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Abstract: A reproducing kernel Hilbert space (RKHS) approximation problem arising from learning
theory is investigated. Some K-functionals and moduli of smoothness with respect to RKHSs are
defined with Fourier–Bessel series and Fourier–Bessel transforms, respectively. Their equivalent
relation is shown, with which the upper bound estimate for the best RKHS approximation is provided.
The convergence rate is bounded with the defined modulus of smoothness, which shows that the
RKHS approximation can attain the same approximation ability as that of the Fourier–Bessel series
and Fourier–Bessel transform. In particular, it is shown that for a RKHS produced by the Bessel
operator, the convergence rate sums up to the bound of a corresponding convolution operator
approximation. The investigations show some new applications of Bessel functions. The results
obtained can be used to bound the approximation error in learning theory.

Keywords: bessel function; Fourier–Bessel series; Fourier–Bessel transform; K-functional; modulus of
smoothness; semigroup of operators; reproducing kernel Hilbert space (RKHS); best approximation
error; learning theory

1. Introduction

The error analysis in learning theory shows that the learning rate of the kernel regular-
ized regression depends upon the approximation ability of the kernel function spaces (see,
for example, [1–3]).

Let X be a complete metric space and µ be a Borel measure on X. Denoted by L2
µ(X),

the Hilbert space consisting of (real) square integrable functions with the inner product

〈 f , g〉L2
µ(X) =

∫
X

f (x)g(x) dµ(x), f , g ∈ L2
µ(X).

Suppose that K : X × X → R = (−∞,+∞) is continuous, symmetric and strictly
positive definite, i.e., for any given integers m ≥ 1, (K(xi, xj))

m
i,j=1 are positive definite

matrices for given finite sets {x1, x2, · · · , xm} ⊂ X. Assume that K ∈ L2
µ×µ(X× X), i.e.,∫

X

∫
X
|K(x, t)|2dµ(x)dµ(t) < +∞.

Then the linear operator LK : L2
µ(X)→ L2

µ(X) defined by

LK( f , x) =
∫

X
K(x, t) f (t)dµ(t), x ∈ X (1)
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is positive, and its range lies in C(X). Take L
1
2
K to be the linear operator on L2

µ(X) satis-

fying L
1
2
K ◦ L

1
2
K = LK and L−

1
2

K , the inverse of L
1
2
K. Additionally, define HK = L

1
2
K(L2

µ(X)).
Then (HK, ‖ · ‖HK ) is a reproducing kernel Hilbert space associated with Kx(y) = K(x, y),
i.e., (see [1,4–7]),

f (x) = 〈 f , Kx〉HK , f ∈ HK, x ∈ X, (2)

where the inner product 〈·, ·〉HK is induced by a norm defined as

‖ f ‖HK = ‖L−
1
2

K f ‖L2
µ(X), f ∈ HK, (3)

i.e.,

‖L
1
2
K f ‖HK = ‖ f ‖L2

µ(X), f ∈ L2
µ(X). (4)

One of the targets of learning theory is to find an unknown function f : X → R from
the random observations {(xi, yi)}m

i=1 drawn i.i.d. (identically and independently dis-
tributed) according to a unknown probability ρ(x, y) = ρX(x)ρ(y|x) defined on X × R
(see [1,6]). A usual algorithm to realize this aim is to solve the following kernel regularized
optimization problem:

fz,λ = arg min
f∈HK

1
m

m

∑
i=1

( f (xi)− yi)
2 + λ‖ f ‖2

HK
, (5)

where HK is taken as the hypothesis space, λ > 0 is a parameter which balances the

relationship between the empirical error term
m
∑

i=1
( f (xi)− yi)

2 and the penalty term ‖ f ‖2
HK

.

Let fρ(x) =
∫

R y dρ(y|x) be the regression function. Then fρ is the least-squares-best
predictor (see Section 9.4 in Section 9 of [8]), i.e.,

E(( fρ(·)− y)2) = inf
g∈L2

ρX (X)
E
(
( f (·)− y)2

)
.

It is known that the convergence analysis of model (5) sums up to bound the conver-
gence rate for error ‖ fz,λ − fρ‖L2

ρX (X), which depends upon the decay of the best approxi-

mation I( f , γ)L2
ρX (X) defined as (see e.g., [1,2,6])

I( f , γ)L2
ρX (X) = inf

g∈HK , ‖g‖HK≤γ
‖ f − g‖L2

ρX (X), γ > 0 (6)

as γ→ +∞.
Formula (6) deals with a decay rate which depends upon the approximation property

ofHK. Many mathematicians have performed investigations on it. For example, D. X. Zhou
gives the decay of (6) with the RKHS interpolation theory (see [2,3]). P.X. Ye gives the decay
using convolution operators in the Euclidean space Rd (see [9]). H.W. Sun gives a decay
for (6) with the help of operator theory in a Hilbert space (see [10]). It is known that the
Fourier–Bessel series is a good approximation tool and has been studied by many mathe-
maticians (see for example, [11–16]). Additionally, we found that approximation by RBF
networks of Delsarte translates was studied by some mathematicians. The essence of RBF is
summed up as the approximation of Fourier–Bessel transforms (see, for example, [17–20]).
So it is of interest for us to conduct investigations on the decay of I( f , R)L2

ρX (X) with both
the Fourier–Bessel series and the Fourier–Bessel transforms.
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Let α > − 1
2 and 1 ≤ p ≤ +∞ be given real numbers, and Lp(R+, dµα) denote the

space of all measurable real functions on R+ = [0,+∞) such that

‖ f ‖p,α =


( ∫

R+

∣∣∣ f (x)
∣∣∣p dµα

) 1
p
< +∞, 1 ≤ p < +∞,

ess sup
x∈R+

∣∣∣ f (x)
∣∣∣ < +∞, p = +∞,

where dµα(x) = x2α+1

2αΓ(α+1) dx. The normalized Bessel function jα(z) of the first kind and
order α is

jα(z) = Γ(α + 1)
+∞

∑
n=0

(−1)n( z
2 )

2n

n! Γ(n + α + 1)

= 2αΓ(α + 1)
Jα(x)

xα
, z ∈ R+, (7)

where

Jα(x) =
( x

2

)α +∞

∑
n=0

(−1)n( z
2 )

2n

n! Γ(n + α + 1)

is the Bessel function of first kind and order α, and Γ(α + 1) is the Gamma function.
For f ∈ L1(R+, dµα), the usual Fourier–Bessel transform F (α)

B ( f ) is defined as

F (α)
B ( f )(λ) =

∫
R+

f (x) jα(λx) dµα, λ ∈ R+.

