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Abstract: Two invariants for mappings of affine connection spaces with a special form of deformation
tensors are obtained in this paper. We used the methodology of Vesi¢ to obtain the form of these
invariants. At the end of this paper, we used these forms to obtain two invariants for third-type
almost-geodesic mappings of symmetric affine connection.
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1. Introduction

Invariants for different mappings of symmetric and non-symmetric affine connection
spaces have been obtained by different authors. The generalizations of the Weyl conformal
and the Weyl projective tensor and the Thomas projective parameters are objects that have
been generalized in different papers about invariants for geometric mappings.

Vesi¢ [1] developed the methodology of obtaining invariants for mappings defined on
symmetric and non-symmetric affine connection spaces. We develop one result obtained
in [1] below.

1.1. Affine Connection Spaces

An N-dimensional manifold My equipped with an affine connection V is the affine
connection space. If this affine connection is torsion-free, i.e., if

0
VXYE ny, ny—vYX: [X,Y},

0
the pair (M, V) is symmetric affine connection space Ay (see [2 3)).

The affine connection coefficients of the space Ay are Lt o ]k k]'

The partial derivative of a tensor a of the type (1, 1) by x, E)a /dxk a;-,k, is not a

tensor. the covariant derivative “j\ i of the tensor a' j by x¥ is the tensor of the type (1,2),

whose components are

i i i
“‘k—”j,k"'L@”

jl LJk” @

Remark 1. For a tensor A - of the type (p, q), the partial derivative A k is not a tensor,

but the tensor is the correspondmg covariant derivative:

i1.i

L p ;
_ 11.--Ip lu . l IXZ,H,l .
uejalke = Ah---jq,k T E thk 11 ~Jq Z LJvk j1- ]v 1o 41-Jq” @)
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0 .
With respect to symmetric affine connection VxY and for the tensor a} of type (1,1),
one Ricci identity exists [2,3]:

0.
a% R} — b, R“

i i —
imln =~ Hlnm = 3 Ramn = AaRjmns ©)
0 ; .
for the curvature tensor R}mn of the space Ay given as

R =L — L+ LiwLan = LiyLam- )

jmn jmn jnm
The Ricci tensor of space Ay is

0
Ryj R;x]“:L;‘M L;‘M+L;’;Lfﬁ—LlﬁLﬁ (5)

0
By the anti-symmetrization of the Ricci tensor R;; without division, the next geometri-
cal object is obtained:

0 0 0
Rij = Rij = Rjy = —Lip j & Ljn; = —Lfa (©)
1.2. Riemannian Spaces
Special symmetric affine connection spaces are the Riemannian spaces [2—4].
Let a symmetric metric tensor ¢ of the type (0,2), whose components are 8ijs 8ij = &jir

be defined at any point of the manifold My. The pair (My, §) is Riemannian space Ry
(see [2-4]).

We assume that the matrix [g;;] is non-degenerate, i.e., ¢ = det [g;;] # 0. The compo-
nents of the contravariant metric tensor are ¢, determined by [¢7] = 8ii] -
The Christoffel symbols F}k uniquely determine the affine connection V¢ of the space

Ry. The affine connection coefficients of Ry are F;k.

The next equation holds:

1 9g

Ta = 2\/> xk

Analogously to the case of space Ay, covariant derivative of the tensor aj. by x* with
respect to the affine connection V¢ is defined as [2,3]

Ty = = *Igl_”z\gl,i- @)

aj‘gk = a;'.,k 4 F;la l"]ka (8)

The corresponding Ricci identity is [2,3]

a;’|8m|8n - a;‘gn‘gm a R :an anRg?m}’l/ (9)
where '
RS jmn = F;m n F;n mt F?ﬂrl IW F;m, (10)
is the curvature tensor of space Ry.
The Ricci tensor of space Ry is
Rg—Rf;a—r;’;a—rf;ﬁrf;rfﬁ—rﬁrﬁ. (11)
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The scalar curvature of space Ry is

RS = g0RS 5 = gW0(T8y  —T%, 5+ T4 5/5 T86T%,). (12)

