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Abstract: We study a class of nonlinear implicit fractional differential equations subject to nonlocal
boundary conditions expressed in terms of nonlinear integro-differential equations. Using the
Krasnosel’skii fixed-point theorem we prove, via the Kolmogorov–Riesz criteria, the existence of
solutions. The existence results are established in a specific fractional derivative Banach space and
they are illustrated by two numerical examples.
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1. Introduction

It is noticeable, in recent years, that the field of fractional calculus has been swept for
research by many mathematicians, due to its effectiveness in describing many physical
phenomena, see, e.g., [1–7].

A fractional derivative is a generalization of the ordinary one. Despite the emergence
of several definitions of fractional derivative, the content is one that depends entirely
on Volterra integral equations and their kernel, which facilitates the description of each
phenomenon as a temporal lag, such as rheological phenomena [8–10].

The study of differential equations is considered of primary importance in mathemat-
ics. In applications, differential equations serve as mathematical models for all natural
phenomena. Regardless of their type (ordinary, partial, or fractional), the study of differ-
ential equations is developed in three directions: existence, uniqueness, and stability of
solutions. Therefore, to investigate boundary value problems is always a central question
in mathematics [11–16].

Often, it is of central importance to know the behavior of any solution, of the equation
under study, at the boundary of the domain, because that makes it easier to find the solution.
In 2009, Ahmad and Nieto considered the following boundary value problem [17]:

CDαy(t) = f
(

t, y(t),
∫ t

0
ϕ(t, s)y(s)ds

)
, 1 < α < 2,

ay(0) + by′(0) =
∫ 1

0
q1(y(s))ds,

ay(1) + by′(1) =
∫ 1

0
q2(y(s))ds.

(1)
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Their results of existence are obtained via Krasnosel’skii fixed-point theorem in the space
of continuous functions. For that, they apply Ascoli’s theorem in order to provide the
compactness of the first part of the Krasnosel’skii operator.

The pioneering work of Ahmad and Nieto of 2009 [17] gave rise to several different
investigations. These include: inverse source problems for fractional integrodifferential
equations [18]; the study of positive solutions for singular fractional boundary value
problems with coupled integral boundary conditions [19]; the expression and properties of
Green’s function for nonlinear boundary value problems of fractional order with impulsive
differential equations [20]; existence of solutions to several kinds of differential equations
using the coincidence theory [21]; existence and uniqueness of solution for fractional
differential equations with Riemann–Liouville fractional integral boundary conditions [22];
sufficient conditions for the existence and uniqueness of solutions for a class of terminal
value problems of fractional order on an infinite interval [23]; existence of solutions, and
stability, for fractional integro-differential equations involving a general form of Hilfer
fractional derivative with respect to another function [24]; existence of solutions for a
boundary value problem involving mixed generalized fractional derivatives of Riemann–
Liouville and Caputo, supplemented with nonlocal multipoint boundary conditions [25];
existence conditions to fractional order hybrid differential equations [26]; and an existence
analysis for a nonlinear implicit fractional differential equation with integral boundary
conditions [27]. Motivated by all these existence results, we consider here a more general
multipoint fractional boundary value problem in the fractional derivative Banach space.

Let 1 < p < ∞ and 1 ≥ γ > 1
p and consider the following fractional boundary

value problem:

CDαy(t) = f
(

t, y(t),C Dγy(t)
)
+C Dα−2g(t, y(t)), 2 < α < 3,

y(0) + y′(0) =
∫ 1

0
q1(y(s))ds,

y(1) + y′(1) =
∫ 1

0
q2(y(s))ds,

y′′(0) = 0,

(2)

where CDα is the standard Caputo derivative, f : [0, 1] × R× R → R, and g : [0, 1] ×
R → R and q1, q2 : R → R are given functions such that g(t, 0)= g(0, y) = q1(0) =
q2(0) = 0 for any (t, y) ∈ [0, 1]×R. Our problem (2) generalizes (1) and finds applications
in viscoelasticity, where the fractional operators are associated with delay kernels that
make the fractional differential equations the best models for several rheological Maxwell
phenomena. In particular, for α ∈ (1, 2), we can model oscillatory processes with fractional
damping [28].

