→ 0. Hence, d f̃ (x0, y0) = g(x0, y0). Since g is LCr
K, it follows that f̃ is LCr+1

K .

The conclusion of Proposition 6 becomes false in general if the Banach space F is
replaced by a complete locally convex space. In fact, there exists a smooth map E→ (`1)Ω

from a proper, dense vector subspace E of `1 to a suitable power of `1, which has no
continuous extension to E ∪ {x} for any x ∈ `1 \ E (see Appendix B). Nonetheless, we have
the following result.

Proposition 7. Let k ∈ N, X be a locally convex K-vector space, and E1, . . . , Ek, F be locally
convex L-vector spaces, with completions X̃, Ẽ1, . . . , Ẽk and F̃, respectively. Let U ⊆ X be open
and f : U × E1 × · · · × Ek → F be a mapping such that f∨(x) := f (x, ·) : E1 × · · · × Ek → F
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is k-linear over L for each x ∈ U. If f is LCr
K for some r ∈ N0 ∪ {∞} (resp., Cr

K for some
r ∈ N∪ {∞, ω}), then there exists a unique map

f̃ : U × Ẽ1 × · · · × Ẽk → F̃ (14)

which is LCr
K (resp., Cr−1

K ) and extends f . The maps f̃∨(x) := f̃ (x, ·) : Ẽ1 × · · · × Ẽk → F̃ are
k-linear over L, for each x ∈ U.

Proof. Abbreviate E := E1 × · · · × Ek and Ẽ := Ẽ1 × · · · × Ẽk. Assume first that r 6= ω.
Since LCr

K-maps are continuous and U × E is dense in U × Ẽ, there is at most one map f̃
with the asserted properties. We may therefore assume that r ∈ N0. We may also assume
that F is complete. Then, F = lim

←−
Fj for some projective system ((Fj)j∈J , (pij)i≤j) of Banach

spaces Fj and continuous linear maps pij : Fj → Fi, with limit maps pj : F → Fj. We claim
that pj ◦ f : U × E→ Fj has an LCr

K-extension gj := (pj ◦ f )̃ : U × Ẽ→ Fj, for each j ∈ J. If
this is true, then pij ◦ gj = gi for i ≤ j, by uniqueness of continuous extensions. Hence, by
the universal property of the projective limit, there exists a unique map f̃ : U× Ẽ→ F such
that pj ◦ f̃ = gj. Then, pj ◦ f̃ |U×E = gj|U×E = pj ◦ f and hence f̃ |U×E = f . Furthermore, f̃
is LCr

K, by Lemma 9 (d). To prove the claim, note that Proposition 6 yields an LCr
K-extension

hj : Wj → Fj of pj ◦ f to an open subset Wj ⊆ X̃× Ẽ, which contains U× E as a dense subset.
Now, Lemma 13 yields an open subset Uj ⊆ X̃ in which U is dense, and an LCr

K-extension
ej : Uj × Ẽ→ Fj of pj ◦ f . Then, gj := ej|U×Ẽ is as desired.

We now consider the case (r,K) = (ω,R). If L = C, by the density of U × E in U × Ẽ,
for any real analytic extension f̃ : U × Ẽ → F̃ and x ∈ U, the map f̃ (x, ·) will be k-linear
over L. We may therefore assume that L = R. Let h : W → FC be a C-analytic extension
of f , defined on an open subset W ⊆ XC × EC such that U × E ⊆W. For each x ∈ U, there
exist an open x-neighbourhood Ux ⊆ U and balanced open 0-neighbourhoods Vx ⊆ X
and Wx ⊆ EC such that (Ux + iVx) ×Wx ⊆ W. We claim that there exists a C-analytic
map gx : (Ux + iVx)× EC → FC such that gx|Ux×E = f |Ux×E. For x, y ∈ U, the intersection
((Ux + iVx)× EC) ∩ ((Uy + iVy)× EC) = ((Ux ∩Uy) + i(Vx ∩Vy))× EC is connected and
meets U× E whenever it is non-empty. Hence, by the Identity Theorem, gx and gy coincide
on the intersection of their domains. We therefore obtain a well-defined C-analytic map
g : Q × EC → FC such that g|(Ux+iVx)×EC

= gx for each x ∈ U, using the open subset
Q :=

⋃
x∈U(Uj + iVj) of XC. For each x ∈ U, the map g(x, ·)|E = gx(x, ·)|E = f (x, ·) is

k-linear over R. Using the Identity Theorem, we see that g(x, ·) is k-linear over C for each
x ∈ U, and hence for each x ∈ Q by the Identity Theorem. By the case (∞,C), g has a
C-analytic extension g̃ : Q× ẼC → F̃C. Since g(U × E) = f (U × E) ⊆ F ⊆ F̃ and U × E is
dense in U × Ẽ, we deduce that g̃(U × Ẽ) ⊆ F̃; we therefore obtain a map

f̃ : U × Ẽ→ F̃, (x, y) 7→ g̃(x, y)

for x ∈ U, y ∈ Ẽ. Since g̃ is a C-analytic extension for f̃ , the function f̃ is R-analytic. To
prove the claim, consider for x ∈ U and n ∈ N the C-analytic map

gx,n : (Ux + iVx)× nWx → FC, (z, y) 7→ nkh(z, (1/n)y).

If n ≤ m and y ∈ nWx ∩ E, we have for all z ∈ Ux

gx,m(z, y) = mkh(z, (1/m)y) = mk f (z, (1/m)y) = f (z, y) = nk f (t, (1/n)y) = gx,n(z, y),

whence gx,m(z, y) = gx,n(z, y) for all z ∈ Ux + iVx and y ∈ nWx, by the Identity Theorem.
Thus, gx : (Ux + iVx)× EC → FC, (z, y) 7→ gx,n(z, y) if y ∈ nWx is a well-defined C-analytic
extension of f |Ux×E.

Proof of Proposition 5. It suffices to prove the strengthening described in Remark 8. Let
(ψi)i∈I be a family of local trivialisations ψi : π−1(Ui)→ Ui × F of an LCr

K-vector bundle E
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such that each local trivialisation is some ψi. Let (gij)i,j∈I be the corresponding cocycle and
Gij be the LCr

K-map g∧ij : (Ui ∩Uj)× F → F, which is L-linear in the second argument. By

Proposition 7, there is a unique LCr
K-map G̃ij : U × F̃ → F̃ which extends Gij, and G̃ij is

L-linear in the second argument. Thus, we obtain a map

g̃ij : Ui ∩Uj → LL(F̃), x 7→ G̃ij(x, ·).

By continuity and density, for all i ∈ I, we have G̃ii(x, y) = y for all (x, y) ∈ Ui × F̃.
Thus, g̃ii(x) = idF̃ for all x ∈ U. For all i, j, k ∈ I, we have

G̃ij(x, G̃jk(x, y)) = G̃ik(x, y) for all (x, y) ∈ (Ui ∩Uj ∩Uk)× F̃,

as both sides are continuous in (x, y) and equality holds for y in the dense subset F of F̃; thus,
g̃ij(x) ◦ g̃jk(x) = g̃ik(x). Notably, g̃ij(x) ◦ g̃ji(x) = g̃ii(x) = idF̃ for all x ∈ U and i, j ∈ I,
entailing that g̃ij(x) ∈ GL(F̃). By the preceding, the g̃ij satisfy the cocycle conditions. Let Ẽ
and π̃ be as in (8) and (9); define ψ̃i : π̃−1(Ui)→ Ui × F̃ as in (10), replacing ψ with ψi. For
all i, j ∈ I and x ∈ U, we then have that

ψ̃i(ψ̃
−1
j (x, y)) = (x, G̃ij(x, y))

holds for all y ∈ F̃, as equality holds for all y ∈ F. As an analogue of Proposition 3 holds
with LCr

K-maps in place of Cr
K-maps, we get a unique L-vector bundle structure of class

LCr
K on Ẽ making ψ̃i a local trivialisation for each i ∈ I.

It is apparent that β̃ : G × Ẽ → Ẽ is an action, and Ẽx is taken L-linearly to Ẽα(g,x)

by β̃(g, ·), for each g ∈ G and x ∈ M. It only remains to show that β̃ is LCr
K. To this

end, let g0 ∈ G and x0 ∈ M; we show that β̃ is LCr
K on U × π̃−1(V) for some open

neighbourhood U of g0 in G and an open neighbourhood V of x0 in M. Indeed, there exists
a local trivialisation ψ : π−1(W)→W × F of E over an open neighbourhood W of α(g0, x0)
in M. The action α being continuous, we find an open neighbourhood U of g0 in G and an
open neighbourhood V of x0 in M over which E is trivial, such that α(U × V) ⊆ W. Let
φ : π−1(V)→ V × F be a local trivialisation of E over V. Then,

φ(β(g−1, ψ−1(α(g, x), v))) = (x, A(g, x, v)) for all g ∈ U, x ∈ V, and v ∈ F,

for an LCr
K-map A : U×V× F → F, which isL-linear in the third argument. By Proposition 7,

there is a unique extension of A to an LCr
K-map

Ã : U ×V × F̃ → F̃,

and the latter is L-linear in its third argument. For all g ∈ U and x ∈ V, we then have

φ̃(β̃(g−1, ψ̃−1(α(g, x), v))) = (x, Ã(g, x, v))

for all v ∈ F̃, as equality holds for all v ∈ F. Thus, β̃ is LCr
K.

8. Tensor Products of Vector Bundles

Throughout this section, let L ∈ {R,C}, K ∈ {R,L}, s ∈ {∞, ω}, and r ∈ N0 ∪ {∞, ω}
such that r ≤ s. Let G be a Cs

K-Lie group modelled on a locally convex K-vector space Y, M
be a Cr

K-manifold modelled on a locally convex K-vector space Z, and α : G×M→ M be a
Cr
K-action. For k ∈ {1, 2}, let πk : Ek → M be an equivariant L-vector bundle of class Cr

K
over M, whose typical fibre is a locally convex L-vector space Fk. Let βk : G × Ek → Ek
be the G-action of class Cr

K. Consider the set A of all pairs of local trivialisations of E1
and E2 trivialising these over the same open subset of M. Using an index set I, we have
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A = {(ψ1
i , ψ2

i ) : i ∈ I}, where ψk
i : π−1

k (Ui) → Ui × Fk is a local trivialisation of Ek for
k ∈ {1, 2}, for each i ∈ I. Apparently, (Ui)i∈I is an open cover of M.

