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Abstract: This paper is devoted to the investigation of cardinal invariants such as the hereditary
density, hereditary weak density, and hereditary Lindelöf number. The relation between the spread
and the extent of the space SP2(R, τ(A)) of permutation degree of the Hattori space is discussed.
In particular, it is shown that the space SP2(R, τS) contains a closed discrete subset of cardinality c.
Moreover, it is shown that the functor SPn

G preserves the homotopy and the retraction of topological
spaces. In addition, we prove that if the spaces X and Y are homotopically equivalent, then the spaces
SPn

GX and SPn
GY are also homotopically equivalent. As a result, it has been proved that the functor

SPn
G is a covariant homotopy functor.

Keywords: extent; Lindelöf number; hereditary cardinal invariant; homotopically equivalent;
covariant homotopy functor; retract
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1. Introduction

The cardinal invariants are considered as topological invariants with values in the
class of all cardinal numbers, and are used to describe various topological properties of
spaces. For example, the weight, π-weight, network weight, density, character, Lindelöf
number, tightness, and cellularity of a topological space X are some classical cardinal
invariants. Many researches have been devoted to the investigation of cardinal invariants
and hereditary cardinal invariants (see, for example, [1–6]) and their important role in
topology. Recall that a function ϕ : Top → Card from the class Top of topological
spaces to the set Card of infinite cardinals such that ϕ(X) = ϕ(Y) whenever X and Y
are homeomorphic, is called a cardinal function (or cardinal invariant). The hereditary
version of a cardinal function ϕ, denoted hϕ, is defined as hϕ(X) = sup{ϕ(Y) : Y ⊂ X}
[1,4–6].

In recent research, the interest in the theory of cardinal invariants and their behavior
under the influence of various covariant functors is increasing (see, for example, [7–9]).
In [10], the authors investigated several cardinal invariants under the influence of some
seminormal and normal functors. In the investigations in [11,12], the concept of symmetric
product of a topological space is introduced. In particular, in [13] the functor SPn

G is studied,
and some cardinal and topological properties of this functor were investigated. In [14],
some propositions about homotopy properties of the topological spaces were proved. For
instance, it was proved that, contractibility, connectedness, and pathwise connectedness are
homotopy properties of the spaces. In our work, we prove that if the mappings f , g : X → Y
are homotopic, then the mappings SPn

G f , SPn
Gg : SPn

GX → SPn
GY are also homotopic.
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The current paper is devoted to the investigation of hereditary cardinal invariants
(such as the hereditary density, the hereditary weak density, and the hereditary Lindelöf
number) in the space of permutation degree. Additionally, the relation between the spread
and the extent of the space SP2(R, τ(A)) of the permutation degree of Hattori space
(R, τ(A)) is studied. Moreover, it is shown that the functor SPn

G preserves the homotopy
and the retraction of topological spaces. As a consequence, it has been proved that the
functor SPn

G is a covariant homotopy functor. Our research complements and extends
existing results in the fields of cardinal invariants and the theory of covariant functors.

The paper is organized as follows. In Section 2, we recall basic notions and notation
that will be used in the rest of the study. In Section 3, we study hereditary cardinal invariants
and obtain some results for the space SP2(R, τ(A)) of permutation degree of the Hattori
space (R, τ(A)). Finally, in Section 4, we study some geometric properties of the space
SPn

GX of permutation degree of a space X.
Throughout the paper, all spaces are assumed to be completely regular; τ denotes an

infinite cardinal number; and by ω and c we denote the countable cardinal number and
the cardinality of continuum, respectively. The real line with the Sorgenfrey topology [4] is
denoted by (R, τS); and for A ⊂ R by (R, τ(A)) we denote the Hattori space over A. Recall
that in [15], the following generalization of the Sorgengfey line was defined: if A ⊂ R,
then τ(A) denotes the topology on R, in which each point a ∈ A has the usual Euclidean
neighborhoods, and basic neighborhoods of a point x ∈ R \ A are of the form [x, ε), ε > 0.
Notice that for A ⊂ R, the topology τ(A) is finer than the usual Euclidean topology on R
and weaker than the Sorgenfrey topology τS [16].

