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Abstract: Pipeline corrosion prediction (PCP) is an important technology for pipeline maintenance
and management. How to accurately predict pipeline corrosion is a challenging task. To address the
drawback of the poor prediction accuracy of the grey model (GM(1,1)), this paper proposes a method
named ETGM(1,1)-RABC. The proposed method consists of two parts. First, the exponentially
transformed grey model (ETGM(1,1)) is an improvement of the GM(1,1), in which exponential
transformation (ET) is used to preprocess the raw data. Next, dynamic coefficients, instead of
background fixed coefficients, are optimized by the reformative artificial bee colony (RABC) algorithm,
which is a variation of the artificial bee colony (ABC) algorithm. Experiments are performed on actual
pipe corrosion data, and four different methods are included in the comparative study, including
GM(1,1), ETGM(1,1), and three ETGM(1,1)-ABC variants. The results show that the proposed method
proves to be superior for the PCP in terms of Taylor diagram and absolute error.

Keywords: GM(1,1); artificial bee colony algorithm; pipeline corrosion prediction; parameter
optimization

MSC: 68T20; 68W50; 90C31

1. Introduction

The pipeline is highly susceptible to leakage owing to the corrosive medium it con-
veys [1]. Pipeline corrosion prediction (PCP) technology, therefore, becomes the focus of
pipeline protection efforts and is a prerequisite for determining pipeline maintenance cycles
and measures.

A lot of work has been done on the PCP. At present, the main methods of the PCP are
neural networks [2], grey models (GM(1,1)) [3], and hybrid models. Neural networks are
utilized for the PCP. Pedapati et al. [4] used neural networks to develop an intelligent model
that predicted results closer to the true value. Wen et al. [5] proposed a modeling approach
using neural networks to assess the corrosion condition of natural gas pipelines. The results
showed that the proposed model could reliably predict the corrosion trend of natural gas
pipelines. Shaik et al. [6] established the relationship between corrosion factors and the
corrosion status of a pipeline through neural networks in the case of a large number of data
samples, which could accurately predict the life of a pipeline. The grey model (GM(1,1)) is
another method to predict pipeline corrosion. In practical application, the model prediction
accuracy is often not high owing to its own shortcomings. For this reason, researchers
have continuously proposed various improvement approaches. Liao et al. [7] proposed
the optimized grey model (OGM(1,1)) that could effectively estimate the corrosion rate
of pipelines with multiple factors considered. Gao et al. [8] developed an improved grey
model (IGM(1,1)) to predict submarine pipeline corrosion. Zheng et al. [9] developed a
GM-RBF neural network corrosion rate prediction model based on the error compensation
principle to accurately predict the remaining life of subsea oil and gas pipelines subject to
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corrosion. Deng et al. [10] combined grey correlation analysis and fuzzy neural network as
a new corrosion prediction method, which had high prediction accuracy and application
value. Jiang et al. [11] combined the GM(1,1) and BP neural network to build G-B-I and
G-B-II prediction models, which had significantly lower prediction errors as well as superior
predictive power. Hybrid models are also widely used in the PCP. Peng et al. [12] proposed
a hybrid intelligent method to predict the corrosion rate of multiphase flow pipelines,
and the results showed that the method had good performance in the prediction of the
corrosion rate of multiphase flow pipelines. Li et al. [13] proposed a new data-driven
model based on hybrid techniques to simulate corrosion degradation in subsea operations.
The model enabled the effective prediction of corrosion rates. Peng et al. [14] presented
a comprehensive review of pipeline corrosion assessment from the perspective of data
analysis and proposed a corrosion growth model aimed at predicting future corrosion
states to achieve effective prediction of corrosion rates. Abyani et al. [15] proposed a new
method for assessing the reliability of pipeline corrosion using finite element simulation,
which achieves an effective prediction of corrosion rates. Deif et al. [16] uses passive RFID
sensors to collect field data and then integrates them into a building information modeling
(BIM) system to enable effective prediction of corrosion rates.