For our first result concerning tensor products, Proposition 8, we assume that F1 is
finite-dimensional. Then, fixing a basis e1, . . . , en for F1, the map θ : (F2)

n → F1 ⊗L F2,
(y1, . . . , yn) 7→ ∑n

τ=1 eτ ⊗ yτ is an isomorphism of L-vector spaces. We give F1 ⊗L F2 the
topology T , making θ a homeomorphism. This topology makes F1 ⊗L F2 a locally convex
L-vector space and θ an isomorphism of topological L-vector spaces. It is easy to check
(and well known) that the topology T is independent of the chosen basis. Let e∗1 , . . . , e∗n ∈ F′1
be the basis dual to e1, . . . , en. Our goal is to make the union

E1 ⊗ E2 :=
⋃

x∈M
(E1)x ⊗L (E2)x

an equivariant L-vector bundle of class Cr
K over M, with typical fibre F1 ⊗L F2; the tensor

products (E1)x ⊗L (E2)x are chosen pairwise disjoint here for x ∈ M. Let π : E1 ⊗ E2 → M
be the mapping which takes v ∈ (E1)x ⊗L (E2)x to x.

We define ψi : π−1(Ui)→ Ui × (F1 ⊗L F2) via

ψi(v) := (x, ((prF1
◦ψ1

i |(E1)x )⊗ (prF2
◦ψ2

i |(E2)x ))(v))

for x ∈ Ui and v ∈ (E1)x ⊗L (E2)x, where prFk
: M× Fk → Fk is the projection.

Given i, j ∈ I and x ∈ Ui ∩ Uj, we have ψk
i ((ψ

k
j )
−1(x, v)) = (x, Gk

ij(x, v)) for all

k ∈ {1, 2} and v ∈ Fk, where Gk
ij : (Ui ∩Uj)× Fk → Fk is Cr

K and gk
ij(x) := Gk

ij(x, ·) an L-

linear mapping. Then, cσ,τ : Ui ∩Uj → K, x 7→ e∗σ(G1
ij(x, eτ)) is Cr

K, and ψi((ψj)
−1(x, v)) =

(x, Gij(x, v)) for x ∈ Ui ∩Uj and v = ∑n
τ=1 eτ ⊗ vτ ∈ F1 ⊗L F2, where

Gij(x, v) = (g1
ij(x)⊗ g2

ij(x))(v) =
n

∑
τ=1

(g1
ij(x)eτ)⊗ (g2

ij(x)vτ)

=
n

∑
σ,τ=1

eσ ⊗ (cσ,τ(x)g2
ij(x)vτ) = θ

((
n

∑
τ=1

cσ,τ(x)G2
ij(x, vτ)

)n

σ=1

)
.

As F1 ⊗L F2 → F2, v 7→ vτ = prτ(θ
−1(v)) is a continuous linear map (where prτ :

(F2)
n → F2 is the projection onto the τ-component), in view of the preceding formula Gij

is Cr
K. Thus, by Proposition 3, there is a unique L-vector bundle structure of class Cr

K on
E1 ⊗ E2 making each ψi a local trivialisation.

Note that β : G× (E1 ⊗ E2)→ E1 ⊗ E2, (g, v) 7→ (β1(g, ·)|
Eα(g,x)
(E1)x

⊗ β2(g, ·)|
(E2)α(g,x)
(E2)x

)(v)
for g ∈ G, x ∈ M, v ∈ (E1 ⊗ E2)x defines an action of G on E1 ⊗ E2 by L-linear mappings,
which makes π : E1 ⊗ E2 → M an equivariant mapping and such that β(g, ·) is L-linear on
(E1)x ⊗L (E2)x for all g ∈ G and x ∈ M.

To show that β is Cr
K, let g0 ∈ G and x0 ∈ M. We pick i ∈ I such that α(g0, x0) ∈ Ui.

The mapping α being continuous, we find open neighbourhoods U of g0 in G and V of x0
in M such that α(U ×V) ⊆ Ui. There is j ∈ I such that x0 ∈ Uj ⊆ V. For k ∈ {1, 2}, g ∈ U,
x ∈ Uj and v ∈ Fk, we have

ψk
i (βk(g, (ψk

j )
−1(x, v))) = (α(g, x), ak(g, x, v))

for some Cr
K-map ak : U ×Uj × Fk → Fk, which is L-linear in the final argument. Define

bσ,τ : U × Uj → L, (g, x) 7→ e∗σ(a1(g, x, eτ)); then, bσ,τ is Cr
K. If g ∈ U, x ∈ Uj and

v = ∑n
τ=1 eτ ⊗ vτ ∈ F1 ⊗L F2, then ψi(β(g, ψ−1

j (x, v))) equals(
α(g, x),

n

∑
τ=1

a1(g, x, eτ)⊗ a2(g, x, vτ)

)
=

(
α(g, x), θ

((
n

∑
τ=1

bσ,τ(g, x)a2(g, x, vτ)

)n

σ=1

))
,
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which is a Cr
K-function of (g, x, v). As a consequence, β|U×π−1(Uj)

is Cr
K and thus β, being Cr

K
locally, is Cr

K. We summarise as follows.

Proposition 8. Let G be a Cs
K-Lie group and M be a G-manifold of class Cr

K. Let E1 and E2 be
equivariant L-vector bundles of class Cr

K over M. If the typical fibre of E1 is finite-dimensional,
then E1 ⊗ E2, as defined above, is an equivariant L-vector bundle of class Cr

K over M.

Instead of dim(F1) < ∞ (as before) assume that F1 and F2 are Fréchet spaces and the
modelling spaces of G and M are metrisable. The completed projective tensor product

F := F1⊗̂π F2

over L then is a Fréchet space (cf. [30] (p. 438, lines after Definitions 43.4)). We define

E := E1⊗̂πE2 :=
⋃

x∈M
(E1)x⊗̂π(E2)x,

where the (E1)x⊗̂π(E2)x for x ∈ M are chosen pairwise disjoint. Let π : E→ M be the map
taking v ∈ Ex := (E1)x⊗̂π(E2)x to x. Define ψi : π−1(Ui)→ Ui × (F1⊗̂π F2) via

ψi(v) :=
(

x, ((prF1
◦ψ1

i |(E1)x )⊗̂π(prF2
◦ψ2

i |(E2)x ))(v)
)

for x ∈ Ui and v ∈ (E1)x⊗̂π(E2)x, where prFk
: M× Fk → Fk is the projection. Note that

β : G× E→ E, (g, v) 7→ (β1(g, ·)|(E1)x ⊗̂π β2(g, ·)|(E2)x )(v) for g ∈ G, x ∈ M, v ∈ Ex defines
an action of G on E which makes π : E→ M an equivariant mapping. We show:

Proposition 9. π : E1⊗̂πE2 → M admits a unique structure of equivariant L-vector bundle of
class Cr

K over M such that ψi is a local trivialisation for each i ∈ I.

Proof. The uniqueness for prescribed local trivialisations is clear. Let us show the existence
of the structure. Given i, j ∈ I and x ∈ Ui ∩Uj, we have ψk

i ((ψ
k
j )
−1(x, v)) = (x, Gk

ij(x, v))

for all k ∈ {1, 2} and v ∈ Fk, where Gk
ij : (Ui ∩Uj)× Fk → Fk is Cr

K and gk
ij(x) := Gk

ij(x, ·) an

L-linear mapping. By Proposition 1 (a), the map gk
ij : Ui ∩Uj → L(Fk)c is Cr

K. Now,

LL(F1)c × LL(F2)→ LL(F1⊗̂π F2)c, (S, T) 7→ S⊗̂πT

being continuous L-bilinear (as recalled in Lemma 14), we deduce that

gij : Ui ∩Uj → LL(F1⊗̂π F2)c, x 7→ g1
ij(x)⊗̂π g2

ij(x)

is Cr
K. Hence, Gij := g∧ij : (Ui ∩Uj)× (F1⊗̂π F2) → F1⊗̂π F2, (x, v) 7→ gij(x)(v) is Cr

K, by

Proposition 2 (a). We easily check that ψi((ψj)
−1(x, v)) = (x, Gij(x, v)) holds for Gij as just

defined, for all x ∈ Ui ∩Uj and v ∈ F1⊗̂π F2. Hence, E1⊗̂πE2 can be made an L-vector
bundle of class Cr

K in such a way that each ψi is a local trivialisation, by Proposition 3.
Note that β(g, ·) is L-linear on Ex for all g ∈ G and x ∈ M. To show that β is Cr

K, let g0,
x0, i, U, V, j and the Cr

K-map ak be as in the proof of Proposition 8. By Proposition 1 (a),
a∨k : U ×Uj → L(Fk)c, (g, x) 7→ ak(g, x, ·) is Cr

K. Hence,

a : U ×Uj → L(F1⊗̂π F2)c, (g, x) 7→ a∨1 (g, x)⊗̂πa∨2 (g, x)

is Cr
K, by the Chain Rule and Lemma 14. Using Proposition 2 (a), we find that the map

a∧ : U × Uj × (F1⊗̂π F) → F1⊗̂π F2, (g, x, v) 7→ a(g, x)(v) is Cr
K. We easily verify that

ψi(β(g, (ψj)
−1(x, v))) = (α(g, x), a∧(g, x, v)) for all (g, x, v) ∈ U ×Uj × (F1⊗̂π F2). Thus,

ψi(β(g, (ψj)
−1(x, v))) is Cr

K in (g, x, v), which completes the proof.
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We used the following fact:

Lemma 14. Let E1, E2, F1, and F2 be Fréchet spaces over L ∈ {R,C}. Then, the following bilinear
map is continuous:

Ξ : LL(E1, F1)c × LL(E2, F2)c → LL((E1⊗̂πE2), (F1⊗̂π F2))c, (S1, S2) 7→ S1⊗̂πS2.

Proof. Let K ⊆ E1⊗̂E2 be compact, q be a continuous seminorm on F1⊗̂π F2, and ε > 0.
After increasing q, we may assume that q = q1 ⊗ q2 for continuous seminorms qk on Fk
for k ∈ {1, 2}. By [30] (p. 465, Corollary 2 to Theorem 45.2), K is contained in the closed,
absolutely convex hull of K1 ⊗ K2 for certain compact subsets Kk ⊆ Ek for k ∈ {1, 2}. For
all Sk ∈ L(Ek, Fk) such that sup qk(Sk(Kk)) ≤

√
ε, we have

sup q((S1⊗̂πS2)(K)) ≤ sup q((S1⊗̂πS2)(K1 ⊗ K2)) = sup q1(S1(K1))q2(S2(K2)) ≤
√

ε
2
= ε,

using [30] (Proposition 43.1). The assertion follows.

