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Abstract:
differentiability properties of functions and associated operator-valued functions (e.g., differentials).

We prove various results in infinite-dimensional differential calculus that relate the

The results are applied in two areas: (1) in the theory of infinite-dimensional vector bundles, to
construct new bundles from given ones, such as dual bundles, topological tensor products, infinite
direct sums, and completions (under suitable hypotheses); (2) in the theory of locally convex Poisson
vector spaces, to prove continuity of the Poisson bracket and continuity of passage from a function
to the associated Hamiltonian vector field. Topological properties of topological vector spaces are
essential for the studies, which allow the hypocontinuity of bilinear mappings to be exploited.
Notably, we encounter kr-spaces and locally convex spaces E such that E x E is a kr-space.

Keywords: vector bundle; dual bundle; direct sum; completion; tensor product; cocycle; smoothness;
analyticity; hypocontinuity; k-space; compactly generated space; infinite-dimensional Lie group;

Poisson vector space; Poisson bracket; Hamiltonian vector field; group action; multilinear map

MSC: 26E15 (primary); 17B63; 22E65; 26E20; 46G20; 54B10; 54D50; 55R25; 58B10

1. Introduction

We study questions of infinite-dimensional differential calculus in the setting of
Keller’s Ck-theory [1] (going back to [2]). Applications to infinite-dimensional vector bun-
dles are given, and also applications in the theory of locally convex Poisson vector spaces.

Differentiability properties of operator-valued maps. Our results are centred around
the following basic problem: Consider locally convex spaces X, E and F, an open set U C X
and amap f: U — L(E, F); to the space of continuous linear maps, endowed with the
topology of uniform convergence on bounded sets. How are the differentiability properties
of the operator-valued map f related to those of

fHx0) = f(x)(0)?

We show that if /" is smooth, then also f is smooth (Proposition 1). Conversely,
exploiting the hypocontinuity of the bilinear evaluation map

fAMUxE—F,

L(E,F)y xE—=F, (a,0)— a(v),

we find natural hypotheses on E and F ensuring that smoothness of f entails smoothness
of f"* (Proposition 2; likewise for compact sets in place of bounded sets). Without extra
hypotheses on E and F, this conclusion becomes false, e.g., if U = X is a non-normable,
real, locally convex space with dual space X" := L(X,R). Then, f := idy: X] — Xj is
continuous linear and thus smooth, but f: Xj x X — R is the bilinear evaluation map
taking (A, x) to A(x), which is discontinuous for non-normable X (see [3] (p.2)) and hence
not smooth in the sense of Keller’s C°-theory. We also obtain results concerning finite-order
differentiability properties, as well as real and complex analyticity. Furthermore, L(E, F) can
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be replaced with the space Lk(El, ..., Ex, F) of continuous k-linear maps Ey X - -- X Ex — F,
if Eq, ..., Ex are locally convex spaces. (Related questions also play a role in the comparative
study of differential calculi [1].) As a very special case of our studies, the differential

f': U — L(E,F),

is "2, for each v € NU {oo} with r > 2, locally convex spaces E and F, and C"-map
f: U — Fonanopenset U C E (see Corollary 1).

Applications to infinite-dimensional vector bundles. Apparently, mappings of the
specific form just described play a vital role in the theory of vector bundles: If F is a
locally convex space, M a (not necessarily finite-dimensional) smooth manifold and (U;);¢;
an open cover of M, then the smooth vector bundles E — M, with fibre F, which are
trivial over the sets U;, can be described by cocycles g;;: U; N U; — GL(F) such that
Gij = g{]\-: (U;NU;) x F = F, (x,0) = gij(x)(v) is smooth (Proposition 3, Remark 7).
Then, g;; is smooth as a mapping to the space L(F), := L(F, F), (see Proposition 1). In
various contexts—for example, when trying to construct dual bundles—we are in the
opposite situation: we know that each g;; is smooth, and would like to conclude that
also the mappings G;; are smooth. Although this is not possible in general (as examples
show), our results provide additional conditions ensuring that the conclusion is correct in
the specific situation at hand. Notably, we obtain conditions ensuring the existence of a
canonical dual bundle (Proposition 13). Without extra conditions, a canonical dual bundle
need not exist (Example 2).

Besides dual bundles, we discuss a variety of construction principles of new vector
bundles from given ones, including topological tensor products, completions, and finite
or infinite direct sums. More generally, given a (finite- or infinite-dimensional) Lie group
acting on the base manifold M, we discuss the construction of new equivariant vector
bundles from given ones. Most of the constructions require specific hypotheses on the base
manifold, the fibre of the bundle, and the Lie group.

As to completions, complementary topics were considered in the literature: Given an
infinite-dimensional smooth manifold M, completions of the tangent bundle with respect
to a weak Riemannian metric occur in [4] (p.549), in hypotheses for a so-called robust
Riemannian manifold.

We mention that multilinear algebra and vector bundle constructions can be performed
much more easily in an inequivalent setting of infinite-dimensional calculus, the convenient
differential calculus [3]. However, a weak notion of vector bundles is used there, which
need not be topological vector bundles. Our discussion of vector bundles intends to
pinpoint additional conditions ensuring that the natural construction principles lead to
vector bundles in a stronger sense (which are, in particular, topological vector bundles).

The work [5] was particularly important for our studies. For an open subset U of a Fréchet
space E, smoothness of f/: U x EX — R is deduced from smoothness of f: U — AX(E"),
in the proof of [5] (Proposition IV.6). A typical hypocontinuity argument already appears
in the proof of [5] (Lemma IV.7). In contrast to the local calculations in charts, the global
structure on a dual bundle (and bundles of k-forms) asserted in the first remark of [5] (p. 339)
is problematic if Keller’s C°-theory is used, without further hypotheses.

Applications related to locally convex Poisson vector spaces. In the wake of works
by Odzijewicz and Ratiu on Banach—Poisson vector spaces and Banach-Poisson mani-
folds [6,7], certain locally convex Poisson vector spaces were introduced [8], which gen-
eralise the Lie-Poisson structure on the dual space of a finite-dimensional Lie algebra
going back to Kirillov, Kostant and Souriau. By now, the latter spaces can be embedded
in a general theory of locally convex Poisson manifolds (see [9]; for generalisations of
finite-dimensional Poisson geometry with a different thrust, cf. [10]). Recall that many
important examples of bilinear mappings between locally convex topological vector spaces
are not continuous, but at least hypocontinuous (cf. [11] for this classical concept). In
Sections 12 and 13, we provide the proofs for two fundamental results in the theory of lo-
cally convex Poisson vector spaces which are related to hypocontinuity. (These proofs were
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stated in the preprint version of [8], but not included in the actual publication.) We show
that the Poisson bracket associated with a continuous Lie bracket is always continuous
(Theorem 1) and that the linear map C®(E,R) — C®(E, E) taking a smooth function to
the associated Hamiltonian vector field is continuous (Theorem 2). Ideas from [8] and the
current article were also taken further in [12] (Section 13).

2. Preliminaries and Notation

We describe our setting of differential calculus and compile useful facts. Either refer-
ences to the literature are given or a proof; the proofs can be looked up in Appendix A.

Infinite-dimensional calculus. We work in the framework of infinite-dimensional
differential calculus known as Keller’s C’C‘—theory [1]. Our main reference is [13] (see
also [14-17]). If K € {R,C}, weletD := {t € K: [t| < 1} and D, := {t € K: || < ¢} for
e > 0. Wewrite N := {1,2,...} and Ny := NU {0}. All topological vector spaces considered
in the article are assumed Hausdorff, unless the contrary is stated. For brevity, Hausdorff
locally convex topological vector spaces will be called locally convex spaces. As usual, a
subset M of a K-vector space is called balanced if tx € M forall x € M and t € D. The subset
M is called absolutely convex if it is both convex and balanced. If g: E — [0, c0] is a seminorm
on a K-vector space E, we write B{ (x) := {y € E: q(y — x) < e} for x € Eand ¢ > 0. We
also write ||x||4 in place of q(x). If E is a locally convex K-vector space, we let E’ be the dual
space of continuous K-linear functionals A: E — K. We write M° := {A € E’: A(M) C D}
for the polar of a subset M C E. If a: E — F is a continuous K-linear map between locally
convex K-vector spaces, we let a’: F/ — E’, A — A o« be the dual linear map. We say
that a mapping f: X — Y between topological spaces is a fopological embedding if it is a
homeomorphism onto its image. We recall:

Definition 1. Let E and F be locally convex K-vector spaces over K € {R,C} and U C E be an
open subset. A map f: U — F is called C). if it is continuous, in which case we set d°f := f.
Given x € U and y € E, we define

4F(x,y) = (Dyf)(x) = lim L) =S ()

t—0 t

if the limit exists (using t € K* such that x +ty € U). Let r € NU {co}. We say that a
continuous map f: U — F is a Ci-map if the iterated directional derivative

df(x,y1,--.,yk) == (Dy, -+ Dy, ) (f) (%)

exists for all k € N such that k < r and all (x,y1,...,yx) € U x EX, and if the mappings
d*f: U x EK — F so obtained are continuous. Thus, d' f = df. If K is understood, we write C"
instead of Cy,. As usual, C*-maps are also called smooth.

Remark 1. For k € N, it is known that a map f: U — F as before is Cf[‘{ if and only if f is Cf and
df: U x E — Fis Ck1 (cf. [13] (Proposition 1.3.10)).

Remark 2. If K = C, it is known that amap f: E O U — F as before is CF if and only if it is
complex analytic in the sense of [18] (Definition 5.6): f is continuous and for each x € U, there
exists a 0-neighbourhood Y C E such that x +Y C U and f(x +y) = Yo o Pn(y) forally € Y
as a pointwise limit, where B, : E — F is a continuous homogeneous polynomial over C of degree n,
for each n € Ny [13] (Theorem 2.1.12). Furthermore, f is complex analytic if and only if f is CR
and df (x,-): E — F is complex linear for all x € U (see [13] (Theorem 2.1.12)). Complex analytic
maps will also be called C-analytic or C¢.

Definition 2. If K = R, then a map f: U — F as before is called real analytic (or R-analytic,
or CR) if it extends to a complex analytic mapping U — Fc on some open neighbourhood U of U in
the complexification Ec of E.
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In the following, r € Ny U {oo, w}, unless the contrary is stated. We use the conventions
w+k:=c0o—k:=ccand w+k := w—k := w, for each k € N. Furthermore, we extend
the order on Ny to an order on Ny U {o0, w} by declaring n < co < w for each n € Ny.

Remark 3. Compositions of composable Cy-mappings are Ci.-mappings (see Proposition 1.3.4,
Remark 2.1.13, and Proposition 2.2.4 in [13]). Thus, Cy-manifolds modelled on locally convex
K-vector spaces can be defined in the usual way (see [13] (Chapter 3) for a detailed exposition). In
this article, the word “manifold” (resp., “Lie group”) always refers to a manifold (resp., Lie group)
modelled on a locally convex space.

The following basic fact will be used repeatedly.

Lemma 1. Fork € N, let X, E1,...,Ey, and F be locally convex K-vector spaces, U C X be an
open subset and
frUXE; x---xE—F

be a Cl-map such that f¥(x) := f(x,-): Ey X - -+ x Ex — F is k-linear, for each x € U. Let
x € U and q be a continuous seminorm on F. Then, there exists a continuous seminorm p on X
with BY (x) C U, and continuous seminorms pjon E;forj€ {1,..., k} such that

1f o1 o)llg < loillp - lloellp,  and @

1f o100 = fo v oo)llg < Ny = xllpllonllp - lokllp €

forally € BY (x) and (vq,...,vg) € Ey X - -+ x E.
We shall also use the following fact:

Lemma 2. Let E and F be locally convex K-vector spaces, k > 2 be an integer and f: U x EFk > F
be a mapping such that f(x,-): EX — F is k-linear and symmetric for each x € U. Let r €
Ny U {OO, w}. If

h:UxE—F, (xvy) — f(xy,...,y)

is Cy, then also f is Ci. Notably, f is continuous if h is continuous.

k-spaces, kr-spaces, k*-spaces, and k,-spaces. Recall that a topological space X is
said to be completely reqular if it is Hausdorff and its topology is initial with respect to the
set C(X,R) of all continuous real-valued functions on X. Every locally convex space is
completely regular, as with every Hausdorff topological group (cf. [19] (Theorem 8.2)).
Compare [20,21] for the following.

A topological space X is called a k-space if it is Hausdorff and a subset A C X is
closed if and only if A N K is closed in K for each compact subset K C X. Every metrisable
topological space is a k-space, and every locally compact Hausdorff space. A Hausdorff
space X is a k-space if and only if, for each topological space Y, a map f: X — Yis
continuous if and only if f is k-continuous in the sense that f|x is continuous for each
compact subset K C X. If X is a k-space, then also every subset M C X which is open or
closed in X, when the induced topology is used on M.

A topological space X is called a kp-space if it is Hausdorff and a function f: X — R
is continuous if and only if f is k-continuous. Then also a map f: X — Y to a completely
regular topological space Y is continuous if and only if it is k-continuous (as the latter
condition implies continuity of g o f for each g € C(Y,R)). For more information, cf. [22].

Every k-space is a kg-space. The converse is not true: R! is known to be a kg-space for
each set I (see [22]). If I has cardinality > 2% then R! is not a k-space. (If R! was a k-space,
then a certain non-discrete subgroup G of (RR, +) constructed in [23] would be discrete,
which is a contradiction (see [13] (Remark A.6.16 (a)) for more details). Compare also [22].)

The following facts are well known (cf. [22]):
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Lemma 3. (a) If a kgr-space X is a direct product X1 x Xp of Hausdorff spaces and X1 # @,
then X» is a kr-space.
(b) Every open subset U of a completely reqular kr-space X is a kr-space in the induced topology.

Notably, U is a kr-space for each open subset U of a locally convex space E which is a
kr-space. If E x E is a kg-space, then also E.

Following [8], a topological space X is called a k*-space if the Cartesian power X"
is a k-space for each n € N, using the product topology. A Hausdorff space X is called
hemicompact if X = U,y Ky for a sequence K1 C K; C --- of compact subsets K, C X
such that each compact subset of X is a subset of some K. Hemicompact k-spaces are
also called k,-spaces. If X and Y are k,-spaces, then the product topology makes X x Y a
ke, -space. Notably, every k.,-space is a k*-space. See [24,25] for further information. Finite
products of metrisable spaces being metrisable, every metrisable topological space is a
k*-space. Recall that a locally convex space E is said to be a Silva space or (DFS)-space if it
is the locally convex inductive limit of a sequence E; C E; C - - of Banach spaces such
that each inclusion map E, — E, 1 is a compact operator. Every Silva space is a k,-space
(see, e.g., [13] (Proposition B13.13(g))).

Spaces of multilinear maps. Given k € N, locally convex K-vector spaces Ej, ..., E;
and F, and a set S of bounded subsets of E; x - - - x Ej, we write LK(E;,...,E, F)s or
L (Ey, ..., Ei, F)s for the space of continuous k-linear maps Ey X - - - x Ex — F, endowed
with the topology Os of uniform convergence on the sets B € S. Recall that finite intersec-
tions of sets of the form

|B,U| := {p€L"E,...,EF): B(B) C U}

yield a basis of 0-neighbourhoods for this (not necessarily Hausdorff) locally convex
vector topology, for U ranging through the 0-neighbourhoods in F and B through S.
If Uges B = Ej X --- X Ei, then Og is Hausdorff. If E; = --- = E;, we abbreviate
L*(E,F)s := LK(E,...,E,F)s. If k = 1 and E := E;, we abbreviate L(E, F)s := L'(E, F)g,
L (E,F)s := Li(E,F)s and L(E)s := L(E, E)s. We write GL(E) = L(E)* for the group
of all automorphisms of the locally convex K-vector space E. If S is the set of all bounded,
compact, and finite subsets of E; x - - - x Ej, respectively, we shall usually write “b,” “c,”
and “p” in place of S. For example, we shall write L¥(Ey,..., Ex, F)p, LX(Eq, ..., Ex, F)e, and
L¥(Ey, ..., Ex, F)p.

Remark 4. Let Eq, ..., E; and F be complex locally convex spaces and f: U — L{(‘:(El,. .., E, F)
be a map, defined on an open subset U of a real locally convex space. Let S := bor S := c.
Since LE(El, ..., Ex, F)s is a closed real vector subspace of L’I‘R(El, ..., Ex, F)s, themap f is C
as a map to LE(El,...,Ek,F)S if and only if f is C as a map to L’&(El,. .., Ex, F)s (see [13]
(Lemma 1.3.19 and Exercise 2.2.4)).

