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Abstract: For bounded linear operators defined on complex infinite-dimensional Banach space, H.
Zariouh, in an article [1] introduced and studied the property (gaz). In this study, through techniques
using the local spectral theory of operators, we discover the sufficient conditions that allow the
transfer of the property (gaz) from two tensor factors T and S to their tensor product T ⊗ S. The
stability of the property (gaz) in the tensor product under perturbations is also investigated. The
theory is exemplified by considering suitable classes of operators such as shift operators, convolution
operators, and m-invertible contractions.
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1. Introduction

For a bounded linear operator T defined on a complex infinite-dimensional Banach
space X, i.e., T ∈ L(X), the spectrum (the set of scalars ξ such that (ξ I − T) is not invertible)
can be fractionated into parts (subsets) in several different ways. Some parts contained
in the spectrum are studied using the classical Fredholm theory. In particular, the part
of the Browder spectrum generated by the Browder operators (also classically known
as Riesz–Schauder operators) has a appreciable role in the theory of operators. Among
the various studies that exist on Browder’s theorem (for a given T, if its Weyl spectrum
coincides with the Browder spectrum) and its variants, is the a-Browder theorem (for
given T, if its upper Weyl spectrum coincides with the upper Browder spectrum), or the
property (gaz), which means that the set of all spectral points ξ of T for which (ξ I − T) is
upper semi B-Weyl coincides with the set of all eigenvalues ξ of T, for which (ξ I − T) is
left Drazin invertible. This property (gaz) is relevant since it has recently been studied
in [2], where the spectral structure of the operators that satisfy it, observed in [3], were
transmitted from an invertible Drazin operator to its reverse Drazin. In addition, in [4], this
property was studied using a topological approach; in particular, it was shown that the
group of operators that belong to L(X) and that satisfy the property (gaz) is closed in L(X),
because the property (gaz) is equivalent to the property (az) (see [2]), where the property
(az) means that the set of all spectral points ξ of T for which (ξ I − T) is upper semi-Weyl
coincides with the set of all eigenvalues ξ of T for which (ξ I − T) is upper semi-Fredholm
with finite ascent.

The study of the tensor product of two vector spaces or of two linear operators has
a role in the theory of operators, as seen in [5], where various properties for the spectra
of tensor products of two linear operators are discussed. The study of the stability of
Weyl-type properties or Browder-type properties in the tensor product was initiated by S.
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Kubrusly and P. Duggal in [6]. Subsequently, these studies were continued by P. Duggal
in [7], M. Rashid in [8], and M. Rashid and T. Prasad in [9].

Since the study of the tensor product of two linear operators has an important role in
the theory of operators, in this article we consider the tensor product of two operators that
satisfy the property (gaz). In Section 3, we present our main results and also present a new
theoretical development linked to the property (gaz). Specifically, we focus our interest on
obtaining the sufficient conditions that allow the transfer of the property (gaz), for a given
two operators T and S, to their tensor product T ⊗ S. Furthermore, in Section 4, some of
the conditions that guarantee the stability of the property (gaz) in the tensor product T ⊗ S

under commutative perturbations are established.

2. Preliminaries

In the remainder of this paper, L(X) denotes the algebra consistent with all bounded
linear operators defined on the infinite-dimensional complex Banach space X. For T ∈ L(X),
let T∗, σ(T), σa(T), σs(T), N(T), and T(X) denote the adjoint operator, the spectrum, the
approximate point spectrum, the surjectivity spectrum, the null space, and the range of T,
respectively. We refer to [10] for other notations or terminology. However, for T ∈ L(X),
we give the classical notations for spectral sets that will be useful in what follows. The
spectrum may be:

• Upper semi-Fredholm: σus f (T).
• B-Fredholm: σB f (T).
• Upper semi B-Fredholm: σuB f (T).
• Lower semi B-Fredholm: σlB f (T).
• Browder: σb(T).
• Upper semi-Browder: σub(T).
• Fredholm: σe(T).
• Weyl: σw(T).
• Upper semi-Weyl: σea(T).
• Lower semi-Weyl: σes(T).
• Drazin invertible: σd(T).
• Left Drazin invertible: σld(T).
• B-Weyl: σBw(T).
• Upper semi B-Weyl: σuBw(T).