Remark 9. If E1 and E2 are Hilbert spaces over L with Hilbert space tensor product E1⊗̂E2, and
also F1 and F2 are Hilbert spaces over L, then the bilinear map

Ξ : L(E1, F1)b × L(E2, F2)b → L((E1⊗̂E2), (F1⊗̂F2))b

is continuous, as ‖S1⊗̂S2‖op ≤ ‖S1‖op‖S2‖op.

Replace the hypotheses in Proposition 9 with the requirements that G and M are
modelled on metrisable locally convex spaces, r ≥ 1 and F1, F2 are Hilbert spaces. We
now use Remark 9 instead of Lemma 14, replace F1⊗̂π F2 with the Hilbert space F1⊗̂F2,
Proposition 1 (a) with Proposition 1 (b) (so that operator-valued maps are only Cr−1

K ) and
use Proposition 2 (b) with r− 1 in place of r. Repeating the proof of Proposition 9, we get:

Proposition 10. On E1⊗̂E2 =
⋃

x∈M(E1)x⊗̂(E2)x, there is a unique equivariant L-vector bun-
dle structure of class Cr−1

K over M whose typical fibre is the Hilbert space F1⊗̂F2, such that
ψi : π−1(Ui)→ Ui × (F1⊗̂F2) is a local trivialisation for each i ∈ I.

Remark 10. If r ≥ 1, G and M are modelled on metrisable spaces and both F1 and F2 are pre-
Hilbert spaces with Hilbert space completions F̃1 and F̃2, we can use the non-completed tensor
product F1 ⊗L F2 ⊆ F̃1⊗̂F̃2 with the induced topology as the fibre and get an equivariant L-vector
bundle structure over M of class Cr−1

K over M on E1 ⊗ E2 =
⋃

x∈M(E1)x ⊗L (E2)x, exploiting
that the L-bilinear map LL(F1)b × LL(F2)b → LL(F1⊗L F2)b, (S1, S2) 7→ S1⊗ S2 is continuous.

9. Locally Convex Direct Sums of Vector Bundles

Let L ∈ {R,C}, K ∈ {R,L}, s ∈ {∞, ω}, r ∈ N0 ∪ {∞, ω} such that r ≤ s, G be a
Cs
K-Lie group modelled on a locally convex space Y, and M be a Cr

K-manifold modelled on
a locally convex K-vector space Z, together with a Cr

K-action α : G×M→ M.
Let n ∈ N and πk : Ek → M be an equivariant L-vector bundle of class Cr

K over M for
k ∈ {1, . . . , n}, with typical fibre a locally convex L-vector space Fk; let βk : G× Ek → Ek be
the G-action and prFk

: M× Fk → Fk be the projection onto the second component. We easily
check that there is a unique L-vector bundle structure of class Cr

K on the “Whitney sum”

E := E1 ⊕ · · · ⊕ En :=
⋃

x∈M
(E1)x × · · · × (En)x,

with the apparent map π : E → M, such that ψ : π−1(U) → U × F1 × · · · × Fn, v =
(v1, . . . , vn) 7→ (π(v), prF1

(ψ1(v1)), . . . , prFn
(ψn(vn))) is a local trivialisation of E, for all

families (ψk)
n
k=1 of local trivialisations ψk : (πk)

−1(U) → U × Fk, which trivialise the Eks
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over a joint open subset U of M. Then, β(g, v) := (β1(g, v1), . . . , βn(g, vn)) for g ∈ G,
v = (v1, . . . , vn) ∈ E yields an action of G on E. It is straightforward that β is Cr

K. Thus,

Proposition 11. If E1, . . . , En are equivariant L-vector bundles of class Cr
K over a G-manifold M

of class Cr
K, then also E1 ⊕ · · · ⊕ En is an equivariant L-vector bundle of class Cr

K over M.

The following lemma allows infinite direct sums to be tackled.

Lemma 15. Let (Ei)i∈I and (Fi)i∈I be families of locally convex spaces over K ∈ {R,C}, with
locally convex direct sums E :=

⊕
i∈I Ei and F :=

⊕
i∈I Fi, respectively. Let V be an open subset of

a locally convex K-vector space Z. Let r ∈ N0 ∪ {∞}, and assume that fi : V × Ei → Fi is a map
which is linear in the second argument, for each i ∈ I. Moreover, assume that (a) or (b) holds:

(a) Z is finite-dimensional; or
(b) Z and each Ei is a kω-space and I is countable.

If fi is of class Cr
K for each i ∈ I, then also the following map is Cr

K:

f : V × E→ F , (x, (vi)i∈I) 7→ ( fi(x, vi))i∈I .

Proof. If (b) holds, we may assume that I is countably infinite, excluding a trivial case.
Thus, assume that I = N. For each n ∈ N, identify E1 × · · · × En with a vector subspace of
E, identifying x ∈ E1 × · · · × En with (x, 0). For each n ∈ N, we then have

Z× E =
⋃

n∈N
(Z× E1 × · · · × En) and V × E =

⋃
n∈N

(V × E1 × · · · × En),

where Z× E1 × · · · × En is a kω-space in the product topology. The inclusion map

λn : F1 × · · · × Fn →
⊕
i∈N

Fi, v 7→ (v, 0)

is continuous and K-linear. Moreover,

gn : V × E1 × · · · × En → F1 × · · · × Fn, (x, v1, . . . , vn) 7→ ( f1(x, v1), . . . , fn(x, vn))

is a Cr
K-map and so is f |V×E1×···×En = λn ◦ gn, for each n ∈ N. Hence, f is Cr

K on the open
subset V × E of Z× E, considered as the locally convex direct limit lim

−→
(Z× E1 × · · · × En),

by [31] (Proposition 4.5 (a)). This locally convex space equals Z × lim
−→

(E1 × · · · × En) =

Z× E with the product topology (see [32] (Theorem 3.4)).
If (a) holds, it suffices to prove the assertion for r ∈ N0. We proceed by induction. The

case r = 0. Let (x, v) = (x, (vi)i∈I) ∈ V × E; we show that f is continuous at (x, v). To this
end, let Q be an absolutely convex, open 0-neighbourhood in F. There is a finite subset
J ⊆ I such that vi = 0 for all i ∈ I \ J. Let N := |J|+ 1. For each i ∈ I, the intersection
Qi := ( 1

N Q) ∩ Fi is an absolutely convex, open 0-neighbourhood in Fi. For the absolutely
convex hull, we get absconv(

⋃
i∈I Qi) ⊆ 1

N Q. Since fi is continuous for each i ∈ J and J
is finite, we find a compact neighbourhood K of x in V such that fi(y, vi)− fi(x, vi) ∈ Qi
for all y ∈ K and i ∈ J. Since fi(K× {0}) = {0}, where K is compact and fi is continuous,
for each i ∈ I, there is an absolutely convex, open 0-neighbourhood Pi in Ei such that
fi(K × Pi) ⊆ Qi. Then, W := v + absconv(

⋃
i∈I Pi) is an open neighbourhood of v in E.

Let y ∈ K and w ∈ W be given, say w = (wi)i∈I = v + (ti pi)i∈I , where pi ∈ Pi and
(ti)i∈I ∈

⊕
i∈I R such that ti ∈ [0, 1] and ∑i∈I ti = 1. Then, for each i ∈ I \ J, since vi = 0,

we obtain
fi(y, wi)− f (x, vi) = fi(y, ti pi) = ti fi(y, pi) ∈ tiQi .
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For i ∈ J, on the other hand, we have

fi(y, wi)− f (x, vi) = fi(y, wi − vi) + ( fi(y, vi)− fi(x, vi))

= ti fi(y, pi) + ( fi(y, vi)− fi(x, vi)) ∈ tiQi + Qi.

As a consequence, f (y, w)− f (x, v) ∈ (∏i∈I tiQi) + ∑i∈J Qi ⊆ 1
N Q + ∑i∈J

1
N Q = Q,

using the convexity of Q. We have shown that f is continuous at (x, v).
Induction step. Let r ≥ 1 and assume the assertion is true for all numbers < r. Given

u, v ∈ E, x ∈ V, and z ∈ Z, we have u, v ∈ ⊕i∈J Ei = ∏i∈J Ei for some finite subset J ⊆ I.
The map f J : V ×∏i∈J Ei → ∏i∈J Fi, (x, (vi)i∈J) 7→ ( fi(x, vi))i∈J is C1

K, whence

d f J((x, u), (z, v)) = lim
t→0

t−1( f J((x, u) + t(z, v))− f J(x, u))

= lim
t→0

t−1( f ((x, u) + t(z, v))− f (x, u)) = d f ((x, u), (z, v))

exists in ∏i∈J Fi and thus in F; its ith component is

d fi((x, ui), (z, vi)) = d1 fi(x, ui, z) + d2 fi(x, ui, vi)

in terms of partial differentials. Note that the mappings gi : (V × Z) × (Ei × Ei) → Fi,
(x, z, ui, vi) 7→ d1 fi(x, ui, z) and hi : (V×Z)× (Ei×Ei)→ Fi, (x, z, ui, vi) 7→ d2 fi(x, ui, vi) =
fi(x, vi) are Cr−1

K and linear in (ui, vi). By induction, the mappings

g : (V × Z)× (E× E)→ F, (x, z, (ui)i∈I , (vi)i∈I) 7→ (gi(x, z, ui, vi))i∈I and

h : (V × Z)× (E× E)→ F, (x, z, (ui)i∈I , (vi)i∈I) 7→ (hi(x, z, ui, vi))i∈I

are Cr−1
K , using that E × E ∼=

⊕
i∈I(Ei × Ei). Hence, also d f : (V × E) × (Z × E) → F

is Cr−1
K , as d f ((x, u), (z, v)) = g(x, z, u, v) + h(x, z, u, v). Since d f exists and is Cr−1

K , the
continuous map f is Cr

K.

Remark 11. The conclusion of Lemma 15 does not hold for (r,K) = (ω,R) in the example I = N,
V = Z = R, Ek = R, fk(r, t) := t

1+kr2 , using that the Taylor series of fk(·, t) around 0 has radius
of convergence 1√

k
for all t ∈ R \ {0}.

Assuming now r 6= ω, consider a family (Ei)i∈I of equivariant L-vector bundles
πi : Ei → M of class Cr

K with typical fibre Fi and G-action βi : G× Ei → Ei. We assume that
(a) or (b) is satisfied:

(a) G and M are finite-dimensional; or
(b) I is countable and each Fi as well as the modelling spaces of G and M are kω-spaces.