In the present paper, some investigations on the decay of I( f , γ)L2
ρX (X) in the case

that HK are constructed with jα(z)(z ∈ [0, 1]) and F (α)
B ( f ) are provided. Some K-functional

and moduli of smoothness are defined with the help of the semigroup of operators, and
their equivalences are shown, with which the error for the decay is bounded. The results
obtained are two kinds of upper bound estimates associated with Fourier–Bessel series and
Fourier–Bessel transforms, respectively.

The paper is organized as follows. In Section 2, some notions and results of the
Fourier–Bessel series and Fourier–Bessel transforms are provided, with which two kinds
of RKHSs are constructed; the corresponding best RKHS approximation problem in these
setting is restated. Some K-functionals and moduli of smoothness associated with Fourier–
Bessel series and Fourier–Bessel transforms are provided, and their equivalence is shown,
with which some upper bounds for the best approximation are shown in Sections 3 and 4,
respectively. All the proofs for the propositions, the theorems and lemmas are given in
Section 5. Some further analysis for the results of the present paper are given in Section 6,
from which one can see the value of writing this manuscript. A general proposition for the
strong equivalence of K-functionals and moduli of smoothness is listed in the Appendix A.

2. Preliminaries

Let λ1, λ2, · · · , be the positive zeros of Jα(u) arranged in increasing order. It is well
known that jα(λnx), n = 1, 2, · · · , form a complete orthogonal system in L2

α = { f :
‖ f ‖L2

α
= (
∫ 1

0 x2α+1| f (x)|2 dx)
1
2 < +∞} (see, for example, [12,16,21]), i.e.,

∫ 1

0
x2α+1 jα(λnu) jα(λmu)du = ‖jα(λi·)‖2

L2
α

δm,n.
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Take j∗α(λix) =
jα(λix)
‖jα(λi ·)‖L2

α

. Then

∫ 1

0
x2α+1 j∗α(λnu)j∗α(λmu) du = δm,n, (8)

{j∗α(λix)}∞
i=1 forms an orthonormal basis of L2

α and for any f ∈ L2
α, there holds Fourier–

Bessel series

f (x) =
+∞

∑
i=1

ai( f ) j∗α(λix), x ∈ [0, 1], (9)

where ai( f ) =
∫ 1

0 x2α+1 f (x)j∗α(λix)dx and

‖ f ‖L2
α
=

(
+∞

∑
i=1
|ai( f )|2

) 1
2

. (10)

Lemma 1. We have the following results:

(i) Let Λ ⊂ N . Then

‖ ∑
i∈Λ

ci j∗α(λix)‖L2
α
=

(
∑
i∈Λ

c2
i

) 1
2

. (11)

(ii) The generalized translation operator Tx on L2
α defined as

Tx( f )(y) =
Γ(α + 1)
√

πΓ(α + 1
2 )

∫ π

0
f
(√

x2 + y2 − 2xy cos θ

)
(sin θ)2αdθ, x, y ∈ [0, 1]

has the expansion of

Tx( f )(y) =
+∞

∑
i=1

a∗i ( f ) j∗α(λix) j∗α(λiy), x, y ∈ [0, 1], (12)

where a∗i ( f ) =
∫ 1

0 x2α+1 f (x) jα(λix) dx, and

‖Th( f )(·)‖L2
α
≤ ‖ f ‖L2

α
, ∀h ∈ [0, 1]. (13)

(iii) The zeros {λ1, λ2, · · · , } satisfy

λn = nπ +
απ

2
− π

4
+ O(

1
n
). (14)

Proof. See it from Section 5.

Inequality (13) is a theoretical basis for defining the moduli of smoothness with
translation operators Tx( f )(y).

Let {hi}+∞
i=1 be the set of given positive real sequences such that the right side of

the series

K(α)
x (y) = K(α)(x, y) =

+∞

∑
i=1

hi j∗α(λix) j∗α(λiy), x, y ∈ [0, 1], (15)



Axioms 2022, 11, 233 5 of 20

has uniform convergence for all x ∈ R+. It therefore is a Mercer kernel. Then

LK(α)( f , x) =
+∞

∑
i=1

hi ai( f ) j∗α(λix), x ∈ [0, 1]. (16)

Take

L
1
2
K(α)( f , x) =

+∞

∑
i=1

√
hi ai( f ) j∗α(λix), x ∈ [0, 1]. (17)

Then it is easy to verify that LK(α) = L
1
2
K(α) ◦ L

1
2
K(α) , and

HK(α) = L
1
2
K(α)(L2

α) = {g ∈ L2
α : ‖g‖K(α) = ‖L−

1
2

K(α)(g)‖L2
α
=

(
+∞

∑
i=1

|ai(g)|2
hi

) 1
2

< +∞}

is a RKHS in L2
α associating with reproducing kernel K(α)(x, y) and an inner product 〈·, ·〉K(α)

defined as

〈 f , g〉K(α) =
+∞

∑
i=1

ai( f ) ai(g)
hi

, f , g ∈ HK(α) .

Since

ai(K
(α)
x (·)) =

∫ 1

0
y2α+1K(α)(x, y)j∗α(λiy)dy

=
∫ 1

0
y2α+1

(
+∞

∑
k=1

hk j∗α(λkx) j∗α(λky)

)
j∗α(λiy)dy

= hi j∗α(λix),

we have

〈 f , K(α)
x (·)〉K(α) =

+∞

∑
i=1

ai( f ) ai(K
(α)
x (·))

hi

=
+∞

∑
i=1

ai( f ) hi j∗α(λix)
hi

=
+∞

∑
i=1

ai( f ) j∗α(λix) = f (x).