2. Preliminaries

For convenience of the reader, we give some notation, concepts, and statements that
are widely used in this article. For a space X, the group of all permutations of X is denoted
by S(X) and called the permutation group of X. If X = {1, 2 . . . , n}, then we write Sn
instead of S(X).

Let X be a space. The permutation group Sn acts on the n-th power Xn of X as the
permutation of coordinates: the points (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Xn are equivalent
if there exists a permutation σ ∈ Sn for which yi = xσ(i). This equivalence relation is called
the symmetric equivalence relation [17], and the set of all orbits of the action of Sn on Xn with
the quotient topology is denoted by SPnX and called the space of n-permutation degree of
X [17].

The following generalization of the permutation degree will be also used in what
follows. If G be a subgroup of the group Sn, then G also acts on Xn as the group of
permutations of coordinates, and generates an equivalence relation called the G-symmetric
equivalence relation [17]. The quotient space of Xn under this relation is called G-permutation
degree of X and is denoted by SPn

GX, and the quotient mapping from Xn to SPn
GX is denoted

by ßsn,G. Observe that SPn
G is a covariant functor in the category of compact spaces and is

called the functor of G-permutation degree [17]. Clearly, if G = Sn, then SPn
G = SPn, and if G

contains only the identity element, SPn
GX = Xn[17].

In [12], it is proved that the quotient mapping ßsn,G : Xn → SPn
GX is continuous, open,

and closed surjection.
For every mapping f : X → Y, the mapping SPn

G f : SPn
GX → SPn

GY is defined [17] by
the formula

SPn
G f [(x1, x2, . . . , xn)]G = [( f (x1), f (x2), . . . , f (xn))]G.

A set A ⊂ X is dense in X if A = X. The density of X, denoted by d(X), is defined as
d(X) = min{|A| : A is dense in X} [4]. A collection B of nonempty open sets in X is said
to be a π-base of X if for every nonempty open set G ⊂ X there is a B ∈ B with B ⊂ G. The
π-weight of a space X is defined as πw(X) = min{|B| : B is a π-base of X} [1,4,6]. The
weak density of a space X, denoted by wd(X), is the smallest cardinal number τ ≥ ω such
that there is a π-base B = ∪{Bα : α < τ} in X, and for each α < τ, Bα is a centered system
of open sets in X [7,9,10].
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For definitions of the following cardinal functions, see [1,4–6].
The extent of a space X, denoted by e(X), is defined as e(X) = sup{|Y| : Y is a closed

discrete subspace in X}. The Souslin number or cellularity of the space X, denoted by c(X), is
the smallest cardinal number τ ≥ ω such that every family or pairwise, disjoint, non-empty
open subset of X has cardinality ≤ τ. The Lindelöf number l(X) of X is the smallest cardinal
number τ such that each open cover of X has a subcover of cardinality ≤ τ.

A continuous mapping f : [0, 1] → X is called a path in X. f (0) is called the initial
point, and f (1) the final point of this path. If x ∈ X, then the constant path ex : I → X is
defined by ex(t) = x for all t ∈ I. A space X is path connected if for any two points x0, x1 ∈ X
there is a path from x0 to x1 [18].

Continuous mappings f , g : X → Y are homotopic, denoted by f ' g, if there is a
continuous mapping F : X× I → Y such that F(x, 0) = f (x) and F(x, 1) = g(x). F is called
a homotopy between f and g [18].

Example 1. Consider the mappings f (x) = (cos(πx), sin(πx)) and g(x) = (cos(πx),
− sin(πx)). These mappings are homotopic. We can define the homotopy F : I × I → R2

between f and g as follows: F(x, t) = (cos(πx), (1− 2t) sin(πx)). Indeed, F is continuous and
F(x, 0) = (cos(πx), sin(πx)) = f (x), F(x, 1) = (cos(πx),− sin(πx)) = g(x) (see [18]).