Moreover, we assume:

(c) For each x ∈ M, there exists an open neighbourhood U of x in M, such that, for each
i ∈ I, the vector bundle Ei admits a local trivialisation ψi : (πi)

−1(U)→ U × Fi.

Thus, the Cr
K-vector bundle Ei|U is trivialisable for each i ∈ I. Define E :=

⋃
x∈M

⊕
i∈I(Ei)x

with pairwise disjoint direct sums and π : E→ M,
⊕

i∈I(Ei)x 3 v 7→ x. Then

β : G× E→ E, (g, (vi)i∈I) 7→ (βi(g, vi))i∈I

is a G-action such that β(g, ·)|Ex : Ex → Eα(g,x) is L-linear for all (g, x) ∈ G × M, where
Ex := π−1({x}). We readily deduce from Proposition 3 and Proposition 15 that there is a
unique L-vector bundle structure of class Cr

K on E such that

π−1(U)→ U ×
⊕
i∈I

Fi, Ex 3 (vi)i∈I 7→ (x, (prFi
(ψi(vi)))i∈I)
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is a local trivialisation for E, for each family (ψi)i∈I of local trivialisations as above. The
latter makes E an equivariant L-vector bundle of class Cr

K. In fact, the Cr
K-property of β can

be checked using pairs of local trivialisations, as in the proofs of Propositions 5, 8, and 9.
Then, apply Proposition 15, with Fi in place of Ei and Y× Z in place of Z. Thus,

Proposition 12. In the preceding situation,
⊕

i∈I Ei is an equivariant L-vector bundle of class Cr
K

over M.

Remark 12. If M is a Cr
R-manifold, then every x ∈ M has an open neighbourhood U which is

Cr
R-diffeomorphic to a convex open subset W in the modelling space Z of M. If W can be chosen

Cr
R-paracompact, then every Cr

R-vector bundle over U is trivialisable (see [12] (Corollary 15.10)).
The latter condition is satisfied, for example, if Z is finite-dimensional, a Hilbert space, or a
countable direct limit of finite-dimensional vector spaces (and hence a nuclear Silva space), cf. [3]
(Theorem 16.10 and Corollary 16.16). If (r,K) = (∞,C) and Z has finite dimension, then each
finite-dimensional holomorphic vector bundle over a, say, polycylinder in Z is C∞

C -trivialisable
(cf. [33]). Under suitable hypotheses, holomorphic Banach vector bundles over contractible bases are
C∞
C -trivialisable as well [34].

10. Dual Bundles and Cotangent Bundles

In this section, we discuss conditions ensuring that a vector bundle has a canonical
dual bundle. Let L ∈ {R,C}, K ∈ {R,L}, r ∈ N0 ∪ {∞, ω}, and M be a Cr

K-manifold
modeled on a locally convex space Z.

Definition 7. Let π : E → M be an L-vector bundle of class Cr
K, with typical fibre F. Consider

the disjoint union
E′ :=

⋃
x∈M

(Ex)
′ ;

let p : E′ → M be the map taking λ ∈ (Ex)′ to x, for each x ∈ M. Given t ∈ N0 ∪ {∞, ω} such
that t ≤ r, we say that E has a canonical dual bundle of class Ct

K with respect to S ∈ {b, c} if E′

can be made an L-vector bundle of class Ct
K over M, with typical fibre F′S and bundle projection p,

such that

ψ̃ : p−1(U)→ U × F′S , (E′)x = (Ex)
′ 3 λ 7→ (x, ((prF ◦ψ|Ex )

−1)′(λ)) (15)

is a local trivialisation of E′, for each local trivialisation ψ : π−1(U)→ U × F of E.

To pinpoint situations where the dual bundle exists, we recall a fact concerning the
formation of dual linear maps (see [8] (Proposition 16.30)):

Lemma 16. Let E and F be locally convex spaces, and S ∈ {b, c}. If the evaluation homomorphism
ηF,S : F → (F′S )

′
S , ηF,S (x)(λ) := λ(x) is continuous, then

Θ : L(E, F)S → L(F′S , E′S )S , α 7→ α′

is a continuous linear map.

Remark 13. Let F be a locally convex K-vector space over K ∈ {R,C}. It is known that ηF,b is con-
tinuous if and only if F is quasi-barrelled, i.e., every bornivorous barrel in F is a 0-neighbourhood [35]
(Proposition 2 in Section 11). In particular, ηF,b is continuous if F is bornological or barrelled. It
is also known that ηF,c is continuous (and actually a topological embedding) if F is a kR-space. If
K = R, this follows from [36] (Theorem 2.3) and [37] (Lemma 14.3) (cf. also [37] (Propositions 2.3
and 2.4)). If K = C and F is a kR-space, then ηFR,c is a topological embedding for the real topological
vector space FR underlying F. Now, (F′c)R ∼= (FR)′ as a real topological vector space, using that a
continuous C-linear functional λ : F → C is determined by its real part. Transporting the complex
vector space structure from F′c to (FR)′, the latter becomes a complex locally convex space. Thus,
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((F′c)′c)R can be identified with ((FR)′c)′c, and it is easy to verify that ηF,c corresponds to ηFR,c if we
make the latter identification.

Proposition 13. Let π : E → M be an L-vector bundle of class Cr
K, with typical fibre F. Let

S ∈ {b, c}. If S = c, let r− := r; if S = b, assume r ≥ 1 and set r− := r − 1. Consider the
following conditions:

(α) The modelling space Z of M is finite-dimensional, ηF,S is continuous, and F′S is barrelled.
(β) ηF,S is continuous and, moreover, (Z× F′S )× (Z× F′S ) is a kR-space, or r− = 0 and Z× F′S

is a kR-space, or (r,K) = (∞,C) and Z× F′S is a kR-space.
(γ) F is normable.

If (α) or (β) is satisfied with S = c, then E has a canonical dual bundle of class Cr
K with

respect to S = c. If (α), (β), or (γ) is satisfied with S = b, then E has a canonical dual bundle of
class Cr−1

K with respect to S = b.

For S = b, condition (α) of Proposition 13 is satisfied, for example, if F is a reflexive
locally convex space (then ηF,b is continuous and F′b is barrelled, being reflexive.)

Proof. Let E′ be the disjoint union
⋃

x∈M(Ex)′, and p : E′ → M be as in Definition 7. Let
(ψi)i∈I be a family such that the ψi : π−1(Ui)→ Ui× F form the set of all local trivialisations
of E. Let (gij)i,j∈I be the associated cocycle (as explained before Proposition 3). Then,
Gij := g∧ij is Cr

K and hence gij = (Gij)
∨ is Cr−

K , by Proposition 1. Given i ∈ I, we define

ψ̃i : p−1(Ui)→ Ui × F′S as in (15), using ψi instead of ψ. Then,

ψ̃i(ψ̃
−1
j (x, λ)) = (x, ((prF ◦ψi|Ex )

−1)′ ◦ (prF ◦ψj|Ex )
′(λ))

= (x, (prF ◦ψj|Ex ◦ (prF ◦ψi|Ex )
−1)′(λ)) = (x, gji(x)′(λ))

for all x ∈ Ui ∩Uj and λ ∈ F′ shows that

(ψ̃i ◦ ψ̃−1
j )(x, λ) = (x, hij(x)(λ)) ,

where hij(x) := gji(x)′ ∈ GL(F′S ). If (α) or (β) holds, then ηF,S : F → (F′S )
′
S is continuous

by hypothesis. If S = b and (γ) holds, then ηF,b is an isometric embedding (as is well
known) and hence continuous. Thus, Θ : L(F)S → L(F′S )S , α 7→ α′ is a continuous
L-linear map (Lemma 16). Since gji : Ui ∩ Uj → L(F)S is Cr−

K , we deduce that hij =

Θ ◦ gji : Ui ∩Uj → L(F′S )S is Cr−
K . Thus Condition (g)′ of Corollary 2 is satisfied, with r−

in place of r. Conditions (a)–(f) being apparent, the cited corollary provides an L-vector
bundle structure of class Cr−

K on E′.

Without specific hypotheses, a canonical dual bundle need not exist.

Example 2. Let A be a unital, associative, locally convex topological K-algebra whose group of
units A× is open in A, and such that the inversion map ι : A× → A× is continuous. Then, ι is
smooth (and indeed K-analytic); see, e.g., [13] (Propositions 10.1.12 and 10.1.13). We assume
that the locally convex space underlying A is a non-normable Fréchet–Schwartz space and hence
Montel, ensuring that L(A)b = L(A)c. For example, we might take A := C∞(K,K), where K
is a connected, compact, smooth manifold of positive dimension (cf. [13] (Lemma 10.2.2 (c))). Let
r, t ∈ N0 ∪ {∞, ω} with t ≤ r and S ∈ {b, c}. We consider the trivial vector bundle

pr1 : E := A× × A→ A× .

(Thus, E ∼= TA×, the tangent bundle). Then, E is a K-vector bundle of class Cr
K over the base

A×, with typical fibre A. Both ψ1 := id : A× × A → A× × A and ψ2 : A× × A → A× × A,
(a, v) 7→ (a, av) are global trivialisations of E. Identifying E′ :=

⋃
a∈A×(Ea)′ with the set

A× × A′, we consider the associated bijections ψ̃i : E′ = A× × A′ → A× × A′ for i ∈ {1, 2}
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(cf. (15)). Thus, ψ̃1 = id, and ψ̃2(a, λ) = (a, λ(a−1·)) for a ∈ A×, λ ∈ A′. The map Gij :
A× × A→ A, (a, v) 7→ pr2(ψi(ψ

−1
j (a, v))) is Cr

K for i, j ∈ {1, 2}, where pr2 : A× × A→ A is
the projection onto the second factor. Then, also gij : A× → L(A)c = L(A)b, a 7→ Gij(a, ·) is Cr

K,
by Proposition 1 (a). Now, A being Fréchet and thus barrelled, the evaluation homomorphism ηA,b
is continuous; since A is metrisable and hence a k-space, also ηA,c is continuous (see Remark 13).
Since gij is Cr

K, we deduce with Lemma 16 that also hij : A× → L(A′S )S , a 7→ (gji(a))′ is Cr
K.

