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Abstract: In free surface flows, shallow water models simplify the flow conditions by assuming a
constant velocity profile over the water depth. Recently developed Shallow Water Moment Equations
allow for variations of the velocity profile at the expense of a more complex PDE system. The resulting
equations can become stiff depending on the friction parameters, which leads to severe time step
constraints of standard numerical schemes. In this paper, we apply Projective Integration schemes to
stiff Shallow Water Moment Equations to overcome the time step constraints in the stiff regime and
accelerate the numerical computations while still achieving high accuracy. In different dam break
and smooth wave test cases, we obtain a speedup of up to 55 with respect to standard schemes.
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1. Introduction

In shallow water models for geophysical free surface flows [1,2], shallowness refers to
flows in which the water height is significantly smaller than a typical wavelength. Choosing
a vertical average velocity leads to a depth-averaged model [3,4]. In its one-dimensional
form, this most famous depth-averaged flow model is referred to as the Saint-Venant
equations or Shallow Water Equations (SWE) [4].

However, depth-averaging comes at the price of losing vertical information. Assuming
a constant velocity throughout the flow depth, vertical variations in the velocity cannot
be represented [3,4]. This results in a model error [5]. To overcome this problem, vertical
information can be included via the moment method [4], which assumes a polynomial
expansion of the vertical velocity. The resulting shallow water moment equations preserve
information on the structure of the vertical flow while still using the depth-averaging
framework. The original model from [4] lacks hyperbolicity and several regularized models
have been derived in [3]. The development is supported by analytical and numerical
stability investigation in [6].

While the transport term and its hyperbolicity have been studied in detail [3], up to
this point there is no dedicated investigation on different friction models, besides a brief
comparison in [4] and one application to sediment transport [7]. Note that the friction term
also plays an important role in the linear stability analysis of the model [6]. Different friction
terms introduce numerical problems for standard solution schemes, as the equations can
quickly become stiff. This is already the case for the standard Newtonian friction term
considered in [4] and leads to severe time step constraints of standard explicit schemes like
the Forward Euler method.
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In this paper, we consider the stiff case and show the first application of numerical
schemes that overcome the severe time step constraints. We use the Projective Integration
(PI) scheme [8,9], which is particularly suitable for models with large spectral gaps. We
perform the first numerical study of the spectral gap of shallow water moment models and
quantify its behavior for different friction terms. Next, we derive an analytical formula
for an estimate of the fastest eigenvalue of the model. This allows to construct a stable PI
scheme for different test cases, similar as in [10,11] for a different application from rarefied
gases. The performance of the tailored PI scheme is tested for a dam break test case and a
smooth periodic wave test case and the results indicate a large speedup of up to 55 together
with high accuracy.

The rest of this paper is organized as follows: Section 2 briefly introduces the hyper-
bolic shallow water moment models. The numerical schemes, including spatial and time
discretization, are discussed in Section 3. The following analysis of the spectral gap in
Section 4 is the foundation for the two numerical tests in Section 5. The paper ends with a
short conclusion.

2. Hyperbolic Shallow Water Moment Equations

The standard shallow water equations assume a constant velocity profile over the
water depth, which leads to a model error. The moment method can be used to allow
for vertical variations of the velocity [4]. This is done via a polynomial expansion of the
horizontal velocity component u in the vertical z-direction, where we assume a rescaling so
that z ∈ [0, 1]. In the one-dimensional form from [3,4] this reads

u(x, z, t) = um(x, t) +
N

∑
j=1

αj(x, t)φj(z), (1)

where φj, j = 1, . . . , N are scaled Legendre polynomials of degree j. The first three Legendre
polynomials φj, normalized by φj(0) = 1 and orthogonal on the interval [0, 1] are given as

φ1(z) = 1− 2z, φ2(z) = 1− 6z + 6z2, φ3(z) = 1− 12z + 30z2 − 20z3. (2)

Furthermore, αj are basis coefficients for j = 1, . . . , N at position x and time t. Here,
N denotes the order of the velocity expansion. The coefficients give information on the
horizontal velocity over the water height and conserve the information on the vertical flow
structure. Increasing the value of N makes it possible to express the vertical profile of the
velocity with more accuracy as more variations are allowed in the vertical direction.

A total of N + 2 equations are required to compute the evolution of the additional N
coefficients αj as well as h and um.

In case of N = 0, the velocity is equal to the mean velocity u(t, x, z) = um(t, x) and
the evolution of um and h is given by the standard shallow water equations. In case of
N > 0, additional N equations are derived from multiplying the momentum equation
of the Navier–Stokes equations by the Legendre polynomials φj(z) for j = 1, . . . , N and
integration over the vertical direction. For a detailed derivation, we refer to [4].

These resulting equations can be written as

∂hαi
∂t

+
∂Fi
∂x

= Qi + Pi, for i = 1, . . . , N, (3)

where, Fi and Qi with i = 1, . . . , N denote the conservative flux and the non-conservative
flux, respectively, and i denotes the ith moment equation see [3]. The right-hand side
friction term Pi will be explained in more detail in the next section.

The complete model including the continuity equation and momentum equation can
be written in the following form [3]:

∂U
∂t

+
∂F(U)

∂x
= Q(U)

∂U
∂x

+ P(U), (4)
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where U = (h, hu, hα1, . . . , hαN)
T ∈ RN+2 is the variable vector, ∂F(U)

∂x ∈ RN+2 is the vector
containing the conservative fluxes, Q(U) ∈ R(N+2)×(N+2) is the matrix containing the
non-conservative fluxes, and P(U) ∈ RN+2 is the friction term.

The system matrix A(U) ∈ R(N+2)×(N+2) can be written as the combination of conser-
vative and non-conservative fluxes:

A(U) =
∂F(U)

∂U
−Q(U). (5)

Shallow water moment equations are hyperbolic if the system matrix A(U) has distinct
real eigenvalues for all variable vectors U. To ensure hyperbolicity for all N > 1, a system
of equations with a modified system matrix AH called Hyperbolic Shallow Water Moment
Equations (HSWME) is obtained by linearising around linear velocity profiles [3]. This
effectively sets all the coefficients αj except the first one α1 to zero inside the system
matrix, i.e.,

(h, um, α1, α2, . . . , αN)→ (h, um, α1, 0, . . . , 0). (6)

The system matrix AH in [3] is given by:

AH =



1
gh− u2

m − 1
3 α2

1 2um
2
3 α1

−2umα1 2α1 um
3
5 α1

− 2
3 α2

1
1
3 α1 um

. . .
. . . . . . N+1

2N+1 α1
N−1

2N−1 α1 um


, (7)

where all the other entries are zero. We will use this system matrix AH in Equation (7)
throughout this work. The model then reads

∂U
∂t

+ AH
∂U
∂x

= P(U). (8)

2.1. Friction Term

For a Newtonian fluid, the friction term can be written analytically in terms of the mo-
ment coefficients, see [3,6]. The first entry of the friction term P0 is zero due to conservation
of mass. The other entries read:

Pi = −
ν

λ
(2i− 1)

(
um +

N

∑
j=1

αj

)
− ν

h
4 (2i− 1)

N

∑
j=1

ai,jαj, i = 1, . . . , N + 1, (9)

where ν is the friction coefficient and λ is the slip length [4]. The constants ai,j are com-
puted as,

ai,j =

{
0 if i + j = even,
min(i−1,j)(min(i−1,j)+1)

2 if i + j = odd.