A continuous mapping f : X → Y is said to be a homotopy equivalence [18] if there exists
a continuous mapping g : Y → X such that the compositions g ◦ f and f ◦ g are homotopic
to the identity mappings on X and Y, respectively. Two topological spaces X and Y are
said to be homotopically equivalent (notation X ' Y) if there exists a homotopy equivalence
f : X → Y [18].

By a covariant homotopy functor [17], we mean an operator φ which assigns to each
topological space X a space φ(X), and to each continuous mapping f : X → Y, a mapping
φ( f ) : φ(X)→ φ(Y) satisfying the following three conditions:

(i) φ preserves the identity mapping; that is, if f is the identity mapping of X, then
φ( f ) is the identity mapping of φ(X).

(ii) φ preserves compositions; that is, if f : X → Y and g : Y → Z are continuous
mappings, then

φ(g ◦ f ) = φ(g) ◦ φ( f ).

(iii) φ preserves homotopy; that is, if a mapping F(x, t) is a homotopy between the
continuous mappings f , g : X → Y, then φ(F(x, t)) is a homotopy between the mappings
φ( f ), φ(g) : φ(X)→ φ(Y).

A space X which is homotopy equivalent to a point is called contractible. A subset A of
a space X is a retract of X if there exists a continuous mapping r : X → A, called a retraction,
such that r|A = 1A [18].

A property P of topological spaces is called a homotopy property if it is preserved by
all homotopy equivalences. More precisely, P is a homotopy property if and only if for an
arbitrary homotopy equivalence f : X → Y, if X has P, then Y also has P [18].

3. Some Cardinal Properties of the Space of Permutation Degree

In this section, we study some (hereditary) cardinal invariants (the spread, extent,
density, weak density, π-weight) of the space SP2(R, τ(A)) of permutation degree of the
Hattori space (R, τ(A)). Let us observe that the space SP2(R, τ(A)) has a Sorgenfrey-type
topology.

We begin with the following two lemmas.

Lemma 1. The space SP2(R, τS) contains a closed discrete subset of cardinality c.

Proof. Note that the subset Y = {(x, y) ∈ (R, τS)
2 : x ≥ y} of (R, τS)

2 is homeomorphic to
the space SP2(R, τS), and the set Z = {(x, y) ∈ Y : y = −x, x > 0} is closed and discrete in
Y and has cardinality c.
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Lemma 2. Let Y be a subset of a Hausdorff topological space X and Z = {F ∈ SP2X : F ⊂ Y} ⊂
SP2X. Then:

(i) The space SP2Y is homeomorphic to the subspace Z of the space SP2X;
(ii) The set Z is open in SP2X whenever Y is open in X;
(iii) The set Z is closed in SP2X whenever Y is closed in X;
(iv) The set Z is clopen in SP2X whenever Y is clopen in X.

Proof. (i) It is known [17] and easy to check that the space exp2Y is homeomorphic to the
subspace Z of the space exp2X. In [17], it is shown that the space SP2Y is homeomorphic
to the space exp2Y. Hence, we have that the space SP2Y is homeomorphic to Z ⊂ SP2X.

(ii), (iii), and (iv) follow from the fact that the set Z is open (closed, clopen) in exp2X
whenever Y is open (closed, clopen) in X [17] and the mentioned result that SP2X is
homeomorphic to exp2X.

From Lemmas 1 and 2 we have:

Proposition 1. Let A be a subset of R and B ⊆ R \ A. If B is a (closed) subset of (R, τ(A)) which
is homeomorphic to the space (R, τS), then the space SP2(R, τ(A)) contains a (closed) discrete
subset of cardinality c.

