Article

Families of Ramanujan-Type Congruences Modulo 4 for the Number of Divisors

Mircea Merca (${ }^{\text {(}}$

Department of Mathematical Methods and Models, University Politehnica of Bucharest, 060042 Bucharest, Romania; mircea.merca@profinfo.edu.ro

Abstract

In this paper, we explore Ramanujan-type congruences modulo 4 for the function $\sigma_{0}(n)$, counting the positive divisors of n. We consider relations of the form $\sigma_{0}(8(\alpha n+\beta)+r) \equiv 0(\bmod 4)$, with $(\alpha, \beta) \in \mathbb{N}^{2}$ and $r \in\{1,3,5,7\}$. In this context, some conjectures are made and some Ramanujantype congruences involving overpartitions are obtained.

Keywords: congruences; divisors; overpartitions
MSC: 11A25; 11P83

1. Introduction

Recall [1] that an overpartition of the positive integer n is an ordinary partition of n where the first occurrence of parts of each size may be overlined. Let $\bar{p}(n)$ denote the number of overpartitions of n. For example, the overpartitions of the integer 3 are:

$$
3, \overline{3}, 2+1, \overline{2}+1,2+\overline{1}, \overline{2}+\overline{1}, 1+1+1 \text { and } \overline{1}+1+1 .
$$

We see that $\bar{p}(3)=8$. It is well-known that the generating function of $\bar{p}(n)$ is given by

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\frac{(-q ; q)_{\infty}}{(q, q)_{\infty}}
$$

Here and throughout this paper, we use the following customary q-series notation:

$$
\begin{aligned}
& (a ; q)_{n}= \begin{cases}1, & \text { for } n=0, \\
(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), & \text { for } n>0 ;\end{cases} \\
& (a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n} .
\end{aligned}
$$

Many congruences for the number of overpartitions have been discovered in the recent years by authors such as Chen [2], Chen, Hou, Sun and Zhang [3], Chern and Dastidar [4], Dou and Lin [5], Fortin, Jacob and Mathieu [6], Hirschhorn and Sellers [7], Kim [8,9], Lovejoy and Osburn [10], Mahlburg [11], Xia [12], Xiong [13] and Yao and Xia [14].

Fortin, Jacob and Mathieu [6] founded in 2003 the first Ramanujan-type congruences modulo power of 2 for $\bar{p}(n)$ and for all n that cannot be written as a sum of s or less squares, they obtained that

$$
\begin{equation*}
\bar{p}(n) \equiv 0 \quad\left(\bmod 2^{s+1}\right) \tag{1}
\end{equation*}
$$

This result is meaningful only for $s<4$ since, by Lagrange's four-square theorem, all numbers can be written as a sum of four squares. A complete characterization of Ramanujan-type congruences modulo 16 for the overpartition function $\bar{p}(n)$ was provided in 2019 using the function $\sigma_{0}(n)$ that counts the positive divisors of n [15]. By the proofs of Theorems 1.3 and 1.4 in [15], we easily deduce the following result.

Theorem 1. Let $r \in\{3,5\}$ be a fixed integer. For all $n \geqslant 0$, we have

$$
\bar{p}(8 n+r) \equiv 0 \quad(\bmod 16) \quad \Longleftrightarrow \quad \sigma_{0}(8 n+r) \equiv 0 \quad(\bmod 4) .
$$

In this paper, apart from $\bar{p}(n)$, we consider the overpartition function $\overline{p_{o}}(n)$ that counts the overpartitions of n into odd parts. The generating function for the number of overpartitions into odd parts is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \overline{p_{o}}(n) q^{n}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{2}
\end{equation*}
$$

The expression of the generating function for $\overline{p_{o}}(n)$ was first used by Lebesgue [16] in 1840 in the following series-product identity

$$
\sum_{n=0}^{\infty} \frac{(-1 ; q)_{n} q^{n(n+1) / 2}}{(q ; q)_{n}}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} .
$$

Although authors such as Bessenrodt [17], Santos and Sills [18] utilized more recently the generating function (2) for $\overline{p_{o}}(n)$, none of them connected their works to overpartitions into odd parts.

Many congruences for the number of overpartitions into odd parts have been discovered lately [19,20]. It appears that the first Ramanujan-type congruences modulo power of 2 for $\overline{p_{o}}(n)$ was found in 2006 by Hirschhorn and Sellers [20]. Very recently, Theorem 1 in [21], we introduced a complete characterization of Ramanujan-type congruences modulo 8 for the overpartition function $\overline{p_{0}}(n)$ considering again the divisor function $\sigma_{0}(n)$. By the proof of Theorem 1 in [21], we easily deduce the following result.