H(σ(T)) denotes the set of all analytic functions defined on an open neighborhood
of σ(T), and for each f ∈ H(σ(T)), we assume that f (T) is defined as in the classical
functional calculus. In addition, for T ∈ L(X), acc(σ(T)) denotes the set of accumulation
points of σ(T).

The localized interpretation of the single-valued extension property was given by
Finch in [11], and with respect to the Fredholm theory, this property has been related to
in several ways (see Section 3 of [12]). Precisely, an operator T ∈ L(X) is said to have the
single valued extension property at ξ0 ∈ C (abbreviated, the SVEP at ξ0) if, for every open disc
Dξ0 ⊆ C centered at ξ0, the only analytic function f : Dξ0 → X which satisfies the equation

(ξ I − T) f (ξ) = 0 for all ξ ∈ Dξ0 ,

is the function f ≡ 0 on Dξ0 . The operator T is said to have the SVEP if T has the SVEP at
every point ξ ∈ C.

It was proved that T ∈ L(X) has the SVEP at every isolated point of the spectrum.
Therefore, if σ(T) has no accumulation points, then T has the SVEP.
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3. Property (gaz) under Tensor Product

Let X⊗ Y be the algebraic completion (in some reasonable uniform cross norm) of
the tensor product of two Banach spaces X and Y. The tensor product of T ∈ L(X) and
S ∈ L(Y) on X⊗ Y is the operator defined as

(T ⊗ S)(∑
i

xi ⊗ yi) = ∑
i
T(xi)⊗ S(yi), where ∑

i
xi ⊗ yi ∈ X⊗ Y.

In this section, for T ∈ L(X) and S ∈ L(Y), which are two operators satisfying the
property (gaz), we study and list some sufficient conditions to ensure that the property
(gaz) is transmitted from T and S to the tensor product T ⊗ S.

For T ∈ L(X), we define:

∆+(T) := σ(T) \ σea(T) and ∆g(T) := σ(T) \ σuBw(T).

Π0
a(T) := σa(T) \ σub(T) and Πa(T) := σa(T) \ σld(T).

Note that Πa(T) ⊆ ∆g(T), since σuBw(T) ⊆ σld(T). In addition, Πa
0(T) ⊆ ∆+(T). The

purpose of defining these sets is to define the properties (gaz) and (az) formally.

Definition 1 ([1]). The operator T ∈ L(X) is said to satisfy:

1. Property (gaz), if ∆g(T) = Πa(T).
2. Property (az), if ∆+(T) = Π0

a(T).

In the following result, we see that these two properties are equivalent.

Theorem 1 ([1], Corollary 3.5). T ∈ L(X) satisfies the property (az) if and only if T satisfies the
property (gaz).

We will use the following characterization.

Theorem 2 ([4], Corollary 3). T ∈ L(X) satisfies the property (gaz) if and only if σb(T) =
σea(T).

Recall that T satisfies the a-Browder theorem if

σea(T) = σub(T).

This is an example where the tensor product of two operators that satisfy the property
(gaz) does not itself satisfy the property (gaz).

Example 1. Let U ∈ L(l2) be the forward unilateral shift, defined as
U(x1, x2, x3, ...) := (0, x1, x2, x3, ...) for each (x1, x2, x3, ...) ∈ l2. Let T and S be two operators in
L(l2 ⊗ l2), such that:

T := (I −UU∗)⊕ (0.5U− I) and S := −(I −UU∗)⊕ (0.5U∗ + I).

From [5], Remark 2, we know that T and S∗ have the SVEP, whereby T satisfies the
a-Browder theorem, and from [2], Corollary 3.7, we obtain that S satisfies the property
(gaz). Furthermore, considering [13], Theorem 1, we obtain

1 ∈ σ(T ⊗ S) \ σea(T ⊗ S).

