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Abstract: Let M be a torsion-free module over an integral domain D. We define a concept of a unique
factorization module in terms of v-submodules of M. If M is a unique factorization module (UFM),
then D is a unique factorization domain. However, the converse situation is not necessarily to be held,
and we give four different characterizations of unique factorization modules. Further, it is shown
that the concept of the UFM is equivalent to Nicolas’s UFM, which is defined in terms of irreducible
elements of D and M.
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1. Introduction

Throughout this paper, M is a torsion-free module over an integral domain D with the
quotient field K. In [1], the authors introduced a concept of a completely integrally closed
module in order to study the arithmetic module theory. M is completely integrally closed if
for every non-zero submodule N of M, OK(N) = {k ∈ K | kN ⊆ N} = D.

In Section 2, we define a concept of unique factorization modules (UFMs) as follows.
M is a unique factorization module if:

1. M is completely integrally closed.
2. Every non-zero v-submodule N of M is principal, that is, N = rM for some non-zero

r ∈ D.
3. M satisfies the ascending chain condition on v-submodules of M.

If M is a UFM, then D is a UFD and OK(M) = D. However, the converse situation is
not necessarily to be held (see Example 1). The aim of Section 2 is to provide four different
characterizations of UFMs (Theorem 1). Unique factorization modules were first defined
by Nicolas in terms of irreducible elements in M and D, ([2]) and many interesting results
were obtained [2–6]. In Section 3, we show that UFMs in the sense of Nicolas are equivalent
to ours, which is proved by using the properties of v-submodules (Propositions 2 and 3).

It is well known that M[x] is a UFM over D[x] if M is a UFM [5]. Let Fv(M[x]) be the
set of all fractional v-submodules in KM[x]. As an application of Theorem 1, it is shown
that Fv(M[x]) is naturally isomorphic to Fv(M)⊕ Fv(M[x]).

2. A Submodule Approach to Unique Factorization Modules

Throughout this paper, M is a torsion-free module over an integral domain D with
the quotient field K.
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Definition 1.

1. A non-zero D-submodule N of KM is called a fractional D-submodule if there is a non-zero
r ∈ D such that rN ⊆ M.

2. A non-zero D-submodule a of K is called a fractional M-ideal in K if there is a non-zero
m ∈ M such that am ⊆ M.

Note that we use these concepts [1,7] under the extra conditions KN = KM and
KN+ = KM. We denote by F(M) the set of all fractional D-submodules in KM, and we let
FM(D) be the set of all fractional M-ideals in K. Let N ∈ F(M) and a ∈ FM(D). We define
N− = {k ∈ K | kN ⊆ M} and a+ = {m′ ∈ KM | am′ ⊆ M}. Then, it easily follows that
N− ∈ FM(D) and a+ ∈ F(M).

For N ∈ F(M) and a ∈ FM(D), we define Nv = (N−)+ and av1 = (a+)−. Then,
Nv ∈ F(M) such that Nv ⊇ N, and av1 ∈ FM(D) such that av1 ⊇ a. If N = Nv, then we say
that N is a fractional v-submodule in KM. A fractional M-ideal a is called a v1-ideal ( with
respect to M) if a = av1 .

The following properties are easily proved in a similar way as in [1].
Property (A): For any N ∈ F(M), Nv = ∩N⊆kMkM, where k ∈ K.
Property (B): The mapping v : F(M) −→ F(M) given by v(N) = Nv, N ∈ F(M) is a
?-operation on M (see [8], Section 3 for the definition of a ?-operation on M).
Property (C): Suppose OK(M) = {k ∈ K | kM ⊆ M} = D. Then, the mapping v1:
FM(D) −→ FM(D) given by v1(a) = av1 , a ∈ F(D) is a ?-operation on D (see [8] for the
definition of a ?-operation on D).
Property (D): Let k ∈ K, a be fractional M-ideal and N be a fractional D-submodule. Then:

i. (ka)+ = k−1a+.
ii. (kN)− = k−1N−.
iii. (ka)v1 = kav1 .
iv. (kN)v = kNv, and N− = (Nv)−.