1.3. Geodesic Mappings
The affine connection coefficients Ll and the Christoffel symbols F’ are not tensors.

With respect to transformation of coordmate systems (O, xb Ny — (O’ LN,
the corresponding transformation rules are [2,3]

-/
Liw = x xﬁxk/ prt Sk (13)
i Py
Fj,k/ xh (274 ﬁ7+x,xxj,k,,
for i ax'" o 0, 92x®
or x, = X ==, %5, = ——.
I T s Y (0 J’axk’
0. . .
The differences P}k = L;'k and p3 Zk = F F}k are tensors. These tensors are

named the deformation tensors.
It was found [2,3] that after adding a tensor of the type (1,2), symmetric by covariant
indices, to any of affine connection coefficients, Ll or l"lk, the resulting sums are affine

connection coefficients. That is the motivation for studying the transformation rules of
0.

0 .
curvature tensors R;mn — Rl«mn or Rg;mn — Rg;mn caused by transformations of affine

connection coefficients Ll — L;k L;-k + Pj-k or F;:k — fj.k = F;-k + Pg;-k. Transformations
like that are called the mappmgs -

Before we present the motivational results for our current research, we need to define
the geodesic lines of manifolds [2,3].

A curve ¢ = (£1,...,¢N) that satisfies the corresponding system of the following
differential equations:

20 ardt o
P (9
a2t - der dep

a2 Y e dt dt =S, (15)

where 8 and p¢ are scalar functions and ¢ is a scalar parameter, is the geodesic line of the
corresponding spaces Ay and Ry, respectively.

The mappings f : Ay — Ay and f : Ry — Ry, which any geodesic line of spaces
Ay or Ry transform to a geodesic line of the corresponding space Ay or Ry, are called
the geodesic mappings of symmetric affine connection space Ay or Riemannian space Ry,
respectively.

The basic equations of geodesic mappings f : Ay — Ay and f : Ry — Ry are [2,3]

Lt = Li 4+ ;6 + g6,
ik = Lik 1/J]k lPk (16)

]k = Flk + 80 + 95,0,

0
for the 1-forms ¥ and ¢S$.
Invariant geometrical structures under transformation (16) of the corresponding affine
connection coefficients are the Thomas projective parameters [2,3,5]:

0. ) 1 . .
Ty =Lk = N71 (L§,0 + Lf,8) and T8 =T} — Niil (T8 + T0). - (A7)
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The geometrical objects that are invariant under the transformation of curvature

0. .
tensors K;,,, and RS, caused by Equation (14) are the corresponding Weyl projective
tensors [2,3,6]:

1 1
W}mn = ijn tNT 1‘55 ) + 37— 0mRjnl + 370w R n]]" (18)
Wg;'mn = Rg}mn + mémegjn]' (19)

The Thomas projective parameters (17) and the Weyl projective tensors (18) and (19)
are invariants for the corresponding geodesic mappings.

Because geodesic mappings are not only transformations of affine connections, differ-
ent authors have been motivated to obtain invariants for mappings of affine connection
and Riemannian spaces.

Many authors have obtained invariants for different mappings of symmetric and
non-symmetric affine connection spaces. Some of them are J. Mike$§ with his research
group [2,7-15], V. E. Berezovski [13-15], M.S. Stankovi¢ [16], M.Lj. Zlatanovi¢ [17,18], and
many others.

These invariants are used as the motivation for obtaining invariants for mappings
of non-symmetric affine connection spaces. Some interesting invariants were obtained
in [17-19].

N. O. Vesi¢ was motivated to develop the methodology for obtaining invariants for
geometric mappings of symmetric and non-symmetric affine connections spaces. The cor-
responding results were presented in [1].

The formulas presented in [1] were applied in [19] for obtaining invariants of the
corresponding geometric mappings. We were motivated by the results presented in [1] to
obtain invariants for mappings determined with a deformation tensor of a special form in
this paper.

1.4. Motivation from Physics and Two Kinds of Invariants

When stating the Theory of General Relativity, A. Einstein stated the corresponding
principles. The most important of these principles in this paper is [20] the Principle of General
Covariance. This principle states that the laws of physics maintain the same form under a
specified set of transformations.