Theorem 2. Let $r \in\{1,3\}$ be a fixed integer. For all $n \geqslant 0$, we have

$$
\overline{p_{o}}(8 n+r) \equiv 0 \quad(\bmod 8) \quad \Longleftrightarrow \quad \sigma_{0}(8 n+r) \equiv 0 \quad(\bmod 4) .
$$

Theorems 1 and 2 may be viewed as steps towards classifying all Ramanujan-type congruences for overpartitions, particularly because the divisibility properties of multiplicative functions are more directly accessible with elementary methods than those of functions defined in terms of partitions. Recall that a multiplicative function is an arithmetic function $f(n)$ of a positive integer n with the property that $f(1)=1$ and $f(a b)=f(a) f(b)$ whenever a and b are coprime.

In this paper, motivated by Theorems 1 and 2, we consider $r \in\{1,3,5,7\}$ to be a fixed integer and investigate pairs (α, β) of positive integers for which the following statement is true:

$$
\begin{equation*}
\text { For all } n \geqslant 0, \quad \sigma_{0}(8(\alpha n+\beta)+r) \equiv 0 \quad(\bmod 4) \tag{3}
\end{equation*}
$$

There is a substantial amount of numerical evidence to conjecture the following.
Conjecture 1. If the statement (3) is true, then there is an odd prime p such that α is divisible by p^{2} and $8 \beta+r$ is divisible by p.

Since a multiplicative function is defined by its values at prime powers, this conjecture boils down to understanding how the divisibility properties of the divisor function $\sigma_{0}(n)$ at prime powers intersect with arithmetic progressions.

If the statement (3) is true for (α, β), then the statement (3) is true for any pair $(k \alpha, b \alpha+$ β), with $k \in \mathbb{N}$ and $b \in\{0,1, \ldots, k-1\}$. To prove this fact, it is enough to replace n by $k n+b$ in (3). This makes us not very attracted to cases where α is not a square of an odd prime.

Definition 1. For each odd prime p, we define $\mathcal{B}_{r, p}$ to be the set of nonnegative integers $\beta<p^{2}$ such that

$$
\sigma_{0}\left(8\left(p^{2} n+\beta\right)+r\right) \equiv 0 \quad(\bmod 4)
$$

for all nonnegative integers n.
Assuming Conjecture 1, we state the following.
Conjecture 2. For each odd prime p, we have

$$
\left|\mathcal{B}_{1, p}\right|= \begin{cases}p-1, & \text { if } p-1 \text { is cubefree } \\ (p-1) / 2, & \text { otherwise }\end{cases}
$$

Conjecture 3. Let $r \in\{3,5,7\}$ be a fixed integer. For each odd prime p, we have

$$
\left|\mathcal{B}_{r, p}\right|= \begin{cases}(p-1) / 2, & \text { if } p \equiv r \quad(\bmod 8) \\ p-1, & \text { otherwise }\end{cases}
$$

Conjecture 4. Let $r \in\{1,3,5,7\}$ be a fixed integer. Then,

$$
\bigcup_{\text {podd prime }} \mathcal{B}_{r, p}=\left\{n \in \mathbb{N}: \sigma_{0}(8 n+r) \equiv 0 \quad(\bmod 4)\right\} \backslash \begin{cases}\{3\}, & \text { if } r=3 \\ \varnothing, & \text { otherwise } .\end{cases}
$$

Assuming the last conjecture, we remark that there is not an odd prime p such that

$$
\sigma_{0}\left(8 p^{2} n+27\right) \equiv 0 \quad(\bmod 4)
$$

for all nonnegative integers n.
In this paper, we consider some special cases of our conjectures and present a strategy for proving them. These special cases together with our Theorems 1 and 2 allow us to easily obtain some Ramanujan-type congruences for the overpartition functions $\bar{p}(n)$ and $\overline{p_{o}}(n)$. Somewhat unrelated to our topics, we will show that these congruences are precursors of stronger congruences. In fact, these stronger congruences were discovered considering few Ramanujan-type congruences modulo 4 for the divisor function $\sigma_{0}(n)$.

2. Some Special Cases

This section is devoted to the presentation of the proof strategy of some special cases of Conjectures 2 and 3 listed bellow. We will rely on the fact that the divisor function $\sigma_{0}(n)$ is a multiplicative function.

Theorem 3.

(i) $\mathcal{B}_{1,3}=\{4,7\}$;
(ii) $\quad \mathcal{B}_{1,5}=\{8,13,18,23\}$.

Theorem 4.

(i) $\mathcal{B}_{3,3}=\{6\}$;
(ii) $\quad \mathcal{B}_{3,5}=\{4,14,19,24\}$.

Theorem 5.

(i) $\mathcal{B}_{5,3}=\{2,8\}$;
(ii) $\mathcal{B}_{5,5}=\{10,20\}$.

To proof these identities, the following steps have to be performed.
STEP 1. The first step in all our proofs is to verify that for each $\beta \in \mathcal{B}_{r, p},(8 \beta+r) / p \in \mathbb{N}$.