In [1], the characterization of completely integrally closed domains is adopted to
define a completely integrally closed module.

Definition 2. A torsion-free module M over integral domains D is completely integrally closed if
OK(N) = {k ∈ K | kN ⊆ N} = D for every non-zero submodule N of M.

Proposition 1. ([1], Proposition 2.1) M is completely integrally closed if and only if:

(1) Every v-submodule N of M is v-invertible;
(2) OK(M) = D.

Proof. The necessity: Let N be a v-submodule of M. If N−N ⊆ kM, where k ∈ K, then
M ⊇ k−1N−N = N−k−1N and k−1N ⊆ (N−)+ = Nv = N. Thus, k−1 ∈ OK(N) = D,
k−1M ⊆ M and so M ⊆ kM follows. It follows that M ⊇ (N−N)v =

⋂
N−N⊆kM kM ⊇ M

from Property (A). Hence, M = (N−N)v = M, that is, N is v-invertible. It is clear that
OK(M) = D.

The sufficiency: Let N be a non-zero D-submodule of M. First, we prove that
(N−N)v = (N−Nv)v. If N−N ⊆ kM, where k ∈ K, then k−1N− ⊆ N−, and so k−1N−Nv ⊆
N−Nv ⊆ M, that is, N−Nv ⊆ kM. Hence, (N−Nv) ⊆

⋂
N−N⊆kM kM = (N−N)v by

Property (A).
Let k ∈ OK(N), that is, kN ⊆ N. Then, kNv = (kN)v ⊆ Nv by Property (D). It

follows that M = (N−Nv)v = (N−N)v ⊇ (N−kN)v = k(N−N)v = kM. Therefore,
k ∈ OK(M) = D by the assumption. Hence, OK(N) = D, that is, M is completely integrally
closed.
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Definition 3. M is called a unique factorization module (UFM) if:

i. Every v-submodule N of M is principal, that is, N = rM for some r ∈ D.
ii. OK(M) = {k ∈ K | kM ⊆ M} = D.
iii. M satisfies the ascending chain condition on v-submodules of M.

It can be proved that M is a UFM if and only if:

i. M is completely integrally closed;
ii. Every v-submodule of M is principal;
iii. M satisfies the ascending chain condition on v-submodules of M,

which follows Proposition 1.

Lemma 1. Suppose OK(M) = D. Then:

(1) (aM)v = (av M)v for every fractional D-ideal a in K.
(2) Let a be a proper v-ideal of D. Then, (aM)− = a−1 and M ⊃ (aM)v.

Proof.

(1) It is clear from Property (B) that (aM)v ⊆ (av M)v. To prove the converse inclusion,
assume aM ⊆ kM, where k ∈ K, then k−1aM ⊆ M, and so k−1a ⊆ OK(M) = D,
that is, a ⊆ kD. Thus, av ⊆ kD, and av M ⊆ kM follows. It follows that av M ⊆⋂

aM⊆kM kM = (aM)v by Property (A), and so (av M)v ⊆ (aM)v. Hence, (aM)v =
(av M)v.

(2) We first show that (aM)− = a−1. It is clear that a−1 ⊆ (aM)−. Conversely, let
k ∈ (aM)−, that is, kaM ⊆ M, so that ka ⊆ D by the assumption and k ∈ a−1. Hence,
(aM)− = a−1. Suppose M = (aM)v. Then, D = M− = ((aM)v)− = (aM)− = a−1

by Property (D), and so D = a−1, which is a contradiction. Hence, M ⊃ (aM)v.

Definition 4. M is called a v-multiplication module if every v-submodule N of M is a multiplica-
tion submodule, that is, N = nM, where n = (N : M) = {r ∈ D | rM ⊆ N}.

Note that if D is a UFD, then every minimal prime ideal is a principal prime (see [8],
Theorem 43.14).