Proof. In [16], it was shown that if A ⊆ R and B ⊆ R \ A, then τ(A)|B = τS|B. Recall that
the set (R, τ(A)) is a closed subset of SP2(R, τ(A)). Hence, each (closed) discrete subset
M of (R, τ(A)) with cardinality c (which exists by Lemma 1) is a (closed) discrete subset of
SP2(R, τ(A)) with cardinality c.

Proposition 2. Let A be a subset of R, and Y be a subspace of (R, τ(A)). Then, |τ(A)Y| ≤ c. In
addition, |SP2Y| ≤ c.

Proof. It is enough to show that |τ(A)| ≤ c. Let B be a base for (R, τ(A)) of cardinality
≤ c. Since the space (R, τ(A)) is hereditary Lindelöf, each open subset of (R, τ(A)) is an
union of countably many elements of B. Hence, |τ(A)| ≤ cω = (2ω)ω = 2ω = c.

Corollary 1. Let A be a subset of R and B ⊆ R \ A. If B is a closed subset of (R, τ(A)) which is
homeomorphic to the space (R, τS), then s(SP2(R, τ(A))) = e(SP2(R, τ(A))) = c.

Proof. By Proposition 1 we have e(SP2(R, τ(A))) ≥ c. Note that

e(SP2(R, τ(A))) ≤ s(SP2(R, τ(A))) ≤ |(SP2(R, τ(A)))|.

It follows from Proposition 2 that

|(SP2(R, τ(A)))| ≤ |exp(R, τ(A))| ≤ c.

Thus, we get
s(SP2(R, τ(A))) = e(SP2(R, τ(A))) = c.

Corollary 2. Let A be a subset of R and B ⊆ R \ A. If B is a subset of (R, τ(A)) which is
homeomorphic to the space (R, τS), then s(SP2(R, τ(A))) = c.

Proof. By Proposition 1 we have s(SP2(R, τ(A))) ≥ c. Note that s(SP2(R, τ(A))) ≤
|(SP2(R, τ(A)))|. It follows from Proposition 2 that |(SP2(R, τ(A)))| ≤ c. Thus, we get
s(SP2(R, τ(A))) = c.
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Corollary 3. Let A be a subset of R and ϕ ∈ {d, e, c} (resp. ϕ ∈ {wd, l, πw}). If B is a subset
of (R, τ(A)) which is homeomorphic to the space (R, τS), then hϕ(SP2(R, τ(A))) = c (viz.,
hϕ(SP2(R, τ(A))) ≥ c).

Proof. In fact, note that he = s and hc = s. Since hc(SP2(R, τ(A))) ≥ c (by Proposition 1),
we have the equalities. The inequalities also trivially follow from Proposition 1.

Remark 1. Let A ⊆ R. Note that the family B = {(r1, r2) : r1, r2 ∈ Q, r1 < r2} is a π-base
for the space (R, τ(A)) and Bn = {∏n

i=1 Bi : Bi ∈ B} is also a π-base for the space (R, τ(A))n.
Hence, πw(R, τ(A))n = c(R, τ(A))n = ω. Similarly, the family SPnBn = {SPnBi = ßsn(Bi) :
Bi ∈ Bn} is a π-base for the space SPn(R, τ(A)). This shows that πw(SPn(R, τ(A))) =
c(SPn(R, τ(A))) = ω.

4. Some Geometric Properties of the Space of Permutation Degree

Now we study some geometric properties of the space SPn
GX of permutation degree.

In particular, we show the functor SPn
G preserves the homotopy and the retraction of

topological spaces. In fact, we prove that if spaces X and Y are homotopically equivalent,
then the spaces SPn

GX and SPn
GY are also homotopically equivalent, and conclude that the

functor SPn
G is a covariant homotopy functor.

Theorem 1. If the mappings f , g : X → Y are homotopic, then the mappings SPn
G f , SPn

Gg :
SPn

GX → SPn
GY are also homotopic.