STEP 2. For each $\beta \in \mathcal{B}_{r, p}$, we prove that $\operatorname{gcd}(p, 8 p n+(8 \beta+r) / p)=1$, for all $n \geqslant 0$.
STEP 3. For each $\beta \in \mathcal{B}_{r, p}$, we prove that $8 p n+(8 \beta+r) / p$ is not a square, for all $n \geqslant 0$. Thus, for each $\beta \in \mathcal{B}_{r, p}$, we deduce that

$$
\sigma_{0}\left(8 p^{2} n+8 \beta+r\right)=\sigma_{0}(p) \sigma_{0}\left(8 p n+\frac{8 \beta+r}{p}\right) \equiv 0 \quad(\bmod 4)
$$

STEP 4. For each $\beta \in\left\{0,1,2, \ldots, p^{2}-1\right\} \backslash \mathcal{B}_{r, p}$, we show that there is an integer n such that

$$
\sigma_{0}\left(8 p^{2} n+8 \beta+r\right) \not \equiv 0 \quad(\bmod 4)
$$

Now, we provide full details for the proofs of Theorems 3-5.

Proof of Theorem 3.

(i).

STEP 1. We have $(8 \times 4+1) / 3=11$ and $(8 \times 7+1) / 3=19$.
STEP 2. For all $n \geqslant 0$, it is clear that $\operatorname{gcd}(3,24 n+11)=1$ and $\operatorname{gcd}(3,24 n+19)=1$.
STEP 3. We suppose that there is an integer $n \geqslant 0$ such that $24 n+11$ is a square. Thus, we deduce that $24 n+11=(2 k+1)^{2}$ or $12 n+5=2 k^{2}+2 k$. This identity is not possible, because $12 n+5$ is odd and $2 k^{2}+2 k$ is even. It is clear that $24 n+11$ cannot be a square. Similarly, it can be proved that $24 n+19$ is not a square. For all $n \geqslant 0$, we deduce that

$$
\sigma_{0}(8(9 n+4)+1)=\sigma_{0}(72 n+33)=\sigma_{0}(3) \sigma_{0}(24 n+11) \equiv 0 \quad(\bmod 4)
$$

and

$$
\sigma_{0}(8(9 n+7)+1)=\sigma_{0}(72 n+57)=\sigma_{0}(3) \sigma_{0}(24 n+19) \equiv 0 \quad(\bmod 4)
$$

STEP 4. Considering that

$$
\begin{aligned}
& \sigma_{0}(8(9 \times 1+0)+1) \equiv \sigma_{0}(8(9 \times 2+1)+1) \equiv \sigma_{0}(8(9 \times 0+2)+1) \\
& \quad \equiv \sigma_{0}(8(9 \times 1+3)+1) \equiv \sigma_{0}(8(9 \times 0+5)+1) \equiv \sigma_{0}(8(9 \times 2+6)+1) \\
& \quad \equiv \sigma_{0}(8(9 \times 1+8)+1) \equiv 2 \quad(\bmod 4)
\end{aligned}
$$

the proof is finished.
(ii).

STEP 1. We have $(8 \times 8+1) / 5=13,(8 \times 13+1) / 5=21,(8 \times 18+1) / 5=29$ and $(8 \times 23+1) / 5=37$.

STEP 2. For all $n \geqslant 0$, it is clear that $\operatorname{gcd}(5,40 n+13)=1, \operatorname{gcd}(5,40 n+21)=1$, $\operatorname{gcd}(5,40 n+29)=1$ and $\operatorname{gcd}(5,40 n+37)=1$.

STEP 3. We suppose that there is an integer $n \geqslant 0$ such that $40 n+13$ is a square. Thus, we deduce that $40 n+13=(2 k+1)^{2}$ or $10 n+3=k^{2}+k$. This identity is not possible, because $10 n+3$ is odd and $k^{2}+k$ is even. It is clear that $40 n+13$ cannot be a square. Similarly, it can be proved that $40 n+21,40 n+29$ and $40 n+37$ are not squares. For $\beta \in \mathcal{B}_{1,5}$ and $n \geqslant 0$, we deduce that

$$
\sigma_{0}(200 n+8 \beta+1)=\sigma_{0}(5) \sigma_{0}\left(40 n+\frac{8 \beta+1}{5}\right) \equiv 0 \quad(\bmod 4)
$$

STEP 4. For $\beta \in\{0,1, \ldots, 24\} \backslash\left\{\mathcal{B}_{1,5} \cup\{4,7,16,20,22\}\right\}$, it is not difficult to check that $\sigma_{0}(8(25 \times 0+\beta)+1)$ is not congruent to $0 \bmod 4$. In addition, for $\beta \in\{4,7,20\}$, we have $\sigma_{0}(8(25 \times 1+\beta)+1) \not \equiv 0(\bmod 4)$. For $\beta \in\{16,22\}$, we see that $\sigma_{0}(8(25 \times 2+\beta)+1)$ is not congruent to $0 \bmod 4$. The proof is finished.

Proof of Theorem 4.

(i).

Step 1. We have $(8 \times 6+3) / 3=17$.
STEP 2. For all $n \geqslant 0$, it is clear that $\operatorname{gcd}(3,24 n+17)=1$.