The slip length λ refers to the velocity of the fluid layer directly in contact with the
boundary. For λ = 0 the model experiences no slip, i.e., zero velocity at the bottom. For
λ → ∞ the model includes perfect slip, i.e., no velocity reduction at the basal surface. A
vanishing slip length causes stiffness as λ appears in the denominator of the right-hand
side friction term. A system is called stiff if explicit numerical methods become numerically
unstable, unless the step size is taken to be extremely small. To overcome this, we use
Projective Integration as appropriate numerical method, which will be explained in detail
in Section 3.3.
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2.2. Zeroth Order System

When the number of additional moments in (1) is chosen as N = 0, the velocity profile
is constant in the vertical direction. The set of equations obtained in (8) are the shallow
water Equations [4], given as

∂t

(
h

hum

)
+ ∂x

(
hum

hu2
m + 1

2 gh2

)
= − ν

λ

(
0

um

)
, (10)

where g is the gravitation constant, ν is the friction coefficient and λ is the slip length. The
right hand term is modeled using the Newtonian friction law.

The hyperbolic system matrix for the zeroth order system is given by

AH =

(
0 1

gh− u2
m 2um

)
. (11)

The real and distinct eigenvalues of the system matrix (11) are given by a1,2 = um ±√
gh [3,4].

2.3. First Order HSWME Model

This section contains an example of shallow water moment models of first order
N = 1 [3,4]. The second order system N = 2 is given in Appendix A.

The shallow water moment equations with one moment α1 such that the vertical
change in the velocity profile is linear, i.e., N = 1, are given as [3,4]:

∂t

 h
hum
hα1

+ ∂x

 hum
hu2

m + 1
2 gh2 + 1

3 hα2
1

humα1

 = − ν

λ

 0
um + α1

3(um + α1 + 4 λ
h α1)

, (12)

where g is the gravitation constant, ν is the friction coefficient and λ is the slip length. The
right-hand side consists of the friction term, that becomes stiff for small λ.

The system matrix of the first order model is given by

AH =

 0 1 0
gh− u2

m − 1
3 α2

1 2um
2
3 α1

−2umα1 2α1 um

. (13)

The real and distinct eigenvalues of the above system matrix [3,4] are given by a1,2 =

um ±
√

gh + α2
1 and a3 = um. This system is thus hyperbolic for h > 0. When the first

moment α1 vanishes, the zeroth order system is obtained.
Higher order hyperbolic moment models are discussed in detail in [3,4]. For the

eigenvalues of higher order moment models, see Appendixes A and B.

3. Numerical Methods
3.1. Non-Conservative Spatial Discretization

For the numerical solution, we consider the non-conservative hyperbolic models (8) [12].
An equidistant spatial discretization uses a cell size ∆x in space. Similarly, ∆t is the time
step size. Un

i denotes the cell average with cell center xi at time tn.
A first order path-conservative numerical scheme for Equation (8) can be used to

discretize the equation in time as space as [13,14]

Un+1
i −Un

i
∆t

+
1

∆x
(

D+(Un
i−1, Un

i ) + D−(Un
1 , Un

i+1)
)
= P(Un

i ), (14)

with so-called fluctuations D±(UL, UR), where UL and UR are the current values at the
left and right boundary of the corresponding cell, respectively, and the fluctuations are
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continuous functions satisfying D±(U, U) = 0. Note that the fluctuations have a similar
role as the numerical flux for conservative Equations [15]. The fluctuations can be written
as follows

D±(UL, UR) = A±Φ(UL, UR) · (UR −UL), (15)

where the matrix A±Φ is computed as

A±Φ(UL, UR) =
1
2
(AΦ(UL, UR)±QΦ(UL, UR)), (16)

and AΦ(UL, UR) is the generalized Roe matrix. The generalized Roe matrix reduces to a
standard Roe matrix in case of a conservative Equation [15]. In this work, we simply employ
a midpoint rule to evaluate the generalized Roe matrix as AΦ(UL, UR) = AΦ(

UL+UR
2 ) [16].

It corresponds to a midpoint evaluation of a path connecting UL and UR. QΦ(UL, UR) is
called viscosity matrix [13,17] and ensures the stability of the scheme.

Different numerical schemes like Lax–Friedrichs, Lax–Wendroff, FORCE, and Upwind
can be obtained employing different viscosity matrices [13,17–19].

The Lax–Friedrichs scheme can be written as follows

QΦ(UL, UR) =
∆x
∆t
· I. (17)

The Lax–Wendroff scheme uses

QΦ(UL, UR) =
∆t
∆x
· A2

Φ(UL, UR). (18)

The FORCE scheme is composed of two terms

QΦ(UL, UR) =
∆x
2∆t
· I + ∆t

2∆x
· A2

Φ(UL, UR). (19)

The Upwind scheme uses the eigenvalue decomposition of the generalized Roe matrix:

QΦ(UL, UR) = |AΦ(UL, UR)|. (20)

In all schemes above, I is the identity matrix and AΦ is the generalized Roe matrix
and UL, UR are the values at the current time tn at the left and right boundary of the
corresponding cell, respectively.

While the discretization (14) yields a fully discretised scheme, it does not allow for
a lot of flexibility of the treatment of the time derivative. We therefore write the time
discretization separately after the spatial discretization of (8) according to (14). The semi-
discrete system of equations can then be written in the following form:

∂U
∂t

= Dx(U), (21)

where the spatial terms are already discretised and the time derivative is still to be dis-
cretised. The right hand side can be evaluated at the current time for all grid points as
Dx(Un) = − 1

∆x
(

D+(Un
i−1, Un

i ) + D−(Un
1 , Un

i+1)
)
+ P(Un) and includes both the fluctua-

tions evaluated at all cells as well as the source term and the unknown Un is evaluated at
all cells at the current time step.

3.2. Forward Euler Time Discretization

The Forward Euler (FE) scheme is commonly employed as a simple, explicit, first-order
time stepping scheme for Equation (21) as

Un+1 = Un + ∆tDx(Un). (22)
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The FE scheme is conditionally stable, i.e., a potentially small time step size ∆t needs
to be chosen to ensure stability, typically based on the CFL condition. It relates the time
step ∆t to the fastest speeds of the system, given by the eigenvalues of the semi-discrete
right hand side Dx(U) from Equation (21). This is especially problematic for stiff systems
and will be addressed in the next subsection.