Theorem 1. Suppose OK(M) = D. The following conditions are equivalent:

(1) M is a unique factorization module.
(2) M is a v-multiplication module and D is a unique factorization domain.
(3) i. D is a unique factorization domain, and

ii. for every prime element p of D, pM is a maximal v-submodule of M, and
iii. for every v-submodule N of M, n = (N : M) 6= (0).

(4) Every v-submodule of M is principal and D is a unique factorization domain.

Proof.

a. (1) =⇒ (2): It is clear from the definition of UFMs that M is a v-multiplication module.
To prove that D is a unique factorization domain, let a be a proper v-ideal of D. Then,
(aM)v is a proper v-submodule of M by Lemma 1, and so (aM)v = rM for some
non-unit r ∈ D. It follows that r−1D = (rM)− = (aMv)− = (aM)− = a−1, and so
a = av = rD.
Let ai be v-ideals of D such that a1 ⊆ a2 ⊆ . . . . Put Li = (ai M)v = ri M for some
ri M, and ai = riD. Since Li ⊆ Li+1, there is an n ≥ 1 such that Ln = Ln+1, that is,
rn M = rn+1M. Then, r−1

n rn+1M = M, and so since OK(M) = D, r−1
n rn+1 ∈ D, that is,

an = rnD = rn+1D = an+1. Hence, D is a unique factorization domain.
b. (2) =⇒ (3): (iii) is trivial since M is a v-multiplication module. To prove (ii), let p

be a prime element in D and N be a v-submodule containing pM. Then, n = (N :



Axioms 2022, 11, 288 4 of 7

M) ⊇ (pM : M) = Dp, and n is a v-ideal of D by Lemma 1. Hence, n = pD, and so
N = pM = P follows. Hence, pM is a maximal v-submodule of M.

c. (3) =⇒ (4): Let N be a proper v-submodule of M. Then, n = (N : M) 6= (0), and it
is a v-ideal of D by (3) (iii) and Lemma 1. Write n = p

e1
1 . . . pek

k , where pi are different
principal prime ideals of D and ei ≥ 1 for all i(1 ≤ i ≤ k). Put n = e1 + · · ·+ ek. If
N = nM, then N is a principal submodule, since n is principal. Therefore, we may
assume that N ⊃ nM and N− = n−1a for some ideal a such that D ⊃ a ⊃ n. We prove
that N is a principal submodule by induction on n. If n = 1, then N ⊇ p1M and N =
p1M, which is principal by the assumption. Put Pi = pi M for all i(1 ≤ i ≤ k), which
are all maximal v-submodules. Suppose that Pi + N for all i. Then, (Pi + N)v = M,
and so D = M− = ((Pi + N)v)− = (Pi + N)− = P−i ∩ n−1a. Thus,

Dpi = (p−1
i ∩ n−1a)pi = p−1

i Dpi ∩ n−1aDpi . (1)

If nDpi = aDpi for all i, then a ⊆ aDpi ∩ D = p
ei
i ∩ D = p

ei
i and a ⊆ p

e1
1 . . . pek

k = n,
which is a contradiction. There is an i, say i = 1, such that aDp1 ⊃ nDp1 = p

e1
1 Dp1 , and

so there is an l such that aDp1 = pl
1Dp1 with e1 > l ≥ 0, since Dp1 is a discrete rank

one valuation domain. Thus, by (1), Dp1 = p−1
1 Dp1 ∩ p

l−e1
1 Dp1 = p−1

1 Dp1 , which is a
contradiction. Hence, there is a j, say j = 1, such that P1 = p1M ⊃ N, and p−1

1 N is a
v-submodule of M with (p−1

1 N : M) = p−1
1 n = p

e1−1
1 pe2

2 . . . pek
k . It follows by induction

on n that p−1
1 N is principal, and hence N is a principal submodule as desired.

d. (4) =⇒ (1): One only needs to prove that M satisfies the ascending chain condition
on v-submodules of M. Let L1 ⊆ L2 ⊆ · · · ⊆ Ln ⊆ . . . be an ascending chain
of v-submodules of M. Put Li = ri M for some non-zero ri ∈ D for each i. Then,
riD = (Li : M) ⊆ (Li+1 : M) = ri+1D. There is an n such that rnD = rn+1D, since D
is a unique factorization domain. Hence, Ln = Ln+1, and so M satisfies the ascending
chain condition on v-submodules of M.