Proof. Assume that the mappings f , g : X → Y are homotopic. Then there exists a
continuous mapping F : X × I → Y such that F(x, 0) = f (x) and F(x, 1) = g(x). On the
other hand, we have

SPn
G f [(x1, x2, . . . , xn)]G = [( f (x1), f (x2), . . . , f (xn))]G,

SPn
Gg[(x1, x2, . . . , xn)]G = [(g(x1), g(x2), . . . , g(xn))]G.

Now we define the mapping

SPn
GF([(x1, x2, . . . , xn)]G, t) = [(F(x1, t), F(x2, t), . . . , F(xn, t))]G.

It is clear that since the mapping F is continuous, the mapping SPn
GF is also continuous.

Now we will show that the mapping SPn
GF is a homotopy between the mappings SPn

G f
and SPn

Gg. Indeed,

SPn
GF([(x1, x2, . . . , xn)]G, 0) = [(F(x1, 0), F(x2, 0), . . . , F(xn, 0))]G

= [( f (x1), f (x2), . . . , f (xn))]G

= SPn
G f [(x1, x2, . . . , xn)]G;

and

SPn
GF([(x1, x2, . . . , xn)]G, 1) = [(F(x1, 1), F(x2, 1), . . . , F(xn, 1))]G

= [(g(x1), g(x2), . . . , g(xn))]G

= SPn
Gg[(x1, x2, . . . , xn)]G.

This means that SPn
G f ' SPn

Gg.

Corollary 4. If the spaces X and Y are homotopically equivalent, then the spaces SPn
GX and SPn

GY
are also homotopically equivalent.
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Proof. Suppose that the spaces X and Y are homotopically equivalent. Then there exist
two continuous mappings f : X → Y and g : Y → X such that f ◦ g ' idY and g ◦ f ' idX .
This means that there are two homotopy F(y, t) and H(x, t) such that

F(y, 0) = ( f ◦ g)(y), F(y, 1) = y and (x, 0) = (g ◦ f )(x), H(x, 1) = x.

Consider the compositions SPn
G f ◦ SPn

Gg : SPn
GY → SPn

GY and SPn
Gg ◦ SPn

G f : SPn
GX →

SPn
GX of the mappings SPn

G f : SPn
GX → SPn

GY and SPn
Gg : SPn

GY → SPn
GX defined by

(SPn
G f ◦ SPn

Gg)[(y1, y2, . . . , yn)]G = [(( f ◦ g)(y1), ( f ◦ g)(y2), . . . , ( f ◦ g)(yn))]G

and

(SPn
Gg ◦ SPn

G f )[(x1, x2, . . . , xn)]G = [(( f ◦ g)(x1), ( f ◦ g)(x2), . . . , ( f ◦ g)(xn))]G.

One can easily check that the mapping

SPn
GF([(y1, y2, . . . , yn)]G, t) = [(F(y1, t), F(y2, t), . . . , F(yn, t))]G

is a homotopy between SPn
G f ◦ SPn

Gg and idSPn
GY.

Similarly,

SPn
G H([(x1, x2, . . . , xn)]G, t) = [(H(x1, t), H(x2, t), . . . , H(xn, t))]G

is a homotopy between SPn
Gg ◦ SPn

G f and idSPn
GX .

By Theorem 1, SPn
GX and SPn

GY are homotopically equivalent.

Proposition 3. If a set A is a retract of the topological space X, then the set SPn
GA is a retract of

the topological space SPn
GX.

Proof. Suppose that a set A is a retract of X. Then there exists a continuous mapping
r : X → A such that r(a) = a for all a ∈ A. Now we consider the mapping SPn

Gr : SPn
GX →

SPn
GA. For every [(a1, a2, . . . , an)]G ∈ SPn

GA we have

SPn
Gr([(a1, a2, . . . , an)]G) = [(r(a1), r(a2), . . . , r(an))]G = [(a1, a2, . . . , an)]G.

This means that the mapping SPn
Gr : SPn

GX → SPn
GA is a retraction. Hence, the set

SPn
GA is a retract of the space SPn

GX.