Define
Hij : A× × A′S → A′S (a, λ) 7→ hij(a)(λ)

for i, j ∈ {1, 2}. Then, H12 is discontinuous. To see this, we compose H12 with the map ev1 : A′b →
K, λ 7→ λ(1), which evaluates functionals at the identity element 1 ∈ A, and recall that ev1 is
continuous. Then, ev1(H12(a, λ)) = λ(g21(a)(1)) = λ(a) for a ∈ A× and λ ∈ A′. However, A
being a non-normable locally convex space, the bilinear, separately continuous evaluation map ε :
A× A′b → K, (a, λ) 7→ λ(a) is discontinuous, and hence so is its restriction ε|A××A′b

= ev1 ◦H12

to the non-empty open subset A× × A′b, as is readily verified. Now, ev1 ◦H12 being discontinuous,
also H12 is discontinuous (and therefore not Ct

K). As a consequence, also ψ̃1 ◦ ψ̃−1
2 = (pr1, H12) is

discontinuous. Summing up:

There is no canonical vector bundle structure of class Ct
K on E′ because the two vector

bundle structures on E′ making ψ̃1 (resp., ψ̃2) a global trivialisation do not coincide.

Remark 14. In the preceding situation, set M := A×, F := A′b, I := {1, 2}, Ui := M for
i ∈ I, and π := pr1 : M × F → M. If we let M × A′b play the role of E in Proposition 3
and ψ̃i : π−1(Ui) → Ui × F the role of ψi in Proposition 3 (e), then all of Conditions (a)–(f) of
Proposition 3 and Condition (g)′ of Corollary 2 are satisfied for r ∈ N0 ∪ {∞, ω} (with L := K).
However, there is no Cr

K-vector bundle structure on M× F making each ψ̃i a trivialisation, as just
observed, i.e., the conclusion of Corollary 2 becomes false.

Remark 15. Let K ∈ {R,C}, r ∈ N ∪ {∞, ω}, t ∈ N0 ∪ {∞, ω} with t ≤ r and M be a Cr
K-

manifold modelled on a locally convex space Z. Then, the tangent bundle TM is a K-vector bundle
of class Cr−1

K over M, with typical fibre Z. Pick a locally convex vector topology T on Z′. Let A be
the set of all maps ψ̃ as in (15), with (Z′, T ) in place of F′S , for ψ ranging through the set of all local
trivialisations of TM (alternatively, only those of the form (πTU , dφ) for charts φ : U → V ⊆ Z
of M, using the bundle projection πTU : TU → U). Let us say that M has a canonical cotangent
bundle of class Ct

K with respect to T if T′M :=
⋃

x∈M(Tx M)′ admits a K-vector bundle structure
of class Ct

K over M with typical fibre (Z′, T ), which makes each ψ̃ : p−1(U) → U × (Z′, T ) a
local trivialisation (with p : T′M→ M, (Tx M)′ 3 λ 7→ x). Then, the evaluation map

ε : (Z′, T )× Z → K, (λ, x) 7→ λ(x)

must be continuous and hence Z normable. For K = R, this is explained in [17] (Remark 1.3.9)
(written after Example 2 was found) if r = ∞. This implies the case r ∈ N. As the diffeomorphism f
employed as a change of charts is real analytic, the case (ω,R) follows and also the complex case,
using a C-analytic extension of f . When T is the compact-open topology, existence of a canonical
cotangent bundle for M even implies that Z is finite-dimensional. (If ε is continuous on Z′c×Z, then
there exists a compact subset K ⊆ Z and a 0-neighbourhood W ⊆ Z such that ε((K◦)×W) ⊆ D.
Hence, K◦ ⊆ W◦. Since K◦ is a 0-neighbourhood in Z′c and W◦ compact (by Ascoli’s Theorem),
Z′c is locally compact and hence finite-dimensional. As Z′c separates points on Z, also Z must be
finite-dimensional.)

Cotangent bundles are not needed to define 1-forms on an infinite-dimensional mani-
fold M. Following [38], these can be considered as smooth maps on TM which are linear
on the fibres (and a similar remark applies to differential forms of higher order).

Differentiability properties of the G-action on the dual bundle. Let L ∈ {R,C},
K ∈ {R,L}, s ∈ {∞, ω}, r ∈ N0 ∪ {∞, ω}with r ≤ s, and G be a Cs

K-Lie group modelled on
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a locally convex K-vector space Y. Let M be a Cr
K-manifold modelled on a locally convex

K-vector space Z and α : G×M→ M be a G-action of class Cr
K.

Proposition 14. Let π : E → M be an equivariant L-vector bundle of class Cr
K, with typical

fibre F and G-action β : G× E → E of class Cr
K. Let S ∈ {b, c}. If S = c, set r− := r; if S = b,

assume r ≥ 1 and set r− := r− 1. Consider the following conditions:

(a) ηF,S is continuous, and, moreover, (Y× Z× F′S )× (Y× Z× F′S ) is a kR-space, or r− = 0
and Y× Z× F′S is a kR-space, or (r,K) = (∞,C) and Y× Z× F′S is a kR-space;

(b) M and G are finite-dimensional, ηF,S is continuous, and F′S is barrelled; or
(c) F is normable.

If S = c and (a) or (b) holds, then E has a canonical dual bundle E′ of class Cr−
K with respect

to S , and the map β∗ : G× E′ → E′, defined using adjoint linear maps via

β∗(g, λ) := (β(g−1, ·)|Ex
Eα(g,x)

)′(λ)

for g ∈ G, λ ∈ (Ex)′, turns E′ into an equivariant L-vector bundle of class Cr−
K over the G-

manifold M. If S = b and (a), (b), or (c) is satisfied, then the same conclusion holds.

Proof. In view of Proposition 13, the hypotheses imply that E has a canonical dual bundle
p : E′ → M of class Cr−

K . It is apparent that β∗ : G× E′ → E′ is an action, and E′x is taken
L-linearly to E′

α(g,x) by β∗(g, ·), for each g ∈ G and x ∈ M. It therefore only remains to

show that β∗ is Cr−
K . To this end, let g0 ∈ G and x0 ∈ M; we show that β∗ is Cr−

K on
U × p−1(V), for some open neighbourhood U of g0 in G and an open neighbourhood V
of x0 in M. Indeed, there exists a local trivialisation ψ : π−1(W) → W × F of E over an
open neighbourhood W of α(g0, x0) in M. The action α being continuous, we find an open
neighbourhood U of g0 in G and an open neighbourhood V of x0 in M over which E is
trivial, such that α(U × V) ⊆ W. Let φ : π−1(V) → V × F be a local trivialisation of E
over V. Then

φ(β(g−1, ψ−1(α(g, x), v))) = (x, A(g, x, v)) for all g ∈ U, x ∈ V, and v ∈ F,

for a Cr
K-map A : U×V× F → F, which is L-linear in the third argument. By Corollary 1, the

map a : U ×V → L(F)S , (g, x) 7→ A(g, x, ·) is Cr−
K . In view of the hypotheses, Lemmas 16

and 13 entail that also a∗ : U × V → L(F′S )S , (g, x) 7→ (a(g, x))′ is Cr−
K -map. Now, again

using the specific hypotheses, Proposition 2 shows that also the mapping A∗ : U × V ×
F′S → F′S , (g, x, λ) 7→ a∗(g, x)(λ) is Cr−

K . However, for g ∈ U, x ∈ V, and λ ∈ F′,
we calculate

ψ̃(β∗(g, φ̃−1(x, λ))) =

(
α(g, x),

(
prF ◦φ|Ex ◦ β(g−1, ·)|Ex

Eα(g,x)
◦ (prF ◦ψ|Eα(g,x)

)−1
)′
(λ)

)
= (α(g, x), A∗(g, x, λ)) ,

using the notation as in (15). We conclude that β∗|U×p−1(V) is Cr−
K .

Example 3. For elementary examples, recall that the group Diff(M) of all smooth diffeomorphisms
of a σ-compact, finite-dimensional smooth manifold M can be made a smooth Lie group, modelled on
the (LF)-space Γc(TM) of compactly supported smooth vector fields on M (see [13,15]). The natural
action Diff(M)×M→ M is smooth [13]. In view of Example 1, Proposition 14 (b), Proposition 8
and Proposition 4, we readily deduce that also the natural action of Diff(M) on TM is smooth, as
well as the natural actions on T∗M := (TM)′, TM⊗n ⊗ (T∗M)⊗m for all n, m ∈ N0, and the
natural action on the subbundles Sn(T∗M) and

∧n T∗M of (T∗M)⊗n given by symmetric and
exterior powers, respectively.
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11. Locally Convex Poisson Vector Spaces

We discuss a slight generalisation of the concept of a locally convex Poisson vector
space introduced in [8]. Fix K ∈ {R,C}.

A bounded set-functor S associates with each locally convex K-vector space E a set
S(E) of bounded subsets of E, such that {λ(M) : M ∈ S(E)} ⊆ S(F) for each continuous
K-linear map λ : E→ F between locally convex K-vector spaces (cf. [8] (Definition 16.15)).
Given locally convex K-vector spaces E and F, we shall write L(E, F)S as a shorthand for
LK(E, F)S(E). We write E′S := LK(E,K)S .

Throughout this section, we let S be a bounded set-functor such that, for each locally
convex space E, we have

{K ⊆ E : K is compact} ⊆ S(E). (16)

Then, {x} ∈ S(E) for each x ∈ E, and we get a continuous linear point evaluation

ηE,S (x) : E′S → K, λ 7→ λ(x).

Definition 8. A locally convex Poisson vector space with respect to S is a locally convex
K-vector space E such that E× E is a kR-space and

ηE,S : E→ (E′S )
′
S , x 7→ ηE,S (x)

a topological embedding, together with a bilinear map [., .] : E′S × E′S → E′S , (λ, η) 7→ [λ, η],
which makes E′S a Lie algebra, is S(E′S )-hypocontinuous in its second argument, and satisfies

ηE,S (x) ◦ adλ ∈ ηE,S (E) for all x ∈ E and λ ∈ E′, (17)

writing adλ := ad(λ) := [λ, .] : E′ → E′.

Remark 16. (a) Definition 16.35 in [8] was more restrictive; E was assumed to be a k∞-space there.
(b) In [8] (16.31 (b)), the following additional condition was imposed: For each M ∈ S(E′S ) and

N ∈ S(E), the set ε(M× N) is bounded in K, where ε : E′ × E→ K is the evaluation map.
As we assume (16), the latter condition is automatically satisfied, by [8] (Proposition 16.11 (a)
and Proposition 16.14).

(c) Let us say that a locally convex space E is S-reflexive if ηE,S : E→ (E′S )
′
S is an isomorphism

of topological vector spaces.
(d) Of course, we are mostly interested in the case where [., .] is continuous, but only hypocontinu-

ity is required for the basic theory.