On the other hand,

σ(T ⊗ S) =
{
{0, 1} ∪ {0.5D− 1}

}
.
{
{0,−1} ∪ {0.5D+ 1}

}
.
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Note that σ(T) = σa(T), thus T satisfies the property (gaz) (see [1], Theorem 3.2).
Since 1 ∈ acc(σ(S)), 1 ∈ acc(T⊗ S), whereby 1 ∈ σb(T⊗ S). Hence, σb(T⊗ S) 6= σea(T⊗ S).
This implies that T ⊗ S does not satisfy the property (gaz) (see Theorem 2).

Some properties of the tensor product are already known, for example those of the
following theorem.

Theorem 3 ([5]). Let T ∈ L(X) and S ∈ L(Y) be two operators, then:

1. σ(T ⊗ S) = σ(T)σ(S), σa(T ⊗ S) = σa(T)σa(S).
2. σus f (T ⊗ S) = σa(S)σus f (T) ∪ σa(T)σus f (S).
3. σub(T ⊗ S) = σa(T)σub(S) ∪ σub(T)σa(S).
4. σb(T ⊗ S) = σ(T)σb(S) ∪ σb(T)σ(S).

The upper semi-Weyl spectrum does not verify the identity of the spectrum for the
tensor product, i.e., σea(T ⊗ S) 6= σea(T)σ(S) ∪ σea(S)σ(T). In fact, we have the follow-
ing lemma.

Lemma 1. If T ∈ L(X) and S ∈ L(Y), then

σea(T ⊗ S) ⊆ σea(T)σ(S) ∪ σea(S)σ(T)

⊆ σb(T)σ(S) ∪ σb(S)σ(T) = σb(T ⊗ S).

Proof. From [5], Lemma 5, we have σea(T ⊗ S) ⊆ σea(T)σa(S) ∪ σea(S)σa(T). Thus, the
first inclusion follows from the facts that σa(T) ⊆ σ(T) and σa(S) ⊆ σ(S). In addition,
σea(T) ⊆ σb(T) and σea(S) ⊆ σb(S), and hence the second inclusion follows, and the
equality also follows from part 4 of Theorem 3.

Under the effects of the property (gaz), the upper semi-Weyl spectrum verifies the
identity of the spectrum for the tensor product, as seen in the next theorem.

Theorem 4. Suppose that T ∈ L(X) and S ∈ L(Y) satisfy the property (gaz). Then, T ⊗ S

satisfies the property (gaz) if and only if

σea(T ⊗ S) = σ(T)σea(S) ∪ σea(T)σ(S).

Proof. Assume that T, S, and T⊗S satisfy the property (gaz). Equivalently, from Theorem 2,
we have σea(T) = σb(T), σea(S) = σb(S), and σea(T ⊗ S) = σb(T ⊗ S).

Now, directly, from part 4 of Theorem 3, we obtain

σea(T ⊗ S) = σb(T ⊗ S) = σ(T)σb(S) ∪ σb(T)σ(S) = σ(T)σea(S) ∪ σea(T)σ(S).

Hence,
σea(T ⊗ S) = σ(T)σea(S) ∪ σea(T)σ(S).

Conversely, from Theorem 2 and Theorem 3 part 4, we have

σea(T ⊗ S) = σ(T)σea(S) ∪ σea(T)σ(S) = σ(T)σb(S) ∪ σb(T)σ(S) = σb(T ⊗ S).

Therefore, again by Theorem 2, T ⊗ S satisfies the property (gaz).

Corollary 1. Suppose that T ∈ L(X) and S ∈ L(Y) satisfy the property (gaz). Then,

σuBw(T ⊗ S) = σd(T ⊗ S)

if and only if
σea(T ⊗ S) = σ(T)σea(S) ∪ σea(T)σ(S).
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Proof. From [2], Corollary 3, σuBw(T⊗ S) = σd(T⊗ S) if and only if T⊗ S satisfies the prop-
erty (gaz) and (from Theorem 4) if and only if σea(T ⊗ S) = σ(T)σea(S) ∪ σea(T)σ(S).

This is an example where the tensor product of two operators that satisfy the property
(gaz) also satisfies the property (gaz).