Remark 1. Let M be a UFM and N be a v-submodule of M. Then, N is a maximal v-submodule if
and only if N = pM for some principal prime p of D.

Proof. If N = pM for some principal prime p of D, then it is a maximal v-submodule of M
by Theorem 1. Conversely if N is a maximal v-submodule, then it is a prime submodule
(see [7], the proof of Theorem 3.1), and n = (N : M) is a prime ideal of D. Since N = nM, it
follows from Proposition 1 that n is a prime v-ideal. Hence, n is a principal prime.

If M is a UFM, then D is a UFD and OK(M) = D. The converse situation is not
necessarily to be held.

Example 1. Let D be a UFD, and let a be an ideal of D with av = D. Then, M = a is not a UFM
as a D-module.

Proof. It is easy to see that OK(M) = D. Let p be a prime element in D such that p ∈ a.
Let L = pD, a submodule of M, and P = pM. Then L ⊃ P = pM. It is easy to see that
L− = p−1a, and so Lv = (L−)+ = (p−1a)+ = pa+ = pD = L. Thus, P = pM is not a
maximal v-submodule. Hence, M is not a UFM by Theorem 1 part (3).

See [7], Examples 5.1 and 5.2 for other examples. Example 5.1 is a Krull module and
Example 5.2 is a G-Dedekind module, but these are not UFMs.

3. The Connection to the Point-Wise Version of the UFM

In [2], Nicolas first defined unique factorization modules in terms of irreducible
elements in D and M. M is a UFM (a factorial module) in the sense of Nicolas if:
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i. Every non-zero element m has an irreducible factorization, that is, m = r1 · · · rnm′,
where ri are irreducible elements in D and m′ is an irreducible element in M.

ii. If p is irreducible in D, then pD is a prime ideal.
iii. If m is irreducible in M, then it is primitive.

It turns out that M is a UFM in the sense of Nicolas if and only if every irreducible
factorization in (i) is unique up to associates (see [2,5]).

The aim of this section is to show that Nicolas’s UFM is equivalent to ours by using the
properties of v-submodules. We refer the reader to [5] and [2] for definitions of irreducible
and primitive elements.

Lemma 2. Suppose OK(M) = D. Let m ∈ M such that (Dm)− = D. Then, m is irreducible.

Proof. Suppose m = rm′, where r ∈ D and m′ ∈ M. Then, D = (Dm)− = (Drm′)− =
r−1(Dm′)−, and so (Dm′)− = rD. Thus, M = Mv ⊇ (Dm′)v = ((Dm′)−)+ = (rD)+ =
r−1D+ = r−1M and r−1 ∈ OK(M) = D. Hence, r ∈ U(D), and so m is irreducible.

Lemma 3. Suppose M is a UFM in the sense of [2]. Then:

(1) OK(M) = {k ∈ K | kM ⊆ M} = D.
(2) If m is primitive, then (Dm)− = D and (Dm)v = M.
(3) Let m ∈ M such that m = rm′, where r ∈ D and m′ is primitive. Then, (Dm)− = r−1D

and (Dm)v = rM.

Proof. (1) Let k ∈ OK(M) and write k = ab−1, where a, b ∈ D are non-zero. Since
kM ⊆ M, for a fixed irreducible element m ∈ M, there is an n ∈ M such that km = n,
that is, am = bn, and we write n = sm′ for some s ∈ D and m′ ∈ M, which is
irreducible so that am = bsm′. Since D is a UFD by ([2], Property 2.2), any irreducible
element in D is a prime element. Hence, a = bsc for some unit c ∈ D by the uniqueness
of irreducible factorization, am = bsm′. Thus, k = (bsc)b−1 = sc ∈ D, and hence
OK(M) = D.