3.3. Projective Integration

For small values of the slip length λ = O(ε)� 1, a standard FE method would require
a very small time step size ∆t = O(ε) to attain stability. Hence, a scheme to overcome
stiffness is needed to accelerate simulations [10].

This section discusses Projective Integration (PI), a numerical integration method
from [8], which is explicit and can solve stiff problems given that the eigenvalues are
separated into two clusters containing fast and slow components, respectively, and there
exists a large spectral gap in between these two clusters.

The fast components originate from the eigenvalues with fast relaxing modes, i.e.,
spectral eigenvalues with large negative real part. Slow components originate from slowly
relaxing modes, i.e., spectral eigenvalues with small negative part. Due to the presence of a
large gap in between the two sets of eigenvalues, PI [10] can be used efficiently.

Figure 1 shows an exemplary eigenvalue spectrum that includes a large spectral gap
between a slow eigenvalue cluster near the origin and a fast eigenvalue cluster on the left
containing fast relaxing modes. This eigenvalue spectrum is taken from a typical dam break
test case with λ = 10−4 that will be explained in Section 4.

Figure 1. Eigenvalue Spectrum with a large spectral gap of eigenvalues (Λ).

The fast eigenvalue cluster causes problems for the FE scheme since it contains the
stiff components. PI is used to mitigate this problem.

PI first takes a few small inner steps with a simple explicit method such as FE to damp
out the stiff components of the solution [8]. Afterwards, the time derivative is estimated
and used in an extrapolation step, see Figure 2. The number of inner iterations is chosen to
ensure stability.

Figure 2. Projective integration: an explicit method is applied over small time steps (black dots) to
stably integrate fast modes, then the solution is extrapolated using a much larger time step (dashed
lines), modified from [9,11].
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PI is thus a fully explicit time stepping scheme that consists of an explicit inner
integrator and an extrapolation step [8,10]. The standard PI method called Projective
Forward Euler (PFE) uses a simple FE method as a cheap inner integrator. The extrapolation
step can be replaced by a higher-order outer integrator, such as a Runge–Kutta method,
leading to the Projective Runge–Kutta (PRK) method. In this paper, we only consider the
first order PFE.

The inner Integrator should be explicit and damp the stiff components of the solution.
Since it is explicit, it uses a small time step size. It damps the fast components quickly and
then develops a numerical solution of slow components. This solution is further used to
get derivatives for the outer integrator as in [8–11].

3.3.1. Projective Forward Euler Scheme

The PFE method is constructed as follows [8]: First, a uniform mesh is introduced
with inner time step size δt and spatial grid size ∆x with nx mesh points. An explicit inner
time stepping scheme is chosen and integrated over K + 1 inner steps to compute Un

k+1
from Un

0 = Un, e.g., using the FE method:

Un
k+1 = Un

k + δtDx(Un
k ), k = 0, 1, . . . , K, (23)

where, Dx(·) is given by Equation (21).
After K + 1 inner steps of size δt, using the last two values Un

K and Un
K+1 a time

derivative is obtained using finite differences. It is further used for an outer integrator,
which is here taken as an extrapolation in time over the remainder of the large CFL-type
time step size ∆t

Un+1 = Un
K+1 + (∆t− (K + 1)δt)

Un
K+1 −Un

K
δt

. (24)

The free parameters used in this method are: the outer time step size ∆t, the inner
time step size δt, and the number of inner time steps K + 1. Suitable values of these
parameters can be found using a stability analysis as explained in the next section, so
that the stiff components of the model are sufficiently damped and the PFE method
is stable.

3.3.2. Computational Speedup

For the computation of the speedup of PI, the cost of the extrapolation step can be
neglected in comparison to the iterations of the inner integrator, see also [10,11]. The
theoretical speedup for a PFE method from [10] is then given as

Sth =
∆t

(K + 1) · δt
. (25)

4. Spectral Analysis

For the stability analysis in this section, we consider two standard test cases according
to [3]. The first test case is a dam break setting with discontinuous initial condition and the
second test case is a smooth wave moving through a periodic domain.

Table 1 shows the initial values and parameters for the non-smooth dam break test
case [3].

Table 2 shows the initial values and parameters for the smooth periodic wave test case.
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Table 1. Simulation setup for dam break test case.

friction coefficient ν = 0.1

slip length λ = 0.1

spatial domain x ∈ [−0.5, 0.5]

spatial resolution nx = 1000

initial height h(x) =

{
1.5 if x ≤ 0
1 if x > 0

initial velocity u(0, x, ζ) = 0.25ζ

first moment α1 = −0.25

CFL number ≈ 0.7

numerical scheme FORCE scheme

Table 2. Simulation setup for smooth periodic wave test case.

friction coefficient ν = 0.1

slip length λ = 0.1

temporal domain t ∈ [0, 2]

spatial domain periodic x ∈= [−1, 1]

spatial resolution nx = 1000

initial height h(x) = 1 + exp(3 cos(π(x + 0.5)))/ exp(4)

initial velocity u(0, x, ζ) = 0.25ζ

first moment α1 = −0.25

CFL number ≈ 0.7

numerical scheme FORCE scheme

4.1. Linearization

The numerically computed eigenvalue spectrum is assessed to check the behavior of
slow and fast clusters and the corresponding spectral gap. The numerical computation
is done by first writing the HSWME model equations as a semi-discrete version after
discretization in space according to Equation (21). The semi-discrete right-hand side Dx(U)
is then linearized in U as in [10]:

Dx(U) ≈ ∂Dx

∂U
U, (26)

where the finite difference method is used to compute the Jacobian ∂Dx
∂U numerically [10].

For different settings specified in the next sections, we numerically compute the spectrum
of the Jacobian. For each setting, the largest absolute eigenvalue Λmax = max

∣∣∣EV
(

∂Dx
∂U

)∣∣∣ is
computed, corresponding to the fastest speed in the system.

This fastest eigenvalue Λmax strongly depends on λ, ∆x, and the number of moments
N. For stability of the PFE method, the inner time step size is later chosen as the inverse of
the fastest eigenvalue, i.e., δt = 1

Λmax
.

4.2. Spectral Gap

In the following figures we show the spectral gaps between the fast and slow clusters
for varying parameters N, λ, and ∆x for the non-smooth dam break test case defined
above taken from [3]. The results for the smooth periodic wave described in Table 2 are
qualitatively the same and are omitted here for conciseness.
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Figure 3 shows the eigenvalue spectrum for fixed ν = 0.1 and λ = 10−4 and varying
N = 0, . . . , 5. The presence of an increasing spectral gap can be seen for larger N.