Equality (6) becomes

I( f , γ)L2
α

= inf
g∈H

K(α)
, ‖g‖

K(α)
≤γ
‖ f − g‖L2

α
, γ > 0 (18)

as γ→ +∞.
Let C∗(R) be the class of even C∞-functions on R = {−∞, +∞}. Denoted by A∗(R),

the space of even C∞-functions on R which are rapidly decreasing together with all their
derivatives, i.e.,

∀p, k ∈ N , sup
x≥0

(
|xp f (k)(x)|

)
< +∞,

where N is the set of natural numbers.
Let D∗,a denote the space of even C∞-functions on R with support in [−a, a], a ≥ 0 and

D∗(R) =
⋃
a≥0

D∗,a.



Axioms 2022, 11, 233 6 of 20

Additionally, define the generalized translation operator Tx on L1(R+, dµα) as

Tx( f )(y) =
Γ(α + 1)
√

πΓ(α + 1
2 )

∫ π

0
f
(√

x2 + y2 − 2xy cos θ

)
(sin θ)2αdθ, x, y ∈ R+.

and define a convolution on L1(R+, dµα) by

( f ∗B g)(x) =
∫

R+

Tx( f )(y)g(y)dµα(y), f , g ∈ L1(R+, dµα), x ∈ R+.

For the Bessel operators

lα =
d2

dx2 +
2α + 1

x
d

dx
we have (see p. 12 or p. 177 of [22])

(−lα)(jα(λ·))(x) = λ2 jα(λx), (−lα)−1(jα(λ·))(x) =
1

λ2 jα(λx), λ, x ∈ R+. (19)

and therefore
(−lα)∓

1
2 (jα(λ·))(x) = λ∓ jα(λx), x ∈ R+.

Moreover, we have the following lemma.

Lemma 2. There hold the following:

(i) D∗(R) is dense in A∗(R);
(ii) Both D∗(R) and A∗(R) are dense in Lp(R+, dµα), 1 ≤ p < +∞, and

D∗(R) ⊂ A∗(R) ⊂ Lp(R+, dµα), 1 ≤ p < +∞; (20)

(iii) If f ∈ A∗(R), then F (α)
B ( f ) ∈ A∗(R) and Tx( f ) ∈ A∗(R);

(iv) F (α)
B is a topological isomorphism from A∗(R) to itself and F (α)−1

B = F (α)
B .

(v) There hold

F (α)
B ( f ∗B g) = F (α)

B ( f )F (α)
B (g), f , g ∈ L1(R+, dµα), (21)

( f ∗B g)(x) =
∫

R+

F (α)
B ( f )(λ)F (α)

B (g)(λ)jα(λx)dµα(λ) (22)

and

F (α)
B (Tx( f ))(λ) = jα(λx)F (α)

B ( f )(λ), f ∈ L1(R+, dµα). (23)

It follows

Tx( f , y) =
∫

R+

F (α)
B ( f )(λ) jα(λx) jα(λy) dµα(λ), f ∈ L1(R+, dµα). (24)

(vi) If f ,F (α)
B ( f ) ∈ L1(R+, dµα), then

f (x) =
∫

R+

F (α)
B ( f )(λ) jα(λx) dµα(λ), a.e.x ∈ R+; (25)

(vii) Let f ∈ A∗(R) or f ∈ L2(R+, dµα). Then∫
R+

| f (x)|2dµα =
∫

R+

∣∣∣F (α)
B ( f )(λ)

∣∣∣2 dµα(λ); (26)
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(viii) There hold the following relations

F (α)
B (lp

α ( f ))(λ) = (−1)pλ2pF (α)
B ( f )(λ), f ∈ L1(R+, dµα), (27)

‖Tx( f )‖p,α ≤ ‖ f ‖p,α, f ∈ Lp(R+, dµα), 1 ≤ p < +∞, (28)

F (α)
B (jα(λ·))(y) = jα(λx) jα(λy), ∀x, y, λ ∈ R+. (29)

Proposition 2.1 of [23] shows that if φ ∈ L1(R+, dµα) satisfies F (α)
B (φ) ≥ 0 and

F (α)
B (φ) ∈ L1(R+, dµα), then

K(φ, x, y) = Kx(φ, y) = Tx(φ, y) =
∫

R+

F (α)
B (φ)(λ)jα(λx) jα(λy) dµα, y ∈ R+.

defines a Mercer kernel on R+. We give an assumption

Assumption 1. Let φ ∈ L1(R+, dµα) satisfy F (α)
B (φ) > 0,F (α)

B (φ) ∈ L1(R+, dµα) and for
any µ > 0 there is a real number a ∈ R+ such that

{λ ∈ R+ : F (α)
B (φ)(λ) ≤ 1

µ
} ⊂ [0, a]. (30)

We point here that the functions φ satisfying Assumption 1 are existent, and give two examples.

Example 1. For t ∈ (0, +∞) the function pt : [0,+∞)→ R+ defined by

pt(x) =
2α+1Γ(α + 3

2 )√
π

t

(t2 + x2)α+ 3
2

satisfies ‖pt‖L1(R+ , dµα)
= 1, pt ∗B ps = pt+s and F (α)

B (pt)(λ) = e−tλ for λ ∈ R+ (see
Problem 5. VIII 2 in Section 5.VIII Problems of [22]).