GM(1,1) is widely used because it does not require a large number of samples and has
a low computational effort. However, GM(1,1) has its own drawbacks, such as unsmoothed
original series and large prediction errors generated by the construction of background
values. To overcome these drawbacks, this paper introduces exponential transformation
and dynamic coefficients into the GM(1,1) to preprocess the raw data and reconstruct the
background values, respectively. Then artificial bee colony (ABC) algorithm is used to opti-
mize the dynamic coefficients to improve the prediction accuracy. The artificial bee colony
(ABC) algorithm is one of the swarm intelligence (SI) algorithms [17]. SI algorithms have
been used in real-world applications to solve complex problems [18]. A wide variety of the
optimization algorithms have been proposed to solve the parameter optimization problem,
such as particle swarm optimization (PSO) [19], genetic algorithm (GA) [20], differential
evolution (DE) algorithm [21], bacterial foraging optimization (BFO) algorithm [22], and
ant colony algorithm (ACO) [23]. The specific objective of this study was to use a new
method for the PCP. The contributions of this paper are as follows:

(1) Exponentially transformed and dynamic coefficients are added to the traditional
GM(1,1).

(2) An improved version of the ABC algorithm, called the reformative artificial bee
colony (RABC) algorithm, is proposed and its performance is verified by benchmark
functions.

(3) The exponentially transformed grey model (ETGM(1,1)) combined with RABC, called
ETGM(1,1)-RABC, is proposed for the PCP.

(4) The superiority of ETGM(1,1)-RABC is verified through experiments.

2. Related Theory

This section introduces the related theory for the PCP, including the GM(1,1) and
ABC algorithm.

2.1. GM(1,1)

The GM(1,1) uses the accumulation of the original sequences to generate new se-
quences so that the raw chaotic data show regularity and good prediction results can be
obtained even with only a relatively small amount of data. The GM(1,1) consists of three
steps: cumulative generation, modeling solution, and cumulative reduction, which are
described in detail as follows [24]. The flowchart of the GM(1,1) is shown in Figure 1.
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Figure 1. Flowchart of the GM(1,1).

(1) Cumulative generation. Let X(0) = (x(0) (1), x(0) (2), . . . , x(0) (n)) be the original non-
negative sequence; then let X(1) = (x(1) (1), x(1) (2), . . . , x(1) (n)) be the first-order
cumulative sequence of X(0); here, x(1) (k) can be expressed as

x(1)(k) =
k

∑
i = 1

x(0)(i) (1)

where k = 1, 2, . . . , n, and n is the raw data length.
Let Z(1) = (z(1) (2), z(1) (3), . . . , z(1) (n)) be the immediate mean sequence X(1); here,

z(1) (k) can be expressed as

z(1)(k) =
1
2

[
x(1)(k) + x(1)(k − 1)

]
(2)

(2) Modeling solution. Let x(0) (k) + az (1) (k) = b be the grey differential equation for the
GM(1,1), then the whitening differential equation can be expressed as

dx(1)(t)
dt

+ ax(1)(t) = b (3)

where a is the development factor; b is the amount of grey action; a and b are both parameters
to be solved; and the values of a and b can be estimated by the least-squares method, which
can be expressed as follows

(a, b)T =
(

BT B
) − 1

BTY (4)
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where

B =


−z(1)(2) . . . . . . 1

−z(1)(3) . . . . . . 1

. . . . . . . . . . . .

−z(1)(n) . . . . . . 1

Y =


x(0)(2)

x(0)(3)

. . .

x(0)(n)


Then, the solution for the whitening differential equation is expressed as follows

x(1)(t) =
b
a
+

[
x(1)(1) − b

a

]
e−a(t − 1) (5)

The cumulative predicted values are then obtained as follows

x̂(1)(k + 1) =
b
a
+

[
x(0)(1) − b

a

]
e−ak (6)

where k = 1, 2, . . . , n − 1.

(3) Accumulation reduction. Thus, the corresponding predicted values are obtained
as follows

x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k) (7)

2.2. Basic ABC Algorithm

The basic ABC algorithm is divided into four stages: initial stage, employed bee phase,
onlooker bee phase, and scout bee stage [25].

In the initial stage, The ABC algorithm generates the initial population using the
following equation.