If we make them parallel with invariants for different geometric mappings, we may
see that they have the same forms before and after transformations.

In an attempt to generalize this mathematical property of invariants for mappings,
Vesi¢ and Simjanovi¢ defined different kinds of invariance for geometrical objects.

Definition 1 (see [19]). Let f : Ay — Ay bea mapping, and let U]lll]ls be a geometrical object of
the type (p,q):

o Ifthe transformation f preserves the value of the object U”"'l” but changes its form to Vx;’; ,

then the invariance for geometrical object U under tmnsformatzon f is valued.

e Ifthe transformation f preserves both the Ualue and the form of the geometrical object U]l; i

then the invariance for the geometrical object U1 under transformation f is total.

Valued invariants for the third-type almost-geodesic mappings of a non-symmetric
affine connection space and the basic condition for them to be total were obtained in [19].
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1.5. Motivation

In [1], the methodology for obtaining invariants for mappings of affine connection
spaces is presented. As basics for these invariants, the author used transformation rule:

Ly = Ly + @) — wh, (20)

for geometrical objects Ej»k, wj»k of the type (1,2), such that w;ik = w};j and w;:k = w]iq.. Based
on Equation (20), the associated basic invariants of the Thomas and Weyl type for this
mapping are obtained [1]:

o .
= L;; — Wik (21)

i _ pi a i a i
W]mn R]mn - ]m\n + w]n\m + WimWan — Wiy Wam- (22)

Moreover, Vesi¢ considered [1] the case of difference w}lk — w;'-k expressed as the sum
of lpjéli + o, for 1-form ¥;, and tensor (T}k symmetric by j and k and obtained the single
invariant of the Thomas type and two invariants of the Weyl type for a mapping. In this
paper, we will develop this research with respect to expression a;k = f}k — F]?k for the
tensors FJIL‘ and fik of the type (1,2), which are symmetric by j and k. B

The main purpose of this paper is to obtain invariants for mappings whose deforma-
tion tensor is of the form PJL" =90+ lpkéjl» + Pl F]lk, F;l‘ = F;Lf' F]ik = F&. We obtained
these results for mappings of symmetric affine connectlon spaces and point out the corre-
sponding results of mappings defined on Riemannian spaces of Eisenhart’s sense.

Sinyukov used the covariant vector g; such that ¢*g, = e, e = £1, to obtain invariants

for the third-type almost-geodesic mappings. Our next aim in this paper is to obtain the
geometrical object w;k from the invariant [3]:

;‘k = L§7k+e§0i%‘|k
1 1 B B
- ﬁ( —egq;) Lty + e9"qui + 0k (9P L + 9 0Puyp) |
1
- ﬁ@k e¢'qr) [L]a + ey + 61;( ¢PLEy + 991, us)}

2. Review of Basic and Derived Invariants

Let us consider a mapping f : Ay — Ay whose deformation tensor is [1]
i = L — Lix = 50 + 90 + Fy — F, (23)

for geometrical objects P;k,

After contracting Equation (23) by i and k, one obtains [1]

]k of the type (1,2) symmetric by j and k.

To _ T

1 1
Vi = N e~ Flo) ~ g (U~ F) 4

If substituting Equation (24) in (23), one obtains [1]:

. 1 .
= L = T+ g [T = F) + 0B — )
1

. (25)
N L — B + (0 — F) |

F]k
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If we compare Equation (25) with (20), we obtain

1 .
Wi = Fy + N+1[511(L}2 a) 0 (L — kzx)]

Therefore, the corresponding basic invariants are

i = Ly — Py Nil[skm—mw( x —F)],
Wﬁmn_RﬁmﬁNH‘%’ ) = Ejul + Fjupn + i Fan = EfyFam
Nil (90 (L = Fig) = G (L = Figr) = 81 Efai
+ﬁ{F’ (Léa — Fi) = Fiy (L — Fia) |
~ et (e~ Fl) ~ Gy (L~ FR) (1 — Pl
(antl) (L8 — F) (L — Fia),
for L, = Liy, + LinLly, — Ly L — L Ll e, Ly = Ly s — LigL.