(a) N = 0 (b) N = 1

(c) N = 2 (d) N = 3

(e) N = 4 (f) N = 5

Figure 3. Eigenvalue spectrum with increasing spectral gap for dam-break case with varying N and
fixed ν = 0.1, λ = 10−4.

In Figure 4, the slip length λ varies while N = 2 and ν = 0.1 are fixed. We observe
that λ appears to be inversely proportional to the fastest eigenvalue.

(a) λ = 10−1

(b) λ = 10−4

(c) λ = 10−5

Figure 4. Eigenvalue spectrum, with increasing spectral gap for dam-break case with decreasing λ

and fixed N = 2, ν = 0.1.
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In the same way, we observe that the fastest eigenvalue Λmax is also inversely pro-
portional to the grid size ∆x. The corresponding eigenvalue spectra are omitted here
for conciseness.

4.3. PI Parameter Choice

With the knowledge about the eigenvalue spectrum, we can formulate stable choices
for the most important parameters of the PFE method: the outer time step size ∆t and the
inner time step size δt.

4.3.1. Analysis for Outer Time Step Size

For the outer time step size ∆t, we choose a CFL-type time step [10] and neglect the
stiff source term. ∆t is thus calculated using the largest eigenvalues of the system matrix
AH of the HSWME model (7) evaluated at all grid points. Note that these eigenvalues of
AH denote the slow part of the spectrum of the fully discretized system (26).

The CFL condition is a necessary condition for convergence [15] and yields the time
step as

∆t =
∆x · CFL

ΛAH

, (27)

where ΛAH = max|EV(AH)| is the largest eigenvalue of the system matrix AH , which is
given analytically for different number of moments N according to [3] as

ΛAH = um +
√

gh + α2
1, (28)

where the case N = 0 requires to set α1 = 0.

4.3.2. Analysis for Inner Time Step Size

The inner time step δt is chosen based on the fast eigenvalue cluster of the eigenvalue
spectrum of the complete matrix ∂Dx

∂U including the stiff source term. We denoted this
eigenvalue as Λmax and have observed its behavior using different cases in Figures 3 and 4.
As mentioned before, a stable inner time step size δt is later chosen as the inverse of the
fastest eigenvalue, i.e., δt = 1

Λmax
.

Based on the numerical computation of the spectral analysis, we propose an ap-
proximate formula which calculates Λmax directly for the dam break test case using the
FORCE scheme:

Λmax =
1
δt

'
(

421 +
N3

3

)[
1 +

(
0.01
∆x
− 1
)
·
(

1− N(N − 1)
100

)]
+

(N + 1)2

10 · λ , (29)

where N denotes the number of moments, ∆x denotes the spatial grid size, and λ is the
slip length. The formula was obtained using a careful experimental study with varying
N = 0, . . . , 5, nx = 100, 200, . . . , 1000, and λ = 10−3, 10−4, 10−5, 10−6, as will be explained
below. The complete set of data is given in Tables A1–A5 in Appendix C.

First, we consider the rightmost contribution (N+1)2

10·λ that contains the dependency on
λ, compare also Figure 4. Figure 5 shows the numerically computed Λmax for varying slip
length λ and varying spatial resolution nx when N = 2. However, before identifying the
contribution of λ to Λmax, we first need to split the dependency on λ and nx. In Figure 6,

we see that Λmax − (N+1)2

10·λ is practically independent of the slip length λ, especially for the
important case of small λ. The numerically computed values of the eigenvalues Λmax can

thus be split into two terms, which will be given by Λmax =
(

Λmax − (N+1)2

10·λ

)
+
(
(N+1)2

10·λ

)
,

for more details see Table A2. The numerator of the last term can be expressed as (N + 1)2

according to Table A3. The rightmost contribution in (29) given by (N+1)2

10·λ thus correctly
models the dependency on λ.
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Figure 5. Fastest eigenvalue Λmax as λ decreases for different nx and constant N = 2. For the data,
see Table A2.
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Figure 6. Fastest eigenvalue Λmax excluding the last part of the analytical formula (29) Λmax − (N+1)2

10·λ
as λ decreases for different nx and constant N = 2. For the data, see Table A2.

To study the rest of the formula, we investigate the remaining part Λmax − (N+1)2

10·λ , and
we will validate the model in Equation (29), i.e.,

Λmax −
(N + 1)2

10 · λ =

(
421 +

N3

3

)[
1 +

(
0.01
∆x
− 1
)
·
(

1− N(N − 1)
100

)]
. (30)

In Figure 6, we have observed that this part is independent of the slip length λ for
small λ. The following test cases thus use a fixed slip length λ = 10−4.

Figure 7 shows the values of Λmax for varying N and ∆x. We first focus on a constant

nx = 100 to derive an approximation for Λmax − (N+1)2

10·λ depending only on N and then
correct this formula by a factor for different nx. In order to approximate the values for
nx = 100, we fit a third order polynomial in N. As a constraint, we ensure that the
approximated values do not underestimate the numerically obtained values, which would
lead to too large values for δt and stability problems later. Based on that, we obtain the

term
(

421 + N3

3

)
, which approximates the dependency of Λmax − (N+1)2

10·λ on N for constant
nx = 100 with increasing accuracy, as seen in Figure 8.
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Figure 7. Fastest eigenvalue Λmax for different nx, N and constant λ = 10−4. For the data, see
Table A3.
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Figure 8. Approximation of Λmax − (N+1)2

10·λ for different N, constant nx = 100 and λ = 10−4 both

calculated numerically (blue) and by using the analytical formula
(

421 + N3

3

)
(red). For the data, see

Table A5.

What remains is to correct for different spatial discretizations nx 6= 100. We do this by
using a correction factor, which increments the value obtained for nx = 100. For maximal
accuracy, we allow the correction factor, the so-called increment, to depend on N besides nx.
In Figure 9, the numerical value of the increment depending on nx and N is given, based
on the numerical computation of the spectrum and the data in Table A4. As expected, the
values for small N and nx are close to one, as almost no correction is necessary. For larger
values N and nx, a larger correction is necessary. Additionally, the influence of N seems
to be larger than the influence of nx. Modeling a small linear dependence on ∆x and a
quadratic dependence on N, we obtain

[
1 +

(
0.01
∆x − 1

)
·
(

1− N(N−1)
100

)]
for the increment,

which directly results in Equation (29).
In summary, Equation (29) thus approximates the fastest eigenvalue Λmax for the dam

break test case and can be used to determine the time step size of the inner integrator by
δt = 1

Λmax
.
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Figure 9. Increment factor of middle term of the analytical formula (29) as nx increases for different
N and constant λ = 10−4. For the data, see Table A4.