STEP 3. We suppose that there is an integer $n \geqslant 0$ such that $24 n+17$ is a square. Thus, we deduce that $24 n+17=(2 k+1)^{2}$ or $3 n+2=k(k+1) / 2$. On the other hand,

$$
\frac{k(k+1)}{2} \equiv\left\{\begin{array}{lll}
1 & (\bmod 3), & \text { if } k \equiv 1 \quad(\bmod 3) \\
0 & (\bmod 3), & \text { otherwise }
\end{array}\right.
$$

It is clear that $24 n+17$ cannot be a square. For all $n \geqslant 0$, we deduce that

$$
\sigma_{0}(8(9 n+6)+3)=\sigma_{0}(72 n+51)=\sigma_{0}(3) \sigma_{0}(24 n+17) \equiv 0 \quad(\bmod 4)
$$

STEP 4. Taking into account that

$$
\begin{aligned}
& \sigma_{0}(8(9 \times 0+0)+3) \equiv \sigma_{0}(8(9 \times 0+1)+3) \equiv \sigma_{0}(8(9 \times 0+2)+3) \\
& \quad \equiv \sigma_{0}(8(9 \times 1+3)+3) \equiv \sigma_{0}(8(9 \times 1+4)+3) \equiv \sigma_{0}(8(9 \times 0+5)+3) \\
& \quad \equiv \sigma_{0}(8(9 \times 0+7)+3) \equiv \sigma_{0}(8(9 \times 0+8)+3) \equiv 2 \quad(\bmod 4)
\end{aligned}
$$

the proof is finished.
(ii).

STEP 1. We have $(8 \times 4+3) / 5=7,(8 \times 14+3) / 5=23,(8 \times 19+3) / 5=31$ and $(8 \times 24+4) / 5=39$.

STEP 2. For all $n \geqslant 0$, it is clear that $\operatorname{gcd}(5,40 n+7)=1, \operatorname{gcd}(5,40 n+23)=1$, $\operatorname{gcd}(5,40 n+31)=1$ and $\operatorname{gcd}(5,40 n+39)=1$.

STEP 3. We suppose that there is an integer $n \geqslant 0$ such that $40 n+7$ is a square. Thus, we deduce that $40 n+7=(2 k+1)^{2}$ or $20 n+3=2 k^{2}+2 k$. This identity is not possible, because $20 n+3$ is odd and $2 k^{2}+2 k$ is even. It is clear that $20 n+3$ cannot be a square. Similarly, it can be proved that $40 n+23,40 n+31$ and $40 n+39$ are not squares. For $\beta \in \mathcal{B}_{3,5}$ and $n \geqslant 0$, we deduce that

$$
\sigma_{0}(200 n+8 \beta+3)=\sigma_{0}(5) \sigma_{0}\left(40 n+\frac{8 \beta+3}{5}\right) \equiv 0 \quad(\bmod 4)
$$

STEP 4. For $\beta \in\{0,1, \ldots, 24\} \backslash\left\{\mathcal{B}_{3,5} \cup\{3,6,11,15,23\}\right\}$, it is not difficult to check that $\sigma_{0}(8(25 \times 0+\beta)+3)$ is not congruent to $0 \bmod 4$. In addition, for $\beta \in\{3,6,23\}$, we have $\sigma_{0}(8(25 \times 1+\beta)+3) \not \equiv 0(\bmod 4)$. For $\beta \in\{11,15\}$, we see that $\sigma_{0}(8(25 \times 2+\beta)+3)$ is not congruent to $0 \bmod 4$. The proof is finished.

Proof of Theorem 5.

(i).

Step 1. We have $(8 \times 2+5) / 3=7$ and $(8 \times 8+5) / 3=23$.
STEP 2. For all $n \geqslant 0$, it is clear that $\operatorname{gcd}(3,24 n+7)=1$ and $\operatorname{gcd}(3,24 n+23)=1$.
STEP 3. We suppose that there is an integer $n \geqslant 0$ such that $24 n+7$ is a square. Thus, we deduce that $24 n+7=(2 k+1)^{2}$ or $12 n+3=2 k^{2}+2 k$. This identity is not possible, because $12 n+3$ is odd and $2 k^{2}+2 k$ is even. It is clear that $24 n+7$ cannot be a square. Similarly, it can be proved that $24 n+23$ is not a square. For all $n \geqslant 0$, we deduce that

$$
\sigma_{0}(8(9 n+2)+5)=\sigma_{0}(72 n+21)=\sigma_{0}(3) \sigma_{0}(24 n+7) \equiv 0 \quad(\bmod 4)
$$

and

$$
\sigma_{0}(8(9 n+8)+5)=\sigma_{0}(72 n+69)=\sigma_{0}(3) \sigma_{0}(24 n+23) \equiv 0 \quad(\bmod 4)
$$

STEP 4. For $\beta \in\{0,1, \ldots, 8\} \backslash \mathcal{B}_{5,3}$, it is not difficult to check that $\sigma_{0}(8(9 \times 0+\beta)+5)$ is congruent to $2 \bmod 4$. The proof is finished.
(ii).