We prove existence of a solution to problem (2) in the special Banach space Eγ,p that
is known in the literature as the fractional derivative space [29]. This Banach space is
equipped with the norm

‖u‖γ,p =

(∫ T

0
|u(t)|p +

∫ T

0

∣∣∣CDγ
0 u(t)

∣∣∣p) 1
p
. (3)

The paper is organized as follows. In Section 2, we recall some useful definitions and
lemmas to prove our main results. The original contributions are then given in Section 3.
The main result is Theorem 1, which establishes the existence of solutions to the fractional
boundary value problem (2) using Krasnosel’skii fixed point theorem. Two illustrative
examples are given. We end with Section 4, discussing the obtained existence result.

2. Preliminaries

For the convenience of the reader, and to facilitate the analysis of problem (2), we
begin by recalling the necessary background from the theory of fractional calculus [30,31].
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Definition 1. The Riemann–Liouville fractional integral of order α > 0 of a function f :
(0,+∞)→ R is given by

Iα
0 f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds.

Definition 2. The Caputo fractional derivative of order α > 0 of a function f : (0,+∞)→ R is
given by

CDα
0 f (t) =

1
Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1 ds = In−α
0 f (n)(t),

where n = [α] + 1, with [α] denoting the integer part of α.

Lemma 1 (See [17]). Let α > 0. Then, the fractional differential equation CDα
0+u(t) = 0 has

u(t) = c0 + c1t + c2t2 + · · ·+ cn−1tn−1, ci ∈ R, i = 1, 2, . . . , n− 1,

as solution.

Definition 3. A map f : [0, 1]×R×R→ R is said to be Carathéodory if

(a) t→ f (t, u; v) is measurable for each u, v ∈ R;
(b) (u, v)→ f (t, u; v) is continuous for almost all t ∈ [0, 1].

Definition 4. Let J be a measurable subset of R and f : J ×Rd1 → Rd2 satisfies the Carathéodory
condition. By a generalized Nemytskii operator we mean the mapping N f taking a (measurable)
vector function u =

(
u1, . . . , ud1

)
to the function N f u(t) = f (t, u(t)), t ∈ J.

The following lemma is concerned with the continuity of the operator N f with d1 = 2
and d2 = 1.

Lemma 2 (See [32]). Consider the same data of Definition 4. Assume there exists w ∈ L1([0, 1])
with 1 ≤ p < ∞ and a constant c > 0 such that | f (t, u, v)| ≤ w(t) + c

(
|u|p + |v|p

)
for almost

all t ∈ [0, 1] and u, v ∈ R. Then, the Nemytskii operator

N f u(t) = f (t, u(t)), u = (u1, u2) ∈ Lp(0, 1)× Lp(0, 1), t ∈ [0, 1] a.e.,

is continuous from Lp([0, 1])× Lp([0, 1]) to L1(0, 1).

Lemma 3 (See [33]). Let F be a bounded set in Lp([0, 1]) with 1 ≤ p < ∞. Assume that

lim
|h|→0
‖τh f − f ‖p = 0 uniformly on F .

Then, F is relatively compact in Lp([0, 1]).

For any 1 ≤ p < ∞, we denote

‖u‖Lp [0,T] :=
(∫ T

0
|u(t)|p

) 1
p
, ‖u‖∞ := max

t∈[0,T]
|u(t)|.

Now, we give the definition and some properties of Eγ,p. For more details about the
following lemmas, see [29,34] and references therein.
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Definition 5. Let 0 < γ ≤ 1 and 1 < p < ∞. The fractional derivative space Eγ,p is defined by
the closure of C∞([0, T]) with respect to the norm

‖u‖γ,p =

(∫ T

0
|u(t)|p +

∫ T

0

∣∣∣CDγ
0 u(t)

∣∣∣p) 1
p
. (4)

Lemma 4 (See [29,34]). Let 0 < γ ≤ 1 and 1 < p < ∞. The fractional derivative space Eγ,p is a
reflexive and separable Banach space.