For the smooth periodic wave test case, a similar procedure results in the follow-
ing formula for the fastest eigenvalue Λmax. We leave out the details and give the final
result here.

Λmax =
1
δt

'
(

364 +
N3

3

)[
1 +

(
0.01
∆x
− 1
)
·
(

1− N(N − 1)
100

)]
+

(N + 1)2

10 · λ . (31)

Note that the dependence of the fastest eigenvalue on N, ∆x, and λ is exactly the
same for the dam break test case and for the smooth periodic wave test case. Only the
leading term changes slightly. This is due to the different initial conditions used in the
test cases. However, as the hyperbolic shallow water moment models are balance laws
including conservation of mass, no new maximal values inside the computational domain
are expected during the simulations such that the fastest eigenvalue is not expected to
exceed this value.

With the numerical results, we also show that the error between the approximated
parameter choice for δt and the stability limit for δt based on the numerical spectrum, is
small, see Table 4 for the dam break test case and Table 10 for the smooth periodic wave.
The approximation formulas Equations (29) and (31) are thus effective at computing the
inner time step of the PFE method.

4.3.3. Stability Check of PFE Method

In order to check the stability of the PFE method using the previously derived pa-
rameters, we consider a typical test case and plot the stability region of the PFE method
together with the numerically obtained eigenvalue spectrum. If all eigenvalues lie inside
the stability region, the PFE method will result in a stable solution.

According to [10], the stability domain of the PFE method is characterized by∣∣∣∣(1 +
(

∆t
∆x
− K

)
Λ δt

)
· (1 + Λ δt)K

∣∣∣∣ ≤ 1 (32)

and this stability condition [10] is satisfied for all eigenvalues Λ that fulfill

Λ ∈ D
(
− 1

∆t
,

1
∆t

)
∪D

(
− 1

δt
,

1
δt

(
δt
∆t

) 1
K
)

, (33)

where D(c, r) ∈ C denotes the disc with center (c, 0) and radius r in the complex plane.
Considering the dam break test case with slip length λ = 10−4, friction coefficient

ν = 0.1, spatial resolution nx = 1000 and N = 3 moments, the parameters of the PFE
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method are computed according to the aforementioned stability analysis as δt = 4.98× 10−5

and ∆t = 4.67× 10−4. Additionally, we use a standard K = 2. The eigenvalue spectrum of
the test case is plotted together with the stability region of the PFE method in Figure 10.

Figure 10. Stability domain of PFE method (yellow dashed for inner integrator, red dashed for outer
integrator) for δt = 4.98× 10−5, ∆t = 4.67× 10−4 and K = 2 together with numerical eigenvalue
spectrum (blue dots) for slip length λ = 10−4, friction coefficient ν = 0.1, spatial resolution nx = 1000
and N = 3 moments for dam break test case.

Figure 10 shows that both the fast and the slow eigenvalue clusters lie inside the
stability domain, the PFE method with the chosen parameters is thus stable. Comparable
results are obtained for the smooth periodic wave test case.

5. Numerical Results

This section contains two numerical experiments taken from [3] to show the applica-
bility and speedup of the PFE method.

5.1. Dam Break Test Case

For the non-smooth dam break test case with discontinuous initial condition, Table 1
shows the standard setup and the initial values from [3]. For this non-stiff setting of
λ = 10−1, Figure 11 shows the result of the dam break problem for height h, velocity um,
and first moment α1 using the HSWME model for varying N = 0, . . . , 5 at time t = 0.2.
Figure 11 shows that the model is converging when increasing the number of moments.

5.1.1. Projective Integration Setup for Stiff Test Case

Next, we consider a stiff test setting. The same initial conditions as in Table 1 are used,
but the value of the slip length is decreased from λ = 10−1 to λ = 10−4 resulting in a stiff
setup. As studied in Section 4, PI is effective in overcoming the severe time step constraint
of a standard FE scheme in this case. We will thus apply the PFE scheme and determine
suitable parameters first.

For this test case with varying N, constant CFL number CFL ≈ 0.7 and ∆x = 0.001,
the outer time step size ∆t is given according to the analysis in Section 4.3.1 as noted in
Table 3. Note that Table A1 shows that the maximum eigenvalue for N > 0 is the same.

Stiffness caused by a small λ leads to a very small time step δt� ∆t, which decreases
as the value of N increases as seen in Section 4.3.2. Using Equation (29), the values of the
inner time step size δt are evaluated in Table 4. Table 4 also shows the relative error of the
inner time step δt as computed with the approximate Equation (29) compared to the values
computed from the full spectrum of the semi-discrete model. Evidently, the error is small
and Equation (29) yields an accurate prediction of a stable inner time step size.
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(a) HSWME, h (b) HSWME, um

(c) HSWME, α1

Figure 11. Standard dam break test case with standard parameters [3] for varying N at t = 0.2 shows
the convergence of the HSWME model.

Table 3. Maximum stable outer time step size ∆t for varying N, constant CFL number CFL ≈ 0.7 and
∆x = 0.001 for dam break test case.

N ∆t

0 0.000474

1,2,3,4,5 0.000467

Table 4. Inner time step size δt and relative δt error for varying N, constant CFL number CFL ≈ 0.7
and ∆x = 0.001.

N δt δt Error

0 0.000192 −3.7 %

1 0.000122 8.9 %

2 0.000076 6.5 %

3 0.000050 4.0 %

4 0.000034 2.3 %

5 0.000025 1.3 %

Figure 12 shows the comparison of the maximum possible inner time step size δt
obtained from the numerically eigenvalue spectrum with the calculated inner time step
size using the formula (29).
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Figure 12. Inner time step size δt computed using numerical eigenvalue spectrum (real, blue) and
formula (29) (calculated, red) depending on different number of moments N shows good agreement.

In Figure 12, it is observed that for N > 0 the numerically estimated δt is approximately
the same as the exact δt calculated from the numerically computed eigenvalue spectrum,
including a small positive safety margin. The case N = 0 is different, due to the overlap
of fast and slow eigenvalue clusters, which are considered in detail in the next subsection.
The error is decreasing as N increases, compare Table 4.

5.1.2. Projective Integration Validation

In this section, we compare the results of a FE scheme with small time step size and a
PFE scheme as set up above for the stiff dam break test case at t = 0.2 and for ν = 0.1 and
λ = 10−4.

In Figure 13a,b, the height h is shown at time t = 0.2 for both schemes. The HSWME
model converges as N increases with increasing accuracy. Notably, the FE and PFE methods
give visually the same solution (but yield different runtimes as seen in the next section).

The result for N = 0 differs from other N 6= 0 for h and um. To understand this
behavior we note that the HSWME model for N = 0 is effectively the shallow water model
including the standard friction term seen in Equation (10) [3]. As the slip length λ = 10−4

is small, the friction term becomes large. This leads to a fast relaxation of the mean velocity
towards zero, which is also visible in Figure 13c,d.