Example 2. For t, s ∈ (0, +∞) the function kt : R+ → R+ defined by

kt(x) =
e−

x2
4t

(2t)α+1

satisfies ‖kt‖L1(R+ , dµα)
= 1, kt ∗B ks = kt+s and F (α)

B (kt)(λ) = e−tλ2
for λ ∈ R+ (see

Problem 5. VIII 1 in Section 5.VIII Problems of [22]).
Define

HK(φ) = {g ∈ L2(R+, dµα) ∩ C∗(R) :
F (α)

B (g)

F (α)
B (φ)

1
2
∈ L2(R+, dµα),

g(u) =
∫

R+

F (α)
B (g)(λ) jα(λu) dµα(λ)}

with norm ‖g‖HK(φ)
=

(∫
R+

|F (α)
B (g)(λ)|2

F (α)
B (φ)(λ)

dµα

) 1
2

Define an inner product onHK(φ) as

〈g, f 〉K(φ) =
∫

R+

F (α)
B ( f )(λ)F (α)

B (g)(λ)

F (α)
B (φ)(λ)

dµα, f , g ∈ HK(φ).
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It is known that K(φ, x, y) is a reproducing kernel ofHK(φ) (see [24]), i.e.,

〈g, K(φ, x, ·)〉K(φ) = g(x), g ∈ HK(φ), x ∈ R+. (31)

We have

LK(φ)( f , x) =
∫

R+

Kx(φ, u) f (u) dµα(u)

=
∫

R+

F (α)
B (φ)(λ)F (α)

B ( f )(λ) jα(λx) dµα(λ), f ∈ L1(R+, dµα). (32)

Define for a given real number r ∈ R an operator as

Lr
K(φ)( f , x) =

∫
R+

(
F (α)

B (φ)(λ)
)r
F (α)

B ( f )(λ) jα(λx) dµα(λ), f ∈ L1(R+, dµα). (33)

Then it is easy to show that LK(φ) = L
1
2
K(φ)(L

1
2
K(φ)) = L

1
2
K(φ) ◦ L

1
2
K(φ),

L
1
2
K(φ)(L2(R+, dµα)) = {g ∈ L2(R+, dµα) :

(∫
R+

|F (α)
B (g)(λ)|2

F (α)
B (φ)(λ)

dµα

) 1
2

< +∞} = HK(φ),

and
‖ f ‖K(φ) = ‖L−

1
2

K(φ)( f )‖L2(R+ , dµα)
, f ∈ HK(φ).

In this case, the decay (6) becomes

I( f , γ)L2(R+ , dµα)
= inf

g∈HK(φ), ‖g‖K(φ)≤γ
‖ f − g‖L2(R+ , dµα)

, f ∈ L2(R+, dµα) (34)

for γ→ +∞.
If F (α)

B (φ)(λ) = 1
λ2 , then we define the corresponding RKHS

H∗K(φ) = L
1
2
K(φ)(A∗(R)) = {g ∈ A∗(R) :

(∫
R+

λ2
∣∣∣F (α)

B (g)(λ)
∣∣∣2 dµα

) 1
2
< +∞}

and for g ∈ H∗K(φ), there holds

‖g‖K(φ) = ‖L−
1
2

K(φ)(g)‖L2(R+ ,dµα)

=

(∫
R+

λ2
∣∣∣F (α)

B (g)(λ)
∣∣∣2dµα(λ)

) 1
2

= ‖(−lα)
1
2 g‖L2(R+ , dµα)

.

We have by (34) that

I( f , γ)L2(R+ , dµα)
= inf

‖(−lα)
1
2 g‖L2(R+ , dµα)

≤γ

‖ f − g‖L2(R+ , dµα)
(35)

for γ→ +∞.

3. An Upper Bound Estimate with Fourier–Bessel Series

To bound the decay of (18), we define a K-functional

DH
K(α)

( f , t)L2
α
= inf

g∈H
K(α)

(
‖ f − g‖L2

α
+ t‖g‖K(α)

)
, f ∈ L2

α, t > 0 (36)
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and a modulus of smoothness

ωH
K(α)

( f , t)L2
α
= ‖(TK(α)(t)− I) f ‖L2

α
, f ∈ L2

α, t > 0, (37)

where

TK(α)(t) f (x) =
∞

∑
i=1

e
− t√

hi ai( f ) j∗α(λix), x ∈ [0, 1].

Then we have the following Proposition 1 whose proofs can be found from Section 5.

Proposition 1. There holds an equivalent relation

DH
K(α)

( f , t)L2
α
∼ ωH

K(α)
( f , t)L2

α
, f ∈ L2

α, t > 0. (38)

Proof. See it from Section 5.

Theorem 1. There is a constant C > 0 such that

I( f , γ)L2
α
≤ CωH

K(α)

(
f ,
‖ f ‖L2

α

γ

)
L2

α

, f ∈ L2
α (39)

if γ→ +∞.

Proof. See it from Section 5.

Taking hi =
1

λ2
i

into (15), we have a kernel

K∗x(y) = K∗(x, y) =
+∞

∑
i=1

1
λ2

i
j∗α(λix) j∗α(λiy), x, y ∈ [0, 1],

It follows that

HK∗ = L
1
2
K∗(L2

α)

= {g ∈ L2
α : ‖g‖K∗ =

(
+∞

∑
i=1

λ2
i |ai(g)|2

) 1
2

< +∞},

which shows that ‖g‖K∗ = ‖(−lα)
1
2 (g)‖L2

α
and

DHK∗ ( f , t)L2
α
= inf

g∈HK∗

(
‖ f − g‖L2

α
+ t‖(−lα)

1
2 (g)‖L2

α

)
, f ∈ L2

α, t > 0

and

ωHK∗ ( f , t)L2
α
= ‖(TK∗(t)− I) f ‖L2

α
, f ∈ L2

α, t > 0,

where

TK∗(t) f (x) =
∞

∑
i=1

e−tλi ai( f ) j∗α(λix), x ∈ [0, 1].

We have two corollaries.

Corollary 1. For any f ∈ L2
α, there holds

DHK∗ ( f , t)L2
α
∼ ωHK∗ ( f , t)L2

α
, f ∈ L2

α, t > 0
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Corollary 2. For any f ∈ L2
α, there holds

I( f , γ)L2
α
≤ CωHK∗

(
f ,
‖ f ‖L2

α

γ

)
L2

α

, γ→ +∞.