0.
. . i
The basic invariant W imn MY be expressed as

W;mn = R;mn + N + 15]1R[mn] - P]lﬂ\n + ]n\m + P]aﬂFl’lﬂ o PJEPDIM
1 1 4 4 l o 4 1 1T
+N+1[F (L —Fu ) F (L — )]+N_|_15]P[moc|n]
+ §;n Q]'rl - 571 Qjm/
for
__ 1 a(rB _ B 1 o _ pay(1B _ P
Qif - N+1 [ ialj ux\] +F (szﬁ szﬁ)} - (N—l—l) (L _F )(L]/S _F]ﬁ)‘
0
The transformed invariant W;mn
1 P . .
1 _ . _ 1 _
AT [Fz (% — Fin) Fﬁz(% - PM N 10
+ 814 Qjn = 6, Qjm/
for

— 1 - B =B U ja _Fay\ (7B _ 7B
Qij = =7 [Pty — P + B (T — Fap) | — e (T — i) (T — Bl

)-

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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The equality 0 = W’ W'

jmn jmn’ 1.€.,

1 .
0= R;mn R;mn N+ 15]1' (R[mn] - R[mn])

F]mHn + F]nHm +f}?‘ﬂf" F“ Fiu+ ]m|n - F]n|m Fi Fi, + pépill
g [P (T = Fi) — Pl (T — )|
- NLH{P (Lt — Fi) = Bl (L — Fin) |

TN 70 Pl — Flsg) + 81 (Zn — Qi) = 54 (Qju — Q).

After contracting Equation (33) by i and 7, we obtain

Qjm = Qjm = %(Em — Rjm) + ﬁ (R — Ry
- ﬁ@éﬂ\la = Fiam — FJmPfﬁ ]ﬁFgm)
+ ﬁ@%a ]alm F]meﬁ + F Ffm)
* ﬁ [P (T~ Fag) — Pl (Ths — i) |
~ S [P (L2~ F2p) — P (L — B

1 T e
— 57 —71 Flialim) ~ Fliagm))-

Equation (34) should be rewritten in the more suitable form:

1 0

N 9 0
~z 1 (Rji = Rji) +Sij = Sij,

Qij— Qij = g (Rij =~ Ryj) +
for .
1
Sij = _N_l(Fi]c'hx ux|] FZ]Ffﬁ ﬁFﬁ)
1
+ e P (e~ Fig) — P (L~ B = Figyg .

0
and the corresponding ;.

If we substitute the expression (35) in Equation (33), we obtain

0
W;mn = W;mn/
for
jmn = SNjmn N 1 ] [mn] [mac|n] N2 [m ]71] N2 -1 [ ”]J
0 . .
1
NI [P’ (L”‘ — B ) Fi (L”‘ ~ R,
0
and the corresponding W' jmn

The next theorem is proven in this way:.

(33)

(34)

(35)

(36)

(37)
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Theorem 1. Let f : Ay — A be a mapping determined by deformation tensor Pik = 1/J]-(5i
q)k&i + Flk — FZ for the one-form ; and the tensors Flk, Fl of the type (1,2) symmetric by
covariant mdzces .

The geometrical object Tj-k given by (27) is the associated basic invariant of the Thomas type
for the mapping f.

0.

The geometrical object Wl . equivalently given by Equations (28) and (29) is the associated
basic invariant of the Weyl type for the mapping f.

The geometrical object W’ . §iven by (37) is the derived associative invariant of the Weyl type
for the mapping f.

0. 0 2

i . . . .. 1
Because the forms of invariants T]k' ]mn, Wiin coincide with the forms of their images, Tjk'
0 0

l TAT . .
W]mn, ]mn, these invariants are total.

Invariants for Mappings of Riemannian Space

In Riemannian space Ry, the affine connection coefficients are Christoffel symbols I”i .