STEP 1. We have $(8 \cdot 10+5) / 5=17$ and $(8 \cdot 20+5) / 5=33$.
STEP 2. For all $n \geqslant 0$, it is clear that $\operatorname{gcd}(5,40 n+17)=1$ and $\operatorname{gcd}(5,40 n+33)=1$.

Step 3. We suppose that there is an integer $n \geqslant 0$ such that $40 n+17$ is a square. Thus, we deduce that $40 n+17=(2 k+1)^{2}$ or $5 n+2=k(k+1) / 2$. On the other hand,

$$
\frac{k(k+1)}{2} \equiv\left\{\begin{array}{lll}
3 & (\bmod 5), & \text { if } k \equiv 2 \quad(\bmod 5) \\
1 & (\bmod 5), & \text { if } k \equiv\{1,3\} \quad(\bmod 5) \\
0 & (\bmod 5), & \text { otherwise }
\end{array}\right.
$$

It is clear that $40 n+17$ cannot be a square. Similarly, we suppose that there is an integer $n \geqslant 0$ such that $40 n+33$ is a square. Thus, we deduce that $40 n+33=(2 k+1)^{2}$ or $5 n+4=k(k+1) / 2$. Because $k(k+1) / 2 \not \equiv 4 \bmod 5$, this identity is not possible. For $\beta \in \mathcal{B}_{5,5}$ and $n \geqslant 0$, we deduce that

$$
\sigma_{0}(200 n+8 \beta+5)=\sigma_{0}(5) \sigma_{0}\left(40 n+\frac{8 \beta+5}{5}\right) \equiv 0 \quad(\bmod 4)
$$

Step 4. For $\beta \in\{0,1, \ldots, 24\} \backslash\left\{\mathcal{B}_{5,5} \cup\{2,8,9,11,15,16,17,23\}\right\}$, it is not difficult to check that $\sigma_{0}(8(25 \times 0+\beta)+5)$ is congruent to $2 \bmod 4$. In addition, for $\beta \in$ $\{8,9,11,15,16,23\}$, we have $\sigma_{0}(8(25 \times 1+\beta)+5) \equiv 2(\bmod 4)$. For $\beta \in\{2,17\}$, we see that $\sigma_{0}(8(25 \times 2+\beta)+5)$ is congruent to $2 \bmod 4$. The proof is finished.

It seems that the approach outlined in Steps 1, 2 and 4 can be easily automated. Unfortunately, we cannot say the same about Step 3 because we do not have a criterion which establishes the parity of $(8 \beta+r) / p$. Is the number $(8 \beta+r) / p$ always odd? When $(8 \beta+r) / p$ is an odd number, we need to investigate identities of the form

$$
8 p n+\frac{8 \beta+r}{p}-1=4 k(k+1) .
$$

When $(8 \beta+r) / p$ is an even number, we need to investigate identities of the form

$$
8 p n+\frac{8 \beta+r}{p}=4 k^{2} .
$$

Can the investigation of these identities be automated? We do not have an answer to this question yet.

3. Some Ramanujan-Type Congruences

Let $a(n)$ be a sequence of integers defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(n) q^{n}=\prod_{\delta \mid M}\left(q^{\delta} ; q^{\delta}\right)_{\infty}^{r_{\delta}} \tag{4}
\end{equation*}
$$

where M is a positive integer and r_{δ} are integers. Based on the ideas of Rademacher [22], Newman [23,24] and Kolberg [25], Radu [26] developed in 2009 an algorithm to verify the congruences

$$
a(m n+t) \equiv 0 \quad(\bmod u)
$$

for any given m, t and u, and for all $n \geqslant 0$.
In 2015, Radu [27] constructed an algorithm, called the Ramanujan-Kolberg algorithm, to derive identities on the generating functions of $a(m n+t)$ using modular functions for $\Gamma_{0}(N)$. A description of the Ramanujan-Kolberg algorithm can be found in Paule and Radu [28]. Recently, Smoot [29] provided a successful Mathematica implementation of Radu's algorithm. This package is called RaduRK.

In this section, we use the RaduRK package to obtain some Ramanujan-type congruences for the overpartition functions $\bar{p}(n)$ and $\overline{p_{o}}(n)$. According to Theorems 2 and 3, we can write the following result.

Corollary 1. For $n \equiv\{4,7\}(\bmod 9)$ or $n \equiv\{8,13,18,23\}(\bmod 25)$, we have

$$
\overline{p_{o}}(8 n+1) \equiv 0 \quad(\bmod 8) .
$$

Upon reflection, one expects that there might be a stronger result.

Theorem 6.