4. An Upper Bound Estimate with the Fourier–Bessel Transform

To bound I( f , γ)L2(R+ , dµα)
, we define a K-functional DK(φ)( f , t)L2(R+ ,dµα)

and a mod-
ulus ωK(φ)( f , t)L2(R+ , dµα)

respectively corresponding toHK(φ) as

DK(φ)( f , t)L2(R+ , dµα)

= inf
g∈HK(φ)

(
‖ f − g‖L2(R+ , dµα)

+ t‖g‖K(φ)

)
= inf

g∈L
1
2
K(φ)(L2(R+ ,dµα))

(
‖ f − g‖L2(R+ ,dµα)

+ t ‖L−
1
2

K(φ)( f )‖L2(R+ ,dµα)

)
, f ∈ L2(R+, dµα),

and

ωK(φ)( f , t)L2(R+ , dµα)
= ‖(TK(φ)(t)− I) f ‖L2(R+ , dµα)

, f ∈ L2(R+, dµα), t > 0,

where

TK(φ)(t) f (x) =
∫

R+

e
− t√

F (α)B (φ)(λ)F (α)
B ( f )(λ) jα(λx) dµα(λ).

The K-functional and the modulus are equivalent, i.e., we have the following proposition.

Proposition 2. Let φ ∈ L1(R+, dµα) satisfy Assumption 1. Then there holds the equivalence

DK(φ)( f , t)L2(R+ , dµα)
∼ ωK(φ)( f , t)L2(R+ , dµα)

, f ∈ L2(R+, dµα), t > 0. (40)

We now give an upper bound estimate for (34).

Theorem 2. Under the conditions of Proposition 2, there is a constant C > 0 such that

I( f , γ)L2(R+ , dµα)
≤ CωK(φ)

(
f ,
‖ f ‖L2(R+ , dµα)

γ

)
L2(R+ , dµα)

, f ∈ L2(R+, dµα) (41)

if γ→ +∞.

For F (α)
B (φ)(λ) = 1

λ2 we define a K-functional on L2(R+, dµα) as

D
l

1
2
α

( f , t)L2(R+ , dµα)
= inf

g∈H∗K(φ)

(
‖ f − g‖+ t‖(−lα)

1
2 g‖L2(R+ , dµα)

)
, t > 0.

Define a modulus of smoothness as

ω
l

1
2
α

( f , t)L2(R+ , dµα)
= ‖(T

l
1
2
α

(t)− I) f ‖L2(R+ , dµα)
, t > 0,

where
T

l
1
2
α

(t) f (x) =
∫

R+

e−λtF (α)
B ( f )(λ) jα(λx)dµα(λ).

Then we have the following two corollaries.
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Corollary 3. There holds the equivalent relation

D
l

1
2
α

( f , t)L2(R+ , dµα)
∼ ω

l
1
2
α

( f , t)L2(R+ , dµα)
, f ∈ L2(R+, dµα), t > 0.

Corollary 4. There is a constant C > 0 such that

I( f , R)L2(R+ , dµα)
≤ Cω

l
1
2
α

(
f ,
‖ f ‖L2(R+ , dµα)

R

)
L2(R+ , dµα)

, f ∈ L2(R+, dµα). (42)

We give further computations for T
l

1
2
α

(t) f (x). By Example 1, we knowF (α)
B (pt)(λ) = e−λt,

which, together with (21), gives

T
l

1
2
α

(t) f (x) =
∫

R+

F (α)
B (pt)(λ)F (α)

B ( f )(λ) jα(λx)dµα(λ)

=
∫

R+

F (α)
B ( f ∗B pt)(λ) jα(λx)dµα(λ)

= ( f ∗B pt)(x), x ∈ R+,

which with (42) shows that

ω
l

1
2
α

( f , t)L2(R+ , dµα)
= ‖( f ∗B pt)− f ‖L2(R+ , dµα)

, t > 0. (43)

Take (43) into (42). Then

I( f , γ)L2(R+ , dµα)
≤ C‖( f ∗B pt)− f ‖L2(R+ , dµα)

∣∣∣∣
t=
‖ f ‖

L2(R+ , dµα)
γ

, f ∈ L2(R+, dµα). (44)

(44) shows that the decay of I( f , γ)L2(R+ , dµα)
is controlled by the approximation order of

convolution operator f ∗B pt for t =
‖ f ‖L2(R+ , dµα)

γ .

For F (α)
B (φ)(λ) = 1

λ4 we define

HK](φ) = L
1
2
K](φ)

(A∗(R))

= {g ∈ A∗(R) :
(∫

R+

λ4
∣∣∣F (α)

B ( f )(λ)dµα

∣∣∣2) 1
2
< +∞}. (45)

Then

‖g‖K](φ) =

(∫
R+

λ4
∣∣∣F (α)

B ( f )(λ)dµα

∣∣∣2) 1
2

= ‖(−lα)g‖L2(R+ , dµα)
. (46)

Define a K-functional on L2(R+, dµα) as

Dlα( f , t)L2(R+ , dµα)
= inf

g∈HK](φ)

(
‖ f − g‖+ t‖(−lα)g‖L2(R+ , dµα)

)
, t > 0.

Define a modulus of smoothness as

ωlα( f , t)L2(R+ , dµα)
= ‖(Tlα(t)− I) f ‖L2(R+ , dµα)

, t > 0,
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where
Tlα(t) f (x) =

∫
R+

e−λ2tF (α)
B ( f )(λ) jα(λx) dµα(λ).

Then we have the following two corollaries.

Corollary 5. There holds

Dlα( f , t)L2(R+ , dµα)
∼ ωlα( f , t)L2(R+ , dµα)

, f ∈ L2(R+, dµα), t > 0.