Theorem 2. The functor SPn
G is a covariant homotopy functor.

Proof. Now we will show that the functor SPn
G satisfies the above three conditions.

(i) Let idX be identity mapping in the topological space X. Then we have that
SPn

GidX [(x1, x2, . . . , xn)]G = [(idX(x1), idX(x2), . . . , idX(xn))]G = [(x1, x2, . . . , xn)]. This
means that the mapping SPn

GidX is the identity mapping in the topological space SPn
GX.

(ii) Let f : X → Y, g : Y → Z be continuous mappings. Then it follows that SPn
G(g ◦

f )[(x1, x2, . . . , xn)]G = [((g ◦ f )(x1), (g ◦ f )(x2), . . . , (g ◦ f )(xn))]G = SPn
Gg[( f (x1), f (x2),

. . . , f (xn))]G = SPn
Gg ◦ SPn

G f .
(iii) It follows easily from Theorem 1.

In [14], some propositions about homotopy properties of the topological spaces were
given. For instance, it was proved that contractibility, connectedness, and pathwise
connectedness are homotopy property of the spaces.

Corollary 5. If a topological space X is contractible, then the space SPn
GX is also contractible.
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Corollary 6. If a topological space X is connected (viz., pathwise connected), then the space SPn
GX

is also connected (viz., pathwise connected).

If f and g are two paths in X with f (1) = g(0), then by the product of f and g we
mean the path f ∗ g, which is defined by

( f ∗ g)(t) =
{

f (2t), if 0 ≤ t ≤ 1/2,
g(2t− 1), if 1/2 ≤ t ≤ 1.

Let f ' g and g ' h, where F is a homotopy from f to g and G is a homotopy from g
to h. Then, f ' h. Define a homotopy H : X× I → Y between f and h as follows:

H(x, t) =
{

F(x, 2t), if 0 ≤ t ≤ 1/2,
G(x, 2t− 1), if 1/2 ≤ t ≤ 1.

Corollary 7. If the mappings fi : I → X are paths in X from the points xi
0 to the points xi

1,
i = 1, 2, . . . , n, respectively, then the mapping SPn

G f n : I → SPn
GX defined by SPn

G f n(t) =
[( f1(t), f2(t), . . . , fn(t))]G is also a path from the point [(x1

0, x2
0, . . . , xn

0 )]G to the point [(x1
1, x2

1, . . . ,
xn

1 )]G in SPn
GX.

Corollary 8. Let SPn
G f n and SPn

Ggn be paths from [(x1
0, x2

0, . . . , xn
0 )]G to [(x1

1, x2
1, . . . , xn

1 )]G and
from [(x1

2, x2
2, . . . , xn

2 )]G to [(x1
3, x2

3, . . . , xn
3 )]G, respectively, with SPn

G f n(1) = SPn
Ggn(0). Then

we define the multiplication of the paths in SPn
GX as follows:

(SPn
G f n ∗ SPn

Ggn)(t) = [(( f1 ∗ g1)(t), ( f2 ∗ g2)(t), . . . , ( fn ∗ gn)(t))]G.

This path sharing the points [(x1
0, x2

0, . . . , xn
0 )]G and [(x1

3, x2
3, . . . , xn

3 )]G.

In [18], it is shown that the multiplication of equivalence classes of paths is associative;
in other words, ([ f ][g])[h] = [ f ]([g][h]).

Let f and g be paths from the initial point x0 to the final point x1. If there is a
homotopy F from f to g such that for each t ∈ I, F(0, t) = x0 and F(1, t) = x1, then f and g
are said to be path-homotopic [18]. For a path f , [ f ] denotes the equivalence class of all paths
path-homotopic to f .

The operation ∗ defined above can be applied to homotopy classes as well. Let
f : I → X be a path from x0 to x1 and g : I → X a path from x1 to x2. Then, one defines
[ f ] ∗ [g] = [ f ∗ g].