X j
i = X j

min + rand(0, 1)(X j
max − X j

min) (8)

where i = 1,. . . , SN, j = 1,. . . , D. SN denotes the population size, D denotes the dimension of
the problem, and rand(0, 1) is a random number between 0 and 1. X j

max and X j
min denotes

the upper and lower bounds of the jth dimension of the individual, respectively. The fitness
function of a solution can be expressed as

f iti =


1

1 + f (Xi)
( f (Xi) ≥ 0)

1 + | f (Xi)|( f (Xi) < 0)
(9)

where f (Xi) is the objective function value of the ith food source.
In the employed bee phase, the employed bees use Equation (10) to perform a random

search of the neighborhood to find the food source and pass the food source information to
the onlooker bee waiting in the hive.

V j
i = X j

i + ϕ
j
i

(
X j

i − X j
k

)
(10)

where k ∈ (1,. . . , SN) and k 6= I, where k is chosen randomly, which means that there is
only one randomly chosen solution in generating the new candidate solution; j ∈ (1,. . . ,
D), where j is also chosen randomly, which means that only one dimension has changed
between the new candidate solution and the old one. ϕ

j
i is a random number uniformly

distributed on [–1, 1].
In the onlooker bee phase, based on the food source information passed back to

the hive by the employed bees, the onlooker bees use roulette to select the food source
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according to the probability calculated in Equation (11) below, and the food source is still
updated randomly using Equation (10).

Pi =
f iti

ΣSN
i = 1 f iti

(11)

where fiti is the fitness value of the ith food source.
In the scout bee stage, a food source whose quality has not been getting better will

be discarded. The onlooker bee searching for this food source will turn into the scout
bee. In the ABC algorithm, the food source corresponds to the candidate solution of
the optimization problem, and the quality of the food source represents the good or bad
candidate solution.

3. Proposed Method

The ETGM(1,1) in this paper is an improvement of the GM(1,1). There are two
improvements to the GM(1,1); one is to change the background fixed coefficients of the
grey model into dynamic coefficients, and the other is to preprocess the original data using
exponential transformation. The dynamic coefficients are optimized by an RABC algorithm
that introduces a global optimal solution and enhancement for selection probability. The
schematic of the proposed method is portrayed in Figure 2.

Figure 2. The schematic of the proposed method.

3.1. Exponential Transformation (ET) for the Raw Data

The prediction accuracy of the GM(1,1) will be greatly reduced when dealing with the
raw data with insufficient smoothness. A common method is to preprocess the raw data
using a data transformation to improve its smoothness [26]. In this paper, the ET is used to
preprocess the raw data, and the specific process is as follows.

An ET of the raw data can be expressed as

y(0)(i) = cx(0)(k), i = k = 1, 2, . . . , n (12)

where c is the base number. The modeling solution for the above exponentially transformed
data is to obtain the new cumulative predicted values that are expressed as follows

ŷ(1)(k + 1) =
b
a
+

[
y(0)(1) − b

a

]
e−ak (13)

The predicted values of the new cumulative predicted values are expressed as

ŷ(0)(k + 1) = ŷ(1)(k + 1) − ŷ(1)(k) (14)
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Because y(0) (k) = cx(0) (k), the predicted value of the raw data can be given by

x̂0(k) =
ln ŷ(0)(k)

ln c
(15)

3.2. Introducing Dynamic Coefficients

GM(1,1) is flawed in constructing the background values. The true background value
should be the integral of x(1) (t) over the interval [k − 1, k], whereas the background
value obtained by GM(1,1) is the trapezoidal area, as shown in Figure 3. If the raw data
changes more drastically, the background value construction of the GM(1,1) will bring
large errors and lead to a decrease in prediction accuracy [27]. This paper uses dynamic
coefficients α (i) instead of fixed coefficients to minimize the background value error by
dynamically adjusting the coefficients for each interval. The new equation for constructing
the background values is as follows

ẑ(1)(k) = α(i)x(1)(k) + (1 − α(i))x(1)(k − 1) (16)

where α (i) is the dynamic coefficient, 0 ≤ α (i) ≤ 1, i = 1, 2, . . . , n − 1, k = 2, 3, . . . , n.

Figure 3. Error in the background values.