After changing L! i with I";k and L§ with I} = | ¢|71|g| ; in Equations (27)—(29), and (37),

we obtain the corresponding invariants for the mappmg f : Ry — Ry, whose components
are

. . . 1 . .
S =Tk — ;k—m[‘si( ,]—2|8|Fﬁ)+5}(\g|,k—2|g\52a)]f (38)

i gt i & i « i
ngmn = R8 jmn = % jm|8n +Fn\8m +FjﬁFM_Fj£Fm

N+1 [‘51 ( jafn _Flegn) —5Z(T§\gm _Ffﬁwgm) ”{m\gnﬂ

+N%1[FZ (T~ Fia) — B (T — Fi)| )
= 2B (s~ Fl) — gy (T — ) (T — Bl

+ (Nil) 8, (%, — F&) (I %),

W8y = RS + Niq i Flmajon) + 37 ‘5f ]
+ 67,88 — ij‘gn + Fnlgm + F]%F;ﬂ - F]P‘ﬂFLm (40)
+%H[Fl (T = Fi) = Pl (T — Fia) .
for
Ty = 5 (18171815~ 181 Is118l,) — 575181 Igles @)
Sgif:_N% (Ffjse = Fig + E§Fip + FisFy)) w

1
+ N2 1 {Fﬁ( ap 04/5) Fll;% (Fa F]{Xj) - F[‘i"\gi]}'

where |$ denotes the covariant derivative in Ry.
By denoting

oL fpe e B ph 1 e _pey (B _ P
08 = — 57 Ve — Fgs + Ef (Thg — leﬁ)}—(N_'_l) (T, — Fa) (T — ), @)
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we can represent (39) in the form

WES,, = R ;mn - pjm‘gn + Fn‘gm + F;;an;l — szpg;ﬂ
1 i o o i o o ipa 44
+N—|—1[F (T —Fy ) F (F — F )}—'_N—l-l(s] [ma|&n] (44)

+ 0,98y — 65,08 .
The next theorem holds.

Theorem 2. Let f : Ry — Ry be a mapping determined by deformation tensor Pgik = gbjé,i( +
¢k(5i + fi for the one-form ; and the tensors F;k, ]Lk of the type (1,2) symmetric by

covariant mdzces

The geometrical object T8 given by (38) is the associated basic invariant of the Thomas type
for the mapping f.

The geometrical object W8 equivalently given by Equations (39) and (44) is the associated
basic invariant of the Weyl type for the mapping f.

The geometrical object W& given by (40) is the derived associative invariant of the Weyl type
for the mapping f.

Because the forms of invariants T8, WE, W& coincide with the forms of their images, T, WS,
WS, these invariants are total.

3. Invariants for Third-Type almost-Geodesic Mappings

In an attempt to generalize the concept of geodesic lines, Sinyukov started the research
about almost-geodesic lines.

0 0
Definition 2 (see [3,21]). A curve £ on manifold My, equipped with the affine connections V
0

= . . . 0.
and V whose coefficients are L;;k and le = L;l‘ + P;;k, is the almost-geodesic line with respect to

0
the affine connection V if the next equation holds:

0 0 0 0 0
0 0. dePderded 00, 4o deP odel
e 1 _ 1
s+ PhsPag) ar ar ar = PP g ar T ar (45)

o 0 .
where a and b are scalar functions.

A mapping f : Ay — Ay, which any geodesic line of the space Ay transforms to an
almost geodesic line of the space Ay, is the almost-geodesic mapping of symmetric affine
connection space Ay.

Sinyukov recognized three types of almost-geodesic mappings [2,3] 711, 71, 7r3. The
almost-geodesic mapping f : Ay — Ay of a type 7, k = 1,2,3, has the property of
reciprocity if its inverse mapping is the almost-geodesic mapping of the type 7.

In the literature, different authors obtained invariants for almost-geodesic mappings,
which have the property of reciprocity.