Corollary 6. There is a constant C > 0 such that

I( f , γ)L2(R+ , dµα)
≤ Cωlα

(
f ,
‖ f ‖L2(R+ , dµα)

γ

)
L2(R+ , dµα)

, f ∈ L2(R+, dµα). (47)

Additionally, by Example 2, we know F (α)
B (kt)(λ) = e−λ2t, which, together with (21),

gives

Tlα(t) f (x) =
∫

R+

F (α)
B (kt)(λ)F (α)

B ( f )(λ) jα(λx) dµα(λ)

=
∫

R+

F (α)
B ( f ∗B kt)(λ) jα(λx) dµα(λ)

= ( f ∗B kt)(x), x ∈ R+,

which, with (47), shows that

ωlα( f , t)L2(R+ , dµα)
= ‖( f ∗B kt)− f ‖L2(R+ , dµα)

, t > 0. (48)

Take (48) into (47), we have

I( f , γ)L2(R+ , dµα)
≤ C‖( f ∗B kt)− f ‖L2(R+ , dµα)

∣∣∣∣
t=
‖ f ‖

L2(R+ , dµα)
γ

, f ∈ L2(R+, dµα). (49)

We know by (49) that the decay of I( f , γ)L2(R+ , dµα)
is controlled by the approximation

order of the convolution operator f ∗B kt for t =
‖ f ‖L2(R+ , dµα)

γ .

5. Proofs

Proof of Lemma 1. Formula (11) can be obtained by the orthonormal of {j∗α(λix)}+∞
i=1 .

Formula (13) can be seen from [11] or Lemma 1 in [12]. Formula (14) can be seen
from [16].

Proof of Lemma 2. Proof of (i). See Proposition 2.III.1 in P51 of [22].
Proof of (ii). See Corollary 4.III.2 in P104 and Corollary 4.III.3 in P105 of [22].
Proof of (iii). See Theorem 5.III.1 in P127 and Proposition 5.II.4 in P129 of [22].
Proof of (iv). See Theorem 5.III.1 in P127 and (5.III.3) in P128 of [22].
Proof of (v). See Proposition 5.II.2 in P120 of [22] and (4.III.10) in Proposition 4.III.4

of [22].
Proof of (vi). See Theorem 5.II.2 in P126 of [22].
Proof of (vii). See (5.III.5) and (5.III.6) in Proposition 5.III.2 in P128,(5.V.2) in P139 of [22],

and Proposition 2.2 in [25].
Proof of (viii). Formula (27) may be found from (5.II.12) of Proposition 5.II.3 in P122

of [22]; (28) may be found from (4.II.9) of Proposition 4.II.2 in P94 of [22]; (29) may be found
from (4.II.8) in P93 of [22].

Proof of Proposition 1. We show it with the help of Proposition A1 in the Appendix A.
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It is easy to see that TK(α)(t) satisfies (A1) and (A2). Simple computations show

E f (x) = lim
t→0

TK(α)(t) f (x)− f (x)
t

=
+∞

∑
i=1

ai( f ) lim
t→0

(e
− t√

hi − 1)
t

j∗α(λix)

=
+∞

∑
i=1

(
− 1√

hi

)
ai( f ) j∗α(λix)

and

tETK(α)(t) f (x) =
+∞

∑
i=1

(
− t√

hi

)
e
− t√

hi ai( f ) j∗α(λix).

It follows

‖tETK(α)(t) f ‖L2
α

=

(
+∞

∑
i=1

∣∣∣∣(− t√
hi

)
e
− t√

hi

∣∣∣∣2 a2
i ( f )

) 1
2

≤
(

+∞

∑
i=1

a2
i ( f )

) 1
2

= ‖ f ‖L2
α
. (50)

Collecting (50), and (A5), we have (38).

Proof of Theorem 1. Because hi → 0+(i→ +∞), defining

f (α)µ (x) = ∑
1
hi
<µ

ai( f ) j∗α(λix), (51)

we have for any g ∈ HK(α) that

f (x)− f (α)µ (x) = ∑
1
hi
≥µ

ai( f ) j∗α(λix) = ∑
1
hi
≥µ

ai( f − g) j∗α(λix) + ∑
1
hi
≥µ

ai(g) j∗α(λix)

and

‖ f − f (α)µ ‖L2
α
≤

 ∑
1
hi
≥µ

|ai( f − g)|2


1
2

+

 ∑
1
hi
≥µ

|ai(g)|2


1
2

≤ ‖ f − g‖L2
α
+

 ∑
1
hi
≥µ

hi
hi
|ai(g)|2


1
2

≤ ‖ f − g‖L2
α
+

1
√

µ

 ∑
1
hi
≥µ

1
hi
|ai(g)|2


1
2

≤ ‖ f − g‖L2
α
+

1
√

µ
‖g‖K(α) . (52)
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Since the arbitrariness of g ∈ HK(α) , we have

‖ f − f (α)µ ‖L2
α
≤ inf

g∈H
K(α)

(
‖ f − g‖L2

α
+

1
√

µ
‖g‖K(α)

)
. (53)

Take h(α)µ (x) = ∑
1
hi
<µ

ai( f )√
hi

j∗α(λix). Then f (α)µ (x) = L
1
2
K(α)(h

(α)
µ , x) ∈ HK(α) and

‖ fµ‖K(α) = ‖hµ‖L2
α

=

 ∑
1
hi
<µ

|ai( f )|2
hi


1
2

≤ √
µ

 ∑
1
hi
<µ

|ai( f )|2


1
2

≤ √µ‖ f ‖L2
α
.

Take
√

µ‖ f ‖L2
α
= γ. Then 1√

µ =
‖ f ‖L2

α
γ . By the definition of I( f , γ)L2

α
, we have (39).

Proof of Proposition 2. It is easy to see that TK(φ)(t) satisfies (A1) and (A2). Simple com-
putations show

E f (x) = lim
t→0

TK(φ)(t) f (x)− f (x)
t

= lim
t→0

∫
R+

(e
− t√

F (α)B (φ)(λ) − 1)F (α)
B ( f )(λ)jα(λx)dµα(λ)

t

=
∫

R+

− 1√
F (α)

B (φ)(λ)

F (α)
B ( f )(λ)jα(λx) dµα(λ)

and

(tETK(φ)(t) f )(x) =
∫

R+

− t√
F (α)

B (φ)(λ)

e
− t√

F (α)B (φ)(λ)F (α)
B ( f )(λ) jα(λx)dµα(λ).