The ABC algorithm is used to solve the dynamic coefficients because the ABC al-
gorithm has a unique advantage in solving non-linear, multi-dimensional complex op-
timization problems. In the next section, the RABC algorithm will be presented and its
performance will be verified by benchmark functions.

3.3. RABC Algorithm

This is example 1 of an equation. The RABC algorithm is an upgraded version of the
ABC algorithm. One of the upgrades is the search equation for the food source. The search
equation in the RABC algorithm is added to the global optimal food source so that the bees
search around better quality food sources. Using the optimal food source as a reference
improves the searchability of the algorithm to some extent. The search equation in the
RABC algorithm can be given by

V j
i = X j

i,best + ϕ
j
i

(
X j

i,best − X j
i

)
(17)

where X j
i,best is the globally optimal food source.

The selection probability of bees is determined by the proportion of fitness of the
current food source among all food sources. Less difference between the better food source
and the optimal food source leads to a lower probability of selection of the optimal food
source. The chance to search for some bad food source results in slowing down the speed
of finding the optimal food source owing to the random selectivity in the ABC algorithm.
In this paper, we propose to use the current optimal fitness as a reference to improve the
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speed of the colony in finding the optimal food source. Thus, the selection probability can
be given by

Pi =
0.8 f iti

f itmax + 0.2
(18)

where fitmax is the fitness value for the optimal solution.
Using Equation (17) to update the food source location ensures that the bees are not

disturbed by the locally optimal bees, but also that the bees move to a better food source
led by the globally optimal bees. Equation (18) enhances the probability of exploitation of
high-quality food sources.

3.4. Verification for RABC Algorithm

To verify the performance of the RABC algorithm, the ABC algorithm, IABC al-
gorithm [28], and the GBABC algorithm [29] are used as a comparison based on four
benchmark functions. The benchmark functions are given in Table 1. The parameters of
the three algorithms are set as follows: D = 50, SN = 100, limit = 50, and Maxcycle = 5000,
and each algorithm is run independently 30 times. The results are shown in Table 2 and
Figure 3. The parameters in each algorithm are set to be the same or optimal for fairness.

Table 1. Benchmark functions.

Function Name Definition Domain Optimal Value

F1 Ackley (−15, 30) 0
F2 Griewank (−600, 600) 0
F3 Zakharov (−5, 10) 0
F4 Sphere (−100, 100) 0

Table 2. Mean and std obtained by the ABC, IABC, GBABC, and RABC algorithms.

Function ABC IABC GBABC RABC

F1 Mean
Std

6.33345e-13
4.89751e-14

1.42997 e-13
1.00486 e-14

9.85936e-14
8.65746e-15

8.26357e-14
4.29453e-15

F2 Mean
Std

4.01418e-12
3.77788e-12

8.13825e-14
8.65482e-15

5.10703e-15
5.80934e-15

1.16573 e-15
2.35514 e-16

F3 Mean
Std

8.04328e-15
7.47394e-15

1.8455 e-15
1.5451 e-16

1.14164e-15
5.13749e-17

1.07917e-15
8.23919e-17

F4 Mean
Std

7.29812e-15
8.75926e-17

1.96226 e-15
1.98675 e-16

1.34151e-15
1.24779e-17

1.10285e-15
1.03897e-17

Table 2 shows the results of the ABC, BC, GBABC, and RABC algorithms for four
benchmark functions. From Table 2, we can see that, except for the std value of F4, the
mean and std values of the IABC algorithm are smaller than those of the ABC algorithm. It
is worth noting that the RABC algorithm has a better mean and std than the ABC, IABC,
and GBABC algorithms for the four benchmark functions. Figure 4 shows the convergence
obtained by the four algorithms. From Figure 4, the convergence speed of the RABC, IABC,
and GBABC algorithms is superior to that of the ABC algorithm. Further, the convergence
speed of the RABC algorithm is slightly better than that of the IABC and GBABC algorithms.
The above results indicate that some improvements enhance the ABC algorithm.



Axioms 2022, 11, 289 8 of 14

Figure 4. Convergence obtained by the ABC, IABC, GBABC, and RABC algorithms.