Lemma 5 (See [29,34]). Let 0 < γ ≤ 1 and 1 < p < ∞. For all u ∈ Eγ,p, we have

‖u‖Lp ≤
Tα

Γ(γ + 1)

∥∥∥CDγ
0 u
∥∥∥

Lp
. (5)

Moreover, if γ > 1
p and 1

p + 1
q = 1, then

‖u‖∞ ≤
Tα− 1

p

Γ(γ)((γ− 1)q + 1)
1
q

∥∥∥CDγ
0 u
∥∥∥

Lp
. (6)

According to the inequality (5), we can also consider the space Eγ,p with respect to the
equivalent norm

‖u‖γ,p =
∥∥∥CDγ

0 u
∥∥∥

Lp
=

(∫ T

0

∣∣∣CDγ
0 u(t)

∣∣∣p) 1
p
, u ∈ Eγ,p.

3. Main Results

We begin by considering a linear problem and obtain its solution in terms of a
Green function.

Lemma 6. Assume h, k ∈ C([0, 1]), k(0) = 0 and α ∈ (2, 3). Then, the solution to the boundary
value problem

CDαy(t) = h(t) +C Dα−2k(t), t ∈ (0, 1),

y′′(0) = 0,

y(0) + y′(0) =
∫ 1

0
η1(s)ds,

y(1) + y′(1) =
∫ 1

0
η2(s)ds,

(7)

is given by

y(t) =
1∫

0

G(t, s)h(s)ds +
∫ 1

0
H(t, s)k(s)ds + (2− t)

∫ 1

0
η1(s)ds + (t− 1)

∫ 1

0
η2(s)ds,

where

G(t, s) =


(t−s)α−1+(1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1,

(1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1) , 0 ≤ t ≤ s ≤ 1,
(8)

and

H(t, s) =

 (t− s) + (1− t)(2− s), 0 ≤ s ≤ t ≤ 1,

(1− t)(2− s), 0 ≤ t ≤ s ≤ 1.
(9)
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Proof. Let y be a solution of problem (7). By Lemma 1, we have

y(t) = c0 + c1t + c2t2 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds + I2

0 k(t).

Taking the conditions (7) into account, it follows that

c2 = 0,

y(0) + y′(0) = c0 + c1 =
∫ 1

0
η1(s)ds,

and

y(1) + y′(1) = c0 + 2c1 +
1

Γ(α)

∫ 1

0
(1− s)α−1h(s)ds +

∫ 1

0
(1− s)k(s)ds

+
1

Γ(α− 1)

∫ 1

0
(1− s)α−2h(s)ds +

∫ 1

0
k(s)ds

=
∫ 1

0
η2(s)ds,

which implies

c0 =
1

Γ(α)

∫ 1

0
(1− s)α−1h(s)ds +

1
Γ(α− 1)

∫ 1

0
(1− s)α−2h(s)ds

+
∫ 1

0
(2− s)k(s)ds + 2

∫ 1

0
η1(s)ds−

∫ 1

0
η2(s)ds,

and

c1 = − 1
Γ(α)

∫ 1

0
(1− s)α−1h(s)ds− 1

Γ(α− 1)

∫ 1

0
(1− s)α−2h(s)ds

−
∫ 1

0
(2− s)k(s)ds +

∫ 1

0
η2(s)ds−

∫ 1

0
η1(s)ds.

Hence, the solution of problem (7) is

y(t) =
∫ t

0

(
(t− s)α−1 + (1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

)
h(s)ds

+
∫ 1

t

(
(1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)

)
h(s)ds

+
∫ t

0
((t− s) + (1− t)(2− s))k(s)ds +

∫ 1

t
(1− t)(2− s)k(s)ds

+ (2− t)
∫ 1

0
η1(s)ds + (t− 1)

∫ 1

0
η2(s)ds

=
∫ 1

0
G(t, s)h(s)ds +

∫ 1

0
H(t, s)k(s)ds

+ (2− t)
∫ 1

0
η1(s)ds + (t− 1)

∫ 1

0
η2(s)ds.