Definition 9. Let (E, [., .]) be a locally convex Poisson vector space with respect to S , and U ⊆ E
be open. Given f , g ∈ C∞

K (U,K), we define a function { f , g} : U → K via

{ f , g}(x) := 〈[ f ′(x), g′(x)], x〉 for x ∈ U, (18)

where 〈., .〉 : E′ × E→ K, 〈λ, x〉 := λ(x) is the evaluation map and f ′(x) = d f (x, .).
Condition (17) in Definition 8 enables us to define a map X f : U → E via

X f (x) := η−1
E,S
(
ηE,S (x) ◦ ad( f ′(x))

)
for x ∈ U. (19)

Using Lemma 11 instead of [8] (Theorem 16.26), we see as in the proof of [8]
(Theorem 16.40 (a)) that the function { f , g} : U → K is C∞

K . The C∞
K -function { f , g} is

called the Poisson bracket of f and g. Using Lemma 11 instead of [8] (Theorem 16.26), we
see as in the proof of [8] (Theorem 16.40 (b)) that X f : U → E is a C∞

K -map; it is called the
Hamiltonian vector field associated with f . As in [8] (Remark 16.43), we see that the Poisson
bracket just defined makes C∞

K (U,K) a Poisson algebra.
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We shall write “b” and “c” in place of S if S is the bounded set functor, taking a
locally convex space E to the set S(E) of all bounded subsets and compact subsets of E,
respectively. Both of these satisfy the hypothesis (16).

In the following, we describe new results for locally convex Poisson vector spaces over
S = c. We mention that the embedding property of ηE,c is automatic in this case, as E× E
is a kR-space in Definition 9; thus, E is a kR-space and Remark 13 applies.

Example 4. Let (gj)j∈J be a family of finite-dimensional real Lie algebras gj. Endow g :=
⊕

j∈J gj
with the locally convex direct sum topology, which coincides with the finest locally convex vec-
tor topology. Then, g is c-reflexive, as with every vector space with its finest locally convex
vector topology (see [39] (Theorem 7.30 (a))). As a consequence, also g′c is c-reflexive (cf. [39]
(Proposition 7.9 (iii))). Using [40] (Proposition 7.1), we see that the component-wise Lie bracket
g× g → g is continuous on the locally convex space g× g, which is naturally isomorphic to the
locally convex direct sum

⊕
j∈J(gj × gj). We set E := g′c and give E′c the continuous Lie bracket

[., .] making ηg,c : g→ (g′c)
′
c = E′c an isomorphism of topological Lie algebras. Then

E = g′c ∼= ∏
j∈J

(gj)
′
c

and E × E are kR-spaces, being Cartesian products of locally compact spaces (see [22]). Thus,
(E, [., .]) is a locally convex Poisson vector space over S = c, in the sense of Definition 8. If J has
cardinality ≥ 2ℵ0 and gj 6= {0} for all j ∈ J (e.g., if we take an abelian 1-dimensional Lie algebra
gj for each j ∈ J), then E ∼= RJ is not a k-space. Hence, E is not a k∞-space, and hence it is not a
Poisson vector space in the more restrictive sense of [8].

12. Continuity Properties of the Poisson Bracket

If E and F are locally convex K-vector spaces and U ⊆ E an open subset, we endow
C∞(U, F) with the compact-open C∞-topology. Our goal is the following result:

Theorem 1. Let (E, [., .]) be a locally convex Poisson vector space with respect to S = c. Let
U ⊆ E be open. Then, the Poisson bracket

{., .} : C∞
K (U,K)× C∞

K (U,K)→ C∞
K (U,K)

is c-hypocontinuous in its second variable. If [., .] : E′c × E′c → E′c is continuous, then also the
Poisson bracket is continuous.

Various auxiliary results are needed to prove Theorem 1. With little risk of confusion
with subsets of spaces of operators, given a 0-neighbourhood W ⊆ F and a compact set
K ⊆ U, we shall write bK, Wc := { f ∈ C(U, F) : f (K) ⊆W}.

Lemma 17. Let E, F be locally convex spaces and U ⊆ E be open. Then, the linear map

D : C∞
K (U, F)→ C∞

K (U, L(E, F)c) , f 7→ f ′

is continuous.

Proof. By Corollary 1, f ′ ∈ C∞
K (U, L(E, F)c) for each f ∈ C∞

K (U, F). As D is linear and also
C∞(U, L(E, F)c)→ C(U × Ek, L(E, F)c), f 7→ dk f is linear for each k ∈ N0,

dk ◦ D : C∞(U, F)→ C(U × Ek, L(E, F)c)c.o. (20)

is linear, whence it will be continuous if it is continuous at 0. We pick a typical 0-
neighbourhood in C(U × Ek, L(E, F)c)c.o., say bK, Vc with a compact subset K ⊆ U × Ek

and a 0-neighbourhood V ⊆ L(E, F)c. After shrinking V, we may assume that V = bA, Wc
for some compact set A ⊆ E and 0-neighbourhood W ⊆ F.
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We now recall that for f ∈ C∞
K (U, F), we have

dk( f ′)(x, y1, . . . , yk) = dk+1 f (x, y1, . . . , yk, ·) : E→ F (21)

for all k ∈ N0, x ∈ U and y1, . . . , yk ∈ E (cf. Corollary 1). Since bK × A, Wc is an open 0-
neighbourhood in C(U× Ek+1, F) and the map C∞(U, F)→ C(U× Ek+1, F)c.o., f 7→ dk+1 f
is continuous, we see that the set Ω of all f ∈ C∞(U, F) such that dk+1 f ∈ bK× A, Wc is
a 0-neighbourhood in C∞(U, F). In view of (21), we have dk( f ′) ∈ bK, bA, Wcc for each
f ∈ Ω. Hence, dk ◦ D from (20) is continuous at 0, as required.

Lemma 18. Let X be a Hausdorff topological space, F be a locally convex space, K ⊆ X be compact
and M ⊆ C(X, F)c.o. be compact. Let ev : C(X, F)× X → F, ( f , x) 7→ f (x) be the evaluation
map. Then, ev(M× K) is compact.

Proof. The map ρ : C(X, F)c.o. → C(K, F)c.o., f 7→ f |K is continuous by [20] (§3.2 (2)). Thus,
ρ(M) is compact in C(K, F)c.o.. The map ε : C(K, F)× K → F, ( f , x) 7→ f (x) is continuous
by [20] (Theorem 3.4.2). Hence, ev(M× K) = ε(ρ(M)× K) is compact.

Lemma 19. Let E, F1, F2, and G be locally convex K-vector spaces and β : F1 × F2 → G be a
bilinear map which is c-hypocontinuous in its second argument. Let U ⊆ E be an open subset and
r ∈ N0 ∪ {∞}. Assume that E× E is a kR-space, or r = 0 and E is a kR-space, or (r,K) = (∞,C)
and E is a kR-space. Then, the following holds:

(a) We have β ◦ ( f , g) ∈ Cr
K(U, G) for all ( f , g) ∈ Cr

K(U, F1)× Cr
K(U, F2). The map

Cr
K(U, β) : Cr

K(U, F1)× Cr
K(U, F2)→ Cr

K(U, G), ( f , g) 7→ β ◦ ( f , g)

is bilinear. For each compact subset M ⊆ Cr
K(U, F2) and 0-neighbourhood W ⊆ Cr

K(U, G),
there is a 0-neighbourhood V ⊆ Cr

K(U, F1) such that Cr
K(U, β)(V ×M) ⊆W.

(b) For each g ∈ Cr
K(U, F2), the map Cr

K(U, F1) → Cr
K(U, G), f 7→ β ◦ ( f , g) is continuous

and linear.
(c) If β is also c-hypocontinuous in its first argument, then Cr

K(U, β) is c-hypocontinuous in its
second argument and c-hypocontinuous in its first argument.

(d) If β is continuous, then Cr
K(U, β) is continuous.

Proof. (a) By Lemma 11, β ◦ ( f , g) ∈ Cr
K(U, G). The bilinearity of Cr(U, β) is clear. It

suffices to prove the remaining assertion for each r ∈ N0. To see this, let M ⊆ C∞
K (U, F2) be a

compact subset and W ⊆ C∞
K (U, G) be a 0-neighbourhood. Since the topology on C∞

K (U, G)
is initial with respect to the family of inclusion maps C∞

K (U, G) → Cr
K(U, G) for r ∈ N0,

there exists r ∈ N0 and a 0-neighbourhood Q in Cr
K(U, G) such that C∞

K (U, G) ∩ Q ⊆
W. If the assertion holds for r, we find a 0-neighbourhood P ⊆ Cr

K(U, F1) such that
Cr
K(U, β)(P×M) ⊆ Q. Then, V := C∞

K (U, F1) ∩ P is a 0-neighbourhood in C∞
K (U, F1) and

C∞
K (U, β)(V ×M) ⊆ C∞

K (U, G) ∩ Cr
K(U, β)(P×M) ⊆ C∞

K (U, G) ∩Q ⊆W.
The case r = 0. Let M ⊆ C(U, F2) be compact and W ⊆ C(U, G) be a 0-neighbourhood.

Then, bK, Qc ⊆ W for some compact subset K ⊆ U and some 0-neighbourhood Q ⊆ G.
By Lemma 18, the set N := ev(M× K) ⊆ F2 is compact, where ev : C(U, F2)×U → F2 is
the evaluation map. Since β is c-hypocontinuous in its second argument, there exists a
0-neighbourhood P ⊆ F1 with β(P× N) ⊆ Q. Then, β ◦ (bK, Pc ×M) ⊆ bK, Qc ⊆W.