Given a Ci-map f: E O U — F as in Definition 1, we define f () := fand

fO U= L (B F),  fO(x) o= (df)" (x) = dIf(x,)

for j € Nsuch thatj <r.

Hypocontinuous multilinear maps. Beyond normed spaces, typical multilinear maps
are not continuous, but merely hypocontinuous. Hypocontinuous bilinear maps are dis-
cussed in many textbooks. An analogous notion of hypocontinuity for multilinear maps (to
be described presently) is useful to us. It can be discussed similarly to the bilinear case.

Lemma 4. For an integer k > 2, let B: E; X - - - X Ex — F be a separately continuous k-linear
mapping and j € {2,...,k} such that, for each x € Ey x - - - X E;_1, the map

BY(x):=pB(x,-): Ejx-- X Ex = F
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is continuous. Let S be a set of bounded subsets of Ej X - - - X Ey. Consider the conditions:

(a) Foreach M € S and each 0-neighbourhood W C F, there exists a 0-neighbourhood V C
Ey X -+ X Ej_q such that B(V x M) C W.

(b) The (j —1)-linear map B : Ey x --- X Ej_1 — Lk_f“(E]-, ..., Ex, F)s is continuous.

(c) IB‘Elx‘“XEj—1><M: Ey X -+ x Ej 1 x M — F is continuous, for each M € S.
Then (a) and (b) are equivalent, and (b) implies (c). If

(VM eS)(INeS) DMCN, 3)
then (a), (b), and (c) are equivalent.

Definition 3. A k-linear map B which satisfies the hypotheses and Condition (a) of Lemma 4
is called S-hypocontinuous in its arguments (j,..., k). If j = k, we also say that B is S-
hypocontinuous in the k-th argument. Analogously, we define S-hypocontinuity of B in the
j-thargument, if j € {1,...,k} and a set S of bounded subsets of E; are given.

We are mainly interested in b-, c-, and p-hypocontinuity, viz., in S-hypocontinuity with
respect to the set S of all bounded subsets of E j X X Ey, the set S of all compact subsets,
and the set S of all finite subsets, respectively. If S and 7T are sets of bounded subsets of
E;x --- x Exsuch that S C T and B is T-hypocontinuous in its variables (j, ..., k), then B
is also S-hypocontinuous in the latter. The following is obvious from Lemma 4 (c) (as the
elements of a convergent sequence, together with its limit, form a compact set):

Lemma5. If B: Eq X -+ - X E — F is c-hypocontinuous in some argument, or in its arguments
(j, ..., k) for some j € {2,...,k}, then B is sequentially continuous.

In many cases, separately continuous bilinear maps are automatically hypocontinuous.
Recall that a subset B of a locally convex space E is a barrel if it is closed, absolutely convex,
and absorbing. The space E is called barrelled if every barrel is a 0-neighbourhood. See
Proposition 6 in [11] (Chapter III, §5, no. 3) for the following fact.

Lemma 6. If B: E1 x Ey; — F is a separately continuous bilinear map and E; is barrelled, then
is S-hypocontinuous in its second argument, with respect to any set S of bounded subsets of E.

Evaluation maps are paradigmatic examples of hypocontinuous multilinear maps.

Lemma 7. Let Ey, ..., Ex and F be locally convex K-vector spaces and S be a set of bounded
subsets of E := Eq X - - - X Ex with Upres M = E. Then, the (k + 1)-linear map

e: LF(Ey, ..., B, F)s XE; x - X Ex = F, (B,x) — B(x)

is S-hypocontinuous in its arguments (2,...,k+1). Ifk = 1 and E = E; is barrelled, then
e: L(E,F) x E — F is also hypocontinuous in the first arqument, with respect to any locally
convex topology O on L(E, F) which is finer than the topology of pointwise convergence, and any
set T of bounded subsets of (L(E, F), O).

Lemma 8. Consider locally convex spaces Eq,...,Ey and F with k > 2 and a k-linear map

B:Ey x--- X Ex — F.

(@) If B is sequentially continuous, then the composition B o f is continuous for each continuous
function f: X — Eq X --- x Ey on a topological space X which is metrisable or satisfies the
first axiom of countability.

(b) If B is c-hypocontinuous in its arquments (j, ..., k) for some j € {2,...,k} and X is a
kgr-space, then B o f is continuous for each continuous function f: X — Eq X - -+ x Eg.
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Lipschitz differentiable maps. In Section 7, it will be useful to work with certain
Lipschitz differentiable maps, instead of C"-maps. We briefly recall concepts and facts.

Definition 4. Let E and F be locally convex K-vector spaces, U C E be open and f: U — F bea
map. We say that f is locally Lipschitz continuous or LCY. if it has the following property: For
each x € U and continuous seminorm q on F, there exists a continuous seminorm p on E such that
B (x) C U and

9(f(z) = f(y)) < plz—y) forally,z € Bi(x).

Given r € No U {oo}, we say that f is LCY if f is Ck and d*f: U x EX — F is LCY, for each
k € Ng such that k < r.

Every Cl-map is LCY (see, for example, [13] (Exercise 1.5.4)). As a consequence, for
eachr € NU {0}, every C-map is LCE{l. Notably, every smooth map is LCf. Moreover,
a CL-map with finite r is LCL if and only if d" f is LC%.. The following facts are known, or

K K K
part of the folklore.

Lemma 9. For locally convex spaces over K € {R,C} and r € No U {oo}, we have:

(@) Amap f: E DU — [lic; F; to a direct product of locally convex spaces is LCy if and only
each component is LCy;

(b) Compositions of composable LCy-maps are LCy;

(c) Let F be a locally convex space and Fy C F be a vector subspace which is closed in F, or
sequentially closed. Then, amap f: E 2 U — Fy is FCy if and only if it is FCy as a map
to F.

(d) Amap E O U — P to a projective limit P = @F] of locally convex spaces is LCy if and
onlyif pjo f: U— Fjis LCy forall j € ], where p;: P — F; is the limit map.

Our concept of local Lipschitz continuity is weaker than the one in [13] (Definition 1.5.4).

The compact-open C"-topology. If E and F are locally convex K-vector spaces, U C E
is an open set and r € Ny U {co}, then the vector space Ci (U, F) of all Ci-maps U — F
carries a natural topology (the “compact-open C"-topology”), namely the initial topology
with respect to the mappings

Cr(U,F) = C(UXELF)eo. frsdif

for j € Ny such that j < r, where the right-hand side is endowed with the compact-open
topology. Then, Ci (U, F) is a locally convex K-vector space. If F is a complex locally
convex space, then also C]%(U, F). See, e.g., [13] (8§1.7) for further information, or [26].

3. Differentiability Properties of Operator-Valued Maps

LetL € {R,C},K € {R,L}, and r € Ny U {0, w}. In this section, we establish the
following proposition.

Proposition 1. Letk € N, r € NgU {oo,w}, Ey, ..., Ex and F be locally convex LL-vector spaces,
X be a locally convex K-vector space, and U C X be an open subset. Let f: U — L’]i(El, ..., E, F)
be a map such that

fAiUXE x--xE—F, fx,0):=f(x)(v) forx€Uve€Ex- xE

is C. Then, the following holds:

(@) fisClasamaptoLk (Ey,..., E,F)..
(b) Ifr > 1, then fis Cﬁgl asamap to L (Ey, ..., Eg, F)p.
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Furthermore,

df(x,y1,..,y)(0) = d () ((x,0), (11,0),. ., (y},0)) 4)

forallj € Nwithj <r (resp.,j <r—1,in(b)),allx € U,v € Ey X --- X E,and yy,...,y; € X.

Corollary 1. Let E and F be locally convex K-vector spaces and f: U — F be a Cie-map on an

open subset U C E, where r € NU {oo, w}. Then, the following holds:

(@) Themap fO: U — LY (E,F)e, x FO (x) =d*f(x,-)is Cﬁgk,for each k € N such that
k<r.

(b) Themap f&): U — LE(E, F)yis Ci ¥, for each k € N such thatk <r — 1.
Furthermore, di(f®))(x,y1, .. Lyj) = AR f(x, oy, yp), forall j € Nwith j+k <r

(resp., j+k<r—1),allx € Uandy,...,y; € E.

Proof. For each k € N such that k < 7, the map d*f: U x E¥ — F is Cﬁgk (see [13]

(Remark 1.3.13 and Exercise 2.2.7)), and f®)(x) = df(x,") is k-linear for each x € U,
by [13] (Proposition 1.3.17). Moreover, (f*))" = dkf. Thus, Proposition 1 applies with f()
in place of f and r — k in place of r. [

Given a topological space X and locally convex space F, we endow the space C(X, F)
of continuous F-valued functions on X with the compact-open topology. It is known that
this topology coincides with the topology of uniform convergence on compact sets. The
next lemma will be useful when we discuss mappings to L*(E, F)..

Lemma 10. Let X, E, and F be locally convex K-vector spaces, U C X and W C E be open
subsets, and f: U x W — F be a Cl.-map, with r € No U {oo}. Then, also the map

fYiUu — C(W,F), x+ f(x,-)

is Ci. If K = R and f admits a complex analytic extension h: U x W — Fg for suitable open
neighbourhoods U of U in X¢ and W of W in Ec, then f" is real analytic.

Proof. We first assume that r € Ny, and proceed by induction. For v = 0, the assertion is
well known (see, e.g., [13] (Proposition A.6.17)). Now assume that r € N. Given x € U and
y € X, there exists ¢ > 0 such that x + D% C U, where D! := {t € K: |t| < ¢}. Consider

f(x+ty,wt)ff(x,w) if ¢ ?g 0;

g:]D)SXW—>F, (t,w) — { df((x,w),(y,0)) if t=0.

Then, g(t,w) = fol df((x + sty,w), (y,0)) ds, by the Mean Value Theorem. The inte-
grand being continuous, also g is continuous (by the Theorem on Parameter-Dependent
Integrals, [13] (Lemma 1.1.11)). Hence, ¢¥: V — C(W, F) is continuous, by induction,

and hence Y t Y
f (x+ ]/t)_f (x) _ g\/(t) N gV(O)

ast — 0, where gV (0) = df((x,-), (y,0)) = k" (x,y) with

k:(UXE)xW —=F, (xyw)—df((x,w),(y0)).

Since k is Ck_l, the map d(fV) = k" is Cﬁgl, by the inductive hypothesis. Notably,
d(f") is continuous and hence f" is Ck. Now, f" being C} with d(f") a C '-map, f"
is Ci.

The case v = oo. If f is Cy, then f is C]’f{ for each k € Ny. Hence, fV is C]’f{ for each
k € Ny (by the case already treated), and thus f is Cf.
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Final assertion. By the Ciz-case already treated, the map
hY: U — C(W,Fe)
is CZZ. The restriction map
p: C(W,Fc) = C(W, Fc), 71— lw
being continuous C-linear and thus Cg, it follows that the composition
poh': U — C(W,Ec) = C(W,F)¢c
is C¥ and thus complex analytic. Since p o 1" extends fV, we see that f" is real analytic. [

Proof of Proposition 1. (a) Abbreviate E := E; X - - - X Ej. Because L’Hi(El, ..., Ex,F)cisa
closed K-vector subspace of C(E, F) and carries the induced topology, f will be Cj, as a map
to Lﬁ(El,. .., E, F)¢ if we can show that f is Cj; as a map to C(E, F) (see [13] (Lemma 1.3.19
and Exercise 2.2.4)). Since f" is Cf and f = (f")V, the latter follows from Lemma 10. This
is obvious unless K = R and r = w. In this case, the map f/* admits a C-analytic extension
p: Q — Fc to an open neighbourhood Q of U x E in X¢ x Ec. For each x € U, there exists
an open, connected neighbourhood Uy of x in X¢ and a balanced, open 0-neighbourhood
Wy C Ec such that Uy x Wy C Qand U, N X C U. Let D := {z € C: |z| < 1}. Then,

g: Uy x Wy x D = Fe, (y,w,z)— p(y,zw) —zkp(y,w)

is a C-analytic map which vanishes on (U, x Wy x D) N (X x E x R). Hence, g = 0, by the
Identity Theorem (see [13] (Theorem 2.1.16 (c))). Then, p(y, zw) = z¥p(y, w) for all z € C
such that |z| < 1, by continuity. This implies that the map

1

g: Uy x Ec = Fe, (yw)w— zkp(y,z_ w) for some z € C* withz 1w € W,

is well defined. Since g is C-analytic, the final statement of Lemma 10 applies.

(b) We prove the assertion for r € N first; then, also the case r = oo follows. If
r =1, let x € U. Given an open 0-neighbourhood W C F and bounded subset B C E :=
Ej x -+ X Ey, let g be a continuous seminorm on F such that B;’ (0) € W. By Lemma 1, there
exist continuous seminorms p on X and p; on E; for j € {1,...,k} such that Bf (x) CUand

1F" (. 2) = £ 0)llg < lly = xlpllotllp, - loell

forally € Bl (x) and allv = (vy,...,v;) € Ey X - -+ x Ex. Since B is bounded, we have
= sup{|lo1llp, - lokllpp: o = (v1,...,0%) € B} < oo.

Choose § €]0,1] such that 5C < 1. Foreachy € B (x), we get || f" (y,v) — f(x,0) ||y <
6C < 1foreach v € Band thus f(y,v) — f"(x,0) € B}(0) C W. Hence,

fly) — f(x) € |[B,W] foreachy € Bf(x),

entailing that f is continuous.
Induction step: Now, assume that r > 2. Given x € U and y € X, there exists ¢ > 0
such that x + D% C U, where DY := {t € K: || < &}. Consider

fA (JH’ty,Ut)*f/\(x,U) lf t # 0[

g: ]D)g X Ek — F, (t,v) — { d(f/\)((x/v)’ (y/O)) if t=0.
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Then, g is Cﬁ{l and hence C]%{, as a consequence of [27] (Propositions 7.4 and 7.7). Since
g(t,v) is k-linear in v, it follows that g": U — L¥(E, F), is continuous, by induction. As a

consequence,
f(x+t]/t)_f(x) — g\/(t) N g\/(o)

ast — 0, where ¢V(0) = d(f")((x,-), (y,0)) = h¥(x,y) with

h: (UxESYxW = F, h((x,y),v):=d(f")((x,v),(y,0)).

Since h is Cﬁgl and h((x,y),v) is k-linear in v, the map df = h" is CIV[{2, by induction.
Hence, df is continuous and thus f is C]%g. Now, f being C]Il< with df a Cﬁgz—map, fis C]%_l.

The case K = R, r = w. By Remark 4, we may assume that L. = R (the case
L = C then follows). Given x € U, let g: Uy x Ec — F¢ be as in the proof of (a).
Identifying Ec with (E1)¢ X -+ X (Eg)c, the mapping g is complex k-linear in the sec-
ond variable. Hence g": Uy — LE((E1)c, ..., (Ex)c, Fo)p is C-analytic, by the C¥-case
already discussed. Because the map p: L%((El)c, o (E)e Fo)p — LE(Eq, ... Ex, Fo)p =
(L’H%(El, .o, Ex, F)p)c, @ — a|E is continuous C-linear, the composition p o ¢V is C-analytic.
However, this mapping extends f|i;,nx. Hence, f|i, nx is real analytic and hence so is f,
using that the open sets U, N X form an open cover of U.

Formula for the differentials: Let j € Nwithj <r,x € U, v € E; Xx--- X E and
Y1,.--,Y; € X. Exploiting that evy: L’H“(El,...,Ek, F). — F, B — B(v) is continuous and
linear, we deduce that

evo(df(x,y1,...y) = devoof)(xy....yp) = d(f(0)(xy....y)
= (%), (41,0),..., (;,0))

for f as a map to LX (Ey,...,Eg, F)e. If j < r — 1, the same calculation applies to f as a
mapping to L (Ey, ..., E, F),. O

For the special case of (a) when r = 0 and X as well as E; = - - - = Ej are metrisable,
see already [1] (Lemma 0.1.2).

4. Compositions with Hypocontinuous k-Linear Maps

We study the differentiability properties of compositions of the form o f, where g is
a k-linear map which need not be continuous.