The proof is complete.

Lemma 7. Functions G, H, ∂γ

∂t G and ∂γ

∂t H are continuous on [0, 1] × [0, 1] and satisfy for all
t, s ∈ [0, 1]:

1. |G(t, s)| ≤ 3
Γ(α−1) , |H(t, s)| ≤ 3.
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2.
∣∣∣ ∂γ

∂t G(t, s)
∣∣∣ ≤ Γ(α)

Γ(α−γ)
+ 2

Γ(2−γ)Γ(α−1) ,
∣∣∣ ∂γ

∂t H(t, s)
∣∣∣ ≤ 3

Γ(2−γ)
.

Proof. We have
CDγ

0 (1− t) = I1−γ
0 (1− t)′ = − 1

Γ(2− γ)
t1−γ, (10)

and
∂γ

∂t
(t− s)α−1 = I1−γ

0
∂

∂t
(t− s)α−1 = (α− 1)I1−γ

0 (t− s)α−2.

Thus, for 0 ≤ s ≤ t ≤ 1, we get ∂γ

∂t (t− s)α−1 ≥ 0 and

∂γ

∂t
(t− s)α−1 ≤C Dγ

0 tα−1 =
Γ(α)

Γ(α− γ)
tα−γ−1. (11)

On the other hand, we have Γ(α− 1) ≤ Γ(α) for 2 ≤ α ≤ 3. Now, we give the bound
of functions |G(t, s)| and

∣∣∣ ∂γ

∂t G(t, s)
∣∣∣. From the definition of function G and (10) and (11),

we obtain:

• For 0 ≤ s ≤ t ≤ 1,

|G(t, s)| = (t−s)α−1+(1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1)

≤ (1−s)α−1(1+(1−t))
Γ(α) + (1−t)(1−s)α−2

Γ(α−1)

≤ 1+(1−t)
Γ(α) + (1−t)

Γ(α−1)
≤ 3

Γ(α−1) ,

and ∣∣∣ ∂γ

∂t G(t, s)
∣∣∣ ≤ ∣∣∣ Γ(α)

Γ(α−γ)
tα−γ−1

∣∣∣+ ∣∣∣∣ t1−γ

Γ(2−γ)

(
(1−s)α−1

Γ(α) + (1−s)α−2

Γ(α−1)

)∣∣∣∣
≤ Γ(α)

Γ(α−γ)
+ 1

Γ(2−γ)

(
1

Γ(α) +
1

Γ(α−1)

)
≤ Γ(α)

Γ(α−γ)
+ 2

Γ(2−γ)Γ(α−1) .

• For 0 ≤ t ≤ s ≤ 1,

|G(t, s)| = (1−t)(1−s)α−1

Γ(α) + (1−t)(1−s)α−2

Γ(α−1)

≤ (1−t)
Γ(α) + (1−t)

Γ(α−1)
≤ 2

Γ(α−1) ,

and ∣∣∣ ∂γ

∂t G(t, s)
∣∣∣ =

∣∣∣∣− t1−γ

Γ(2−γ)

(
(1−s)α−1

Γ(α) + (1−s)α−2

Γ(α−1)

)∣∣∣∣
≤ 1

Γ(2−γ)

(
1

Γ(α) +
1

Γ(α−1)

)
≤ 2

Γ(2−γ)Γ(α−1) .

By using the same above calculation, we obtain the estimation of |H(t, s)| and
∣∣∣ ∂γ

∂t H(t, s)
∣∣∣.

The proof is complete.

In the sequel, we denote

Gγ(t, s) :=
∂γ

∂t
G(t, s), t, s ∈ [0, 1]× [0, 1].