Induction step. Let M ⊆ Cr
K(U, F2) be a compact subset and W ⊆ Cr

K(U, G) be a
0-neighbourhood. The topology on Cr(U, G) is initial with respect to the linear maps
λ1 : Cr

K(U, G)→ C(U, G)c.o., f 7→ f and λ2 : Cr
K(U, G)→ Cr−1

K (U × E, G), f 7→ d f (by [26]
(Lemma A.1 (d))). Note that the ordinary Cr-topology is used there, by [26] (Proposition
4.19 (d) and Lemma A2). After shrinking W, we may therefore assume that

W = (λ1)
−1(W1) ∩ (λ2)

−1(W2)
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with absolutely convex 0-neighbourhoods W1 ⊆ C(U, G) and W2 ⊆ Cr−1
K (U × E, G). Ap-

plying the case r = 0 to C(U, β), we find a 0-neighbourhood V1 ⊆ C(U, F1) such that
C(U, β)(V1 ×M) ⊆ W1. The map δj : Cr

K(U, Fj)→ Cr−1
K (U × E, Fj), f 7→ d f is continuous

linear and π : U × E→ U, (x, y) 7→ x is smooth, whence ρj : Cr
K(U, Fj)→ Cr−1

K (U × E, Fj),
f 7→ f ◦ π is continuous linear (cf. [26] (Lemma 4.4) or [13] (Proposition 1.7.11)). By (5),

λ2 ◦ Cr
K(U, β) = Cr−1

K (U × E, β) ◦ (δ1 × ρ2) + Cr−1
K (U × E, β) ◦ (ρ1 × δ2) . (22)

The subsets ρ2(M) ⊆ Cr−1
K (U × E, F2) and δ2(M) ⊆ Cr−1

K (U × E, F2) are compact.
Using the case r− 1 (with U × E in place of U), which holds as the inductive hypothesis,
we find 0-neighbourhoods V2, V3 ⊆ Cr−1

K (U × E, F1) such that Cr−1
K (U, β)(V2 × ρ2(M)) ⊆

(1/2)W2 and Cr−1
K (U, β)(V3 × δ2(M)) ⊆ (1/2)W2. Then, Q := (δ1)

−1(V2) ∩ (ρ1)
−1(V3)

is an open 0-neighbourhood in Cr
K(U, F1). Since (1/2)W2 + (1/2)W2 = W2, we deduce

from (22) that

λ2(Cr
K(U, β)(Q×M)) ⊆ Cr−1

K (U × E, β)(V2 × ρ2(M)) + Cr−1
K (U × E, β)(V3 × δ2(M)) ⊆W2.

Thus, Cr
K(U, β)(Q×M) ⊆ (λ2)

−1(W2). Now, V := V1 ∩ Q is a 0-neighbourhood in
Cr
K(U, F1) such that Cr

K(U, β)(V ×M) ⊆ (λ1)
−1(W1) ∩ (λ2)

−1(W2) = W.
(b) Since Cr

K(U, β) is bilinear, the map f 7→ β ◦ ( f , g) is linear. Its continuity follows
from (a), applied with the singleton M := {g}.

(c) By (a) just established, the condition in Lemma 4 (a) is satisfied. By (b), the map
Cr
K(U, β) is continuous in its first argument. Interchanging the roles of F1 and F2, we see

that Cr
K(M, β) is also continuous in its second argument and hence c-hypocontinuous in its

second argument. Likewise, Cr
K(U, β) is c-hypoocontinuous in its first argument.

(d) If β is continuous and hence smooth, then Cr(U, β) is smooth and hence continuous,
as a very special case of [26] (Proposition 4.16) or [13] (Corollary 1.7.13).

Proof of Theorem 1. By Lemma 17, the mapping D : C∞(U,K) → C∞(U, E′c), f 7→ f ′ is
continuous and linear. By Lemma 19 (c), the bilinear map

C∞(U, [., .]) : C∞(U, E′)× C∞(U, E′)→ C∞(U, E′) , ( f , g) 7→ (x 7→ [ f (x), g(x)])

is c-hypocontinuous in its second argument; if [., .] is continuous, then also C∞(U, [., .]), by
Lemma 19 (d). The evaluation map β : E× E′c → K, (x, λ) 7→ λ(x) is c-hypocontinuous
in its first argument, by Proposition 7. As a consequence, β∗ : C∞(U, E′c) → C∞(U,K),
f 7→ β ◦ (idU , f ) is continuous linear by Lemma 19 (b). Since

{., .} = β∗ ◦ C∞(U, [., .]) ◦ (D× D)

by definition, we see that {., .} is a composition of continuous maps if [., .] is continuous,
and hence continuous. In the general case, {., .} is a composition of a bilinear map which
is c-hypocontinuous in its second argument and continuous linear maps, whence {., .} is
c-hypocontinuous in its second arguemnt.

13. Continuity of the Map Taking f to the Hamiltonian Vector Field X f

In this section, we show the continuity of the mapping which takes a smooth function
to the corresponding Hamiltonian vector field, in the case S = c.

Theorem 2. Let (E, [., .]) be a locally convex Poisson vector space with respect to S = c. Let
U ⊆ E be an open subset. Then, the map

Ψ : C∞
K (U,K)→ C∞

K (U, E) , f 7→ X f (23)

is continuous and linear.
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Proof. Let ηE : E → (E′c)′c be the evaluation homomorphism and V := {A ∈ L(E′c, E′c) :
(∀x ∈ E) ηE(x) ◦ A ∈ ηE(E)}. Then, V is a vector subspace of L(E′c, E′c) and ad(E′) ⊆ V.
The composition map Γ : (E′c)′c × L(E′c, E′c)c → (E′c)′c, (α, A) 7→ α ◦ A is hypocontinuous
with respect to equicontinuous subsets of (E′c)′c, by Proposition 9 in [11] (Chapter III, §5,
no. 5). If K ⊆ E is compact, then the polar K◦ is a 0-neighbourhood in E′c, entailing that
(K◦)◦ ⊆ (E′c)′ is equicontinuous. Hence, ηE takes compact subsets of E to equicontinuous
subsets of (E′c)′, and hence

β : E×V → E , (x, A) 7→ η−1
E (Γ(ηE(x), A))

is c-hypocontinuous in its first argument. By Lemma 19 (c), β∗ : C∞(U, V) → C∞(U, E),
f 7→ β ◦ (idU , f ) is continuous linear. Moreover, the map D : C∞(U,K) → C∞(U, E′c),
f 7→ f ′ is continuous linear by Lemma 17. Furthermore, ad = [., .]∨ : E′c → L(E′c, E′c)c is
continuous linear since [., .] is c-hypocontinuous in its second argument (see Lemma 4 (b)),
whence

C∞(U, ad) : C∞(U, E′c)→ C∞(U, L(E′c, E′c)c) , f 7→ ad ◦ f

is continuous linear (see, e.g., [26] (Lemma 4.13), or [13] (Corollary 1.7.13)). Hence,
Ψ = β∗ ◦ C∞(U, ad) ◦ D is continuous and linear.
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Appendix A. Proofs for Some Basic Facts

We give proofs for various facts stated in Section 2.

Proof of Lemma 1. Let E := E1 × · · · × Ek. Since d f : U × E× X × E → F is continuous
and d f (x, 0, 0, 0) = 0, given q, there exists a continuous seminorm p on X such that
Bp

1 (x) ⊆ U, and continuous seminorms pj on Ej for j ∈ {1, . . . , k} such that

‖d f (y, v1, . . . , vk, z, w1, . . . , wk)‖q ≤ 1 (A1)

for all vj, wj ∈ B
pj
1 (0), y ∈ Bp

1 (x), and z ∈ Bp
1 (0). For y ∈ Bp

1 (x) and (v1, . . . , vk) ∈
Bp1

1 (0)× · · · × Bpk
1 (0), the Mean Value Theorem (see [13] (Proposition 1.2.6)) shows that

f (y, v1, . . . , vk) =
∫ 1

0
d f (y, tv1, . . . , tvk, 0, v1, . . . , vk) dt .

Since ‖d f (y, tv1, . . . , tvk, 0, v1, . . . , vk)‖q ≤ 1 for each t, it follows that ‖ f (y, v1, . . . , vk)‖q
≤ 1 in the preceding situation. Because f (y, ·) is k-linear, we deduce that (1) holds. To
prove (2), we first note that (A1) implies that

‖d f (y, v1, . . . , vk, z, 0, . . . , 0)‖q ≤ ‖z‖p (A2)

for all y ∈ Bp
1 (x), (v1, . . . , vk) ∈ Bp1

1 (0)× · · · × Bpk
1 (0) and z ∈ X, exploiting the linearity of

d f (y, v1, . . . , vk, z, 0, . . . , 0) in z. We now use the Mean Value Theorem to write

f (y, v1, . . . , vk)− f (x, v1, . . . , vk) =
∫ 1

0
d f (x + t(y− x), v1, . . . , vk, y− x, 0, . . . , 0) dt
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for y ∈ Bp
1 (x) and (v1, . . . , vk) ∈ Bp1

1 (0)× · · · × Bpk
1 (0). By (A2), we have

‖d f (x + t(y− x), v1, . . . , vk, y− x, 0, . . . , 0)‖q ≤ ‖y− x‖p

and hence ‖ f (y, v1, . . . , vk) − f (x, v1, . . . , vk)‖q ≤ ‖y − x‖p. Now, (2) follows, using the
k-linearity of the map f (y, ·)− f (x, ·) : E1 × · · · × Ek → F.

Proof of Lemma 2. By the Polarisation Formula for symmetric k-linear maps (see, e.g., ([13],
Proposition 1.6.19)), we have

f (x, y1, . . . , yk) =
1

k!2k ∑
ε1,...,εk∈{−1,1}

ε1 · · · εk h(x, ε1y1 + · · ·+ εkyk)

for all x ∈ U and y1, . . . , yk ∈ E. Thus, f is Cr
K if h is so.

Proof of Lemma 3. (a) Let pr2 : X1 × X2 → X2, (x, y) 7→ y be the projection onto the
second component and pick x0 ∈ X1. Since pr2 is continuous, every k-continuous function
f : X2 → R yields a k-continuous function f ◦ pr2 on X. Then, f ◦ pr2 is continuous and
hence also f = ( f ◦ pr2)(x0, ·).

(b) Let f : U → R be k-continuous and x ∈ U. As X is completely regular, we find a
continuous function g : X → R with g(x) 6= 0 and support supp(g) ⊆ U. Define h : X → R
via h(y) := f (y)g(y) if y ∈ U, h(y) := 0 if y ∈ X \ supp(g). If K ⊆ X is a compact
subset, then each x ∈ K has a compact neighbourhood Kx in K which is contained in U
or in X \ supp(g). In the first case, h|Kx = f |Kx g|Kx is continuous by k-continuity of f .
In the second case, h|Kx = 0 is continuous as well. Thus, h|K is continuous. Since X is
a kR-space, continuity of h follows. Thus, f is continuous on the open x-neighbourhood
g−1(R \ {0}).

A simple fact will be useful (see, e.g., [8] (Lemma 1.13)).

Lemma A1. Let X be a topological space, F be a locally convex space, and BC(X, F) be the space of
bounded F-valued continuous functions on X, endowed with the topology of uniform convergence.
Then, µ : BC(X, F)× X → F, ( f , x) 7→ f (x) is continuous.