(2) Let k = ab−1 ∈ (Dm)−, where a, b ∈ D are non-zero. Since m is primitive it follows
that k ∈ D in the same way as in (1), and so (Dm)− = D. Thus, M = D+ =
((Dm)−)+ = (Dm)v.

(3) (Dm)− = (Drm′)− = r−1(Dm′)− = r−1D by Property (D) and (2). Hence, (Dm)v =

((Dm)−)+ = (r−1D)+ = rD+ = rM.

Proposition 2. If M is a UFM in the sense of Nicolas, then M is a UFM in our sense.

Proof. OK(M) = D by Lemma 3. Let N be a proper v-submodule of M. First, we show
that every non-zero element m ∈ N is not primitive. If m is primitive, then Dm ⊆ (Dm)v ⊆
Nv = N and so N = M by Lemma 3, which is a contradiction. Thus, every non-zero element
m ∈ N is of the form m = rm′, where r is not unit in D and m′ is primitive. It follows from
Lemma 3 that N = Nv ⊇ (Dm)v = rM, that is, r ∈ n = (N : M) 6= (0). To prove that
N = nM, we assume on the contrary that N ⊃ nM. Let x = sm be an element in N but not
in nM, where s ∈ D and m is primitive. Then again, N = Nv ⊇ (Dx)v = sM by Lemma 3,
and so s ∈ n. Thus, x = sm ∈ nM, which is a contradiction. Thus, N = nM. Hence, M is a
UFM in our sense by Theorem 1 (2).

We will prove that the converse is also true, that is, if M is a UFM, then it is a UFM in
the sense of [2].

Lemma 4. Let m be an element in a UFM M in our sense. Then:

(1) m is irreducible if and only if (Dm)v = M;
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(2) m is irreducible if and only if it is a primitive.

Proof.

(1) Note that (Dm)v = M if and only if (Dm)− = D by Property (D). Therefore, the
sufficiency is clear from Lemma 2. The necessity: We assume on the contrary that
M ⊃ (Dm)v. Then, (Dm)v = rM for some non-unit r ∈ D and M = r−1(Dm)v 3
r−1m. Thus, there is an element m1 ∈ M with m = rm1 and r ∈ U(D), which is a
contradiction. Hence, (Dm)v = M.

(2) It is well known that any primitive element is irreducible [5]. Suppose m is irreducible
and am′ = rm, where a, r ∈ D and m′ ∈ M. Then, a−1(Dm′)− = (Dam′)− =
r−1(Dm)− = r−1D by (1), and so a−1D ⊆ r−1D since (Dm′)− ⊇ D, that is, aD ⊇ rD.
Therefore, r = as for some s ∈ D and am′ = asm. Hence, m′ = sm and m is primitive.

Proposition 3. Every UFM in our sense is a UFM in the sense of [2].

Proof. Suppose M is a UFM in our sense. Then, we must prove the following three
properties (by the definition):

i. Every non-zero element m has an irreducible factorization, that is, m = r1r2 · · · rnm′,
where ri are irreducible in D and m′ is irreducible in M.

ii. If p is irreducible in D, then pD is a prime ideal.
iii. If m is irreducible in M, then m is primitive.

Since D is a UFD by Theorem 1, (ii) is clear and (iii) follows from Lemma 4. To prove
statement (i), it is enough to prove that every non-zero element m is of the form m = rm′,
where r ∈ D and m′ is irreducible in M since D is a UFD. We assume on the contrary
that there is a non-zero element m ∈ M such that m 6= rm′ for every r ∈ D and every
irreducible m′ ∈ M. Since m is not irreducible, there are r1 ∈ D \U(D), and m1 is not
irreducible. Therefore, m = r1m1, where r1 ∈ D \U(D), and m1 is not irreducible. For any
natural number i, mi = ri+1mi+1, where ri+1 ∈ D \U(D) and mi+1 is not irreducible, and
Dmi ⊆ Dmi+1. Taking the v-operation, we have the ascending chain

(Dm)v ⊆ (Dm1)v ⊆ · · · ⊆ (Dmi)v ⊆ · · · ⊆ M.