Lemma 11. Let k > 2 be an integer, Eq, ..., Ex, X, and F be locally convex K-vector spaces,
B: Ey X -+ X Ex — F be a k-linear map, r € NgU {oo,w} and f: U — Ey x --- X E =: E be
a Ci-map on an open subset U C X. Assume that
(a) P is sequentially continuous and X is metrisable; or
(b) Forsomej € {2,...,k}, the k-linear map B is c-hypocontinous in its variables (j,..., k).
Moreover, X x X is a kg-space, or r = 0 and X is a kg-space, or (r,K) = (co,C) and X isa
kr-space.
Then, Bo f: U — Fisa Cy-map.

Proof. The case r = 0 was treated in Lemma 8. We first assume that » € N.
(a) Assuming (a), let x € U, y € X, and (t,),en be a sequence in K\ {0} such that

ty = 0asn — coand x + t,y € U for all n € N. Using the components of f = (f1,..., fx),
we can write the difference quotient % (B(f(x+tuy)) — B(f(x))) as the telescopic sum

k _
3 B(AG ) foa (ot ), PO ),

v=1
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which converges to

k
; BlA(x), s foa(x),dfu(x, ), fora(x), - fi(x) = d(Bo f)(x,y) ®)

as n — oo, using the sequential continuity of . By Lemma 8, d(B o f) is continuous, whence
BofisCk.Ifr > 2, then

GiUXXE  (xy) s () f1 (0,df (6), frrr(x), o, fi(2))

isa Cj !-map and d(Bo f) = Yt_, Bogyis Ci ' by induction; thus B o f is Ci. If r = oo,
the preceding shows that o f is Cj; for each s € Ny, whence B o f is Cy.

(b) If X x X is a kgr-space, then U x X and U are kr-spaces. By Lemma 5, § is
sequentially continuous. The argument from (a) shows that d(f o f)(x,y) exists for all
(x,y) € U x X and is given by (5). Thus d(p o f) is continuous, by Lemma 8, and thus p o f
is Ck. Let f be CIVK+1 now and assume o f is Cj, with rth differential of the form

d(Bof)xy,oy) =Y, B Ay, ... d" fi(xyy)) ®)
(I, Ir)

forx € Uand yy,...,yr € X, where (I, ..., Iy) ranges through k-tuples of (possibly empty)
disjoint sets I, ..., [ with ; U- - - U I, = {1,...,r}, and the following notation is used: For
ve{l,... k}, welet|l,| € Ngbe the cardinality of I, and define y;, := (yi, ..., ¥i,) € X™
ifiy <ip < --- < iy are the elements of I, abbreviating m := |} (if I, is empty, the symbol
Yo is to be ignored). Holding vy, ..., y, fixed, we can apply the case r = 1 to the function
d" f(-,y1,...,y,) and find that, for each x € U and y,,1 € X, the directional derivative at x
in the direction y,,1 exists and is given by

k
A Bof)xyy1) = Y YA A (), LAy ),

(I],...,Ir) v=1
AW E (g y, ), A (o y ), AT (e ).

Thus, also d"*1(B o f) is of the form (6), with 7 + 1 in place of . Using Lemma 8, we
deduce from the preceding formula that the map

UXE—F, (xy)—d* (Bof)(xy,...,y)

is continuous. Thus, @"+1(B o f) is continuous, by Lemma 2, and thus B o f is Ci' L.

If (r,K) = (0,R), then B o f is Cj; for each s € Ny and hence Cy’ (still assuming (b)).

If (r,K) = (c0,C) and X is only assumed kg, then B o f is continuous by the case
r = 0. Moreover, the restriction g o f|yny is C& for each finite-dimensional vector subspace
Y C X, by case (a). Hence, f is C¢ (and thus CZ) as a mapping to a completion of F (see [18]
(Theorem 6.2)). Then, f is also C as a map to F, as all of its iterated directional derivatives
arein F.

Both in (a) and (b), it remains to consider the case (7, K) = (w,R). Then, f admits a
C-analytic extension f: U — (Ej)¢ X - - - X (Eg)c, defined on an open neighbourhood U
of U in X¢. The complex k-linear extension B¢: (E1)c X - -+ X (Ex)c — Fc of B is given by

1
i Y TRy, Xeg,)
al,...,ﬂkZO

forz = (x1,0+ix1,1,..., X0 +ixg1) with x, 0 € Ey and x,; € E, forv € {1,...,k}. By the
latter formula, B is sequentially continuous in the situation of (a), and c-hypocontinuous
in its arguments (j,..., k) in the situation of (b). The case (oo, C) shows that B¢ o f is
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complex analytic. As this mapping extends B o f, the latter map is real analytic. In case (b),
we used here that X¢ = X x X is a kg-space. O

Moreover, the following variant will be useful.

Lemma 12. Let Xy, Xy, E1, Ep and F be locally convex K-vector spaces, and Uy C X1, Up C X»
be open subsets. Let r € No U {oo,w} and B: E; X Ey — F be a K-bilinear map. Assume that
X is finite-dimensional and B is c-hypocontinuous in its first variable. Then, for all Ci-maps
fi: Uy — Eyand fp: Uy x Uy — E, also the following map is Cy:

Uy xUp = F, (x1,x2)— B(fi(x1), fa(x1,x2)).

Proof. We first prove the assertion for r € Ny (from which the case r = o follows). If
r = 0, we have to show that g is continuous. If (x1,x) € Uy x Uy, then x1 has a compact
neighbourhood W = Wy, in Uj. Then, f;(W) is compact, and thus B, (), is continuous,
by c-hypocontinuity. Hence, glwxu, = Bl w)xE, © (fi © 7w, f2) is continuous, where
tw: W x Uy — W is the projection onto the first factor. Since (W,?1 X Up)y, ety is an open
cover of U x Uy, the map g is continuous.

Since B is sequentially continuous by Lemma 5, we see as in the preceding proof that
the directional derivative dg(x,y) exists for all x = (x1,x) € Uy x Up and y = (y1,12) €
X1 x Xy, and is given by

dg(x,y) = Bldfi(x1, 1), fa(x)) + B(fi(x1), df2(x,y)) - )

Note that (x1,y1) — f1(x1) and df; are Cﬁgl-mappings U; x X; — E;. Moreover,
((x1,31), (x2,42)) = fa(x1,%2) and ((x1,y1), (x2,2)) = dfa((x1,%2), (y1,y2)) are Ci -
maps (U; x X1) x (Uy x Xp) — E; (cf. Remark 1). By induction, the right-hand side of (7)
is a Cj; '-map. Hence, g is Cf.

The case (r,K) = (w, R) follows from the case (co, C) as in the preceding proof. [

Remark 5. In a setting of differential calculus in which continuity on products is replaced with
k-continuity (as championed by E. G. F. Thomas), every bilinear map B which is c-hypocontinuous
in the second factor is smooth (see [28] (Theorem 4.1)); smoothness of B o f for a smooth map f
then follows from the Chain Rule (cf. also [29]). Likewise, B is smooth in the sense of convenient
differential calculus.

5. Differentiability Properties of f
For k = 1, the following result is essential for our constructions of vector bundles.

Proposition 2. Let L € {R,C}, r € NyU{oo,w}, K € {R,L}, k € N, Ey,...,E; and F be

locally convex IL-vector spaces, X be a locally convex K-vector space, and U C X be an open subset.

Then, the following holds.

(@ If(XXEyx---xEg)x(XXE;X---xEy)isakg-space,orr = 0and X x E; X - - - X Ey.
is a kg-space, or (r,K) = (o0, C) and X x Eq X - - - X Ey is a kg-space, or all of the vector
spaces E1, ..., Ey are finite dimensional, then

f/\: UXE; x---xE—F, (xy1,...,yx) — f(x)(y1,---, k)

is Ci for each Cie-map f: U — L’Hi(El,. o Ex, e
(b) IfE:=E; = E; = --- = Ey holds and, moreover, (X x E) x (X X E) is a kg-space orr = 0
and X x E is a kg-space, or (r,K) = (0o, C) and X x E is a kg-space, then

UxERSF, oy = FO W)

is Cl for each Cl-map f: U — L¥ (E, F) such that f(x) is a symmetric k-linear map for
each x € U.
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(c) If X is finite-dimensional, k = 1, and E := Ey is barrelled, then f": U x E — F, (x,y)
f(x)(y) is Ci for each Cie-map f: U — Ly (E, F)c.

(d) Ifall of the spaces E, ..., Ey are normable, then f": U x Ey x --- x Ex — F is C for each
Clhe-map f: U — LK (Ey, ..., Ey, F)p.

Proof. Let ev: L’Hi(El, e Ex, F)e X Ey X - -+ x Ex — F be the evaluation map, which is
c-hypocontinuous in its arguments (2,...,k + 1) by Lemma 7.

(a) Assuming the respective kg-property, the map " = evo(f x idg, x...xg,) is
C, by Lemma 11 (b). If Ey, ..., Ej are finite-dimensional, then LE(Elw .., Ex, F)c equals
L’]i(El, ..., Ex, F)p, whence the conclusion of (a) is a special case of (d).

(b) By Lemma 11 (b), the map

¢:UXE—F, (x,y)— f"(x,y...,y)

is Ci, as g = evo(f x §) with 6: E — EX, y = (y,...,y), which is continuous K-linear.
Then, also f” is Cf, by Lemma 2.

(c) The bilinear map ev: L (E, F). x E — F is c-hypocontinuous in its first argument,
by Lemma 7. Hence, f* = evo(f x idg) is Cf, by Lemma 12.

(d) If Eq, ..., Ex are normable, then the evaluation map
e: LX(Ey,...,E,F)y x E; X --- X Ex — F
is continuous (k 4 1)-linear and hence Cj,, whence also f"* = eo (f x idg, x...xg,) is Cf. O

Remark 6. If X and all of Ey,...,E; are metrisable, then the topological space
(X X Ey X -+ X Eg) x (X x Ey X --- x Ey) is metrisable and hence a k-space. If X and all
of Eq, ..., Ex are ky,-spaces, then also (X x Eq X -+ X Eg) X (X X Eq X - -+ X Ey) is a k-space
and hence a k-space. In either case, we are in the situation of (a).

6. Infinite-Dimensional Vector Bundles

In this section, we provide foundational material concerning vector bundles modelled
on locally convex spaces (cf. also [13] (Chapter 3)). Notably, we discuss the description of
vector bundles via cocycles, and define equivariant vector bundles.

LetL € {R,C}, K € {R,L}, and r € Ny U {00, w}. The word “manifold” always
refers to a manifold modelled on a locally convex space. Likewise, the Lie groups that we
consider need not have finite dimension.

Definition 5. Let M be a Ci.-manifold and F be a locally convex IL-vector space. An IL-vector
bundle of class Ci, over M, with typical fibre F, is a C.-manifold E, together with a surjective
Cl-map 7t: E — M and endowed with an L-vector space structure on each fibre Ex := =1 ({x}),
such that, for each x € M, there exists an open neighbourhood U C M of x and a Ci-diffeomorphism

Y U) - UxF

(called a “local trivialisation”) such that $(E,) = {y} x F for each y € U and the map
prpolg,: Ey — F is L-linear (and hence an isomorphism of topological vector spaces, if we
give Ey the topology induced by E), where prp: U x F — F is the projection.

In the situation of Definition 5, let (¢;);c; be an atlas of local trivialisations for E, i.e., a
family of local trivialisations
P;: ﬂil(ui) — U; x F

of E whose domains U; cover M. Then, given i,j € I, we have

Py (x,0)) = (x,8i(x) (0))
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forx € U; N U]-, v € F, for some function
8ij: u;nN U] — GL(F) - L(F).

Here,
Gij: (UNU;) x F=F, (x,0) — g;j(x)(v)

is Ci, as gbi(l,bj_l(x, v)) = (x,Gjj(x,0v)) is Ci in (x,0) € (U; N Uj) x F. By Proposition 1,
gij: UiNU; — L(F). is a Ci-map, and as a map to L(F)y, it is at least Cﬁgl (if » > 1). Note
that the “transition maps” g;; satisfy the “cocycle conditions”

{ (VZ € I) (Vx S Ul-) gii(x) =idr and
(VijjkeI) (VxeUnU;nUy)  gij(x) o gjx(x) = gir(x).

Proposition 3. Let L € {R,C}, K € {R,LL}. Assume that

(@) M is a Cy-manifold modelled on a locally convex K-vector space Z;
(b) Eisasetand ir: E — M a surjective map;
() Fisalocally convex L-vector space;
(d) (U))ie; is an open cover of M;
() (;)icy is a family of bijections 77— (U;) — U; x F such that g;(7t—1({x})) = {x} x F for
all x € U;;
) gij(x)(v) == er(lpi(lpfl(x, v))) depends L-linearly on v € F, foralli,j € I, x € U; N U};
(8) Gij: (UiNU;) x F = F, Gjj(x,0) := g;j(x)(v) is a Ci-map.
Then, there is a unique IL-vector bundle structure of class Cy. on E making ; a local trivialisa-
tion for each i € I.

Proof. Fori,j € I, let pr;;: (U NU;j) x F — U; N U; be the projection onto the first compo-
nent. As the maps
i oy wnuy < = (Pryj, Gij)

are Cy, there is a uniquely determined C-manifold structure on E making ¢; a Cg-
diffeomorphism for each i € I. Given x € M, we pick i € [ with x € Uj; we give
E, := 1 1({x}) the unique L-vector space structure making the bijection pry oy;|, : Ex —
F an isomorphism of vector spaces. It is easy to see that the vector space structure on Ey
is independent of the choice of ¢;, and it is easily verified that we have turned E into an
[L-vector bundle of class Cj; with the asserted properties. []

Remark 7. Let M be a Ci-manifold, F be a locally convex LL-vector space, (U;);c be an open cover
of M, and (g;;); jc1 be a family of maps g;;: U; N U; — GL(F) satisfying the cocycle conditions
and such that

Gij: (UiNnUj) xF—=F, (x,v) — gj(x)(v)
is Ci, for all i,j € I. Using Proposition 3, the usual construction familiar from the finite-
dimensional case provides an L-vector bundle 7t: E — M of class Cj., with typical fibre F, and a

family (;)ie; of local trivialisations = (U;) — U; x F, whose associated transition maps are the
given g;;'s. The bundle E is unique up to canonical isomorphism.

Combining Proposition 3 and Proposition 2, we obtain:

Corollary 2. Retaining the hypotheses (a)—(f) from Proposition 3 but omitting (g), consider the

following conditions:

() gij(x) € L(F) foralli,j € I, x € U;NUj, and g;j: U; N U; — L(F)c is Cg;

(®)" gij(x) € L(F) foralli,j € I, x € U;NUj, and g;j: U; N U; — L(F)y is Ci;

(i) (ZxF)x (Z xF)isakgr-space, orr = 0and Z x F is a kg-space, or (r,K) = (oo, C) and
Z x F is a kr-space;
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(ii) dim(M) < oo and F is barrelled;
(iii) F is normable.

If ()’ holds as well as (i) or (ii), then the conclusions of Proposition 3 remain valid. They also
remain valid if ()" and (iii) hold.

Example 2 below shows that Conditions (a)—(f) and (g)’ alone are not sufficient for the
conclusion of Proposition 3, without extra conditions on Z and F. Note that (i) is satisfied if
both Z and F are metrisable, or both Z and F are k,-spaces.

Equivariant vector bundles. Beyond vector bundles, we shall discuss equivariant
vector bundles in the following, i.e., vector bundles together with an action of a (finite- or
infinite-dimensional) Lie group G. Choosing G = {e} as a trivial group, we obtain results
about ordinary vector bundles (without a group action), as a special case.

For the remainder of this section, and also in Section 7, let L € {R,C}, K € {R,L},
s € {oo,w}, and r € NgU {00, w} with r < s. Let G be a Cj;-Lie group (modelled on a
locally convex K-vector space Y) and M be a C-manifold. We assume that a Ci.-action

a: GxM—M
is given. Then, (M, a) is called a G-manifold of class Cf,.

Definition 6. An equivariant L-vector bundle of class C; over a G-manifold (M, «) of class
Ck is an L-vector bundle 7t: E — M of class Cy, together with a Cic-action

B:GXE—E

such that B(g, Ex) C Ey(gx) forall (g,x) € G x M, and B(g, )|, : Ex — Ey(gx) is L-linear.

a(g,x
In other words, (g, -) takes fibres linearly to fibres and coincides with a(g, -) on the
zero section. The mapping 7 is then equivariant in the sense that a o (idg x7) = 7m0 B.