Since f ∈ L2(R+, dµα), we know by (26) that F (α)
B (φ)(·) ∈ L2(R+, dµα). Addition-

ally, since ∣∣∣∣∣∣
− t√

F (α)
B (φ)(λ)

e
− t√

F (α)B (φ)(λ)

∣∣∣∣∣∣ ≤ 1, ∀t ≥ 0,

we know

ht(·) =

− t√
F (α)

B (φ)(·)

e
− t√

F (α)B (φ)(·)F (α)
B ( f )(·) ∈ L2(R+, dµα).

It is easy to see that

(tETK(φ)(t) f )(x) = F (α)
B (ht)(x).
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It follows by (26) again that

‖tETK(φ)(t) f ‖2
L2(R+ , dµα)

= ‖F (α)
B (ht)‖L2(R+ , dµα)

= ‖ht‖L2(R+ , dµα)

≤ ‖F (α)
B ( f )‖L2(R+ , dµα)

= ‖ f ‖2
L2(R+ , dµα)

. (54)

By the same method, we have

‖TK(φ)(t) f ‖2
L2(R+ , dµα)

=
∫

R+

e
− t√

F (α)B (φ)(λ)

2∣∣∣F (α)
B ( f )(λ)

∣∣∣2 dµα(λ)

≤
∫

R+

∣∣∣F (α)
B ( f )(λ)

∣∣∣2 dµα(λ) = ‖ f ‖2
L2(R+ , dµα)

. (55)

Collect (54), (55) and (A6) we have (40).

Proof of Theorem 2. Define <µ,λ = {λ ∈ R+ : 1
F (α)

B (φ)(λ)
< µ} and

f∗(x) =
∫
<µ,λ

F (α)
B ( f )(λ)jα(λx) dµα(λ).

Then

f (x)− f∗(x) =
∫

R+\<µ,λ

F (α)
B ( f )(λ)jα(λx) dµα(λ).

It follows that for any g ∈ HK(φ), there holds

f (x)− f∗(x)

=
∫

R+\<µ,λ

F (α)
B ( f − g)(λ) jα(λx) dµα(λ) +

∫
R+\<µ,λ

F (α)
B (g)(λ)jα(λx) dµα(λ).

Define the characteristic of R+\<µ,λ as χR+\<µ,λ
(λ). Then

f (x)− f∗(x)

=
∫

R+

χR+\<µ,λ
(λ)F (α)

B ( f − g)(λ) jα(λx) dµα(λ)

+
∫

R+

χR+\<µ,λ
(λ)F (α)

B (g)(λ) jα(λx) dµα(λ)

= F (α)
B (gµ)(x) +F (α)

B (bµ)(x), (56)

where

gµ(λ) = χR+\<µ,λ
(λ)F (α)

B ( f − g)(λ), bµ(λ) = χR+\<µ,λ
(λ)F (α)

B (g)(λ).

Since φ satisfies Assumption 1, by (30) we know gµ ∈ D∗(R) ⊂ A∗(R) ⊂ L2(R+, dµα).
By (26), we have

‖F (α)
B (gµ)‖L2(R+ , dµα)

= ‖gµ‖L2(R+ , dµα)
. (57)

By the same method, we have

‖F (α)
B (bµ)‖L2(R+ , dµα)

= ‖bµ‖L2(R+ , dµα)
. (58)
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It follows from (56), (57) and (58) that

‖ f − f∗‖L2(R+ , dµα)

≤ ‖χR+\<µ,λ
(·)F (α)

B ( f − g)(·)‖L2(R+ , dµα)
+ ‖χR+\<µ,λ

(·)F (α)
B (g)(·)‖L2(R+ , dµα)

=

(∫
R+\<µ,λ

∣∣∣F (α)
B ( f − g)(λ)

∣∣∣2 dµα

) 1
2

+

(∫
R+\<µ,λ

∣∣∣F (α)
B (g)(λ)

∣∣∣2 dµα

) 1
2

≤
(∫

R+

∣∣∣F (α)
B ( f − g)(λ)

∣∣∣2 dµα

) 1
2
+

(∫
R+\<µ,λ

∣∣∣F (α)
B (g)(λ)

∣∣∣2 dµα

) 1
2

.

Since (26), we have by the definition of <µ,λ that

‖ f − f∗‖L2(R+ , dµα)

≤ ‖ f − g‖L2(R+ , dµα)
+

(∫
R+\<µ,λ

F (α)
B (φ)(λ)

F (α)
B (φ)(λ)

∣∣∣F (α)
B (g)(λ)

∣∣∣2 dµα

) 1
2

≤ ‖ f − g‖L2(R+ , dµα)
+

(
max

λ∈R+\<µ,λ

F (α)
B (φ)(λ)

) 1
2

∫
R+\<µ,λ

∣∣∣F (α)
B (g)(λ)

∣∣∣2
F (α)

B (φ)(λ)
dµα


1
2

≤ ‖ f − g‖L2(R+ , dµα)
+

(
max

λ∈R+\<µ,λ

F (α)
B (φ)(λ)

) 1
2

∫
R+

∣∣∣F (α)
B (g)(λ)

∣∣∣2
F (α)

B (φ)(λ)
dµα


1
2

= ‖ f − g‖L2(R+ , dµα)
+

1
√

µ
‖g‖HK(φ)

.

Because of the arbitrariness of g ∈ HK(φ), we have

‖ f − f∗‖L2(R+ , dµα)
≤ inf

g∈HK(φ)

(
‖ f − g‖L2(R+ , dµα)

+
1
√

µ
‖g‖HK(φ)

)
. (59)

Let h∗(x) =
∫
<µ,λ

F (α)
B ( f )(λ) jα(λx)√
F (α)

B (φ)(λ)
dµα. Then by (20) we have h∗ ∈ L2(R+, µα) and

f∗(x) = L
1
2
K(φ)(h∗, x) =

∫
<µ,λ

F (α)
B ( f )(λ) jα(λx) dµα(λ).