Let X be a space and x0inX. A path in X beginning and ending at x0 is called a loop [18]
based at x0. Denote by π1(X, x0) the set of all equivalence classes [ f ] of loops in X based at
x0. π1(X, x0) with the operation ∗ is a group, where the identity element of the group is
[ex] and the inverse element of [ f ] is [ f (t)] = [ f (1− t)]. We call π1(X, x0) the fundamental
group [18].

Suppose (G, ∗) and (G1, ∗1) are groups. A homomorphism is a mapping such that
f (x ∗ y) = f (x) ∗1 f (y) for all x, y ∈ G. A homomorphism f is called an isomorphism if it
is bijective.

The fundamental groups of a space and its quotient space are not always isomorphic.

Example 2. Let X = [0, 1] and let S1 be the unit circle. Clearly, S1 is the quotient space of
the space X, where the quotient mapping is defined as q(x) = (cos(2πx); sin(2πx)). We know
that X = [0, 1] has the trivial fundamental group (the group consisting of the identity), and the
fundamental group of S1 is isomorphic to the group (Z,+).

Corollary 9. The fundamental groups π1(X, x0) and π1(SPn
GX, [x0]G) of the topological spaces

X and SPn
GX are not always isomorphic for every x0 ∈ X, where [x0]G = [(x0, x0, . . . , x0)]G =

(x0, x0, . . . , x0).
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Let h : X → Y be a continuous mapping sending the point x0 ∈ X to the point y0 ∈ Y;
We denote this fact by h : (X, x0) → (Y, y0). If f is a loop in X based at x0, then the
composition h ◦ f : I → Y is a loop in Y based at y0. In this way the correspondence f →
h ◦ f gives rise to a mapping from π1(X, x0) to π1(Y, y0). Define h∗ : π1(X, x0)→ π1(Y, y0)
by h∗([ f ]) = [h ◦ f ]. In [19] it is proved that h∗ is a homomorphism.

Corollary 10. The fundamental groups π1(X, x0) and π1(SPn
GX, [x0]) of the topological spaces X

and SPn
GX are homomorphic for every x0 ∈ X, and the homomorphism is defined by (πs

n,G)∗[ f ] =
[πs

n,G ◦ f ].

Proof. We know that πs
n,G : Xn → SPn

GX is a continuous mapping that carries the point
(x0, x0, . . . , x0) of Xn to the point [(x0, x0, . . . , x0)] of SPn

GX. If f is a loop in X based at
x0, then f n is a loop in Xn based at (x0, x0, . . . , x0) and the composition πs

n,G ◦ f n : I →
SPn

GX is a loop in SPn
GX based at [(x0, x0, . . . , x0)]. The correspondence f → πs

n,G ◦ f n

thus gives rise to a mapping carrying π1(X, x0) into π1(SPn
GX, [(x0, x0, . . . , x0)]). Define

πs
n,G∗ : π1(X, x0) → π1(SPn

GX, [(x0, x0, . . . , x0)]) by the equation πs
n,G∗([ f ]) = [πs

n,G ◦ f n].
The mapping πs

n,G∗ is a homomorphism (as we said before).

5. Conclusions

In this article we continue the study of the functor of permutation degree—one
of important functors in topology. Our results extend and complement the existing
results in this field. We obtained several relations among cardinal invariants in the space
SP2(R, τ(A)) of the permutation degree of the Hattori space (R, τ(A)). These cardinal
invariants include the hereditary density, hereditary weak density, spread, extent, π-weight,
and (hereditary) Lindelöf number. Additionally, we proved that if the spaces X and Y are
homotopically equivalent, then the spaces SPn

GX and SPn
GY are homotopically equivalent

too. As a consequence, one obtains that the functor SPn
G is a covariant homotopy functor. It

preserves a few topological properties, including retracts.
We believe that our results can be applied to similar investigation of other topological

properties and other functors.
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