Example 1. If M is a G-manifold of class Cj,, with r > 1, then the tangent bundle TM is an
equivariant L-vector bundle of class Cﬁ{l in a natural way, with L := K. In fact, the action
a: G x M — M has a tangent map Ta:: T(G x M) — TM, which is Cj *. Let 0g: G — TG
be the O-section. Identifying T(G x M) with TG x TM in the usual way, we obtain a Cj; *-map
B: GxTM — TMvia

:B = (Tﬁ() o (OG X ldTM) .

It is easy to see that B(g,v) = Tx(a(g,*))(v) € Ty(gx)yM for g € G and v € TxM, whence
B(g, TeM) C Tyg M and B(g,-)lr,m = Tx(a(g,-)). Clearly, B is an action making TM an

equivariant K-vector bundle of class Cﬁgl over the G-manifold M.

Induced action on an invariant subbundle. Given an L-vector bundle 7: E — M
of class Cy, with typical fibre F, we call a subset Ey C E a subbundle if there exists a
sequentially closed L-vector subspace Fy C F such that for each x € M there exists a local
trivialisation ¢ : w=1(U) — U x F of E such that ¢(Eg N 7~ 1(U)) = U x Fy. It readily
follows from [13] (Lemma 1.3.19 and Exercise 2.2.4) that there is a unique L-vector bundle
structure of class Ci on 7|g, : Eg — M making ¢|-1(y)g, Y U)NE - UxFa
local trivialisation of Ey, for each local trivialisation ¢ as before. Then, the inclusion map
Eyg — Eis Ci, and a mapping N — E from a Ci,-manifold N to E with image in Eg is Ci
as a mapping to E if and only if its co-restriction to Ey is Cf,, by the facts just cited. In the
preceding situation, suppose that a Cj;-Lie group G acts Cj; on M and E is an equivariant
vector bundle of class Cj with respect to the action f: G x E — E. If Eg is invariant under
the G-action, i.e., if B(G x Ey) C Ey, as a special case of the preceding observations, we
deduce from the Cp-property of g that B|g g, and thus also B|gxg,: G x Eg — Eg is Cy.
We can summarise as follows.
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Proposition 4. If E is an equivariant IL-vector bundle of class C, over a G-manifold M, then the
action induced on any G-invariant subbundle Ey is Cy and thus makes the latter an equivariant
IL-vector bundle of class Ci.

7. Completions of Vector Bundles

Let 1: E — M be an equivariant L-vector bundle of class Cy, as in Definition 6, with
typical fibre F and G-actionsa: G x M — M and : G x E — E. Assume thatr > 1. Our
goal is to complete the fibre of the bundle, i.e., to find a G-equivariant vector bundle E
whose typical fibre is a completion of the locally convex space F, and which contains E as a
dense subset.

Let Fbea completion of F such that F C r and, for each x € M, let E x be a completion
of Ey such that Ey C E,. We may assume that the sets E, are pairwise disjoint for x € M.
Consider the (disjoint) union _ N

E:= |J E. (8)
xeM

We shall turn E into an equivariant vector bundle. Consider the map B: G x E —

E, defined using the continuous extension (8(g,-)|e,): Ex — E, of the linear map

ﬁ(g/ ')|Ex: Ex — E(x(g,x) via

a(g,x)

p(g,v) == (B(& ), ) (0)

forge G,x € M,and v € Ey. Itis clear that Bmakes E a G-set. Let
7T E—>M )

be the map taking elements from Ey to x. Then, 7 is G-equivariant. If ¢: 7—1(U) — U x F
is a local trivialisation of E and prp: U x F — F, (x,y) — y, we define

p: TN U) = UxF, Eysvew (x (prpoy|e, ) (). (10)
Then, the following holds:

Proposition 5. (E,B) can be made an equivariant L-vector bundle of class Cﬁgl over the G-
manifold M, such that ¥ is a local trivialisation of E for each local trivialisation 1 of E.

Remark 8. Omitting the hypothesis that r > 1, assume instead that E is an equivariant L-vector
bundle of class LC,. That is, both E and M are LCy-manifolds (each admitting an atlas with
transition maps of class LCy), a family of local trivialisations can be chosen with LCi-transition
maps, and the G-actions on E and M are LCj,. Then, also E is an equivariant vector bundle of class
LCj (and hence of class Cj).

Extension of differentiable maps to subsets of the completions. To enable the proof
of Proposition 5, we need to discuss conditions ensuring thata C"-map f: E D U — F
(with locally convex spaces E and F) can be extended to a C"-map U — F on an open
subset of the completion E of E, or at least to a C"~'-map. Although this is not possible in
general, it is possible if F is normed and  is finite. This will be sufficient for our purposes.
The natural framework for the discussion of the problem is not C"-maps, but Lipschitz
differentiable maps, as in Definition 4.

Proposition 6. Let E be a locally convex K-vector space, (F,|| - ||) be a Banach space over K,
U C Ebeopenand f: U — F bean LCi-map, where r € Ny. Let E be a completion of E such that

E C E. Then, f extends to an LCy-map f: U — F on an open subset U C E which contains U as
a dense subset.

The following lemma enables an inductive proof of Proposition 6.
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Lemma 13. Let k € N, X be a locally convex K-vector space, and Ey, . .., Ey, F be locally convex
L-vector spaces with completions X, Ey, ..., Ey and F, respectively. Let U C X be open and
f:UXE;x- xEk%Fbeamapsuchthath() = f(x,-): Ey X - - X Ex — F is k-linear
over IL for each x € U. Assume that there exists an LCye-map h: W — F which extends f, defined

on an open set W C X x Ey X -+ X Ep inwhich U x Ey X - - - X Ey is dense. Then, there exists
an LCy-map

]?:EIXE1><~~~><E;(—>? (11)
which extends f for some open subset U C E in which U is dense. The maps (f)V(x) :=
f(x,): Ey x - -+ x Ex — F are k-linear over L, for each x € U.

Proof. For each x € U, there exists an open neighbourhood V; of x in X and a balanced,
open 0-neighbourhood Q, C El X oo X Ek such that Vy x Qy C W. After shrinking V,, we
may assume that X N Vy = U, whence U NV, = XN Vy is dense in V. Given z € LL such
that |z| < 1, consider the map

Ve X Qy — F, (y,v) — h(y,zv) — zkh(y,v).

This map vanishes, because it is continuous and vanishes on the dense subset
(VeNX) x (Qx N (Eg X -+ x Eg)). As a consequence, we obtain a well-defined map

fe:VexEpx---xEg—=F, (y,0) =z %h(y,z0)

fory € Vi, v € E; x--- x Eyand z € L\ {0} with zo € Q,. As fy(y,v )=z kh(y,zv) is
LCk in (y,v) € Vy x z 1Qx and these sets form an open cover of V, x Ey X -+ x Ey, we
see that fy is LC. Given x,y € U, theset UN V,y NV, = XNV, NV, is dense in the open

set VNV, C 55. Since fy, fy, and f coincide on the set (U N Vy N Vy) X Ey X -+ X Ep, it
follows that the continuous maps fy and f, coincide on the set (Vy N V},) x Ey x--- x Exin

which the former set is dense. Hence, setting U := [J,c(; Vi, a well-defined map fasin (11)
is obtained if we set

fy,0):= fe(y,v) if xeU,yeViandv € Ey x--- x E.

The final assertion follows by continuity from the k-linearity of the mappings f"(x)
forxel. O

Proof of Proposition 6. We proceed by induction on r € Np.
The case r = 0. Given x € U, there exists a continuous seminorm g on E such that
Bl(x) C Uand
1f(z) = fW)] <q(z—y) forall y,z € B](x). (12)
Then, N, := {y € E: q(y) = 0} is a closed vector subspace of E and ||y + Ny || := q(v)
for y € E defines a norm on E; := E/N,; making the map a5: E — E;, y — y+ N,

continuous linear. By (12), we have | f(z) — f(y)|| = 0 for all y,z € BJ(x) such that
Yy —z € N,. Hence,

h:ag(Bl(x)) = F, y+Ng— f(y)

is a well-defined map. Note that oy (BJ (x)) is the openball B := {y € E;: ||y — aq(x)[|q < 1}
in E;. Let Eq be the completion of the normed space E,; the extended norm will again be
denoted by ||.||;. Applying (12) to representatives, we see that

[h(z) =Rl < llz=yllq forall y,z < B.

Hence, h satisfies a global Lipschitz condition (with Lipschitz constant 1), and hence & is
uniformly continuous, entailing that / extends uniquely to a uniformly continuous map

h:B—F
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on the corresponding open ball B in E;. Then, h(z) = h(y)| < ||z — y|; forally,z € B, by
continuity. Let &;: E — E, be the continuous extension of the continuous linear map «,.
Then, Vy := (@) (B) is an open neighbourhood of x in E such that V, N E = Bi(x) C U.
Moreover, fy := ho &4y, is a continuous map extending f|y,~g, which furthermore satisfies

1fx(z) = fxW)Il < q(z —y) forall y,z € Vy, (13)
where we use the continuous seminorm 7 := |.||; 0 &;: E — [0, 00| extending q. Then
u:= U Vi
xel

is an open subset of Eand ENU = U is dense in U. Given x,y €U thesetUNVy NV, =
ENVeynN Vy is dense in the open set VN Vy - E. Since

felunveny, = flunveny, = fylunveny,

it follows that fx|meVy = fy|VmVy- Hence

f~: u—F, z+— fx(z) for x € Usuch thatz € V;

is a well-defined map. Since ]7| v, = fxis LCY for each x € U (by (13)), the map fis LCY..
Furthermore, fextends f by construction.

Induction step. If f is LC]%“, then f extends to an LC)-map f: U — F on an open
subset U C E such that UNE = U, and df: U x E — F extends to an LCg-map h: W — F
on an open subset W of E x E, by induction. Using Lemma 13, we find an open neighbour-
hood V of U in E and an LC-map g: V x E — F which extends df. After replacing U
and V with their intersection, we may assume tbat U=V.If Xg € U and Yo € E, thgre exist
open neighbourhoods Q of xp and P of yg in E, and ¢ > 0 such that Q + D.P C U. Then,
the map

1
£:QxPxD; —F, (x,]/,t)'—>/ g(x +sty,y)ds
0

is continuous, being given by a parameter-dependent weak integral with continuous
integrand. For (x,y,t) in the dense subset (QNE) x (PNE) x (D¢ \ {0}) of the set
Q x P x (D \ {0}), the Mean Value Theorem implies that

Uy t) = f(xHyt)—f(x) _ f(x+tyt)f(x).

Then, {(x,y,t) = w forall (x,y,t) € Q x P x (D, \ {0}), by continuity. Thus,

f(xo0 + tyo) — f(x0)

; = l(x0,y0,t) — €(x0,40,0) = g(x0,Y0)

as t — 0. Hence, df (xo,y0) = (X0, o). Since g is LCL, it follows that f is LC]%H. O

The conclusion of Proposition 6 becomes false in general if the Banach space F is
replaced by a complete locally convex space. In fact, there exists a smooth map E — (¢1)©
from a proper, dense vector subspace E of 2 to a suitable power of ¢!, which has no
continuous extension to E U {x} for any x € ¢! \ E (see Appendix B). Nonetheless, we have
the following result.

Proposition 7. Let k € N, X be a locally~ convex K;Uector space, and Eq, ..., Eg, F be locally
convex IL-vector spaces, with completions X, Eq, ..., Ex and F, respectively. Let U C X be open
and f: U x Ey X - - X Ex — F be a mapping such that fV(x) := f(x,-): E; X ---x Ex = F
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is k-linear over L for each x € U. If f is LC} for some r € NoU {oo} (resp., C for some
r € NU {oo,w}), then there exists a unique map

f:Uxvalx---xEk—ﬂ-: (14)

which is LCy (resp., Cﬁgl) and extends f. The maps f¥(x) := f(x,-): Ey x --- x Ex — Fare
k-linear over L, for each x € U.

Proof. Abbreviate E := E; X --- x Egand E := E; X --- X Ek Assume first that ¥ # w.
Since LC-maps are continuous and U x E is dense in U x E, there is at most one map f
with the asserted properties. We may therefore assume that r € Ny. We may also assume
that F is complete. Then, F = l(in F; for some projective system ((F;)jcj, (pij)i<;) of Banach
spaces F; and continuous linear maps p;;: F; — F;, with limit maps p;: F — F;. We claim
that p; of U x E — F; has an LCy, —extensmng] (pjof):UxE — Fjforeachj € J.If
this is true, then p;; o g] gi for i < j, by uniqueness of continuous extensions. Hence, by
the universal property of the projective limit, there exists a unique map f:UxE — Fsuch
that p; of = gj- Then, p; o fluxe = giluxe = pj o f and hence fluxe = f. Furthermore, f
is LCk, by Lemma 9 (d). To prove the claim, note that Proposition 6 yields an LCy-extension
hj: W; — F;of pj o f to an open subset W; C X x E, which contains U x E as a dense subset.
Now, Lemma 13 yields an open subset Ll]- C X in which U is dense, and an LCy-extension
ej: Uj x E— Fjof pjo f. Then, g; := ¢j| ;, 7 is as desired.

We now consider the case (r, K) = ( ) If L = C, by the density of U x Ein U x E,
for any real analytic extension f: U x E — F and x € U, the map f(x, -) will be k-linear
over L. We may therefore assume that L = R. Let h: W — F¢ be a C-analytic extension
of f, defined on an open subset W C X¢ x Ec such that U x E C W. For each x € U, there
exist an open x-neighbourhood U, C U and balanced open 0-neighbourhoods V, C X
and Wy C Ec such that (Uy +iVy) x Wy C W. We claim that there exists a C-analytic
map gx: (Ux +1iVy) X Ec — Fc such that gx|uy, xg = flu,xE- For x,y € U, the intersection
((Uy +iVy) x Ec) N ((Uy +iVy) x Ec) = ((Ux NUy) +i(Vy NVy)) X Ec is connected and
meets U X E whenever it is non-empty. Hence, by the Identity Theorem, g» and g, coincide
on the intersection of their domains. We therefore obtain a well-defined C-analytic map
g: Q x Ec — Fc such that g|(,4iv,)x5. = &x for each x € U, using the open subset
Q = Uyeu(U; +iV;) of X¢. For each x € U, the map g(x,)[r = gx(x,*)[g = f(x,") is
k-linear over R. Using the Identity Theorem, we see that g(x, -) is k-linear over C for each
x € U, and hence for each x € Q by the Identity Theorem. By the case (%, C), g has a
C-analytic extension g: Q x Ec — Fe. Since gUXE)=f(UXE)CFC Fand U x E is
dense in U x E, we deduce that (U x E) C F; we therefore obtain a map

fv: UxE—F, (x,y) — 2(x,y)

for x € U, y € E. Since § is a C-analytic extension for f, the function f is R-analytic. To
prove the claim, consider for x € U and n € N the C-analytic map

gen: Uy +iVy) x nWy = Fo,  (z,y) — n¥h(z, (1/n)y).

If n <mandy € nW, NE, wehave for all z € Uy

em(z,y) = mh(z, (1/m)y) = m*f(z, (1/m)y) = f(z,y) = n*f(t, (1/n)y) = gxn(z,y),

whence gym(z,¥) = gxn(z,y) forall z € Uy + iVy and y € nWy, by the Identity Theorem.
Thus, ¢v: (Ux+iVy) X Ec — Fg, (2,y) ¥ gxn(z,y) if y € nWy is a well-defined C-analytic
extension of f|, xg. O

Proof of Proposition 5. It suffices to prove the strengthening described in Remark 8. Let
(¢;)ic; be a family of local trivialisations ¢;: 77~ 1(U;) — U; x F of an LCj-vector bundle E
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such that each local trivialisation is some ;. Let (g;j); jcr be the corresponding cocycle and
Gij be the LCi-map gi/]\: (U; N Uj) x F — F, which is L-linear in the second argument. By

Proposition 7, there is a unique LCj-map éij: U x F — F which extends G
L-linear in the second argument. Thus, we obtain a map

ijr and Cvlj is

g~ij: un Ll] — L (F), x— Gl-]-(x,-).