Figure 13e,f plot the first moment which is initially α1 = −0.25 in our test case and
also converges for both the FE and the PFE method.

In all the above cases, we see that the model converges and is accurate compared to
Figure 11. Increasing the number of moments also increases the accuracy of the model.

Figure 14 shows the difference between the FE and PFE methods for the dam break
test case. For both the water height h and the first moment α1, it can be observed that the
difference is indeed negligible in smooth regions. Only close to shocks with large gradients,
a small difference remains, which is small in relation to the actual solution and the model
error [3]. Note that the difference for h increases with N, whereas the difference for α1
decreases with N as the shock becomes slightly less pronounced, compare Figure 13e.

5.1.3. Runtime

This section focuses on the runtime and speedup of the FE scheme and the PFE scheme.
The scheme was implemented in MATLAB without further code optimization, such that
the absolute runtime is not relevant but the runtimes can be compared. We thus focus on
the speedup. Note that the theoretical speedup Sth for a PFE method with the assumption
of neglecting the extrapolation step is in given Equation (25).

In Table 5, the runtime is shown for both the FE and the PFE scheme on a grid using
nx = 1000 cells. K denotes the number of inner time steps and Snum denotes the numerical
speedup of the PFE scheme compared to the FE Method. The theoretical speedup Sth as
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computed from Equation (25) is the maximum possible speedup and thus always larger
than the numerical speedup Snum. Nevertheless, we observe that the PFE scheme leads to a
significant speedup with respect to the FE scheme and the numerically obtained values for
the speedup are close to the maximum theoretical values.

(a) FE scheme, h (b) PFE scheme, h

(c) FE scheme, um (d) PFE scheme, um

(e) FE scheme, α1 (f) PFE scheme, α1

Figure 13. Dam break test case using FE (a,c,e) and PFE (b,d,f) schemes, for height h (a,b), mean
velocity um (c,d), and first moment α1 (e,f), for varying N and constant ν = 0.1 and λ = 10−4 shows
visibly the same accuracy for the PFE method.
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Figure 14. Dam break test case difference between FE and PFE schemes, for height h (a) and first
moment α1 (b), for varying N and constant ν = 0.1 and λ = 10−4 shows that the PFE method is the
same in smooth regions and exhibits small differences in regions of large gradients as the FE method
has a larger error there.

Table 5. Dam break test case runtime (in sec) using FE and PFE schemes and speedup of PFE
method for different N and constant nx = 1000, λ = 10−4 shows significant speedup close to the
theoretical prediction.

N FE PFE K Snum Sth

0 8 7 1 1.18 1.24

1 19 10 1 1.90 1.92

2 36 13 1 2.71 3.07

3 59 20 2 2.97 3.12

4 96 22 2 4.36 4.50

5 145 32 3 4.53 4.64

5.1.4. Spatial Resolution

In this section, more tests are done to illustrate how PI behaves when the spatial
resolution is doubled. The left hand side in Figure 15 is computed using a grid with
nx = 1000 cells or ∆x = 0.001 whereas the right hand side is computed using a grid
with nx = 2000 cells or ∆x = 0.0005. We see that the solution is already converged on
the grid and a refinement of the grid does not lead to a much better resolution of the
solution structure.

Table 6 shows the effect of doubling the number of spatial points on the runtime and
speedup with respect to a FE scheme. For finer spatial grids, the CFL condition leads to a
smaller outer time step size ∆t. The stability restriction imposed by stiffness is thus less
severe in relation to the CFL condition. This leads to a smaller speedup of the PFE method
compared to Table 5. Additionally, all runtimes increase due to the increase in grid points
and the smaller ∆t, by a factor of approximately four, if the same number of inner time
steps K was used. However, the smaller spectral gap allows for a smaller K as well, which
results in a acceleration of the PFE scheme as well as for the FE scheme.

As the solution already seemed converged for the coarse grid using nx = 1000 grid
points, it is possible to employ a fast PFE scheme on the coarse grid without significant loss
of spatial accuracy and thereby reduce the runtime.
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(a) nx = 1000, h (b) nx = 2000, h

Figure 15. Dam break test case water height using PFE scheme for different N and two different grids
using nx = 1000 (a) and nx = 2000 (b) for constant λ = 10−4 shows that the solution is converged.

Table 6. Dam break test case runtime and speedup using FE and PFE schemes for different N and
constant nx = 2000, λ = 10−4 shows significant speedup close to the theoretical prediction.

N FE PFE K Snum Sth

0 28 26 1 1.08 1.12

1 54 39 1 1.38 1.45

2 89 47 1 1.89 2.02

3 139 53 1 2.62 2.81

4 212 87 2 2.42 2.55

5 311 96 2 3.22 3.38

5.1.5. Varying Stiffness

This section discusses the effect of changes in the stiffness parameter. In Section 4.2,
the eigenvalue spectra with different spectral gaps were plotted for different values of λ,
see Figure 4.

Choosing suitable values for the PFE parameters for different values of λ according
to the analysis in Section 4, the PFE method achieves a significant speedup with respect
to the FE method for small values, as seen in Table 7. The speedup is especially large for
very small values of λ, due to the large spectral gap and the severe time step constraint
of the FE method. We note that the additional overhead of the PFE method including the
extrapolation, i.e., the difference between the theoretical speedup Sth and the numerical
speedup Snum is approximately 10%, pointing to a relatively efficient implementation of
the scheme.

Table 7. Dam break test case runtime and speed using FE and PFE schemes for different λ and
constant nx = 1000 and N = 2 shows increasing speedup close to the theoretical prediction.

λ FE PFE K Snum Sth

10−2 12.7 13 1 0.95 0.99

10−3 15 13 1 1.12 1.18

10−4 36 13 1 2.71 3.07

10−5 272 34 4 8.00 8.79

10−6 2639 48 6 54.98 60.28
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5.1.6. Alternative Numerical Scheme

The results above generalize to other spatial discretization schemes. As one example,
we show results for the Lax–Friedrichs scheme, see Equation (17). From Figure 16, it can
be seen that both schemes converge in the same way, and the accuracy is improved as the
number of moments increases.

The runtime and speedup of the PFE scheme with the Lax–Friedrichs spatial dis-
cretization employed is shown in Table 8. Comparing with Table 5, it is noticed that the
Lax–Friedrichs scheme is faster in comparison to the FORCE scheme. The reason for this is
the more involved spatial discretization of the FORCE scheme, see Equation (19).

(a) FORCE scheme, h (b) Lax–Friedrichs scheme, h

Figure 16. Dam break test case water height using PFE scheme for different N. FORCE discretization
(a) and Lax–Friedrichs discretization (b) for constant nx = 1000 and λ = 10−4 shows the same
numerical solution.