Example 2. Every multiplier operator T defined on a semi-simple commutative Banach algebra A,
is H(1) (see [14]), whereby T has the SVEP and so σus f (T) = σub(T) and σea(T) = σub(T). In
addition, if A is regular and Tauberian, then from [12], Corollary 5.88, σ(T) = σa(T). Particularly,
this is true for two convolution operators Tµ and Tν in L1(G), where L1(G), is the group algebra for
a compact Abelian group G . Thus, from Theorem 3 parts 3 and 2, we obtain:

σub(Tν ⊗ Tµ) = σa(Tν)σub(Tµ) ∪ σub(Tν)σa(Tµ) = σa(Tν)σus f (Tµ) ∪ σus f (Tν)σa(Tµ) =
σus f (Tν ⊗ Tµ).

Hence, σub(Tν ⊗ Tµ) = σea(Tν ⊗ Tµ). Thus:

σa(Tν)σea(Tµ) ∪ σea(Tν)σa(Tµ) = σa(Tν)σub(Tµ) ∪ σub(Tν)σa(Tµ) = σub(Tν ⊗ Tµ) =
σea(Tν ⊗ Tµ).

Therefore, by Theorem 4, Tν ⊗ Tµ satisfies the property (gaz).
It is well known that the property (gaz) implies the a-Browder theorem but not vice

versa (see [2], Theorem 3.2). The following theorem gives an equivalence between these two.

Theorem 5. Suppose that T ∈ L(X) satisfies the property (gaz) and also S ∈ L(Y). T⊗ S satisfies
the a-Browder theorem if and only if T ⊗ S satisfies the property (gaz).

Proof. Assume that T ⊗ S satisfies the a-Browder theorem. Then, from Theorem 3 part 3,

σea(T ⊗ S) = σub(T ⊗ S) = σ(T)σub(S) ∪ σ(S)σub(T). (1)

Since T and S satisfy the property (gaz), they also satisfy the a-Browder theorem,
whereby σea(T) = σub(T), and σea(S) = σub(S), and from Equation (1) we obtain

σea(T ⊗ S) = σ(T)σea(S) ∪ σea(T)σ(S).

Therefore, by Theorem 4, T ⊗ S satisfies the property (gaz).

Corollary 2. Suppose that T ∈ L(X) satisfies the property (gaz) and also S ∈ L(Y). Then the
operator T ⊗ S satisfies the property (gaz) if T ⊗ S has the SVEP.

Proof. Since the SVEP implies the a-Browder theorem, from Theorem 5, T ⊗ S satisfies the
property (gaz).

Corollary 3. Suppose that T ∈ L(X) satisfies the property (gaz) and also S ∈ L(Y). If the
operator T ⊗ S has the SVEP, then:

1. σuBw(T ⊗ S) = σd(T ⊗ S).
2. (T ⊗ S)∗ satisfies the property (gaz).
3. σuBw(T ⊗ S) = σd(T ⊗ S) = σlBw(T ⊗ S) = σBw(T ⊗ S).
4. σea(T ⊗ S) = σb(T ⊗ S) = σes(T ⊗ S) = σw(T ⊗ S).
5. f (T ⊗ S) satisfies the property (gaz), for each f ∈ H(σ(T ⊗ S)).
6. σea(T ⊗ S) = σ(T)σea(S) ∪ σea(T)σ(S).
7. f (σuBw(T ⊗ S)) = σuBw( f (T ⊗ S)), for each f ∈ H(σ(T ⊗ S)).

Proof. 1. From Corollary 2, T ⊗ S satisfies the property (gaz), so equivalently from [2],
Corollary 3, σuBw(T ⊗ S) = σd(T ⊗ S).
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2. With the hypothesis that T ⊗ S has the SVEP, we obtain from [2], Corollary 3.7, that
(T ⊗ S)∗ satisfies the property (gaz).

3. The Drazin spectrum of an operator matches the Drazin spectrum of its dual, so from
part 1, we obtain σuBw(T ⊗ S) = σd(T ⊗ S) = σd(T ⊗ S)∗, and from part 2, (T ⊗ S)∗

satisfies the property (gaz), so σd(T ⊗ S)∗ = σlBw(T ⊗ S).
4. From part 2 and Corollary 2, we obtain that T ⊗ S and (T ⊗ S)∗ satisfy the property

(gaz), or equivalently, satisfy the property (az). Hence, from [4], Theorem 2, we
obtain that

σea(T ⊗ S) = σb(T ⊗ S) = σes(T ⊗ S) = σw(T ⊗ S).