(i) For all $n \equiv\{4,7\}(\bmod 9)$, we have

$$
\overline{p_{o}}(8 n+1) \equiv 0 \quad(\bmod 24)
$$

(ii) For all $n \equiv\{8,13,18,23\}(\bmod 25)$, we have

$$
\overline{p_{o}}(8 n+1) \equiv 0 \quad(\bmod 32)
$$

Proof. The generating function for $\overline{p_{o}}(n)$ can be written as

$$
\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}}
$$

This can be described by setting $M=4$ and $r_{1}=-2, r_{2}=3, r_{4}=-1$.
(i) Considering the RaduRK program with

$$
\operatorname{RK}[12,4,\{-2,3,-1\}, 72,33]
$$

and

$$
\operatorname{RK}[12,4,\{-2,3,-1\}, 72,57],
$$

we deduce that

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(72 n+33) q^{n} \equiv 0 \quad(\bmod 24)
$$

and

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(72 n+57) q^{n} \equiv 0 \quad(\bmod 24)
$$

(ii) To obtain the second congruence identity, we consider the RaduRK program with

$$
\operatorname{RK}[2,4,\{-2,3,-1\}, 200,65]
$$

and

$$
\operatorname{RK}[2,4,\{-2,3,-1\}, 200,105] .
$$

We deduce that

$$
\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+65) q^{n}\right)\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+185) q^{n}\right) \equiv 0 \quad\left(\bmod 2^{10}\right)
$$

and

$$
\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+105) q^{n}\right)\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+145) q^{n}\right) \equiv 0 \quad\left(\bmod 2^{10}\right)
$$

Having

$$
\begin{aligned}
& \overline{p_{o}}(65)=2^{5} \times 16851, \\
& \overline{p_{o}}(200+105)=2^{5} \times 6293025198351, \\
& \overline{p_{o}}(145)=2^{5} \times 64201703, \\
& \overline{p_{o}}(185)=2^{5} \times 1713260289,
\end{aligned}
$$

for $\alpha \in\{65,105,145,185\}$, we notice that

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+\alpha) q^{n} \not \equiv 0 \quad\left(\bmod 2^{6}\right)
$$

and

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+\alpha) q^{n} \equiv 0 \quad\left(\bmod 2^{5}\right)
$$

This concludes the proof.
According to Theorems 1, 2 and 4, we can write the following result.
Corollary 2. For $n \equiv 6(\bmod 9)$ or $n \equiv\{4,14,19,24\}(\bmod 25)$, we have

$$
\bar{p}(8 n+3) \equiv 0 \quad(\bmod 16) \quad \text { and } \quad \overline{p_{o}}(8 n+3) \equiv 0 \quad(\bmod 8)
$$

There are stronger results.

Theorem 7.

(i) For all $n \equiv 6(\bmod 9)$, we have

$$
\overline{p_{o}}(8 n+3) \equiv 0 \quad(\bmod 24)
$$

(ii) For all $n \equiv\{4,14,19,24\}(\bmod 25)$, we have

$$
\overline{p_{o}}(8 n+3) \equiv 0 \quad(\bmod 64)
$$

Proof. (i) To obtain the first congruence identity, we consider the RaduRK program with

$$
\operatorname{RK}[4,4,\{-2,3,-1\}, 72,51]
$$

and obtain

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(72 n+51) q^{n} \equiv 0 \quad(\bmod 24)
$$

(ii) To obtain the second congruence identity, we consider again the RaduRK program with

$$
\operatorname{RK}[2,4,\{-2,3,-1\}, 200,35]
$$

and

$$
\operatorname{RK}[2,4,\{-2,3,-1\}, 200,155] .
$$

These give us

$$
\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+35) q^{n}\right)\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+115) q^{n}\right) \equiv 0 \quad\left(\bmod 2^{12}\right)
$$

and

$$
\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+155) q^{n}\right)\left(\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+195) q^{n}\right) \equiv 0 \quad\left(\bmod 2^{12}\right) .
$$

Having

$$
\begin{aligned}
& \overline{p_{o}}(35)=2^{6} \times 113, \\
& \overline{p_{o}}(115)=2^{6} \times 2041219, \\
& \overline{p_{o}}(200+155)=2^{6} \times 59890735496633, \\
& \overline{p_{o}}(195)=2^{6} \times 1844065971,
\end{aligned}
$$

for $\alpha \in\{35,115,155,195\}$, we notice that

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+\alpha) q^{n} \not \equiv 0 \quad\left(\bmod 2^{7}\right)
$$

and

$$
\sum_{n=0}^{\infty} \overline{p_{o}}(200 n+\alpha) q^{n} \equiv 0 \quad\left(\bmod 2^{6}\right) .
$$

This concludes the proof.
Theorem 8. For all $n \equiv\{19,24\}(\bmod 25)$, we have

$$
\bar{p}(8 n+3) \equiv 0 \quad(\bmod 160)
$$

Proof. To obtain this congruence identity, we consider the RaduRK program with

$$
\operatorname{RK}[2,2,\{-2,1\}, 200,155] .
$$

This gives us

$$
\left(\sum_{n=0}^{\infty} \bar{p}(200 n+155) q^{n}\right)\left(\sum_{n=0}^{\infty} \bar{p}(200 n+195) q^{n}\right) \equiv 0 \quad(\bmod 25600) .
$$