By continuity and density, for all i € I, we have G;(x,y) = y for all (x,y) € U; x F.
Thus, gji(x) = idg for all x € U. For all i, j, k € I, we have

Gvij(x, éjk(x,y)) = Giy(x,y) forall (x,y) € (U;N u; N Uy) x E,

as both sides are continuous in (x, ) and equality holds for i in the dense subset F of F; thus,
gl‘]‘(x) ogjk(x) = gik(x). Ni)tably, §,](x) ogji(x) = g]-i(x) = idf for all x € U and i,j € 2
entailing that g;;(x) € GL(F). By the preceding, the g;; satisfy the cocycle conditions. Let E
and 7 be as in (8) and (9); define ¢;: 7~ (U;) — U; x F as in (10), replacing ¢ with ¢;. For
alli,j € I and x € U, we then have that

7 (0 y) = (6, Gix, )

holds for all y € F, as equality holds for all y € F. As an analogue of Proposition 3 holds
with LC,-maps in place of C-maps, we get a unique [L-vector bundle structure of class
LCk on E making ¢; a local trivialisation for each i € I.

It is apparent that f: G x E — E is an action, and E, is taken L-linearly to E“(g/x)
by B(g,-), for each ¢ € G and x € M. It only remains to show that j is LCk. To this
end, let g0 € G and xy € M; we show that f is LCl on U x 171(V) for some open
neighbourhood U of gy in G and an open neighbourhood V of xy in M. Indeed, there exists
a local trivialisation ¢: 7= (W) — W x F of E over an open neighbourhood W of a(go, xo)
in M. The action a being continuous, we find an open neighbourhood U of gy in G and an
open neighbourhood V of xy in M over which E is trivial, such that a(U x V) C W. Let
¢: (V) — V x F be alocal trivialisation of E over V. Then,

¢(ﬁ(g71,1,b71(a(g,x),v))) = (x,A(g,x,v)) forallge U, xeV,andv € F,

foran LCy-map A: U x V x F — F, which s L-linear in the third argument. By Proposition 7,
there is a unique extension of A to an LCj-map

A:UxVxF—FE,

and the latter is L-linear in its third argument. For all g € U and x € V, we then have

PB(s™" ¥ (a(8,x),v))) = (x, A8, x,0))
for all v € F, as equality holds for all v € F. Thus, f is LCk. O

8. Tensor Products of Vector Bundles

Throughout this section, let L € {R,C}, K € {R,L},s € {oo,w},and r € NgU {0, w}
such that r < s. Let G be a Cj;-Lie group modelled on a locally convex K-vector space Y, M
be a C-manifold modelled on a locally convex K-vector space Z, and a: G x M — M be a
Cf-action. For k € {1,2}, let 7ty : Ex — M be an equivariant L-vector bundle of class Cj,
over M, whose typical fibre is a locally convex LL-vector space F. Let Bx: G x Ex — Ej
be the G-action of class Ci,. Consider the set A of all pairs of local trivialisations of Eq
and E; trivialising these over the same open subset of M. Using an index set I, we have
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A = {(p},¢?): i € I}, where yf : 7 '(U;) — U; x F is a local trivialisation of Ej for
k € {1,2}, for each i € I. Apparently, (U;);c; is an open cover of M.

For our first result concerning tensor products, Proposition 8, we assume that F; is
finite-dimensional. Then, fixing a basis e, ..., e, for F;, the map 6: ()" — F ® B,
(Y1, yn) — X1 ex ® yr is an isomorphism of L-vector spaces. We give F; ®r, F, the
topology 7, making 6 a homeomorphism. This topology makes F; ®r, F, a locally convex
L-vector space and 6 an isomorphism of topological L-vector spaces. It is easy to check
(and well known) that the topology 7 is independent of the chosen basis. Letej, ..., e} € Ff
be the basis dual to ey, . . ., e;,. Our goal is to make the union

E1®Ey:= J (E1)x ®L (E2)x
xeM

an equivariant L-vector bundle of class Ci. over M, with typical fibre F; @, F>; the tensor
products (E1)x ®, (Ez)x are chosen pairwise disjoint here for x € M. Let 1: Ey ® E; — M
be the mapping which takes v € (Eq)y ®r, (Ep)x to x.

We define ;: 7= 1(U;) — U; x (F, ®1, F) via

$i(0) = (x, ((prr, o¥;l(£y),) © (PrE, o%f|(£,),)) (0)

forx € U;and v € (Eq)x ®r, (E2)x, where pry, : M X F — F is the projection.

Given i,j € I and x € U; N Uj, we have wf((tp;?)’l(x,v)) = (x, lej(x, v)) for all
k € {1,2} and v € F, where GZ’.‘].: (U;nUj) x B — Fyis Ci and gf»‘j(x) = foj(x, -) an L-
linear mapping. Then, co,r: U; N U; — K, x — e(’;(G}j(x, er)) is Cl, and ;i ((y;) ' (x,0)) =
(x,Gjj(x,v)) forx € U;NUjand v = }7_; er ® v € F; @ Fp, where

Gy(x,0) = (gh(x) @)@ = T@g}j(x)ea@(g%j(x)vr)

3" e ® (cor (X))o ((zcm xvf)> )

o,t=1 o=1

As Fi®p B, — B, v +— v = pr(6~1(v)) is a continuous linear map (where pr_ :
(F2)" — F, is the projection onto the T-component), in view of the preceding formula G;;
is Ci.. Thus, by Proposition 3, there is a unique LL-vector bundle structure of class Cj on
E; ® E; making each ; a local trivialisation.

Note that §: G x (Ey ® E2) = Ey ® Ea, (3,0) = (B1(g, )] (5" @ Ba(g, (") (0)
forg € G,x € M, v € (E; ® Ep)y defines an action of G on E; ® E; by L-linear mappings,
which makes 77: E; ® E; — M an equivariant mapping and such that (g, -) is L-linear on
(E1)x ®L (Ez)x forallg € Gand x € M.

To show that B is Cg, let go € G and xg € M. We pick i € I such that a(go, x9) € U;.
The mapping & being continuous, we find open neighbourhoods U of gg in G and V of x
in M such that a(U x V) C U;. There is j € I such that xg € U; C V. Fork € {1,2},¢ € U,
x € Ujand v € F, we have

¢ (g, (W) ! (x,0))) = (alg, %), a(g, %,0))

for some Cy-map a;: U x U; X F — F, which is L-linear in the final argument. Define
boe: Ux U — L, (8, x) — ex(ai(g, x,ec)); then, by is Cp. If g € U, x € U; and

v=Y" ,e:®vr € F; ® F, then ;(B(g, lpfl(x, v))) equals

(s Fmtaneasntsnnn) - rgons( (Eeimmiensn) )
=1 = =1
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which is a Cf -function of (g, x,v). As a consequence, B, -1 (u;) 18 Cj and thus B, being Cf
locally, is Cj. We summarise as follows.

Proposition 8. Let G be a Ci;-Lie group and M be a G-manifold of class Cy,. Let Ey and E; be
equivariant IL-vector bundles of class Cy, over M. If the typical fibre of E is finite-dimensional,
then Eq ® Ey, as defined above, is an equivariant IL-vector bundle of class Cy over M.

Instead of dim(F;) < oo (as before) assume that F; and F, are Fréchet spaces and the
modelling spaces of G and M are metrisable. The completed projective tensor product

F .= F1®7[F2
over L then is a Fréchet space (cf. [30] (p. 438, lines after Definitions 43.4)). We define

E:= El®7‘fE2 = U (El)x®n(E2)x/
xeM

where the (E1)x®x(Ez)x for x € M are chosen pairwise disjoint. Let 77: E — M be the map
taking v € Ey := (E1)x®x(Ep)y to x. Define ¢;: 7~ 1(U;) — U; x (Fi®xF) via

¥i(v) = (x, ((pr, °¢1'1|(E1)x)®7r(}9r1:2 °4’?|(E2)x))(0))

for x € U; and v € (E1)x®z(E>)x, where pry : M x F — Fy is the projection. Note that

B:GxE—E, (g0) = (B1(g ) (), @nB2(8 ) (Ey),) (v) for g € G, x € M, v € Ey defines
an action of G on E which makes 7r: E — M an equivariant mapping. We show:

Proposition 9. 7w: E1®,E, — M admits a unique structure of equivariant L-vector bundle of
class Cy over M such that v; is a local trivialisation for each i € I.

Proof. The uniqueness for prescribed local trivialisations is clear. Let us show the existence
of the structure. Giveni,j € I and x € U; N U}, we have gbf.‘((q);.‘)_l(x,v)) = (x, foj(x, v))

forallk € {1,2} and v € F, where Gl’fj: (U; N Uj) x F, — Fyis Ci and gfj(x) = Gl’fj(x, -) an
L-linear mapping. By Proposition 1 (a), the map gf.‘].: U; NU; — L(F)c is Ci. Now,

Li(F)e x Lp(B) = Ly (Fi®xF)e, (S,T) — S&xT
being continuous L-bilinear (as recalled in Lemma 14), we deduce that
gij: UinUj — Ly (Fi®zF)e, x+— gilj(x)@@ngizj(x)

is C]k Hence, Gij = gZA] (Ui N U]) X (P1®HF2) — F1®7TF2, (X,U) — glj(x)(v) is C]k, by
Proposition 2 (a). We easily check that 9;((y;) ' (x,v)) = (x, Gjj(x,v)) holds for G;; as just
defined, for all x € U; N U; and v € F;®,F,. Hence, E;®E, can be made an L-vector
bundle of class Cy; in such a way that each ¢; is a local trivialisation, by Proposition 3.
Note that (g, -) is L-linear on Ey for all ¢ € G and x € M. To show that g is Cf, let go,
xo, i, U, V, j and the C-map a; be as in the proof of Proposition 8. By Proposition 1 (a),
ay : U x U; — L(Fy)c, (8, %) = ax(g, x,-) is Cjr. Hence,

a: Ux Uj — L(F®xF)e, (8,x) — ay (8,x)®nray (g, x)

is Ck, by the Chain Rule and Lemma 14. Using Proposition 2 (a), we find that the map
a: U x Uj x (F®xF) = F®xF, (§,x,0) — a(g,x)(v) is Ck. We easily verify that
¥;(B(g, (lpj)’l(x,v))) = (a(g,x),a" (g x,0)) for all (g,x,v) € U x U; x (Fi®xF,). Thus,
Vi (B(g, (lp]-)’l(x, v))) is Ck in (g, x, v), which completes the proof. [
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We used the following fact:

Lemma 14. Let Ey, Ey, Fy, and F, be Fréchet spaces over L € {R, C}. Then, the following bilinear
map is continuous:

B LL(EL Pl)c X L]L(Ez, Fz)c — L]L((E1®7TE2), (Fl®7TP2))CI (Sll 52) — S]@nSZ-

Proof. Let K C E;®E, be compact, g be a continuous seminorm on Fi®.F, and € > 0.
After increasing q, we may assume that g = q; ® g for continuous seminorms g on F
for k € {1,2}. By [30] (p. 465, Corollary 2 to Theorem 45.2), K is contained in the closed,
absolutely convex hull of Kj ® K; for certain compact subsets Ky C Ej for k € {1,2}. For
all Sy € L(Ey, Fy) such that sup g4 (Sx(Ky)) < /¢, we have

sup 4((S1852) (K)) < sup q(($18752) (K1 @ K2)) = sup 41 (S1(K1))g2(S2(Ka)) < V& =,

using [30] (Proposition 43.1). The assertion follows. [

Remark 9. If Eq and E, are Hilbert spaces over L with Hilbert space tensor product E1&E,, and
also Fy and F, are Hilbert spaces over 1L, then the bilinear map

E: L(Ey, F)p % L(E, B)p — L((E1®E2), (FI®F))y
is continuous, as || S1@S2|lop < 11S1loplS2llop-

Replace the hypotheses in Proposition 9 with the requirements that G and M are
modelled on metrisable locally convex spaces, r > 1 and F;, F, are Hilbert spaces. We
now use Remark 9 instead of Lemma 14, replace F; ®,F, with the Hilbert space F; ®F,,
Proposition 1 (a) with Proposition 1 (b) (so that operator-valued maps are only Cﬁgl) and
use Proposition 2 (b) with 7 — 1 in place of r. Repeating the proof of Proposition 9, we get:

Proposition 10. On Ey®E; = Uyep(E1)x&@(Ey)y, there is a unique equivariant L-vector bun-
dle structure of class Cﬁgl over M whose typical fibre is the Hilbert space Fi®F,, such that
¢ Y (U;) — U; x (FL®F,) is a local trivialisation for eachi € 1.

Remark 10. If r > 1, G and M are modelled on metrisable spaces and both Fy and F, are pre-
Hilbert spaces with Hilbert space completions F; and F», we can use the non-completed tensor
product Fy @1, F, C Fy&F, with the induced topology as the fibre and get an equivariant L-vector
bundle structure over M of class Cﬁgl over Mon E; ® Ey = Uyem(E1)x ®L (E2)x, exploiting
that the IL-bilinear map Ly, (Fy)p X Ly, (F2)p — L (F1 @ F2)p, (S1,S2) + S1 & Sy is continuous.

9. Locally Convex Direct Sums of Vector Bundles

LetL € {R,C}, K € {R,L}, s € {oo,w}, r € NgU {c0,w} such thatr < 's, G be a
Ci-Lie group modelled on a locally convex space Y, and M be a Ciz-manifold modelled on
a locally convex K-vector space Z, together with a Ciz-actiona: G x M — M.

Let n € Nand 71;.: Ex — M be an equivariant [L-vector bundle of class Cy over M for
k € {1,...,n}, with typical fibre a locally convex LL-vector space Fy; let Bx: G x Ex — Ej be
the G-action and pry : M x Fe — Fj be the projection onto the second component. We easily
check that there is a unique LL-vector bundle structure of class Ci; on the “Whitney sum”

E=E & ®E = |J (E)x % x (Ep)x,
xeM

with the apparent map 7 : E — M, such that ¢ : 7' (U) - UXx F; X -+ x Fy, v =
(01,...,0n) = (7(v), prg, (Y1(01)), - .., prg, (¥u(vn))) is a local trivialisation of E, for all
families ()7, of local trivialisations y: (/1) ~1(U) — U x F, which trivialise the Eys
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over a joint open subset U of M. Then, B(g,v) := (B1(g,v1),--.,Pn(g vn)) for g € G,
v = (v1,...,0s) € E yields an action of G on E. It is straightforward that g is C;. Thus,

Proposition 11. If Eq, ..., Ey, are equivariant L-vector bundles of class Cy over a G-manifold M
of class Cy, then also E1 & - - - @ Ey, is an equivariant IL-vector bundle of class C over M.

The following lemma allows infinite direct sums to be tackled.

Lemma 15. Let (E;);c; and (F;);c; be families of locally convex spaces over K € {R,C}, with
locally convex direct sums E := @,y E;j and F := @< F;, respectively. Let V be an open subset of
a locally convex K-vector space Z. Let r € No U {oo}, and assume that f;: V x E; — F; is a map
which is linear in the second argument, for each i € 1. Moreover, assume that (a) or (b) holds:
(a) Z is finite-dimensional; or
(b) Z and each E; is a k,-space and I is countable.

If fi is of class Cy, for each i € I, then also the following map is Cy;:

f:VXE—=F, (x(vi)ier)— (fi(x,0i))icr-

Proof. If (b) holds, we may assume that I is countably infinite, excluding a trivial case.
Thus, assume that I = N. For each n € N, identify E; x - -- x E, with a vector subspace of
E, identifying x € E; x - - - x E, with (x,0). For each n € N, we then have

ZxE=|J(ZxEx---xE;) and VxE= J(VxE X xEy),
neN neN

where Z x E1 x - -+ X E, is a ky-space in the product topology. The inclusion map

An:Fix - xF, = @F, v (v,0)
ieN
is continuous and K-linear. Moreover,

ni VXE X XE;y = F X+ xXFy, (x,01,...,00) = (fi(x,01),..., fu(x,01))

is a Cj-map and so is f|y x g, x...xE, = An © §n, for each n € N. Hence, f is C on the open
subset V x E of Z x E, considered as the locally convex direct limit hi)n(Z X Ey X --- X Ey),
by [31] (Proposition 4.5 (a)). This locally convex space equals Z x lii)n(El X -+ X Ey) =
Z x E with the product topology (see [32] (Theorem 3.4)).