Moreover, we also use the following notations: G∗ := maxt,s∈[0,1]×[0,1]|G(t, s)| and

G∗γ := max
t,s∈[0,1]×[0,1]

|Gγ(t, s)|.
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Theorem 1. Assume that the following four hypotheses hold:

(H1) f : [0, 1]×R×R→ R satisfies the Carathéodory condition.
(H2) There exist w ∈ L1(0, 1) and c > 0 such that

| f (t, u, v)| ≤ w(t) + c
(
|u|p + |v|p

)
for t ∈ (0, 1) and u, v ∈ R. (12)

(H3) There exist two strictly positive constants k1 and k2 and a function ϕ1 ∈ Lq((0, 1),R+),
1
p + 1

q = 1, such that for all t ∈ [0, 1] and x, y ∈ R, we have

|g(t, x)− g(t, y)| ≤ ϕ1(t)|x− y|,
|q1(x)− q1(y)| ≤ k1|x− y|,
|q2(x)− q2(y)| ≤ k2|x− y|.

(H4) There exists a real number R > 0 such that

R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

+ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)
≤ R. (13)

Then, if
3‖ϕ1‖q + k1 + k2

Γ(2− γ)Γ(1 + γ)
< 1, (14)

the boundary value problem (2) has a solution in Eγ,p.

Proof. We transform problem (2) into a fixed-point problem. Define two operators F, L :
Eγ,p → Eγ,p by

Fy(t) =
∫ 1

0
G(t, s) f (s, y(s), Dγy(s))ds,

and

Ly(t) =
∫ 1

0
H(t, s)g(s, y(s))ds + (2− t)

∫ 1

0
q1(y(s))ds + (t− 1)

∫ 1

0
q2(y(s))ds.

Then, y is a solution of problem (2) if, and only if, y is a fixed point of F + L. We define the
set BR as follows:

BR := {u ∈ Eγ,p, ‖u‖Eγ,p ≤ R},

where R is the same constant defined in (H3). It is clear that BR is convex, closed, and a
bounded subset of Eγ,p. We shall show that F, G satisfy the assumptions of Krasnosel’skii
fixed-point theorem. The proof is given in several steps.

(i) We prove that F is continuous. Let (yn)n∈N be a sequence such that yn → y in Eγ,p.
From (12) and Lemma 2, and for each t ∈ [0, 1], we obtain∣∣∣(CDγ

0 Fyn

)
(t)−

(
CDγ

0 Fy
)
(t)
∣∣∣

≤
∫ 1

0
|Gγ(t, s)| | f (s, yn(s), Dγyn(s))− f (s, y(s), Dγy(s))|ds

≤ G∗γ
∥∥∥N f yn − N f y

∥∥∥
1
.

Applying the Lp norm, we obtain that ‖Fyn − Fy‖Eγ,p → 0 when yn → y inEγ,p. Thus,
the operator F is continuous.
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(ii) Now, we prove that Fx + Ly ∈ BR for x, y ∈ BR. Let x, y ∈ BR, t ∈ (0, 1). In view of
hypothesis (H3), we obtain∣∣∣CDγ

0 Fy(t)
∣∣∣ ≤ ∫ 1

0
|Gγ(t, s)|| f (s, y(s), Dγy(s))|ds

≤ G∗γ

(
‖w‖1 + c

(
‖y‖p

p +
∥∥∥CDγ

0 y
∥∥∥p

p

))
≤ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)

.

Applying the Lp norm, we obtain that

‖Fy‖Eγ,p ≤ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)

. (15)

Also, ∣∣∣CDγ
0 L(x)(t)

∣∣∣ ≤ 3
Γ(2− γ)

∫ 1

0
|g(s, x(s))|ds

+
1

Γ(2− γ)

∫ 1

0
|q1(x(s))|ds +

1
Γ(2− γ)

∫ 1

0
|q2(x(s))|ds

≤ 3
Γ(2− γ)

∫ 1

0
ϕ1(s)|x(s)|ds +

1
Γ(2− γ)

∫ 1

0
k1|x(s)|ds

+
1

Γ(2− γ)

∫ 1

0
k2|x(s)|ds.