The basic equations of almost-geodesic mapping f : Ay — Ay are [2,3]

fl =Li + ol + 5+
jk 1/’/ lPk k(P (46)

O
;= v5}+w,

0 00 0
for the scalar function v, 1-forms 1, 4, and symmetric tensor ¢;; of the type (0,2).
Let us prove the following proposition.
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0 0; . . . .
Proposition 1. The tensor y; and the vector @' from the basic Equation (46) satisfy the following

equation:
0 0 0, 00 000
Va|i(Pa = (P\m NVZ — VUi — ,”i]f‘txqoa/ (47)

0 0
forvi =y,

Proof. After contracting the second of basic Equation (46), we obtain the equation

0 0 00
Pl = NV + piag". (48)
~ The covariant derivatives of the left and right sides of Equation (48) in the direction of
x' are equal to
0 0 0 0 0 ,0 00
Pl = NV + ;9" + pa (VO] + p1ig"),
which completes the proof for this proposition. [

Let us combine Sinyukov’s methodology for obtaining invariants for almost-geodesic
mappings of the third type and the corresponding formulas from [1], in this paper listed in
Equations (27)—(29), to obtain invariants for almost-geodesic mapping f : Ay — Ay of the

type 3.
We know that almost-geodesic mappings of the type 713 have the property of reci-

procity [3]. Sinyukov involved the covariant vector 81- such that (see [3], p. 193)

a9  =e (e=+1). (49)
Because the almost-geodesic mapping f has the property of reciprocity, we may
involve the corresponding geometrical objects ¢’ and g; such that

o0
P'gu =¢ (e==£1). (50)

After some computation, Sinyukov obtained the invariant Ek (with respect to transfor-
mation of affine connection coefficients L;‘k) for the almost-geodesic mapping f : Ay — Ay.

The form of invariant "g;k is

Tk = Lix +e9'qj

1, 0,0 1
- N(J—eqvlqj)[ b+ 0 Qg + k(9P LY, + 0" 9P )| (51)

1

(5k—e</> 36) L, + e9" + q](ap Ly + 9" 9P 0u5) |-
Let
1
gz = E(P qa|z 1’11 (quﬂLﬁa + 4) q)ﬁqa\ﬁ) (52)
0 1 o, 0,050

7 = eg" %H, qz(E(P Lo + 0" 0 up)- (53)

In this case, the invariant 73";,( given by (51) takes the form

i i 0;0 1. 0;0 w2 1 0;0 w2
T = Lix +e9' Qi — (6 — 9'q;) (L + Ck) — ~ (0 —e@'qr) (Lj, +85)- (54)
3 It N N i
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After comparing Equations (54) and (21), we obtain

, ~ 0:0 0
Wi = —ep T+ (o= e ) (L, + ) + N(‘Sllf_“"lqk)(%%f)' ©5)

ie.,
i 1 K 5 1 o 9 51'
wjk:N(]g_Fg])k“' ke T Ck)0;

(
0:0 1 0.0 N 0 1 0.0 0 (56)
— e — 57¢9'4) (Lia + k) — 15e@'ak (Li +))-

After some computing and with respect to the Ricci identity (3), one obtains that the
geometrical object

i i 19 0 1 0,0 0 0 0;0 0,
V3V]mn = R]mn + N‘Sj (R[mn] - g[mIn]) + NE(P ](R[mn} - 2€[m|n]) tep qvtijn
; 04n O 0 04,0 0
— Om (gj\n — ¢ Caljin + CiCn + (ev + ¢"Cu)(q;Cn + qn‘:j))
; 0 0 0 0 0
+ 83 (& — 9 Calljm + éjém (ev + q)“ca)(qjém + ) ©7)

Z

0 0 0 0
+e(qj|m74" _"I]ngn] q]\nl’lm +qm§]\n])

0 0;,0 0
+ epn @' (qiCm + qmé;) — elim (qan + qn‘:j)/

0
for ¢ = %(L’l"i + ;), is the basic invariant of the Thomas type for the almost-geodesic

mapping f. This invariant is total. ‘
After taking the image Ek of the invariant Ek given by (56), we obtain

; ; ;0,0 0;0 0;0

Wi = G0k + Gkl — €€01‘1j|k —e9'qiCx — e¢'qig),
0.0 0.0

@l = §jd; + Ek0} — 64) q,uk —e@'qiCk — ' Gkl

(58)

- _ 9 0. ,
for&; = in + (i, the image @' of vector ((;)1 from the first of basic Equation (46), and the

L
0 00
corresponding 7; such that ¢p*g, =¢,e = £1.
Because (((;)12 i) k= ((;)Tk 8 i+ %if} j|k- and with respect to the second of the basic Equation (46),

the next equalities hold 0 = (3)“8&) k= (851’3 + ﬁkg%“)toya + (%“8a‘k, ie,

00 0 (59)

0,0
{ P %\k = *Wik *eﬂk,
w“qank = —V{qk — € Pl

The next equation also holds.