Figure 5 shows a boxplot of iterative data for four algorithms. The top and bottom
edges of the boxplot indicate the 75th percentile and 25th percentile, respectively. From
Figure 5, it can be further seen that the top and bottom edges of the boxplot from the RABC
almost overlap, which further illustrates the fast convergence of the RABC.

Figure 5. Box plot obtained by the ABC, IABC, GBABC, and RABC algorithms.
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4. PCP Based on ETGM(1,1)-RABC

In this section, the details of the proposed method to solve the PCP are described.

4.1. Pipeline Data

The proposed method is validated using data from a mine tailings pipeline that
conveys solid–liquid mixtures. The actual wall thickness of the mine tailings pipeline is
shown in Table 3. The data in Table 3 are divided into two parts. The data for the first
12 months are used for the modeling solution of the ETGM(1,1)-RABC. The data for the
second 6 months are used to evaluate the accuracy of the ETGM(1,1)-RABC.

Table 3. Actual wall thickness for the mine tailings pipeline.

Working Months Actual Wall
Thickness/mm Working Months Actual Wall

Thickness/mm

1 10.03 10 9.64
2 10.01 11 9.58
3 9.95 12 9.53
4 9.92 13 9.51
5 9.85 14 9.49
6 9.82 15 9.45
7 9.76 16 9.38
8 9.71 17 9.31
9 9.69 18 9.27

4.2. Objective Function

The objective function for the proposed method is the weighted sum of squared errors,
which can be given by

min
n

∑
k = 2

ϕ(k)
(

x̂(0)(k) − x(0)(k)
)2

(19)

where x(0) (k) is the raw data for modeling; x̂(0)(k) is the predicted value; and ϕ (k) is
the weighting coefficient, and its value is the ratio of each squared error to the sum of
squared errors.

4.3. Evaluation Tool

The Taylor diagram was applied as an evaluation tool for different methods. The
Taylor diagram is a graph that represents the standard deviation (STD), root mean square
error (RMSE), and correlation coefficient (COR). It is more intuitive than a single graph
with horizontal and vertical coordinates such as COR and RMSE. It can display the STD,
RMSE, and COR of multiple variables on a two-dimensional graph, which can reflect the
simulation ability of multiple models in a clear and comprehensive way [30].

4.4. Predicted Results

To validate the proposed method, GM(1,1), ETGM(1,1), ETGM(1,1)-ABC, and ETGM(1,1)-
IABC are used as comparisons with ETGM(1,1)-RABC. Comparisons between GM(1,1) and
ETGM(1,1) are presented, followed by comparisons of ETGM(1,1)-ABC, ETGM(1,1)-IABC,
and ETGM(1,1)-RABC.

4.4.1. Comparison of GM(1,1) and ETGM(1,1)

To highlight the improvement in GM(1,1), only the comparison between GM(1,1)
and ETGM(1,1) is presented here. According to the data of the mine tailing pipeline
13–18 months, the prediction results obtained by GM(1,1) and ETGM(1,1) are presented in
Table 4 and Figures 6–8, respectively.
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Table 4. The predicted results obtained by ETGM(1,1) and GM(1,1).

Working Months Actual Wall
Thickness/mm

ETGM(1,1) GM(1,1)

Predicted
Value/mm

Absolute
Error/mm

Predicted
Value/mm

Absolute
Error/mm

13 9.51 (9.506) 9.5085 0.0025 9.4911 0.0189
14 9.49 (9.461) 9.4652 0.0042 9.4457 0.0443
15 9.45 (9.417) 9.4222 0.0052 9.4005 0.0495
16 9.38 (9.372) 9.3794 0.0074 9.3556 0.0244
17 9.31 (9.328) 9.3367 0.0087 9.3108 0.0008
18 9.27 (9.283) 9.2943 0.0113 9.2663 0.0037

Figure 6. Prediction curve for wall thickness.

Figure 7. Absolute error curves.
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Figure 8. Accuracy comparison of GM(1,1) and ETGM(1,1) using the Taylor diagram.