If (a) holds, it suffices to prove the assertion for r € Ny. We proceed by induction. The
caser = 0. Let (x,v) = (x, (v;)ie1) € V x E; we show that f is continuous at (x, v). To this
end, let Q be an absolutely convex, open 0-neighbourhood in F. There is a finite subset
J C Isuchthatv; = 0foralli € I\ ]. Let N := |J| + 1. For each i € I, the intersection
Q; = (%Q) N F; is an absolutely convex, open 0-neighbourhood in F;. For the absolutely
convex hull, we get absconv(UJ;c; Qi) € %Q. Since f; is continuous for eachi € [ and |
is finite, we find a compact neighbourhood K of x in V such that f;(y,v;) — fi(x,v;) € Q;
forally € Kandi € J. Since f;(K x {0}) = {0}, where K is compact and f; is continuous,
for each i € I, there is an absolutely convex, open 0-neighbourhood P; in E; such that
fi(Kx P;) € Qj. Then, W := v + absconv(U;c; P;) is an open neighbourhood of v in E.
Lety € Kand w € W be given, say w = (w;)ic; = v + (t;p;)ic;, where p; € P; and
(ti)ier € @jc;Rsuch thatt; € [0,1] and Y ;c;t; = 1. Then, for each i € I\ ], since v; = 0,
we obtain

fily,wi) = f(x,v) = fi(y, tipi) = tifi(y, pi) € t:Q;.
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For i € |, on the other hand, we have

fily,wi) = f(x,v1) = fily,w; —vi) + (fily, vi) — fi(x,0;))
= tifi(y, pi) + (fily,0i) — fi(x,0;)) € Qi + Q.

As a consequence, f(y,w) — f(x,v) € (ITier tiQi) + Lie) Qi € %Q + Yiey %Q =Q,
using the convexity of Q. We have shown that f is continuous at (x, v).

Induction step. Let r > 1 and assume the assertion is true for all numbers < r. Given
u,v€E x€V,andz € Z, wehaveu,v € Pjcj E; = [];c E; for some finite subset | C I.
The map f;: V x [Tie Ei = iy Fi, (%, (v1)ief) = (fi(x,vi))icy is Ci, whence

dfy((x,u), (z0) = limt~ (f((xu) +Hz,0)) — fi(xu))

t—0

= Lm e (f((x,u) +1(z,0)) = f(x,u)) = df((x,u), (z,0))

t—0

exists in [ J;; F; and thus in F; its ith component is
dfi((x,ui), (2,0;)) = dufi(x, ui, 2) + da fi(x, uj, v;)

in terms of partial differentials. Note that the mappings g;: (V x Z) x (E; X E;) — F;,
(X,Z, u;, Ul') — dlﬁ(x, ui,z) and h; : (V X Z) X (Ei X E,’) — F, (X,Z, u;, U,’) — dzfi(x, ui,vi) =
fi(x,v;) are Cf; 'and linear in (u;, v;). By induction, the mappings

8: (VX Z)x (ExXE)—=F, (xz(uj)icr (vi)icr) — (8i(x,z,u;,v;))ic; and

h: (VxZ)x(EXE) = F, (x,z (t)icr (vi)ier) = (hi(x,2,u;,0:))ier
are Cj; !, using that E x E = @,.(E; x E;). Hence, alsodf: (V x E) x (ZxE) — F

is C]%_l, as df ((x,u),(z,v)) = g(x,z,u,v) + h(x,z,u,0). Since df exists and is Cl ', the
continuous map f is Cp,. O

Remark 11. The conclusion of Lemma 15 does not hold for (r,K) = (w, R) in the example I = N,
V=Z=R E =R, fi(rt) := Hﬁ’ using that the Taylor series of fi(-,t) around 0 has radius

of convergence ﬁfor allt € R\ {0}.

Assuming now r # w, consider a family (E;);c; of equivariant L-vector bundles
;2 E; — M of class C; with typical fibre F; and G-action B;: G x E; — E;. We assume that
(a) or (b) is satisfied:
(a) G and M are finite-dimensional; or
(b) Iis countable and each F; as well as the modelling spaces of G and M are k,-spaces.
Moreover, we assume:
(c) Foreach x € M, there exists an open neighbourhood U of x in M, such that, for each
i € I, the vector bundle E; admits a local trivialisation ¢;: (7r;) =1 (U) — U x F;.

Thus, the C-vector bundle E;|y; is trivialisable for each i € I. Define E := Uyep Djes (Ei)x
with pairwise disjoint direct sums and 7v: E — M, @;c;(E;)x 2 v — x. Then

B:GXE—=E, (g (vi)ier) = (Bi(g vi))ici

is a G-action such that B(g, )|, : Ex — E(gx) is L-linear for all (g,x) € G x M, where

Ey := 1 ({x}). We readily deduce from Proposition 3 and Proposition 15 that there is a
unique LL-vector bundle structure of class Ci; on E such that

n (U) = Ux@F, Ex3 (vi)ier = (% (pre,(¥i(v))ier)
iel
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is a local trivialisation for E, for each family (¢;);c; of local trivialisations as above. The
latter makes E an equivariant L-vector bundle of class Cy,. In fact, the Ci-property of  can
be checked using pairs of local trivialisations, as in the proofs of Propositions 5, 8, and 9.
Then, apply Proposition 15, with F; in place of E; and Y x Z in place of Z. Thus,

Proposition 12. In the preceding situation, @;c E; is an equivariant IL-vector bundle of class Cy.
over M.

Remark 12. If M is a C-manifold, then every x € M has an open neighbourhood U which is
Cr-diffeomorphic to a convex open subset W in the modelling space Z of M. If W can be chosen
Cg-paracompact, then every C-vector bundle over U is trivialisable (see [12] (Corollary 15.10)).
The latter condition is satisfied, for example, if Z is finite-dimensional, a Hilbert space, or a
countable direct limit of finite-dimensional vector spaces (and hence a nuclear Silva space), cf. [3]
(Theorem 16.10 and Corollary 16.16). If (r,K) = (oo, C) and Z has finite dimension, then each
finite-dimensional holomorphic vector bundle over a, say, polycylinder in Z is CZ-trivialisable
(cf. [33]). Under suitable hypotheses, holomorphic Banach vector bundles over contractible bases are
Cg-trivialisable as well [34].

10. Dual Bundles and Cotangent Bundles

In this section, we discuss conditions ensuring that a vector bundle has a canonical
dual bundle. Let L € {R,C}, K € {R,L}, r € NgU {0, w}, and M be a C-manifold
modeled on a locally convex space Z.

Definition 7. Let 7t: E — M be an L-vector bundle of class Cf, with typical fibre F. Consider
the disjoint union
E:= J (Ex)';

xeM

let p: E' — M be the map taking A € (Ex)’ to x, for each x € M. Given t € Ny U {oo, w} such
that t < r, we say that E has a canonical dual bundle of class Cﬁ{ with respect to S € {b,c} if E’
can be made an L-vector bundle of class C over M, with typical fibre F§ and bundle projection p,
such that

P p (W) » UxFs, (E)x=(Ex) A (x,((prpoyle,) ) (M)  (15)
is a local trivialisation of E', for each local trivialisation ¢: w=1(U) — U x F of E.

To pinpoint situations where the dual bundle exists, we recall a fact concerning the
formation of dual linear maps (see [8] (Proposition 16.30)):

Lemma 16. Let E and F be locally convex spaces, and S € {b, c}. If the evaluation homomorphism
nes: F— (F§)'s, ne,s(x)(A) := A(x) is continuous, then

©: L(E,F)s — L(Fs,E5)s, a—a
is a continuous linear map.

Remark 13. Let F be a locally convex K-vector space over K € {R, C}. It is known that 1 j, is con-
tinuous if and only if F is quasi-barrelled, i.e., every bornivorous barrel in F is a 0-neighbourhood [35]
(Proposition 2 in Section 11). In particular, 5 j, is continuous if F is bornological or barrelled. It
is also known that yr . is continuous (and actually a topological embedding) if F is a kg-space. If
K =R, this follows from [36] (Theorem 2.3) and [37] (Lemma 14.3) (cf. also [37] (Propositions 2.3
and 2.4)). If K = Cand F is a kg-space, then ng, . is a topological embedding for the real topological
vector space Fg underlying F. Now, (F.)gr = (Fg)’ as a real topological vector space, using that a
continuous C-linear functional A: F — C is determined by its real part. Transporting the complex
vector space structure from F! to (Fg)’, the latter becomes a complex locally convex space. Thus,
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((EL).)w can be identified with ((Fr).)¢, and it is easy to verify that np . corresponds to g,  if we
make the latter identification.

Proposition 13. Let 7v: E — M be an L-vector bundle of class C}, with typical fibre F. Let
Se{bc}. IfS=cletr_ :=r;if S = b, assumer > 1and set r_ := r — 1. Consider the
following conditions:
(&)  The modelling space Z of M is finite-dimensional, r s is continuous, and Fg is barrelled.
(B) 1, is continuous and, moreover, (Z x Fg) x (Z x Fg) is a kg-space, or r— = 0 and Z x Fg
is a kg-space, or (r,K) = (o0, C) and Z x Fg is a ky-space.
(y) F is normable.
If («) or (B) is satisfied with S = c, then E has a canonical dual bundle of class Cy with
respect to S = c. If («), (B), or (vy) is satisfied with S = b, then E has a canonical dual bundle of
class Cﬁgl with respect to S = b.

For § = b, condition () of Proposition 13 is satisfied, for example, if F is a reflexive
locally convex space (then /¢ is continuous and F; is barrelled, being reflexive.)

Proof. Let E’ be the disjoint union U,cp(Ex)’, and p: E' — M be as in Definition 7. Let
(¢;)ic1 be a family such that the y;: 7=1(U;) — U; x F form the set of all local trivialisations
of E. Let (gij) ije1 be the associated cocycle (as explained before Proposition 3). Then,
Gjj = g{]\. is C and hence g;; = (Gjj)" is Cyc , by Proposition 1. Given i € I, we define
¥i: p~1(U;) — U; x F§ as in (15), using ; instead of ¢. Then,

P (6 A) = (2 ((preoyile,) ™) o (prp oyle,) (A))
= (% (preoyjle, o (prpogile,) ™)' (A) = (x,gji(x)'(1))

forall x € U; N Ujand A € F’ shows that

($io ;) (x,A) = (x,hij(x)(A),

where h;;(x) := gji(x)" € GL(Fs). If («) or (B) holds, then np 5: F — (Fg)’s is continuous
by hypothesis. If S = b and () holds, then 7r, is an isometric embedding (as is well
known) and hence continuous. Thus, ®@: L(F)s — L(Fg)s, a + &’ is a continuous
L-linear map (Lemma 16). Since gj;: U; N U; — L(F)s is Cy » we deduce that hij =
@ogji: UyNU; — L(Fg)s is CE{ . Thus Condition (g)’ of Corollary 2 is satisfied, with r_
in place of . Conditions (a)—(f) being apparent, the cited corollary provides an [L-vector
bundle structure of class Ciz on E/. [

Without specific hypotheses, a canonical dual bundle need not exist.

Example 2. Let A be a unital, associative, locally convex topological K-algebra whose group of
units A is open in A, and such that the inversion map 1: A* — A* is continuous. Then, 1 is
smooth (and indeed K-analytic); see, e.g., [13] (Propositions 10.1.12 and 10.1.13). We assume
that the locally convex space underlying A is a non-normable Fréchet—Schwartz space and hence
Montel, ensuring that L(A), = L(A).. For example, we might take A := C*(K,K), where K
is a connected, compact, smooth manifold of positive dimension (cf. [13] (Lemma 10.2.2 (c))). Let
r,t € NgU{oo,w} witht < rand S € {b,c}. We consider the trivial vector bundle

pri: E:= A" xA— A*.

(Thus, E = TA*, the tangent bundle). Then, E is a K-vector bundle of class Cj over the base
A, with typical fibre A. Both 1 :=id: AX x A - AX x Aand ¢p: AX X A = A* X A,
(a,v) — (a,av) are global trivialisations of E. Identifying E' := U,cax (Eq)" with the set
AX x A, we consider the associated bijections §;: E' = AX x A’ — A x A’ fori € {1,2}
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(cf. (15)). Thus, ¥y = id, and y2(a,A) = (a,A(a"1.)) fora € A, A € A'. The map Gjj :
A*x A= A, (a,0) — prz(lpi(tp]fl(a,v))) is Cf fori,j € {1,2}, where pry: A* x A — A's
the projection onto the second factor. Then, also g;;: A* — L(A)c = L(A)y, a — Gjj(a, -) is Cg,
by Proposition 1 (a). Now, A being Fréchet and thus barrelled, the evaluation homomorphism 1 4 ,
is continuous; since A is metrisable and hence a k-space, also 114 . is continuous (see Remark 13).
Since g;; is C;, we deduce with Lemma 16 that also h;j: A* — L(A%)s, a + (gji(a))" is Ck.
Define
Hjj: A* x As — As  (a,A) — hjj(a)(A)

fori,j € {1,2}. Then, Hy, is discontinuous. To see this, we compose Hyp with the map evy: A} —
K, A — A(1), which evaluates functionals at the identity element 1 € A, and recall that ev is
continuous. Then, evy(Hip(a,A)) = A(g21(a)(1)) = A(a) fora € A* and A € A’. However, A
being a non-normable locally convex space, the bilinear, separately continuous evaluation map €:
Ax Ay =K, (a,A) — A(a) is discontinuous, and hence so is its restriction €| 4 xA; = evioHiy

to the non-empty open subset A x Ay, as is readily verified. Now, evy oHy, being discontinuous,

also Hyy is discontinuous (and therefore not Cﬁ(). As a consequence, also % o @2’ 1= (pry, Hip) is
discontinuous. Summing up:

There is no canonical vector bundle structure of class Ck on E’ because the two vector
bundle structures on E' making ¢; (resp., §,) a global trivialisation do not coincide.

Remark 14. In the preceding situation, set M := A*, F := Az, I:={1,2}, U; := M for
i€l and m:= pri: Mx F — M. If welet M x A} play the role of E in Proposition 3
and ¢;: 7Y (U;) — U; x F the role of g; in Proposition 3 (e), then all of Conditions (a)—(f) of
Proposition 3 and Condition (3)" of Corollary 2 are satisfied for r € No U {co, w} (with L := K).
However, there is no Cl-vector bundle structure on M x F making each §; a trivialisation, as just
observed, i.e., the conclusion of Corollary 2 becomes false.

Remark 15. Let K € {R,C}, 7 € NU {oo,w}, t € NgU {oo,w} with t < rand M be a C-
manifold modelled on a locally convex space Z. Then, the tangent bundle T M is a K-vector bundle
of class Cﬁgl over M, with typical fibre Z. Pick a locally convex vector topology T on Z'. Let A be
the set of all maps ¢ as in (15), with (Z', T') in place of Fs, for i ranging through the set of all local
trivialisations of TM (alternatively, only those of the form (rtry, d¢) for charts ¢: U — V C Z
of M, using the bundle projection 7ty : TU — U). Let us say that M has a canonical cotangent
bundle of class Ck with respect to T if T'M := Uyep(Te M) admits a K-vector bundle structure
of class Cl over M with typical fibre (Z', T'), which makes each : p~1(U) — U x (Z',T) a
local trivialisation (with p: T'"M — M, (TyM)’ 3 A — x). Then, the evaluation map

e (Z,T)xZ—=K, (Ax)—A(x)

must be continuous and hence Z normable. For K = R, this is explained in [17] (Remark 1.3.9)
(written after Example 2 was found) if r = oo. This implies the case r € N. As the diffeomorphism f
employed as a change of charts is real analytic, the case (w, R) follows and also the complex case,
using a C-analytic extension of f. When T is the compact-open topology, existence of a canonical
cotangent bundle for M even implies that Z is finite-dimensional. (If ¢ is continuous on Z\. x Z, then
there exists a compact subset K C Z and a 0-neighbourhood W C Z such that e((K°) x W) C D.
Hence, K° C W°. Since K° is a 0-neighbourhood in Z[. and W° compact (by Ascoli’s Theorem),
Z! is locally compact and hence finite-dimensional. As Z|, separates points on Z, also Z must be
finite-dimensional.)

Cotangent bundles are not needed to define 1-forms on an infinite-dimensional mani-
fold M. Following [38], these can be considered as smooth maps on TM which are linear
on the fibres (and a similar remark applies to differential forms of higher order).

Differentiability properties of the G-action on the dual bundle. Let L € {R,C},
Ke {R,L},s € {oo,w}, r € NgU {00, w} withr <5, and G be a C;-Lie group modelled on
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a locally convex K-vector space Y. Let M be a Ci,-manifold modelled on a locally convex
K-vector space Zand a: G x M — M be a G-action of class Cj.