Table 8. Dam break test case runtime and speedup using FE and PFE schemes with Lax–Friedrichs
discretization for different N and constant nx = 1000 and λ = 10−4 shows significant speedup close
to the theoretical prediction.

N FE PFE K Snum Sth

0 8 4.6 1 1.73 1.78

1 19 8 1 2.37 2.45

2 33 14 2 2.35 2.41

3 53 16 2 3.31 3.50

4 81 23 3 3.52 3.68

5 119 25 3 4.76 4.97

5.2. Smooth Periodic Wave Test Case

In this section, we present a smooth test case with continuous initial condition taken
from [3]. Table 2 in Section 4 shows the standard setup and the initial values from [3].

For the non-stiff setting, Figure 17 shows the result of the smooth periodic wave
problem for height h, velocity um and first moment α1 using the HSWME for varying
N = 0, . . . , 5 at time t = 0.2. Figure 17 shows that the model is converging when increasing
the number of moments.
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(a) HSWME, h (b) HSWME, um

(c) HSWME, α1

Figure 17. Standard smooth periodic test case with standard parameters [3] for varying N at t = 0.2
shows the convergence of the HSWME model.

5.2.1. Projective Integration Setup for Stiff Test Case

Next, we consider a stiff test setting. The same initial conditions as in Table 2 are used,
but the value of the slip length is decreased from λ = 10−1 to λ = 10−4.

For this test case we use a similar setup as for the previous test case. The maximum
outer time step size is now given according to Table 9.

Table 9. Maximum stable time step size ∆t for varying N, constant CFL number CFL ≈ 0.7 and
∆x = 0.001 for smooth periodic wave test case for non-stiff conditions.

N ∆t

0 0.000493

1,2,3,4,5 0.000484

Stiffness caused by a small λ leads to a very small time step δt� ∆t, which decreases
as the value of N increases as seen in Section 4.3.2. Using Equation (31), the values of the
inner time step size δt are evaluated according to Table 10.

Similar as for the dam break case, the numerical predictions of the inner time step size
δt according to Table 10 are increasingly accurate in comparison to the exact values.

5.2.2. Projective Integration Validation

In this section, we compare the results of a FE scheme with small time step size and a
PFE scheme as set up above for the smooth periodic wave test case, t = 0.2, ν = 0.1, and
λ = 10−4.
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From Figure 18 at time t = 2 for both schemes, we observe that the model converges
with increasing accuracy and both FE and PFE give the same solution. Note again the
differences in the results for the N = 0 case.

(a) FE scheme, h (b) PI scheme, h

(c) FE scheme, um (d) PI scheme, um

(e) FE scheme, α1 (f) PI scheme, α1

Figure 18. Periodic wave test case using FE (a,c,e), and PFE (b,d,f), for height h (a,b), mean velocity
um (c,d), and first moment α1 (e,f), for varying N and constant ν = 0.1 and λ = 10−4 shows visibly
the same accuracy for the PFE method with respect to the FE method.
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Table 10. Inner time step size δt and relative δt error for varying N, constant CFL number CFL ≈ 0.7
and ∆x = 0.001.

N δt δt Error

0 0.000215 −2.1%

1 0.000131 7.1%

2 0.000079 5.2%

3 0.000051 3.2%

4 0.000035 1.9%

5 0.000025 1.1%

5.2.3. Runtime

In Table 11, the runtime is shown for both the FE and the PFE scheme on a grid using
nx = 1000 cells. For both test cases we observe that the numerically obtained values for the
speedup are close but slightly under the maximum theoretical values indicating efficient
implementation and significant speedup.

Table 11. Smooth periodic wave test case runtime (in sec) using FE and PFE schemes and speedup of
PFE method for different N and constant nx = 1000, λ = 10−4 shows significant speedup close to the
theoretical prediction.

N FE PFE K Snum Sth

0 131 116 1 1.13 1.14

1 320 174 1 1.83 1.85

2 636 322 2 1.97 2.03

3 1087 365 2 2.98 3.15

4 1741 530 3 3.28 3.44

5 2712 583 3 4.65 4.76

5.2.4. Spatial Resolution

In this section, we illustrate the behavior of the PI method when the spatial resolution
is doubled. In Figure 19, we see that the solution is already converged on the grid and a
refinement of the grid does not lead to a better accuracy or convergence of the solution.

(a) nx = 1000, h (b) nx = 2000, h

Figure 19. Smooth periodic wave test case water height using PFE scheme for different N and two
different nx = 1000 (b) and nx = 2000 (a) for constant λ = 10−4 shows that the solution is converged.
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Table 12 shows the effect of doubling the number of spatial points on the runtime
and speedup with respect to a FE scheme. An increase in runtime is also seen here, due to
the increase in the number of grid points and the smaller ∆t. The runtime increases by a
factor of approximately four, if the same number of inner time steps K was used. Again the
smaller spectral gap allows for a smaller K, resulting in an acceleration of both the PFE and
the FE scheme scheme.

Table 12. Smooth periodic wave test case runtime and speedup using FE and PFE schemes for differ-
ent N and constant nx = 2000, λ = 10−4 shows significant speedup close to the theoretical prediction.

N FE PFE K Snum Sth

0 805 400 1 2.01 2.04

1 1744 653 1 2.73 2.73

2 2830 747 1 3.79 3.92

3 4765 867 1 5.49 5.57

4 7250 1443 2 5.02 5.13

5 10,909 1627 2 6.70 6.87

We note that the results for the dam break test case regarding varying stiffness param-
eter λ and alternative numerical schemes also hold for the smooth periodic wave test case.
They are omitted for conciseness.

6. Conclusions

This paper features the first application of efficient numerical schemes for stiff shallow
water moment equations. First, the spectral gap of Hyperbolic Shallow Water Moment
Equations is studied numerically. An accurate numerical estimate for the fastest eigenvalue
is given and validated for several test cases. This allows to construct explicit stable Pro-
jective Integration schemes that overcome the severe time step constraints of the standard
Forward Euler scheme. A Projective Forward Euler scheme is applied for a dam break
test case and a smooth periodic wave test case and leads to a significant speedup of up to
55 in the stiff regime, while resulting in similar accuracy as the standard Forward Euler
scheme. The results of this paper show that Projective Integration schemes are effective in
overcoming stiffness and result in fast and accurate numerical solutions.