5. From [12], Theorem 2.40, for each f ∈ H(σ(T ⊗ S)), f (T ⊗ S) has the SVEP and
thus satisfies the a-Browder theorem. Note that σ( f (T ⊗ S)) = σa( f (T ⊗ S)). Hence,
from [1], Theorem 3.2, f (T ⊗ S) satisfies the property (gaz).

6. From part 1, σuBw(T ⊗ S) = σd(T ⊗ S), so by Corollary 1,

σea(T ⊗ S) = σ(T)σea(S) ∪ σ(S)σea(T).

7. Let f ∈ H(σ(T⊗ S)). From part 5, f (T⊗ S) satisfies the property (gaz), or equivalently,
by [2], Corollary 3, σuBw( f (T ⊗ S)) = σd( f (T ⊗ S)). Now, from part 1, σuBw(T ⊗ S) =
σd(T ⊗ S). Hence, f (σuBw(T ⊗ S)) = f (σd(T ⊗ S)) = σd( f (T ⊗ S)) = σuBw( f (T ⊗ S)),
since Drazin’s resolvent is a regularity. Hence, 7 follows.

Example 3. Let T ∈ L(X) and S ∈ L(Y) be such that σ(T) and σ(S) do not have accumulation
points (for example algebraic operators). Hence, by [4], Corollary 4, T and S satisfy the property
(az), or equivalently, satisfy the property (gaz). Note that σ(T ⊗ S) does not have accumulation
points, so T ⊗ S has the SVEP. Therefore, Corollaries 2 and 3 apply to T ⊗ S.

4. Stability of the Property (gaz) in the Tensor Product

In this section, we discover some sufficient conditions to show the stability of the
property (gaz) in the tensor product under commuting perturbation, which is quasi-
nilpotent and a Riesz operator.

Recall that an operator R ∈ L(X) is a Riesz operator if for all ξ 6= 0, ξ I − R is a
Fredholm operator. In addition, an operator Q ∈ L(X) is quasi-nilpotent if for all ξ 6= 0,
ξ I − Q is invertible, that is, σ(Q) = {0}. On the other hand, if Q1 ∈ L(X) and Q2 ∈ L(Y) are
quasi-nilpotent operators commuting with T ∈ L(X) and S ∈ L(Y), respectively, then

(T + Q1)⊗ (S+ Q2) = (T ⊗ S) + Q,

where Q := Q1 ⊗ S+ T ⊗ Q2 + Q1 ⊗ Q2 ∈ L(X⊗ Y) is a quasi-nilpotent operator (see [9]).
Note that Q commutes with (T ⊗ S). Thus, we obtain the next theorem.

Theorem 6. Let Q1 ∈ L(X) and Q2 ∈ L(Y) be two quasi-nilpotent operators commuting with T ∈
L(X) and S ∈ L(Y), respectively. If T ⊗ S satisfies the property (gaz), then (T + Q1)⊗ (S + Q2)
satisfies the property (gaz).

Proof. Let us define T1 := (T + Q1)⊗ (S + Q2). Note that every quasi-nilpotent operator
is a Riesz operator. Hence, by corollaries 3.24, 3.18, and 3.9 of [10], σ(T1) = σ(T ⊗ S) and
σa(T1) = σa(T ⊗ S), σea(T1) = σea(T ⊗ S), and σub(T1) = σub(T ⊗ S), respectively. Since
T ⊗ S satisfies the property (gaz) and hence satisfies the property (az):

σ(T1) \ σea(T1) = σ(T ⊗ S) \ σea(T ⊗ S) = σa(T ⊗ S) \ σub(T ⊗ S) = σa(T1) \ σub(T1).

Therefore, T1 = (T + Q1)⊗ (S + Q2) satisfies the property (az), or equivalently, satis-
fies the property (gaz).
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From Corollary 2 and Theorem 6, we obtain the following result.