Therefore, f∗ ∈ HK(φ). It follows that

‖ f∗‖K(φ) = ‖h∗‖L2(R+ , dµα)

=

(∫
<µ,λ

|F (α)
B ( f )(λ)|2

F (α)
B (φ)(λ)

dµα

) 1
2

≤ √
µ‖F (α)

B ( f )‖L2(R+ , dµα)
=
√

µ‖ f ‖L2(R+ , dµα)
. (60)
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Take
√

µ‖ f ‖L2(R+ , dµα)
= γ. Then

√
µ = γ

‖ f ‖L2(R+ , dµα)
. Collecting (60) and (59), together

with the definition of I( f ; γ)L2(R+ , dµα)
we arrive at

I( f ; γ)L2(R+ , dµα)
≤ inf

g∈HK(φ)

(
‖ f − g‖L2(R+ , dµα)

+
‖ f ‖L2(R+ , dµα)

γ
‖g‖HK(φ)

)

= D

(
f ,
‖ f ‖L2(R+ , dµα)

γ

)
L2(R+ , dµα)

∼ ω

(
f ,
‖ f ‖L2(R+ , dµα)

γ

)
L2(R+ , dµα)

.

6. Further Discussions

We now give some comments on the results obtained in the present paper.
A more general problem arising from learning theory is to bound the decay rate of the

function (see [2])

I(a, R) = inf
‖g‖H≤R

(‖a− b‖), a ∈ B, R→ +∞, (61)

where (B, ‖ · ‖) is a Banach space and (H, ‖ · ‖H) is a dense subspace with ‖b‖ ≤ ‖b‖H for
b ∈ H.

It is known that the approximation ability of a function class is determined by the
smoothness of its functions. So the decay of I(a, R) is influenced by the smoothness of the
functions in H.

Smale and Zhou (see [2]) give the first estimate for the decay of (61) in the case that
a ∈ (B, H)θ,∞, which is a particular Besov space (in fact, it is the interpolation space of B
and H). This work is improved in [9]. For B = Hs(Rd)(s > 0) (the Sobolev space, see [2] for
the definition) and the reproducing kernel Hilbert space H = HKσ , Zhou gives an estimate
as (see [3])

inf
‖g‖Kσ≤R

‖ f − g‖ ≤ Bd,s(logR)−s (62)

if R ≥ A‖ f ‖L2(Rd), where Kσ is the Gaussian kernels

Kσ(x, y) = exp{−‖x− y‖2

σ2 }, x, y ∈ [0, 1]d, σ > 0.

The tools used is the RKHS function interpolation.
It is known that the most commonly used tool in approximation theory is the K-

functional. The most helpful relation is the strong equivalent relation between a K-
functional and a corresponding modulus of smoothness (see, for example, [26]). The most
commonly used quantity for describing the approximation ability of a function class is the
Jackson inequality expressed with a K-functional or a modulus of smoothness (see also [26]).
As far as we know from the literature, no Jackson inequality has been established for the
decay of (6). There is little description for the smoothness of a RKHS. Recent research shows
that any RKHS has some smoothness; it can be considered from the view of fractional
derivative and orthogonal series and show that the well-known K-functional ([27])

DHK ( f , λ)L2
ρX (X) = inf

g∈HK
(‖ f − g‖+ λ‖g‖HK ), λ > 0, (63)

is equivalent to a modulus of smoothness, where X is chosen as some compact sets,
for example, X = Sd−1 = {x ∈ Rd : ‖x‖ = 1} and X = Bd = {x ∈ Rd : ‖x‖ ≤ 1}. It
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is valuable for us to extend these results to the RKHS defined on a noncompact set. The
set X used in the present paper is X = R1, which is a noncompact set and has essential
properties different from those of a compact set (see, for example, [5]). Moreover, it is the
first time that a Jackson inequality is established to describe the decay (6). A advantage of
this manuscript is the use of the Bessel series and Bessel transforms, which transforms the
RKHS approximation problem into the classical Bessel–Fourier approximation problem
and gives the decay rate with Bessel–Fourier approximation skills.

The Jackson inequalities in Theorem 1 and Theorem 2 show that the RKHSs constructed
with Bessel series and Bessel transforms have the same approximation as that of the Bessel
series and Bessel transforms.

The moduli of smoothness defined in this manuscript are one-order moduli. It is a
valuable problem for us to define higher-order moduli of smoothness and show the Jackson
inequality to describe the decay of (6).
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Appendix A

It is known that the moduli of smoothness defined by a semi-group of operators have
the same properties as those of the usual moduli of smoothness defined by the difference
of the function (see Chapter Two of [28]) and have been used to describe the degree of
approximation in approximation theory (see, for example, [27,29–32]). We restate here a
proposition for a general strong equivalent relation.

Let (B, ‖ · ‖B) be a normed linear space,
{

T(t) : (B, and‖ · ‖B)→ (B, ‖ · ‖B)
}

t>0
be a

strongly continuous semi-group of operators satisfying

T(s + t) = T(s)T(t), lim
t→0+

T(t) = I, (A1)

and

‖T(t) f ‖B ≤ ‖ f ‖B , f ∈ B, t > 0. (A2)

The infinitesimal generator E is given by

E f = lim
t→0+

T(t) f − f
t

, (in B), (A3)

whenever the limit exists. D(E) is the domain of E. Then we have the following proposition.

Proposition A1. (Theorem 5.1 of [33]) Let T(t) satisfy (A1), (A2) and (A3),

T(t) f ∈ D(E) for all f ∈ B, (A4)
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and there exists a positive constant N independent of t and T(t) such that

t‖E T(t)‖B ≤ N(N is a constant independent of t), ET(t) : B → B for t ≥ 0, (A5)

Then for r ∈ N and t > 0, there holds

ωr( f , t)B = ‖(T(t)− I)r f ‖B ∼ inf
g∈D(Er)

(
‖ f − g‖B + tr‖Erg‖B

)
= KEr ( f , tr)B , (A6)

where

(T(s)− I)r f =
r

∑
k=1

( r
k

)
(−1)r−kT(ks) f + (−1)r f .
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