Further work should focus on the application of higher-order schemes and potential
adaptivity in space and time to further accelerate the computation.
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Appendix A. Second Order System (N = 2)

The shallow water moment equations with two additional moments α1 and α2, where
the vertical change in the velocity profile is of second order are given by [3,4]

∂t


h

hum
hα1
hα2

+ ∂x


hum

hu2
m + 1

2 gh2 + 1
3 hα2

1 +
1
5 hα2

2
humα1 +

4
5 hα1α2

humα2 − 1
3 hα2

1 +
1
7 hα2

2

 = − ν

λ


0

um + α1 + α2
3(um + α1 + α2 + 4 λ

h α1)

5(um + α1 + α2 + 12 λ
h α2)

, (A1)

where, again, g is the gravitation constant, ν is the friction coefficient and λ is the slip
length. The right hand side contains the friction terms.

The system matrix for the second order model is defined as [4]

A =


0 1 0 0

gh− u2
m − 1

3 α2
1 −

1
5 α2

2 2um
2
3 α1

2
5 α2

−2umα1 − 4
5 α1α2 2α1 um + α2

3
5 α1

− 2
3 α2

1 − 2umα2 − 2
7 α2

2 2α2
1
3 α1 um + 3

7 α2

. (A2)

The eigenvalues of the above system matrix have the form ai = um + ci
√

gh, with ci
being the ith root of the following polynomial

χ(c) =c4 − 10
7

α2c3 −
(

1 +
6

35
α2

2 +
6
5

α2
1

)
c2 +

(
22
35

α3
2 −

6
35

α2α2
1 +

10
7

α2

)
c

− 1
35

α4
2 −

6
35

α2
2α2

1 −
3
7

α2
2 +

1
5

α4
1 +

1
5

α2
1.

(A3)

Calculating the roots for different parameter values of α1 and α2 can result in complex
values, which indicates a lack of hyperbolicity [4]. A hyperbolic matrix AH is obtained by
setting α2 = 2 in Equation (A2).

Appendix B. Eigenvalues for Larger Moment Models

Table A1 shows the real and distinct eigenvalues of the HSWME system matrix AH (7)
for N = 0, . . . , 5 according to [3].

Table A1. Eigenvalues of HSWME system matrix AH (7) for N = 0, . . . , 5.

N 0 1 2 3 4 5

EV1 um +
√

gh um +
√

gh + α2
1 um +

√
gh + α2

1 um +
√

gh + α2
1 um +

√
gh + α2

1 um +
√

gh + α2
1

EV2 um −
√

gh um −
√

gh− α2
1 um −

√
gh− α2

1 um −
√

gh− α2
1 um −

√
gh− α2

1 um −
√

gh− α2
1

EV3 - um um +
√

1
5 α1 um +

√
3
7 α1 um +

√
( 1

3 −
2

3
√

7
)α1 um +

√
15−2

√
15

33 α1

EV4 - - um −
√

1
5 α1 um −

√
3
7 α1 um −

√
( 1

3 −
2

3
√

7
)α1 um −

√
15−2

√
15

33 α1

EV5 - - - um um +
√
( 1

3 + 2
3
√

7
)α1 um +

√
15+2

√
15

33 α1

EV6 - - - - um −
√
( 1

3 + 2
3
√

7
)α1 um −

√
15+2

√
15

33 α1

EV7 - - - - - um

Appendix C. Eigenvalue Data

This section contains the data used to derive the analytical formula in Section 4.3.2.
Tables A2 and A3 show the fastest eigenvalues Λmax among the numerically computed

eigenvalues of the semi-discrete system (21) for varying λ, nx, and N = 0, . . . , 5.
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Table A2. Fastest eigenvalue Λmax as λ decreases for different nx, λ, and constant N = 2. For a
visualization, see Figure 5.

nx λ = 10−3 λ = 10−4 λ = 10−5 λ = 10−6

100 1237 = 337 + 900 9336 = 336 + 9× 103 90,336 = 336 + 9× 104 900,336 = 336 + 9× 105

200 1576 = 676 + 900 9670 = 670 + 9× 103 90,670 = 670 + 9× 104 900,670 = 670 + 9× 105

300 1919 = 1019 + 900 10,004 = 1004 + 9× 103 91,003 = 1003 + 9× 104 901,003 = 1003 + 9× 105

400 2269 = 1369 + 900 10,339 = 1339 + 9× 103 91,337 = 1337 + 9× 104 901,337 = 1337 + 9× 105

500 2628 = 1728 + 900 10,674 = 1647 + 9× 103 91,671 = 1671 + 9× 104 901,671 = 1671 + 9× 105

600 3002 = 2102 + 900 11,009 = 2009 + 9× 103 92,005 = 2005 + 9× 104 902,005 = 2005 + 9× 105

700 3397 = 2497 + 900 11,344 = 2344 + 9× 103 92,339 = 2339 + 9× 104 902,339 = 2339 + 9× 105

800 3814 = 2914 + 900 11,680 = 2680 + 9× 103 92,673 = 2673 + 9× 104 902,673 = 2673 + 9× 105

900 4248 = 3348 + 900 12,016 = 3016 + 9× 103 93,006 = 3006 + 9× 104 903,006 = 3006 + 9× 105

1000 4694 = 3794 + 900 12,352 = 3352 + 9× 103 93,340 = 3340 + 9× 104 903,340 = 3340 + 9× 105

Table A3. Fastest eigenvalue Λmax for different nx, N, and constant λ = 10−4. For a visualization,
see Figure 7.

nx N = 0 N = 1 N = 2 N = 3 N = 4 N = 5

100 1421 4349 9336 16,335 25,342 36,356

200 1843 4699 9670 16,664 25,668 36,681

300 2273 5050 10,004 16,992 25,994 37,006

400 2715 5402 10,339 17,321 26,320 37,331

500 3160 5755 10,674 17,650 26,646 37,655

...
...

...
...

...
...

...

1000 5412 7540 12,352 19,295 28,278 39,279

Table A4. First term of eigenvalue Λmax for different N and nx, and constant λ = 10−4. For a
visualization, see Figure 9.

nx N = 0 incr N = 1 incr N = 2 incr N = 3 incr N = 4 incr N = 5 incr

100 421 - 349 - 336 - 335 - 342 - 356 -

200 843 1.00 699 1.00 670 0.99 664 0.98 668 0.95 681 0.91

300 1273 1.02 1050 1.01 1004 0.99 992 0.98 994 0.95 1006 0.91

400 1715 1.05 1402 1.01 1339 1.00 1321 0.98 1320 0.95 1331 0.91

500 2160 1.06 1755 1.01 1674 1.00 1650 0.98 1646 0.95 1655 0.91

...
...

...
...

...
...

...
...

...
...

...
...

...

1000 4412 1.08 3540 1.03 3352 1.00 3295 0.98 3278 0.95 3279 0.91

Table A5. First term of the eigenvalue Λmax for different N, constant nx = 100, and λ = 10−4. For a
visualization, see Figure 8.

N 0 1 2 3 4 5 6 7 8 9 10

Λmax 421 349 336 335 342 356 381 420 476 561 719
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