Having

$$
\begin{aligned}
& 25600=2^{10} \times 5^{2} \\
& \bar{p}(155)=2^{5} \times 5 \times 3^{2} \times 13 \times 1693 \times 2402791 \\
& \bar{p}(195)=2^{5} \times 5 \times 3 \times 6091 \times 2417744023,
\end{aligned}
$$

for $\alpha \in\{155,195\}$, we notice that

$$
\sum_{n=0}^{\infty} \bar{p}(200 n+\alpha) q^{n} \not \equiv 0 \quad\left(\bmod 2^{6}\right)
$$

and

$$
\sum_{n=0}^{\infty} \bar{p}(200 n+\alpha) q^{n} \not \equiv 0 \quad\left(\bmod 5^{2}\right) .
$$

Thus, for $\alpha \in\{155,195\}$, we deduce that

$$
\sum_{n=0}^{\infty} \bar{p}(200 n+\alpha) q^{n} \equiv 0 \quad\left(\bmod 2^{5} \cdot 5\right)
$$

This concludes the proof.
According to Theorems 1 and 5, we can write the following result.
Corollary 3. For $n \equiv\{2,8\}(\bmod 9)$ or $n \equiv\{10,20\}(\bmod 25)$, we have

$$
\bar{p}(8 n+5) \equiv 0 \quad(\bmod 16)
$$

There are stronger results.
Theorem 9. For all $n \equiv 8(\bmod 9)$, we have

$$
\bar{p}(8 n+5) \equiv 0 \quad(\bmod 32) .
$$

Proof. To obtain this congruence identity, we consider the RaduRK program with

$$
\operatorname{RK}[2,2,\{-2,1\}, 72,69] .
$$

This gives us

$$
\sum_{n=0}^{\infty} \bar{p}(72 n+69) q^{n} \equiv 0 \quad(\bmod 32)
$$

4. Open Problems and Concluding Remarks

In this paper, we show that each odd prime generates four families of Ramanujan-type congruences modulo 4 for the number of divisors. Assuming Conjecture 1, the algorithm for generating $\mathcal{B}_{r, p}$ is not difficult because $8 \beta+r$ must be a multiple of the odd prime p. Related to the case $r=1$ of Conjecture 4, we remark that there is a substantial amount of numerical evidence to conjecture the following.

Conjecture 5. If n is an integer that is not the difference between a triangular number and a square number, then

$$
\sigma_{0}(8 n+1) \equiv 0 \quad(\bmod 4)
$$

We focused on the cases (α, β), where α is the square of an odd prime. When α is a multiple of the square of an odd prime, we can derive other pairs $\left(\alpha^{\prime}, \beta^{\prime}\right)$ for which the statement (3) is true. For example, considering $\mathcal{B}_{1,3}=\{4,7\}$, we easily deduce that the statement (3) is true if

$$
\begin{array}{r}
(\alpha, \beta) \in\{(81,4),(81,7),(81,13),(81,16),(81,22),(81,25), \\
(81,31),(81,34),(81,40),(81,43),(81,49),(81,52), \\
(81,58),(81,61),(81,67),(81,70),(81,76),(81,79)\} .
\end{array}
$$

We remark that there are two pairs, $(81,37)$ and $(81,64)$, which cannot be derived from the pairs $(9,4)$ or $(9,7)$. In addition, we remark that

$$
\sigma_{0}(8(81 n+37)+1)=\sigma_{0}(27(24 n+11)) \equiv 0 \quad(\bmod 8)
$$

and

$$
\sigma_{0}(8(81 n+64)+1)=\sigma_{0}(27(24 n+19)) \equiv 0 \quad(\bmod 8)
$$

for all $n \geqslant 0$. The proof of these congruences follows easily if we consider that

$$
\operatorname{gcd}(27,24 n+11) \quad \text { and } \quad \operatorname{gcd}(27,24 n+19)=1
$$

for all $n \geqslant 0$. Moreover, $24 n+11$ and $24 n+19$ cannot be squares.

The study of congruences of the form

$$
\sigma_{0}(8 n+r) \equiv 0 \quad\left(\bmod 2^{k}\right)
$$

with $r \in\{1,3,5,7\}$, can be a very appealing topic. In analogy with (3), we can consider the following statement:

$$
\begin{equation*}
\text { For all } n \geqslant 0, \quad \sigma_{0}(8(\alpha n+\beta)+r) \equiv 0 \quad\left(\bmod 2^{k}\right) \tag{5}
\end{equation*}
$$

There is a substantial amount of numerical evidence to state the following generalization of Conjecture 1.

Conjecture 6. If the statement (5) is true, then there is a sequence of odd prime numbers, $p_{1} \leqslant p_{2} \leqslant \ldots \leqslant p_{k-1}$, such that α is divisible by $\left(p_{1} p_{2} \cdots p_{k-1}\right)^{2}$ and $8 \beta+r$ is divisible by $p_{1} p_{2} \cdots p_{k-1}$.