Proof of Lemma 4. (If k = 2, see Proposition 3 and 4 in [11] (Chapter III, §5, no. 3) for the
equivalence (a)⇔(b) and the implication (b)⇒(c); (c)⇒(a) can be found in [8] (Proposition 1.8).)
(a)⇔(b): β(V × M) ⊆ W is equivalent to β∨(V) ∈ bM, Wc. Hence, (a) is equivalent to
continuity of β∨ in 0 and hence to its continuity (see Proposition 5 in [11] (Chapter I, §1,
no. 6)).

(b)⇒(c): If M ∈ S , then ε : Lk−j+1(Ej, . . . , Ek, F)S ×M→ F, ε(α, x) := α(x) is continu-
ous as a consequence of Lemma A1. Hence, β|E1×···×Ej−1×M = ε ◦ (β∨ × idM) is continuous.

(c)⇒(a) if (3) holds: Given M ∈ S and a 0-neighbourhood W ⊆ F, by hypothesis,
we can find N ∈ S such that DM ⊆ N. By continuity of β|E1×···×Ej−1×N , there exist
0-neighbourhoods Vi ⊆ Ei for i ∈ {1, . . . , k} such that β(V × (N ∩ U)) ⊆ W, where
V := V1 × · · · × Vj−1 and U := Vj × · · · × Vk. Set a := j−1

k−j+1 . Since M is bounded,

M ⊆ naU for some n ∈ N. Then, 1
na M ⊆ N ∩ U. Using that β is k-linear, we obtain

β(( 1
n V)×M) = β(V × ( 1

na M)) ⊆ β(V × (N ∩U)) ⊆W.

Proof of Lemma 7. Given α ∈ Lk(E1, . . . , Ek, F), we have ε∨(α) = ε(α, ·) = α, which is a
continuous k-linear map. The map ε is also continuous in its first argument, as the topology
on Lk(E1, . . . , Ek, F)S is finer than the topology of pointwise convergence, by the hypothesis
on S . The linear map ε∨ : Lk(E1, . . . , Ek)S → Lk(E1, . . . , Ek)S , α 7→ α being continuous,
condition (b) of Lemma 4 is satisfied by ε in place of β and hence also the equivalent
condition (a), whence ε is S-hypocontinuous in its arguments (2, . . . , k + 1).
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Now, assume that k = 1. Since O is finer than the topology of pointwise convergence,
the map ε remains separately continuous in the situation described at the end of the lemma.
Hence, if E is barrelled, Lemma 6 ensures hypocontinuity with respect to T .

Proof of Lemma 8. (a) The composition β ◦ f is sequentially continuous and hence contin-
uous, its domain X being first countable.

(b) Write f = ( f1, . . . , fk) with components f j : X → Eν for ν ∈ {1, . . . , k}. If K is a
compact subset of X, then M := ( f j, . . . , fk)(K) is a compact subset of Ej × · · · × Ek. Since
β|E1×···×Ej−1×M is continuous by Lemma 4 (c), the composition

β ◦ f |K = β|E1×···×Ej−1×M ◦ f |K

is continuous. Thus, β ◦ f is k-continuous and hence continuous, as X is a kR-space and F
is completely regular.

Proof of Lemma 9. (a) The case r = 0: Let q be a continuous seminorm on F := ∏j∈J Fj,
and x ∈ U. After increasing q, we may assume that

q(y) = max{qj(yj) : j ∈ Φ} for all y = (yj)j∈J ∈ F, (A3)

for some non-empty, finite subset Φ ⊆ J and continuous seminorms qj on Fj for j ∈ Φ.
If each f j is LC0

K, then we find a continuous seminorm pj on E for each j ∈ Φ such that

B
pj
1 (x) ⊆ U and qj( f j(z)− f j(y)) ≤ pj(z− y) for all z, y ∈ B

pj
1 (x). Then

p : E→ [0, ∞[, y 7→ max{pj(y) : j ∈ Φ}

is a continuous seminorm on E such that Bp
1 (x) ⊆ U and q( f (z)− f (y)) ≤ p(z− y) for all

z, y ∈ Bp
1 (x). If f is LC0

K, let us show that f j is LC0
K for each j ∈ J. Let q be a continuous

seminorm on Fj and x ∈ U. Let prj : F → Fj, (yi)i∈J 7→ yj be the continuous linear projection
onto the jth component. Then, q ◦ prj is a continuous seminorm on F, whence we find a

continuous seminorm p on E such that Bp
1 (x) ⊆ U and (q ◦ prj)( f (z)− f (y)) ≤ p(z− y)

for all z, y ∈ Bp
1 (x). Since (q ◦ prj)( f (z)− f (y)) = q( f j(z)− f j(y)), we see that f j is LC0

K.

If r ∈ N ∪ {∞}, then f is Cr
K if and only if each f j is Cr

K, and dk f = (dk f j)j∈J in this
case for all k ∈ N0 such that k ≤ r (see [13] (Lemma 1.3.3)). By the case r = 0, the map dk f
is LC0

K if and only if dk( f j) is LC0
K for all j ∈ J. The assertion follows.

(b) Let E, F, and Y be locally convex K-vector spaces and f : U → F as well as
g : V → Y be LCr

K-maps on open subsets U ⊆ E and V ⊆ F, such that f (U) ⊆ V.

If r = 0, let x ∈ U and q be a continuous seminorm on Y. There exists a continuous
seminorm p on F such that Bp

1 ( f (x)) ⊆ V and q(g(b) − g(a)) ≤ p(b − a) for all a, b ∈
Bp

1 ( f (x)). There exists a continuous seminorm P on E with BP
1 (x) ⊆ U and p( f (z)− f (y))

≤ P(z− y) for all z, y ∈ BP
1 (x). Then, f (BP

1 (x)) ⊆ Bp
1 ( f (x)) and hence

q(g( f (z))− g( f (y))) ≤ p( f (z)− f (y)) ≤ P(z− y)

for all y, z ∈ BP
1 (x). Thus, g ◦ f : U → Y is LC0

K.
If r ∈ N∪ {∞} and k ∈ N such that k ≤ r, we can use Faà di Bruno’s Formula

dk(g ◦ f )(x, y) =
k

∑
j=1

∑
P∈Pk,j

djg( f (x), d|I1|(x, yI1), . . . , d|Ij |(x, yIj)) (A4)

for x ∈ U and y = (y1, . . . , yk) ∈ Ek, as in [13] (Theorem 1.3.18). Here, Pk,j is the set of
all partitions P = {I1, . . . , Ij} of {1, . . . , k} into j disjoint, non-empty subsets I1, . . . , Ij ⊆
{1, . . . , k}. For a non-empty subset J ⊆ {1, . . . , k} with elements j1 < · · · < jm, let yJ :=
(yj1 , . . . , yjm). Using (a) and the case r = 0, we deduce from (A4) that dk(g ◦ f ) is LC0

K.
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(c) For each continuous seminorm q on F, the restriction q|F0 is a continuous seminorm
on F0, and each continuous seminorm Q on F0 arises in this way. In fact, we find an open,
absolutely convex 0-neighbourhood V ⊆ F such that V ∩ F0 ⊆ BQ

1 (0). Then, the absolutely
convex hull W of V ∪ BQ

1 (0) is a 0-neighbourhood in F with W ∩ F0 = BQ
1 (0), whence

q|F0 = Q holds for the Minkowski funtional q of W. The case r = 0 follows.

If r ∈ N ∪ {∞}, let ι : F0 → F be the inclusion map and f : U → F0 be a map on an
open subset U ⊆ E. Then, f is Cr

K if and only if ι ◦ f is Cr
K, and dk(ι ◦ f ) = ι ◦ (dk f ) for all

k ∈ N0 such that k ≤ r (see [13] (Lemma 1.3.19)). By the case r = 0, each of the maps dk f is
LC0

K if and only if ι ◦ (dk f ) is so, from which the assertion follows.

(d) is immediate from (a) and (c).

Appendix B. Smooth Maps Need Not Extend to the Completion

Let E := {(xn)n∈N ∈ `1 : (∃N ∈ N)(∀n ≥ N) xn = 0} be the space of finite sequences,
endowed with the topology induced by the real Banach space `1 of absolutely summable
real sequences. Then, E is a dense proper vector subspace of `1, and `1 is a completion of E.
In this appendix, we provide a smooth map with the following pathological properties.

Proposition A1. There exists a smooth map f : E→ F to a complete locally convex space F which
does not admit a continuous extension to E ∪ {z} for any z ∈ `1 \ E.

Proof. Given z = (zn)n∈N ∈ `1 \ E, the set S := {n ∈ N : zn 6= 0} is infinite. For each
n ∈ N, we pick a smooth map hn : R → R such that hn(zn) = 1; if n ∈ S, we also require
that hn vanishes on some 0-neighbourhood. Endow RN with the product topology. Then

g : `1 → RN , x = (xn)n∈N 7→ (h1(x1) · · · hn(xn))n∈N

is a smooth map, as its components gn : `1 → R, x 7→ h1(x1) · · · hn(xn) are smooth. If
x = (xn)n∈N ∈ E, then there is N ∈ S such that xn = 0 for all n ≥ N. Thus, gn(x) = 0 for
all n ≥ N and hence g(x) ∈ E. Notably, g(x) ∈ `1. It therefore makes sense to define

fz : E→ `1 , x 7→ g(x) .

We now show: fz : E → `1 is a smooth map to `1 which does not admit a continuous
extension to E ∪ {z}.

In fact, for x and N as above, there exists ε > 0 such that hN(t) = 0 for each t ∈ ]−ε, ε[.
Identify RN with the closed vector subspace RN × {0} of E and RN. Then,

U := {y = (yn)n∈N ∈ E : |yN | < ε}

is an open neighbourhood of x in E such that fz(U) ⊆ RN . Thus, fz|U is smooth as a map
to RN and hence also as a map to `1. As a consequence, fz : E→ `1 is smooth.

Now, suppose that p = (pn)n∈N : E ∪ {z} → `1 was a continuous extension of fz; we
shall derive a contradiction. To this end, set yk := (z1, . . . , zk, 0, 0, . . .) ∈ E for k ∈ N. Then,
yk → z in E as k→ ∞. The inclusion map `1 → RN being continuous, we deduce that

pn(yk)→ pn(z) as k→ ∞,

for each n ∈ N. Since pn(yk) = gn(yk) = h1(z1) · · · hn(zn) = 1 for all k ≥ n, it follows that
pn(z) = 1 for all n ∈ N and thus (1, 1, . . .) = p(z) ∈ `1, which is absurd. Therefore, fz has
all of the asserted properties.

We now define Ω := `1 \ E and endow F := (`1)Ω with the product topology. We let
f := ( fz)z∈Ω : E→ F be the map with components fz as defined before. By construction, f
has the properties described in Proposition A1.
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