0. 0. 0

Pl = W) — wjy
e~ ) O (60)

_ . _ . 0.0 _ 0 _ .
= (8j = &j) 0k + (Ck — Ck) 0} — €@' (Fjjx + ) Gk + 7k G)) +og (8j\k+8j &+ i &)

With respect to Equation (20) and after comparing this equation with Equation (23),
we obtain

= =i 0.0 0 0 ; 0;,0 0 0 61
i =Gi —Gi, Fi = —€9 @k +7; Gk +x ;). Ey = —e¢ (qjjc +4j ¢k +aG;)- 61
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i _ i ~ _
For the reason of F]?k = Fj, we obtain that g, = qy;.

To present the corresponding invariants, we need the next expressions.

o

(62)

0 0 0,0 1
Clmn] = —€HmP" Gujn) — € %Rgmn tN=1 (Vﬂl[ Lao +

o

0,040 0 0 00,0
go"‘qoﬁq“wl' = —e@ly + (N =1ev; +2( ) ql +4evy, + 2ept; 9
0,0
¢q

b
Legin))

[m
1
+ g m(e (unqv’g)Lm + 209 Qg1 + 209" 9P usp + 0" 9P Tui ) (63)

0,0 =
= _E(P“QﬁRSmn + gmn/
1 0 10
Clmln) = — 75 Rimn) + 35 min]

10 1

. (64)
5 1%
= _NR[mn] - Neq’aq;%Ramn + Némnr

0 00 1 0 1 00 0 9
By = it evg; — 5 (L +G) — e (Log + Ca) = Fi, (65)

0 00 0 1o 0 1o 0
= —e(NV+pipgP) (0 + i (Lo + &) + (L +€1))
1 1,00 0 0
o (0 =+ 1) + g (evi + ) (Ll + ) (66)
1 0,0 0 O
N q)aqi(Lfﬁ\a +€]'\’X) - €(p q]( zﬁ|:x +g1‘“> = ’]’

0 0 10 10 1 0
F&y = Hili — evpdy + 7 Riifl = 7~ e [¢ (Law@w)— v]

0 1 000
N ([L]]ﬁ+‘7 i) — ﬁeq[il‘j]q"“(L@JF@a)— eq[l (L“,g+§a) (67)

1o
1 05 10 9
N [l]] + eq) qﬁRou] é'1']' + gi]"

. 0 0 1o 0
]m\n + Fn\m = _6V51111 (q]\n + qu(LZi_l' Cn) + NqWI(L;ia_‘_ g]))
0., ,0 1o 0 1o 0
+evdy (G + N%‘(L“ + ) + 1m(Lja + 7))

i0 0 0 0 0
[mq]\n] q) ( [mq Ly nja + ‘u[an]L}ix_F qj|[mLil‘]7,x - q[mL;iam])

0;,0 0 0 0 o 0
@' (qunCiin) — PmdiCn) — le% & = jimGn)) (68)

09, 0,09 0,009
€@ quRjy — 7569 qjRmm) + ﬁt’fp 95C m|n]

0,0 0 1 o0 100 0,00
= _e(quIXR;Cmn - Neq)lq]R[mn] 4’1%'64’“‘1/31{5;1171

Pl Fiy — F& Fhyy = —e00,00 0/ (Ve + eft,) (a5 + 018 + 65) )
0
i/0 0 0 0 00 00 =i
— 9" 9" (4j|man) + qjiimImCa — AqmCaln) + QeqmCiCn) = Kipns

0 )

0 0 0
i Gi], H;mn, and K! imn uniquely deter-

0
for the corresponding geometrical objects {; i Fis Fii
mined by Equations (63) and (65)-(69).
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After substituting the expression (65) in (21), we obtain the associated basic invariant

for the almost-geodesic mapping f, whose components are

0
= : 0;/0 10 0 1o
T;'k = L;’fk_‘— e¢' (q]\k + qu (Llaéi%- gk) + qu(L?ﬂ_F Q)) 7o)