Applying again the Lp norm, we obtain from Holder’s inequality that

‖L(x)‖Eγ,p ≤
3

Γ(2− γ)

(
‖ϕ1‖q‖x‖p

)
+

k1

Γ(2− γ)
‖x‖p +

k2

Γ(2− γ)
‖x‖p.

In view of (5), we obtain

‖L(x)‖Eγ,p ≤
[

3‖ϕ1‖q

Γ(2− γ)Γ(1 + γ)
+

k1

Γ(2− γ)Γ(1 + γ)
+

k2

Γ(2− γ)Γ(1 + γ)

]
‖x‖Eγ,p .

Then,

‖L(x)‖Eγ,p ≤
R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

. (16)

From (13), (15) and (16), we conclude that Fx + Ly ∈ BR whenever x, y ∈ BR.

(iii) Let us prove that F(BR) = {F(u) : u ∈ BR} is relatively compact in Eγ,p. Let t ∈ (0, 1)
and h > 0, where t + h ≤ 1, and let u ∈ DR. From (12), we obtain that∣∣∣CDγ

0 Fy(t + h)−C Dγ
0 Fy(t)

∣∣∣
≤
∫ 1

0
|Gγ(t + h, s)− Gγ(t, s)|| f (s, y(s), Dγy(s))|ds

≤
∫ 1

0
|Gγ(t + h, s)− Gγ(t, s)|

[
w(s) + c

(
|y(s)|p + |Dγy(s)|p

)]
ds

≤ sup
t∈[0,1]

[
sup

s∈[0,1]
|Gγ(t + h, s)− Gγ(t, s)|

](
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)

.
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Therefore,

‖Fu(·+ h)− Fu(·)‖Eγ,p(
‖w‖1 + c

(
1 +

(
1

Γ(γ+1)

)p)
Rp
) ≤ sup

t∈[0,1]

[
sup

s∈[0,1]
|Gγ(t + h, s)− Gγ(t, s)|

]
. (17)

Then, ‖Fu(·+ h)− Fu(·)‖Eγ,p → 0 as h→ 0 for any u ∈ BR, since Gγ is a continuous
function on [0, 1]× [0, 1]. From Lemma 3, we conclude that F : BR → BR is compact.

(iv) Finally, we prove that L is a contraction. Let x, y ∈ DR and t ∈ (0, 1). Then,∣∣∣CDγ
0 L(x)(t)−C Dγ

0 L(y)(t)
∣∣∣ ≤ 3

Γ(2− γ)

∫ 1

0
|g(s, x(s))− g(s, y(s))|ds

+
1

Γ(2− γ)

∫ 1

0
|q1(x(s))− q1(x(s))|ds

+
1

Γ(2− γ)

∫ 1

0
|q2(x(s))− q2(x(s))|ds

≤ 3
Γ(2− γ)

∫ 1

0
ϕ1(s)|x(s)− y(s)|ds

+
k1

Γ(2− γ)

∫ 1

0
|x(s)− x(s)|ds

+
k2

Γ(2− γ)

∫ 1

0
|x(s)− x(s)|ds.

Applying the Lp norm and Holder’s inequality, we obtain that

‖L(x)− L(y)‖Eγ,p ≤
3

Γ(2− γ)

(
‖ϕ1‖q‖x− y‖p

)
+

k1

Γ(2− γ)

(
‖x− y‖p

)
+

k2

Γ(2− γ)

(
‖x− y‖p

)
.

Then, from (5), we obtain

‖L(x)− L(y)‖Eγ,p ≤
3‖ϕ1‖q + k1 + k2

Γ(2− γ)Γ(1 + γ)
‖x− y‖Eγ,p .

From (14), the operator L is a contraction.

As a consequence of (i)–(iv), we conclude that F : BR → BR is continuous and compact.
As a consequence of Krasnosel’skii fixed point theorem, we deduce that F + G has a fixed
point y ∈ BR ⊂ Eγ,p, which is a solution to problem (2).

We now illustrate our Theorem 1 with two examples.