Proposition 14. Let t: E — M be an equivariant L-vector bundle of class Cj., with typical
fibre F and G-action B: G x E — E of class Ci. Let S € {b,c}. IfS =c¢,setr_ :=r;if S =1,
assumer > 1 and set v_ :=r — 1. Consider the following conditions:

(@) nps is continuous, and, moreover, (Y x Z x Fg) x (Y x Z x F§) is a kg-space, or r— = 0
and Y x Z x Fy is a kg-space, or (r,K) = (co,C) and Y x Z x Fg is a kg-space;

(b) M and G are finite-dimensional, 11, s is continuous, and Fg is barrelled; or

(c) F is normable.

If § = cand (a) or (b) holds, then E has a canonical dual bundle E' of class Cﬁg with respect
to S, and the map B*: G x E' — E', defined using adjoint linear maps via

B (g A) = (Bg™ )E )N

En(g.x)

¥

for g € G, A € (Ex)', turns E' into an equivariant L-vector bundle of class C over the G-
manifold M. If S = b and (a), (b), or (c) is satisfied, then the same conclusion holds.

Proof. In view of Proposition 13, the hypotheses imply that E has a canonical dual bundle
p: E' — M of class Cy . It is apparent that 8*: G x E’ — E’ is an action, and E}, is taken
[L-linearly to E! (2.%) by p*(g,-), for each ¢ € G and x € M. It therefore only remains to

show that B* is Cy . To this end, let gy € G and xy € M; we show that * is Cz on
U x p~1(V), for some open neighbourhood U of g in G and an open neighbourhood V
of xg in M. Indeed, there exists a local trivialisation ¥: 77=1(W) — W x F of E over an
open neighbourhood W of «(go, x9) in M. The action « being continuous, we find an open
neighbourhood U of gy in G and an open neighbourhood V of xy in M over which E is
trivial, such that a(U x V) C W. Let ¢: 7~ 1(V) — V x F be a local trivialisation of E
over V. Then

(p(ﬁ(g*l,tp*l(zx(g,x),v))) = (x,A(g,x,v)) forallgeU,x <€ V,andv € F,

fora C-map A: U x V X F — F, which is L-linear in the third argument. By Corollary 1, the
map a: Ux V — L(F)s, (g, x) — A(g,x,-) is C . In view of the hypotheses, Lemmas 16
and 13 entail that also a*: U x V — L(F§)s, (g, x) — (a(g,x))" is Cy -map. Now, again
using the specific hypotheses, Proposition 2 shows that also the mapping A*: U x V x
Fs — F§, (g,x,A) — a*(g,x)(A) is Cir. However, forg € U, x € V,and A € F/,
we calculate

H6 @ d @A) = (alen) (preogle, Bl IE, o (rovl,,) ) )
= (alg ), A*(g % M),

using the notation as in (15). We conclude that f*| Uxp-1(v) 18 Cy. O

Example 3. For elementary examples, recall that the group Diff(M) of all smooth diffeomorphisms
of a o-compact, finite-dimensional smooth manifold M can be made a smooth Lie group, modelled on
the (LF)-space T (T M) of compactly supported smooth vector fields on M (see [13,15]). The natural
action Diff(M) x M — M is smooth [13]. In view of Example 1, Proposition 14 (b), Proposition 8
and Proposition 4, we readily deduce that also the natural action of Diff(M) on TM is smooth, as
well as the natural actions on T*M := (TM)', TM®" @ (T*M)®™ for all n,m € Ny, and the
natural action on the subbundles S"(T*M) and \" T*M of (T*M)®" given by symmetric and
exterior powers, respectively.
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11. Locally Convex Poisson Vector Spaces

We discuss a slight generalisation of the concept of a locally convex Poisson vector
space introduced in [8]. Fix K € {R, C}.

A bounded set-functor S associates with each locally convex K-vector space E a set
S(E) of bounded subsets of E, such that {A(M): M € S(E)} C S(F) for each continuous
K-linear map A: E — F between locally convex K-vector spaces (cf. [8] (Definition 16.15)).
Given locally convex K-vector spaces E and F, we shall write L(E, F) s as a shorthand for
Lk (E, F)s(g)- We write Eg := Lk (E, K)s.

Throughout this section, we let S be a bounded set-functor such that, for each locally
convex space E, we have

{K C E: Kis compact} C S(E). (16)
Then, {x} € S(E) for each x € E, and we get a continuous linear point evaluation
nes(x): Es = K, A Ax).

Definition 8. A locally convex Poisson vector space with respect to S is a locally convex
K-vector space E such that E x E is a kr-space and

nes: E— (Es)s, x— yps(x)

a topological embedding, together with a bilinear map [.,.]: Elg x Ely — E§, (A, ) — [A, 1],
which makes E's a Lie algebra, is S (E's)-hypocontinuous in its second argument, and satisfies

nes(x)oady € ngs(E) forall x € Eand A € E, (17)
writing ady :=ad(A) :=[A,.]: E' — E'.

Remark 16. (a) Definition 16.35 in [8] was more restrictive; E was assumed to be a k*-space there.

(b) In[8](16.31 (b)), the following additional condition was imposed: For each M € S(E's) and
N € S(E), the set e(M x N) is bounded in K, where ¢: E' x E — K is the evaluation map.
As we assume (16), the latter condition is automatically satisfied, by [8] (Proposition 16.11 (a)
and Proposition 16.14).

(c)  Let us say that a locally convex space E is S-reflexive if ng s : E — (EY)'s is an isomorphism
of topological vector spaces.

(d)  Of course, we are mostly interested in the case where [.,.] is continuous, but only hypocontinu-
ity is required for the basic theory.

Definition 9. Let (E, [.,.]) be a locally convex Poisson vector space with respect to S, and U C E
be open. Given f,g € CR(U,K), we define a function {f,g}: U — Kvia

{f.g}(x) == ([f'(x),8'(x)],x) forxeU, (18)

where (.,.): E' x E = K, (A, x) := A(x) is the evaluation map and f'(x) = df(x,.).
Condition (17) in Definition 8 enables us to define a map Xy: U — E via

Xf(x) = g s (es(x) cad(f'(x)) for x € U. (19)

Using Lemma 11 instead of [8] (Theorem 16.26), we see as in the proof of [8]
(Theorem 16.40 (a)) that the function {f,g}: U — Kis C§. The CR-function {f,g} is
called the Poisson bracket of f and g. Using Lemma 11 instead of [8] (Theorem 16.26), we
see as in the proof of [8] (Theorem 16.40 (b)) that X;: U — E is a Cig-map; it is called the
Hamiltonian vector field associated with f. As in [8] (Remark 16.43), we see that the Poisson
bracket just defined makes C (U, K) a Poisson algebra.
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We shall write “b” and “c” in place of S if S is the bounded set functor, taking a
locally convex space E to the set S(E) of all bounded subsets and compact subsets of E,
respectively. Both of these satisfy the hypothesis (16).

In the following, we describe new results for locally convex Poisson vector spaces over
S = c. We mention that the embedding property of 5g . is automatic in this case, as E x E
is a kg-space in Definition 9; thus, E is a kr-space and Remark 13 applies.

Example 4. Let (g;);c;y be a family of finite-dimensional real Lie algebras g;. Endow g := @jc; 9
with the locally convex direct sum topology, which coincides with the finest locally convex vec-
tor topology. Then, g is c-reflexive, as with every vector space with its finest locally convex
vector topology (see [39] (Theorem 7.30(a))). As a consequence, also g, is c-reflexive (cf. [39]
(Proposition 7.9 (iii))). Using [40] (Proposition 7.1), we see that the component-wise Lie bracket
g X g — g is continuous on the locally convex space g X g, which is naturally isomorphic to the
locally convex direct sum @jc;(g; x ;). We set E := g, and give E[. the continuous Lie bracket
[.,.] making ng.: g — (g..). = E. an isomorphism of topological Lie algebras. Then

E =g, =]](g):
j€J

and E x E are kg-spaces, being Cartesian products of locally compact spaces (see [22]). Thus,
(E, [.,.]) is a locally convex Poisson vector space over S = c, in the sense of Definition 8. If | has
cardinality > 280 and gj # {0} forall j € | (e.g., if we take an abelian 1-dimensional Lie algebra
gj foreach j € ]), then E = R/ is not a k-space. Hence, E is not a k®-space, and hence it is not a
Poisson vector space in the more restrictive sense of [8].

12. Continuity Properties of the Poisson Bracket

If E and F are locally convex K-vector spaces and U C E an open subset, we endow
C*®(U, F) with the compact-open C®-topology. Our goal is the following result:

Theorem 1. Let (E,[.,.]) be a locally convex Poisson vector space with respect to S = c. Let
U C E be open. Then, the Poisson bracket

{0} C2(UK) x C2(U,K) — C2(U,K)

is c-hypocontinuous in its second variable. If |.,.]: E. x E. — E. is continuous, then also the
Poisson bracket is continuous.

Various auxiliary results are needed to prove Theorem 1. With little risk of confusion
with subsets of spaces of operators, given a 0-neighbourhood W C F and a compact set
K C U, we shall write |[K, W] := {f € C(U,F): f(K) C W}.

Lemma 17. Let E, F be locally convex spaces and U C E be open. Then, the linear map
D: CR(U,F) = CR(U,L(E,F).), fr—f
is continuous.

Proof. By Corollary 1, f' € CR(U, L(E, F).) for each f € CR (U, F). As D is linear and also
C®(U,L(E,F).) — C(U x EX,L(E, F).), f + d*f is linear for each k € Ny,

d*oD: C®°(U,F) — C(U x EX, L(E, F)¢)co. (20)

is linear, whence it will be continuous if it is continuous at 0. We pick a typical 0-
neighbourhood in C(U x EK, L(E,F);)co., say |K, V] with a compact subset K C U x EX
and a 0-neighbourhood V' C L(E, F).. After shrinking V, we may assume that V = | A, W |
for some compact set A C E and 0-neighbourhood W C F.
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We now recall that for f € CZ (U, F), we have

(Y xy- o) = Ay, Ly ) E—F (1)

forallk € No, x € Uand yy,...,yx € E (cf. Corollary 1). Since |[K x A, W| is an open 0-
neighbourhood in C(U x E¥*1, F) and the map C*(U, F) — C(U x EX*1,F).,, f v d*F1f
is continuous, we see that the set Q) of all f € C®(U, F) such that d**1f € |[K x A, W] is
a 0-neighbourhood in C* (U, F). In view of (21), we have d*(f') € |K, | A, W]] for each
f € Q. Hence, d* o D from (20) is continuous at 0, as required. 0O

Lemma 18. Let X be a Hausdorff topological space, F be a locally convex space, K C X be compact
and M C C(X, F)c.o. be compact. Let ev: C(X,F) x X — F, (f,x) — f(x) be the evaluation
map. Then, ev(M x K) is compact.

Proof. The map p: C(X, F)co. — C(K, F)co., f — f|k is continuous by [20] (§3.2 (2)). Thus,
p(M) is compact in C(K, F)¢,.. Themap ¢: C(K,F) x K — F, (f,x) — f(x) is continuous
by [20] (Theorem 3.4.2). Hence, ev(M x K) = e(p(M) x K) is compact. [J

Lemma 19. Let E, Fi, Fp, and G be locally convex K-vector spaces and f: F; x F, — G bea
bilinear map which is c-hypocontinuous in its second argument. Let U C E be an open subset and
r € NoU {oco}. Assume that E x E is a kg-space, or r = 0 and E is a kg-space, or (r,K) = (c0,C)
and E is a kr-space. Then, the following holds:

(@) Wehave Bo (f,g) € Cx(U,G) forall (f,g) € Cx (U, F) x Ci (U, F,). The map
Cx (U, B): Cx (U, ) x Cx (U, F2) = Cx (U, G), (f,8) = Bo(f,g)

is bilinear. For each compact subset M C Cj, (U, F,) and 0-neighbourhood W C Ci (U, G),
there is a 0-neighbourhood V C Cj (U, Fy) such that Ci (U, B)(V x M) C W.

(b) Foreach g € Ci (U, F,), the map Ci (U, Fy) — Ci(U,G), f — Bo(f,g) is continuous
and linear.

(c) If B is also c-hypocontinuous in its first argument, then Ci, (U, B) is c-hypocontinuous in its
second argument and c-hypocontinuous in its first argument.

(d) If B is continuous, then Cy (U, B) is continuous.

Proof. (a) By Lemma 11, o (f,g) € Ci(U,G). The bilinearity of C"(U, B) is clear. It
suffices to prove the remaining assertion for each r € Ny. To see this, let M C C¥ (U, F,) bea
compact subset and W C C (U, G) be a 0-neighbourhood. Since the topology on Ci’ (U, G)
is initial with respect to the family of inclusion maps Ci (U, G) — Ci (U, G) for r € Ny,
there exists ¥ € Ny and a 0-neighbourhood Q in C (U, G) such that CR(U,G) N Q C
W. If the assertion holds for r, we find a 0-neighbourhood P C Cp (U, F;) such that
Ci (U, B)(P x M) C Q. Then, V := Cg(U, F;) N P is a 0-neighbourhood in C§ (U, F; ) and
CR(U,B)(Vx M) CCR(UG)NC(U,B)(Px M) CCR(UG)NQCW.

The caser = 0. Let M C C(U, F,) be compactand W C C(U, G) be a 0-neighbourhood.
Then, |K, Q] € W for some compact subset K C U and some 0-neighbourhood Q C G.
By Lemma 18, the set N := ev(M x K) C F, is compact, whereev: C(U,F,) x U — F is
the evaluation map. Since B is c-hypocontinuous in its second argument, there exists a
0-neighbourhood P C F; with B(P x N) C Q. Then, fo (|K,P] x M) C |K,Q] CW.

Induction step. Let M C Cf (U, F,) be a compact subset and W C Ci (U, G) be a
0-neighbourhood. The topology on C’(U, G) is initial with respect to the linear maps
A Ch(U,G) = C(U,G)co., f — fand Ay: Ci(U,G) — Ci '(U X E,G), f — df (by [26]
(Lemma A.1(d))). Note that the ordinary C"-topology is used there, by [26] (Proposition
4.19(d) and Lemma A2). After shrinking W, we may therefore assume that

W = (A1) 7H (W) N (A2) 71 (W)



Axioms 2022, 11, 221

33 of 38

with absolutely convex 0-neighbourhoods W; C C(U, G) and W, C Cj *(U x E, G). Ap-
plying the case r = 0 to C(U, B), we find a 0-neighbourhood V; C C(U, F;) such that
C(U,B)(V1 x M) C Wy. The map ¢;: Ci (U, Fj) — i H (U x E,F), f v df is continuous
linear and 7r: U x E — U, (x,y) + x is smooth, whence p;: Ci (U, F;) — Ci (U x EF),
f — fomiscontinuous linear (cf. [26] (Lemma 4.4) or [13] (Proposition 1.7.11)). By (5),

Ao Ch(U,B) = Ci ' (U XE,B)o(d xp2) + Cg {(U X E,B)o(p1 x2). (22)

The subsets p2(M) C Cj (U x E, F) and 6,(M) C C]%_l(ll x E,F,) are compact.
Using the case r — 1 (with U x E in place of U), which holds as the inductive hypothesis,
we find 0-neighbourhoods V,, V3 C cggl(u x E, Fy) such that Cj; (U, B) (V2 x pa(M)) C
(1/2)W, and Ci. (U, B)(V3 x 6,(M)) C (1/2)W,. Then, Q := (61)"1(V2) N (1)~ 1(V3)
is an open 0-neighbourhood in C (U, F;). Since (1/2)W, + (1/2)W, = W,, we deduce
from (22) that

A2 (C (U, B)(Q x M)) C Cl MU x E, B) (V2 x pa(M)) + Cic L(U x E, B) (V3 x 52(M)) C W,.

Thus, Cj (U, B)(Q x M) C (A2)"1(Ws). Now, V := V4 N Q is a 0-neighbourhood in
CL (U, Fy) such that CL (U, B)(V x M) C (A1) "L (W1) N (A2) " L(W2) = W.

(b) Since Ci (U, B) is bilinear, the map f + B o (f,g) is linear. Its continuity follows
from (a), applied with the singleton M := {g}.

(c) By (a) just established, the condition in Lemma 4 (a) is satisfied. By (b), the map
Ck (U, B) is continuous in its first argument. Interchanging the roles of F; and F,, we see
that Ci (M, B) is also continuous in its second argument and hence c-hypocontinuous in its
second argument. Likewise, Cf (U, B) is c-hypoocontinuous in its first argument.