Since M satisfies the ascending chain condition on v-submodules of M, there is a natu-
ral number n ≥ 0 such that (Dmn)v = (Dmn+1)v, and so rn+1(Dmn+1)v = (Drn+1mn+1)v =
(Dmn)v = (Dmn+1)v by Property (D). Thus, r−1

n+1(Dmn+1)v = (Dmn+1)v, and so r−1
n+1 ∈

OK((Dmn+1)v) = D, since M is completely integrally closed. Thus, rn+1 ∈ U(D), which is
a contradiction. Hence, every non-zero element m is of the form m = rm′, where r ∈ D and
m′ is irreducible. Therefore, M is a UFM in the sense of [2].

We denote by Fv(M) the set of all fractional v-submodules in KM, where M is a UFM.
Let N be a fractional v-submodule in KM, that is, there is a non-zero r ∈ D such that
rN ⊆ M. Then, M = Mv ⊃ (rN)v = rNv = rN by Property (D), and so rN = sM for
some s ∈ D by Theorem 1. Hence, N = r−1sM. Conversely, for any non-zero k ∈ K, kM
is a fractional submodule in KM and (kM)v = kMv = kM. Hence, kM ∈ Fv(M). Hence,
Fv(M) = {kM | 0 6= k ∈ K}. We define a product “◦” in Fv(M) as follows: N ◦ N1 = kk1M
for N = kM and N1 = k1M in Fv(M). Then, Fv(M), endowed with the product ◦, is an
abelian group generated by the principal primes pM and is naturally isomorphic with
Fv(D).

Remark 2. Suppose M is a UFM, then:

(1) Fv(M) is an abelian group generated by the principal primes pM and is naturally isomorphic
with Fv(D).

(2) Fv(M) = {kM | 0 6= k ∈ K}.
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The following properties of Krull domain D are more or less known:

(1) D[x] is a Krull domain.
(2) Let p be a non-zero ideal of D[x].

(a) If p∩ D 6= (0), then p is a minimal prime ideal of D[x] if and only if p = p0[x]
for some minimal prime ideal p0 of D. In this case, we say p is of type (a).

(b) If p ∩ D = (0), then p is a minimal prime ideal of D[x] if and only if p =
p′ ∩ D[x] for some prime ideal p′ of K[x]. In this case, we say p is of type (b).

(3) There is a one-to-one correspondence between Spec(K[x]) and Spec0(D[x]) = {p :
prime v-ideals of D[x] | p ∩ D = (0)}, which is given by p′ → p = p′ ∩ D[x] and
p→ Kp, where p′ ∈ Spec(K[x]) and p ∈ Spec0(D[x]).

If M is a UFM, then M[x] and K[x]M[x] = KM[x] are both UFMs over D[x] and
K[x], respectively ([5], Theorem 6.1 and Result 2.2). Thus, D[x] and K[x] are both UFDs.
Thus, Fv(D[x]) is an abelian group generated by the minimal prime ideals p0[x] and p ∈
Spec0(D[x]), where p0 are minimal prime ideals of D, which are all principal primes in
D[x]. Hence, Fv(M[x]) is an abelian group generated by the p0[x]M[x]; and pM[x], which
are all principal primes of D[x] by Remark 2.

Further, Fv(KM[x]) is an abelian group generated by p′M[x], where p′ ∈ Spec (K[x]). It
is easy to see that the subgroup of Fv(M[x]) generated by the p0[x]M is naturally isomorphic
with Fv(M), and the subgroup of Fv(M[x]) generated by pM[x] is naturally isomorphic
with Fv(KM[x]). Hence, we have the following remark.

Remark 3. Suppose M is a UFM. Then:

(1) Fv(M[x]) is an abelian group generated by the p0[x]M[x] and pM[x] (p0[x] is of type (a) and
p is of type (b)).

(2) Fv(M[x]) is naturally isomorphic with Fv(M)⊕ Fv(KM[x]) as abelian groups.
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