Corollary 4. Let Q1 ∈ L(X) and Q2 ∈ L(Y) be quasi-nilpotent operators commuting with
T ∈ L(X) and S ∈ L(Y), respectively. Suppose that T and S satisfy the property (gaz). If T ⊗ S

has the SVEP, then (T + Q1)⊗ (S+ Q2) satisfies the property (gaz).

We put the set ∆+(T) := σ(T) \ σus f (T), so that ∆+(T) ⊆ ∆+(T), and hence

int (∆+(T)) = ∅ ⇒ int (∆+(T)) = ∅.

In this case, from [4], Theorem 7, we obtain the result that T has the SVEP at each
ξ /∈ σea(T). Thus, for Riesz perturbations, we have the following result.

Theorem 7. Let T ∈ L(X) and S ∈ L(Y) such that int(∆+(T ⊗ S)) = ∅. Let R1 ∈ L(X)
and R2 ∈ L(Y) be two Riesz operators commuting with T and S, respectively. Suppose that
σ(T +R1) = σ(T), σ(S+R2) = σ(S), equally, for the approximate point spectrum. If S0 :=
(T +R1)⊗ (S+R2), then:

1. S0 satisfies the property (gaz).
2. σus f (S0) = σe(S0) = σea(S0) = σw(S0) = σub(S0) = σb(S0).
3. σuB f (S0) = σB f (S0) = σuBw(S0) = σBw(S0) = σld(S0) = σd(S0).

Proof. 1. To prove that S0 := (T +R1)⊗ (S+R2) satisfies the property (gaz), or equiva-
lently, the property (az), it is sufficient to prove that int(∆+(S0)) = ∅ (see [4], Theorem 7).
It is clear that ∆+(S0) ⊆ ∆+(S0). By hypothesis, σ(T +R1) = σ(T), and σ(S+R2) = σ(S).
From [10], Corollary 3.18, the upper semi-Fredholm spectrum is stable under Riesz com-
muting perturbation, and from Theorem 3 parts 1 and 2, we obtain

∆+(S0) ⊆ ∆+(S0) = ∆+(T ⊗ S).

Hence, it follows from the hypothesis, that int(∆+(S0) = ∅. Therefore, S0 = (T +R1)⊗
(S+R2) satisfies the property (gaz).

2–3. As for the proof in part 1, for S0 = (T +R1)⊗ (S+R2), we have int(∆+(S0)) =
∅ = int(∆+(S0)). Thus, 2 and 3 follow from [4], Section 5.

Example 4. If T1 and T2 are two left m-invertible contractions such that σ(Ti) ⊆ Γ for i ∈ {1, 2},
then ξ ∈ σ(Ti) is a pole of Ti if and only if (ξ I − Ti)(X) is closed (see [15] for definition and details).
However, ∀ξ ∈ ∆+(Ti), (ξ I − Ti)(X) is closed, so ∆+(Ti) ⊆ ∆+(Ti) ⊆ Π(Ti) ⊆ iso σa(Ti), and
hence int(∆+(Ti)) = ∅, so Ti satisfies the property (gaz), whereby σ(Ti) = σa(Ti). In addition,
int(∆+(T1 ⊗ T2)) = ∅. Therefore, applying Theorem 7, we obtain

S00 := (T1 + 0)⊗ (T2 + 0).

In particular, T1 ⊗ T2 satisfies the property (gaz), so from Theorem 6,

S1 := (T1 + Q1)⊗ (T2 + Q2),

satisfies the property (gaz), where Q1 and Q2 are two quasi-nilpotent operators commuting with T1
and T2, respectively.

5. Conclusions

(1) The property (gaz), in general, does not transfer from two tensor factors to the tensor
product of the two factors (see Example 1). However, we can conclude that it does so
if the upper Weyl spectrum satisfies the identity of the spectrum of the tensor product
(see Theorem 4).
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(2) The a-Browder theorem is equivalent to the property (gaz) for the tensor product of
two operators that satisfy the property (gaz) (see Theorem 5).

(3) Under certain conditions, the property (gaz) is stable in the tensor product of two
operators that satisfy it with commutative perturbations in the factors, which can be
quasi-nilpotent or Riesz (see Section 4).

Further Work: The study of the stability of tensor products under algebraic perturba-
tions is in progress.
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