(d) If B is continuous and hence smooth, then C"(U, ) is smooth and hence continuous,
as a very special case of [26] (Proposition 4.16) or [13] (Corollary 1.7.13). O

Proof of Theorem 1. By Lemma 17, the mapping D: C®(U,K) — C®(U, E)), f — f'is
continuous and linear. By Lemma 19 (c), the bilinear map

C¥(U, [, ]): (U E") x C*(UE') = C*(UE"), (f.8)— (x> [f(x),g(x)])

is c-hypocontinuous in its second argument; if [., .] is continuous, then also C*(U, [, .]), by
Lemma 19 (d). The evaluation map B: E x E. — K, (x,A) — A(x) is c-hypocontinuous
in its first argument, by Proposition 7. As a consequence, B.: C®(U,E.) — C®(U,K),
f +— Bo(idy, f) is continuous linear by Lemma 19 (b). Since

{.,.} =B«oC®(U,][.,.])o(DxD)

by definition, we see that {.,.} is a composition of continuous maps if [.,.] is continuous,
and hence continuous. In the general case, {.,.} is a composition of a bilinear map which
is c-hypocontinuous in its second argument and continuous linear maps, whence {., } is
c-hypocontinuous in its second arguemnt. [

13. Continuity of the Map Taking f to the Hamiltonian Vector Field Xy

In this section, we show the continuity of the mapping which takes a smooth function
to the corresponding Hamiltonian vector field, in the case S = c.

Theorem 2. Let (E,[.,.]) be a locally convex Poisson vector space with respect to S = c. Let
U C E be an open subset. Then, the map

¥: CR(UK) = CR(UE), f+r Xy (23)

is continuous and linear.



Axioms 2022, 11, 221

34 of 38

Proof. Let yg: E — (E.). be the evaluation homomorphism and V := {A € L(E., E.):
(Vx € E) ne(x) o A € ye(E)}. Then, V is a vector subspace of L(E., E.) and ad(E’) C V.
The composition map I': (E.). x L(E.,E)c — (E[)., (x, A) — a o A is hypocontinuous
with respect to equicontinuous subsets of (E.)., by Proposition 9 in [11] (Chapter III, §5,
no.5). If K C E is compact, then the polar K° is a 0-neighbourhood in E/, entailing that
(K°)° C (E.) is equicontinuous. Hence, 17 takes compact subsets of E to equicontinuous
subsets of (E.)’, and hence

B:ExV —E, (xA)— ﬂgl(r(iyg(x),A))

is c-hypocontinuous in its first argument. By Lemma 19 (c), B.: C*(U, V) — C*(U,E),
f — Bo(idy, f) is continuous linear. Moreover, the map D: C*(U,K) — C®(U,E.),
f + f'is continuous linear by Lemma 17. Furthermore, ad = [.,.]V: E. — L(E., E.). is
continuous linear since [.,.] is c-hypocontinuous in its second argument (see Lemma 4 (b)),
whence

C®(U,ad): C®(U,E.) — C®(U,L(E.,E.).), frsadof

is continuous linear (see, e.g., [26] (Lemma 4.13), or [13] (Corollary 1.7.13)). Hence,
Y = B, 0 C®(U,ad) o D is continuous and linear. [

Funding: The research was partially supported by Deutsche Forschungsgemeinschaft (FOR 363/1-1
and GL 357/5-1).

Data Availability Statement: Not applicable.

Acknowledgments: A limited first draft was written in 2001/02, supported by the research group
FOR 363/1-1 of the German Research Foundation, DFG (working title: Bundles of locally convex spaces,
group actions, and hypocontinuous bilinear mappings). The material was expanded in 2007, supported by
DFG grant GL 357/5-1. Substantial extensions and a major rewriting were carried out in 2022.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proofs for Some Basic Facts
We give proofs for various facts stated in Section 2.

Proof of Lemma 1. Let E := E; X -+ X Ej. Sincedf: U x E x X x E — F is continuous
and df(x,0,0,0) = 0, given g, there exists a continuous seminorm p on X such that
B (x) C U, and continuous seminorms pjonE;forje {1,... k} such that

ldf(y,01,..., 0z w1,...,w)|lg <1 (A1)

for all v, w; € ij(O), y € BY(x), and z € BY(0). Fory € B{(x) and (v,...,v¢) €
BJ'(0) x - - x B{*(0), the Mean Value Theorem (see [13] (Proposition 1.2.6)) shows that

1
fly,v1,...,0¢) :/0 df(y,tvy, ..., tog, 0,01, ..., 0)dt.

Since ||df (y, tv1, ..., 10k, 0,01,...,7k)||; < 1foreacht, it follows that || f(y, v1, ..., vk) |4
< 11in the preceding situation. Because f(y, -) is k-linear, we deduce that (1) holds. To
prove (2), we first note that (A1) implies that

lldf(y,v1,.-.,9%,2,0,...,0) |l < [z]lp (A2)

forally € BY(x), (v1,...,v) € B/"(0) x - -+ x BJ¥(0) and z € X, exploiting the linearity of
df(y,v1,...,9,2,0,...,0) in z. We now use the Mean Value Theorem to write

1
fy,v1,...,01) — f(x,01,...,0¢) = /0 df(x +t(y —x),v1,..., 0,y —x,0,...,0)dt
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fory € Bl (x) and (vy,...,v) € B{*(0) x - - - x BY*(0). By (A2), we have

ldf(x+ty —x), 01, 00y = %,0,...,0)lg < [ly — x|l

and hence | f(y,v1,...,v¢) — f(x,01,...,0)|lg < |ly — x||p- Now, (2) follows, using the
k-linearity of the map f(y,-) — f(x,-): E; X --- x Ex, = F. O

Proof of Lemma 2. By the Polarisation Formula for symmetric k-linear maps (see, e.g., ([13],
Proposition 1.6.19)), we have

1
f(x,yl,...,yk):w ) €1 eph(x,eqyr + - - + exlx)
: £1,...,€k€{71,1}

forallx € Uand yy,...,yx € E. Thus, fis Cy if hisso. [

Proof of Lemma 3. (a) Let pr,: X; x X, — X, (x,y) — y be the projection onto the
second component and pick xg € Xj. Since pr, is continuous, every k-continuous function
f: X — Ryields a k-continuous function f o pr, on X. Then, f o pr, is continuous and
hence also f = (f o pr,)(x0,)-

(b) Let f: U — R be k-continuous and x € U. As X is completely regular, we find a
continuous function g: X — R with g(x) # 0 and support supp(g) € U. Define h: X — R
via h(y) = f(y)g(y) ify € U, h(y) := 0if y € X\ supp(g). If K C X is a compact
subset, then each x € K has a compact neighbourhood Ky in K which is contained in U
or in X \ supp(g). In the first case, h|x, = f|k glk, is continuous by k-continuity of f.
In the second case, h|x, = 0 is continuous as well. Thus, h|g is continuous. Since X is
a kr-space, continuity of / follows. Thus, f is continuous on the open x-neighbourhood

g (R\{0}). O

A simple fact will be useful (see, e.g., [8] (Lemma 1.13)).

Lemma A1l. Let X be a topological space, F be a locally convex space, and BC(X, F) be the space of
bounded F-valued continuous functions on X, endowed with the topology of uniform convergence.
Then, u: BC(X,F) x X — F, (f,x) — f(x) is continuous.

Proof of Lemma 4. (If k = 2, see Proposition 3 and 4 in [11] (Chapter III, §5, no. 3) for the
equivalence (a)<(b) and the implication (b)=-(c); (c)=-(a) can be found in [8] (Proposition 1.8).)
(@)<(b): B(V x M) C W is equivalent to BV (V) € |[M,W]. Hence, (a) is equivalent to
continuity of BV in 0 and hence to its continuity (see Proposition 5 in [11] (Chapter I, §1,
no. 6)).

(b)=(c): If M € S, thene: Lk_f“(Ej, ..., Ex,F)s x M — F, e(a, x) := a(x) is continu-
ous as a consequence of Lemma Al. Hence, B|E, x...x Ej 1xM = €° (BY x idyy) is continuous.

(c)=(a) if (3) holds: Given M € S and a 0-neighbourhood W C F, by hypothesis,
we can find N € § such that DM C N. By continuity of ,B‘EM---xEj_lx N, there exist
0-neighbourhoods V; C E; for i € {1,...,k} such that B(V x (NNU)) € W, where
Vi=Vx--xVijand U := Vi x--- x V. Seta := k]—;}rl Since M is bounded,
M C n?U for some n € N. Then, n%M C NNU. Using that § is k-linear, we obtain
B(V) x M) = B(V x (aM)) S B(V x (NNU)) CW. O

Proof of Lemma 7. Given « € L¥(Ey,..., E, F), we have ¢ (a) = ¢(a,) = a, which is a
continuous k-linear map. The map ¢ is also continuous in its first argument, as the topology
on L¥(Ey, ..., Et, F)s is finer than the topology of pointwise convergence, by the hypothesis
on S. The linear map ¢": LX(Ey,...,Ex)s — L*(Ey,...,Ex)s, « — a being continuous,
condition (b) of Lemma 4 is satisfied by ¢ in place of § and hence also the equivalent
condition (a), whence ¢ is S-hypocontinuous in its arguments (2,...,k+1).
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Now, assume that k = 1. Since O is finer than the topology of pointwise convergence,
the map e remains separately continuous in the situation described at the end of the lemma.
Hence, if E is barrelled, Lemma 6 ensures hypocontinuity with respect to 7. O

Proof of Lemma 8. (a) The composition j o f is sequentially continuous and hence contin-
uous, its domain X being first countable.

(b) Write f = (f1,..., fy) with components f;: X — E, forv € {1,...,k}. IfKisa
compact subset of X, then M := (fj, ..., fy)(K) is a compact subset of E; x - - - X E;. Since
,B\El x--xEj_1 XM is continuous by Lemma 4 (c), the composition

Bo flic = Blyxxiy st © Fli

is continuous. Thus, § o f is k-continuous and hence continuous, as X is a kg-space and F
is completely regular. O

Proof of Lemma 9. (a) The case r = 0: Let g4 be a continuous seminorm on F := [Tjes E,
and x € U. After increasing g, we may assume that

q(y) = max{q;(y;): j € ®} forall y = (y;)jes € F, (A3)

for some non-empty, finite subset ® C | and continuous seminorms g; on F; for j € .
If each f; is LC%, then we find a continuous seminorm p; on E for each j € ® such that

B}/ (x) C Uand q;(fi(z) — f:(y)) < pj(z—y) forallz,y € B}’ (x). Then
p: E—[0,00, y+— max{p]-(y): j€ ®}

is a continuous seminorm on E such that B} (x) € U and q(f(z) — f(y)) < p(z —y) for all
z,y € By (x). If f is LCY, let us show that f; is LC} for each j € J. Let g be a continuous
seminormon Fjand x € U. Letpr;: F — F;, (yi)iej = y; be the continuous linear projection
onto the jth component. Then, g o pr; is a continuous seminorm on F, whence we find a

continuous seminorm p on E such that B} (x) C U and (g0 prj)(f(z) —f(y) <p(z—y)

forall z,y € Bf(x). Since (g o prj)(f(z) — f(y)) = q(fj(2) — fj(y)), we see that f; is LC}.

If r € NU {0}, then f is C if and only if each f; is Ci, and dkf = (dkfj)]-e] in this
case for all k € Ny such that k < r (see [13] (Lemma 1.3.3)). By the case r = 0, the map dkf
is LC]% if and only if d¥( fj)is LC]% for all j € J. The assertion follows.

(b) Let E, F, and Y be locally convex K-vector spaces and f: U — F as well as
g: V — Y be LCl-maps on open subsets U C E and V C F, such that f(U) C V.

If r =0, let x € U and q be a continuous seminorm on Y. There exists a continuous
seminorm p on F such that B (f(x)) C V and q(g(b) — g(a)) < p(b—a) forall a,b €
BJ(f(x)). There exists a continuous seminorm P on E with B} (x) C U and p(f(z) — f(y))
< P(z—y) forallz,y € B (x). Then, f(B}(x)) C BY(f(x)) and hence

q(8(f(2)) —g(f))) < p(f(2) = f(y)) < P(z—y)

forally,z € BY(x). Thus, go f: U — Yis LCY.
If r € NU{oo} and k € N such that k < r, we can use Faa di Bruno’s Formula

k

dgof)xy) =Y, Y dg(f(x),d"(x,yy),....d"(xy;)) (A4)

j:1 PEP](,]'

forx € Uandy = (y1,...,yx) € EX, as in [13] (Theorem 1.3.18). Here, Py is the set of
all partitions P = {Iy,...,;} of {1,...,k} into j disjoint, non-empty subsets I, ..., [; C
{1,...,k}. For a non-empty subset | C {1,...,k} with elements j; < --- < ji;, let yj :=
(Yj,,---,Yj,)- Using (a) and the case r = 0, we deduce from (A4) that d¥(g o f) is LCY.
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(c) For each continuous seminorm g on F, the restriction g| F, is a continuous seminorm
on Fy, and each continuous seminorm Q on F arises in this way. In fact, we find an open,
absolutely convex 0-neighbourhood V C F such that VN Fy C B? (0). Then, the absolutely
convex hull W of V U BlQ(O) is a 0-neighbourhood in F with WN Fy = B?(O), whence
q|r, = Q holds for the Minkowski funtional g of W. The case r = 0 follows.

If r € NU{oo}, let i: Fy — F be the inclusion map and f: U — Fy be a map on an
open subset U C E. Then, f is C% if and only if 1 o f is Ci, and d*(10 f) = 1o (d*f) for all
k € Ny such that k < r (see [13] (Lemma 1.3.19)). By the case r = 0, each of the maps dkf is
LCY. if and only if 1 0 (d*f) is so, from which the assertion follows.

(d) is immediate from (a) and (c). O

Appendix B. Smooth Maps Need Not Extend to the Completion

Let E := {(xn)nen € £': (3N € N)(Vn > N) x,, = 0} be the space of finite sequences,
endowed with the topology induced by the real Banach space ¢! of absolutely summable
real sequences. Then, E is a dense proper vector subspace of ¢!, and ¢! is a completion of E.
In this appendix, we provide a smooth map with the following pathological properties.

Proposition Al. There exists a smooth map f: E — F to a complete locally convex space F which
does not admit a continuous extension to E U {z} forany z € (' \ E.

Proof. Given z = (z,)en € (' \ E, the set S := {n € N: z, # 0} is infinite. For each
n € N, we pick a smooth map h,: R — R such that h,(z,) = 1; if n € S, we also require
that h,, vanishes on some 0-neighbourhood. Endow RY with the product topology. Then

8 RN, x= (xn)nen = (M (x1) -+ - B (xn) )nen

is a smooth map, as its components g,: ¢! — R, x + hi(x;)---hy(x,) are smooth. If
x = (xn)nen € E, then there is N € S such that x, = 0 for all n > N. Thus, g,(x) = 0 for
alln > N and hence g(x) € E. Notably, g(x) € ¢!. It therefore makes sense to define

for E—= Y, xg(x).

We now show: f,: E — (! is a smooth map to ¢' which does not admit a continuous
extension to E U {z}.

In fact, for x and N as above, there exists ¢ > 0 such that iy (t) = 0 for each t € |—¢,¢].
Identify RN with the closed vector subspace RN x {0} of E and RY. Then,

U := {y= (Yn)nen € E: |yn| < €}

is an open neighbourhood of x in E such that f,(U) C RN. Thus, f;| is smooth as a map
to RN and hence also as a map to /1. As a consequence, f,: E — ¢! is smooth.

Now, suppose that p = (p,)uen: EU {z} — ¢! was a continuous extension of f;; we
shall derive a contradiction. To this end, set y; := (z1,...,2,0,0,...) € E for k € N. Then,
yx — zin E as k — co. The inclusion map ¢! — RY being continuous, we deduce that

pn(yk) = pn(z) as k — oo,

for each n € N. Since p (yx) = gn(yx) = h1(z1) - - - hu(z4) = 1 for all k > n, it follows that
pn(z) = 1foralln € Nand thus (1,1,...) = p(z) € ¢!, which is absurd. Therefore, f, has
all of the asserted properties.

We now define Q := ¢!\ E and endow F := (¢1)© with the product topology. We let
f = (f2)zeq: E — F be the map with components f, as defined before. By construction, f
has the properties described in Proposition A1. O
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