Example 1. Consider the fractional boundary value problem (2) with

α = 2.5, γ = 0.5, p = 3, q =
3
2

,

f (t, x, y) =
exp(−t)

5
− 1

164π
arctan

(
x3 + y3

)
,

g(t, x) =
1

10
t

2
3 x,

q1(x) = q2(x) =
1

20
x,
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which we denote by (P1). Hypotheses (H1) and (H2) are satisfied for

w(t) =
exp(−t)

5
∈ L1(0, 1), c =

1
164π

, ϕ1(t) =
t

2
3

10
, and k1 = k2 =

1
20

.

Moreover, we have

[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

=

[
3

10

(
1
2

) 2
3
+ 1

10

]
(
Γ
( 3

2
))2 ' 0.368 < 1.

If we choose R = 2, then we obtain

R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

+ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)
− R

≤
2
[

3
10

(
1
2

) 2
3
+ 1

10

]
(
Γ
( 3

2
))2 + 4.047

1
5
+

1
164π

1 +

(
1

Γ
( 3

2
))3

23

− 2

' −0.301.

Since all conditions of our Theorem 1 are satisfied, we conclude that the fractional boundary value
problem (P1) has a solution in Eγ,p.

Example 2. Consider the fractional boundary value problem (2) with

α = 2.7, γ = 0.7, p = 4, q =
4
3

,

f (t, x, y) =
1

10
sin(t) +

1
200

cos
(

x4 + y4
)

,

g(t, x) =
1

9π
t

3
4 arctan(x),

q1(x) = q2(x) =
1

10
sin(x),

which we denote by (P2). Hypotheses (H1) and (H2) are satisfied for

w(t) =
1

10
sin(t) ∈ L1(0, 1), c =

1
200

, ϕ1(t) =
t

3
4

9π
and k1 = k2 =

1
10

.

Moreover, we have

[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

=

[
1

3π

(
1
2

) 3
4
+ 1

5

]
Γ(1.3)Γ(1.7)

' 0.323 < 1.

If we choose R = 2, then we obtain

R
[
3‖ϕ1‖q + k1 + k2

]
Γ(2− γ)Γ(1 + γ)

+ G∗γ

(
‖w‖1 + c

(
1 +

(
1

Γ(γ + 1)

)p)
Rp
)
− R

≤
2
[

1
3π

(
1
2

) 3
4
+ 1

5

]
Γ(1.3)Γ(1.7)

+ 3.9995

(
1
10

+
1

200

(
1 +

(
1

Γ(1.7)

)4
)

24

)
− 2

' −0.163.
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Since all conditions of our Theorem 1 are satisfied, we conclude that the fractional boundary value
problem (P2) has a solution in Eγ,p.

4. Discussion

The celebrated existence result of Ahmad and Nieto [17] for problem (1) is obtained
via Krasnosel’skii fixed-point theorem in the space of continuous functions. For that, they
needed to apply Ascoli’s theorem in order to provide the compactness of the first part of
the Krasnosel’skii operator. Here, we proved existence for the more general problem (2) in
the fractional derivative Banach space Eγ,p, equipped with the norm (3). From norm (3), it
is natural to deal with a subspace of Lp × Lp. Since Ascoli’s theorem is limited to the space
of continuous functions for the compactness, we had to make use of a different approach
to ensure existence of solution in the fractional derivative space Eγ,p. Our tool was the
Kolmogorov–Riesz compactness theorem, which turned out to be a powerful tool to address
the problem. To the best of our knowledge, the use of the Kolmogorov–Riesz compactness
theorem to prove existence results for boundary value problems involving nonlinear
integrodifferential equations of fractional order with integral boundary conditions is a
completely new approach. In this direction, we are only aware of the work [35], where
a necessary and sufficient condition of pre-compactness in variable exponent Lebesgue
spaces is established and, as an application, the existence of solutions to a fractional Cauchy
problem is obtained in the Lebesgue space of variable exponent. As future work, we intend
to generalize our existence result to the variable-order case [36].
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