Two aspects can be seen in Figure 6. On the one hand, the actual wall thickness pro-
cessed by ET is smoother. On the other hand, the prediction curve obtained by ETGM(1,1) is
closer to the actual wall thickness than that obtained by GM(1,1). Table 4 further illustrates
that ETGM(1,1) is superior to GM(1,1). Table 4 shows that the absolute error of ETGM(1,1) is
much smaller than that of GM(1,1) in months 13–16, while the absolute error of ETGM(1,1)
is slightly larger than that of GM(1,1) in months 17 and 18. Figure 7 also illustrates the same
situation as Table 4 on absolute error.

Figure 8 gives a comparison of GM(1,1) and ETGM(1,1) in view of the Taylor diagram.
Figure 7 shows that the prediction accuracy of ETGM(1,1) is better than that of GM(1,1).
This means that ET improves the prediction accuracy of GM(1,1).

4.4.2. Comparison of ETGM(1,1)-ABC Variants

The comparison of ETGM(1,1)-ABC, ETGM(1,1)-IABC, ETGM(1,1)-GBABC, and
ETGM(1,1)-RABC is performed to highlight the role of the optimized dynamic coeffi-
cients. In this case, solving the dynamic coefficients is treated as a parametric optimization
problem solved by the ABC algorithm variants, which include ABC, IABC, GBABC, and
RABC. For the sake of fairness, the parameters, such as D = 1, SN = 20, limit = 20, and
Maxcycle = 50, are set to be the same for all three algorithms. To ensure that the prediction
result is optimal, each algorithm is run 10 times and the result with the minimum error is
used as the final prediction result.

The prediction results obtained by ETGM(1,1)-ABC, ETGM(1,1)-IABC, ETGM(1,1)-
GBABC, and ETGM(1,1)-RABC are shown in Figures 9 and 10. Table 5 shows the prediction
accuracy of the four methods.

In general, the proposed method can obtain good prediction results. From Figure 9, it
can be clearly observed that ETGM(1,1)-RABC, ETGM(1,1)-GBABC, ETGM(1,1) -IABC, and
ETGM(1,1)-ABC ranked first, second, third, and fourth, respectively, in terms of proximity
to the actual curve. From Table 5 and Figure 10, ETGM(1,1)-RABC still ranks first in
minimum absolute error.

Comparing Figure 7 with Figure 11, we can observe that that the ABC and ABC vari-
ants further enhance the prediction accuracy of ETGM(1,1) for PCP. However, ETGM(1,1)-
RABC still remains very competitive.
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Figure 9. Prediction curve for wall thickness.

Figure 10. Absolute error curve.

Table 5. The predicted results obtained by four methods.

Working Months 13 14 15 16 17 18

Actual Wall Thickness with ET 9.506 9.461 9.417 9.372 9.328 9.283

ETGM(1,1)-ABC Predicted value/mm 9.5085 9.4648 9.4223 9.3790 9.3369 9.2939
Absolute error/mm 0.0025 0.0038 0.0053 0.0070 0.0089 0.0109

ETGM(1,1)-IABC Predicted value/mm 9.5084 9.4647 9.4222 9.3789 9.3367 9.2938
Absolute error/mm 0.0024 0.0037 0.0052 0.0069 0.0087 0.0108

ETGM(1,1)-GBABC Predicted value/mm 9.5075 9.4636 9.4208 9.3842 9.3348 9.2915
Absolute error/mm 0.0015 0.0026 0.0038 0.0052 0.0068 0.0085

ETGM(1,1)-RABC Predicted value/mm 9.5066 9.4626 9.4198 9.3762 9.3338 9.2907
Absolute error/mm 0.0006 0.0016 0.0028 0.0042 0.0058 0.0077
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Figure 11. Accuracy comparison of four methods using the Taylor diagram.

5. Conclusions

The purpose of the current study was to improve the prediction accuracy of the
GM(1,1) for PCP. Based on the GM(1,1), we proposed the ETGM(1,1)-RABC method that
incorporated dynamic coefficients, reformative artificial bee colony (RABC) algorithm, and
exponential transform (ET); compared ETGM(1,1)-RABC with ETGM(1,1)-ABC, ETGM(1,1)-
IABC, and ETGM(1,1)-GBABC; and concluded that our method was superior to the other
three methods. This work demonstrates the effectiveness of our improvements to GM(1,1)
for PCP. Future work will investigate the effect of other heuristic optimization algorithms
on the dynamic coefficients.
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