1 0 ‘ 0
— g (O (L = Fp) 0L~ Fi)),

0

0 =
for {; given by (52) and F; expressed with Equation (65)
If substituting the expressions (64) and (65), (67)—(69) in Equation (22), one obtains the

basic invariant for the almost-geodesic mapping f, whose components are
0

1 10 1 0,00 1% 2
W;mn = R;mn N+ 15; (R[mn] + NR[mn] + NﬂP“%Rgmn - Némn + gmn)
1 0 0 5 0
R g0 (N + D) (L, = Fj) + (L = Fj) (Lo = F))
1 g 0 8 g
iy (N D W= Fjn) + (L~ F) (Lhy = F))
0;0 0 1000 1 0;0,00 1 0;02 71
— ¢! QR — 0P R ) — 77699 B s R + 300 0imn 1)
1 0,70 lo 1o 9
N+ 184)1 (‘Mm + NQJ(L%LX'" ém) + NTm (L?g"' 5]')) (Lia = Fn)
1  0;/0 1o 0 1o 0 9
g0 (9 5y (L + Ea) + 500 (Lo + 1)) (L — Fin)
0 0

+ Hiy + Kl
Analogously as above, with respect to Equation (37) and the expressions (36), (65),
(66), (68), and (69), we obtain the derived invariant of the Weyl type for mapping f whose

components are
1% 9
S+ Gunn)

0
1 10 1 0,00
Wi = R+ 5530 R + Ko + 350" 3R —
N 0 1 0 e 1 0,00
+ R + T Ol + 0 Sy — 9 k3, - NP iR
1 0;0,00 9 0
_ —e(p ) q]qﬁRfmn + efp qjgmn + H]mn + IC;m,1 (72)
1  o0;,0 1o 0 0 9
- meq’l (‘7j|m ﬁ‘ij(Lﬁlﬂ' @m) + Qm(L}ix‘f‘ ¢)) (Liw — Fn)
1  0;,0 1o 0 0 0 9
+ m%”z (@i + qu(Lﬁi‘F Cn) +qu(Ljy + 7i)) (Lo — Fm),
for .
= 1 0 0,0 1
Sij = 7N(N2 1) <R[if] + ego“q/gRM] 51]) gl]
1,2 9 1 Q 9 73
_N—l( éla‘ ilj ’Cﬁw)_N2_1FZ‘(LE_}—J‘) @3)
1 0g/0 1o 0 0 0 Y
— 09" (9 + 305 (L + En) + 0 (L +6)) ) (Lo — Fp)-

In this way, the following theorem was proven.
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Theorem 3. Let f : Ay — Ay be an almost geodesic mapping of the type 7t3.
0

The geometrical object 7~';k given by (70) is the associated basic invariant of the Thomas type

for the mapping f.
0

The geometrical object Wj-mn given by (71) is the associated basic invariant of the Weyl type
for the mapping f.
0.
The geometrical object W;m . §iven by (72) is the associated derived invariant of the Weyl type

for the mapping f.
The invariants (70)—(72) for mapping f are total.

4. Discussion

In this paper, we continued the idea presented in [1] about obtaining invariants for

geometric mappings in a universal way. In most of the previous research, the authors
obtained just one invariant with respect to the transformation of curvature tensor I%j-mn.
After the research in [1] was published, it became clear that at least one invariant for the
studied mappings of symmetric affine connection space has been lost. In this paper, we
obtained general formulas of invariants for mappings whose deformation tensors are sums
of the object 47;(5; + 1,L7j(5]"( and some other symmetric tensor of the type (1,2). We proved
that there are two invariants for the studied mappings of a symmetric affine connection
space with respect to the transformation of its curvature tensor. The findings of this paper
motivate us to answer the following questions: (i) Are the two invariants obtained in this
paper the only invariants for mappings of symmetric affine connection spaces with respect
to the transformations of curvature tensors? (ii) What is the tensor character of the two
mappings obtained in this paper? (iii) How many families of invariants for mappings of
non-symmetric affine connection spaces may be obtained?
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