On the other hand, our investigations indicate that Conjecture 6 can be generalized if we consider congruences of the form

$$
\sigma_{0}(\alpha n+\beta) \equiv 0 \quad\left(\bmod 2^{k}\right)
$$

In analogy with (5), we can consider the following statement:

$$
\begin{equation*}
\text { For all } n \geqslant 0, \quad \sigma_{0}(\alpha n+\beta) \equiv 0 \quad\left(\bmod 2^{k}\right) \tag{6}
\end{equation*}
$$

We state the following generalization of Conjecture 6.
Conjecture 7. If the statement (6) is true, then there is a sequence of prime numbers, $p_{1} \leqslant p_{2} \leqslant$ $\ldots \leqslant p_{k-1}$, such that α is divisible by $\left(p_{1} p_{2} \cdots p_{k-1}\right)^{2}$ and β is divisible by $p_{1} p_{2} \cdots p_{k-1}$.

Because $\sigma_{0}(n)$ is a multiplicative function, these conjectures motivate the question of identifying all Ramanujan-type congruences for multiplicative functions.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Corteel, S.; Lovejoy, J. Overpartitions. Trans. Amer. Math. Soc. 2004, 356, 1623-1635. [CrossRef]
2. Chen, W.Y.C.; Sun, L.H.; Wang, R.-H.; Zhang, L. Ramanujan-type congruences for overpartitions modulo 5. J. Number Theory 2015, 148, 62-72. [CrossRef]
3. Chen, W.Y.C.; Hou, Q.-H.; Sun, L.H.; Zhang, L. Ramanujan-type congruences for overpartitions modulo 16. J. Number Theory 2016, 40, 311-322. [CrossRef]
Chern, S.; Dastidar, M.G. Some congruences modulo 5 and 25 for overpartitions. Ramanujan J. 2018, 47, 435-445. [CrossRef]
Dou, D.Q.J.; Lin, B.L.S. New Ramanujan type congruences modulo 5 for overpartitions. Ramanujan J. 2017, 44, 401-410. [CrossRef] Fortin, J.-F.; Jacob, P.; Mathieu, P. Jagged partitions. Ramanujan J. 2005, 10, 215-235. [CrossRef] Hirschhorn, M.D.; Sellers, J.A. Arithmetic relations for overpartitions. J. Combin. Math. Combin. Comp. 2005, 53, 65-73.
Kim, B. The overpartition function modulo 128. Integers 2008, 8, \#A38.
Kim, B. A short note on the overpartition function. Discret. Math. 2009, 309, 2528-2532. [CrossRef]
Lovejoy, J.; Osburn, R. Quadratic forms and four partition functions modulo 3. Integers 2011, 11, \#A4. [CrossRef]
Mahlburg, K. The overpartition function modulo small powers of 2. Discrete Math. 2004, 286, 263-267. [CrossRef]
4. Xia, E.X.W. Congruences modulo 9 and 27 for overpartitions. Ramanujan J. 2017, 42, 301-323. [CrossRef]
5. Xiong, X. Overpartition function modulo 16 and some binary quadratic forms. Int. J. Number Theory 2016, 12, 1195-1208. [CrossRef]
6. Yao, O.X.M.; Xia, E.X.W. New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions. Ramanujan J. 2013, 133, 1932-1949. [CrossRef]
7. Merca, M. A further look at a complete characterization of Ramanujan-type congruences modulo 16 for overpartitions. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2019, 20, 329-335.
8. Lebesgue, V.A. Sommation de quelques séeries. J. Math. Pure. Appl. 1840, 5, 42-71.
9. Bessenrodt, C. On pairs of partitions with steadily decreasing parts. J. Combin. Theory Ser. A 2002, 99, 162-174. [CrossRef]
10. Santos, J.P.O.; Sills, D. q-Pell sequences and two identities of VA Lebesgue. Discret. Math. 2002, 257, 125-142. [CrossRef]
11. Chen, S.-C. On the number of overpartitions into odd parts. Discret. Math. 2014, 325, 32-37. [CrossRef]
12. Hirschhorn, M.D.; Sellers, J.A. Arithmetic Properties of Overpartitions into Odd Parts. Ann. Comb. 2006, 10, 353-367. [CrossRef]
13. Merca, M. On the Ramanujan-type congruences modulo 8 for the overpartitions into odd parts. Quaest. Math. 2021. Available online: https:/ / www.tandfonline.com/doi/abs/10.2989/16073606.2021.1966543 (accessed on 1 July 2022).
14. Rademacher, H. The Ramanujan identities under modular substitutions. Trans. Amer. Math. Soc. 1942, 51, 609-636. [CrossRef]
15. Newman, M. Construction and application of a class of modular functions. Proc. Lond. Math. Soc. 1957, 7, 334-350. [CrossRef]
16. Newman, M. Construction and application of a class of modular functions (II). Proc. Lond. Math. Soc. 1957, 9, 373-387. [CrossRef]
17. Kolberg, O. Some identities involving the partition function. Math. Scand. 1957, 5, 77-92. [CrossRef]
18. Radu, S. An algorithmic approach to Ramanujan's congruences. Ramanujan J. 2009, 20, 215-251. [CrossRef]
19. Radu, C.-S. An algorithmic approach to Ramanujan-Kolberg identities. J. Symb. Comput. 2015, 68, 225-253. [CrossRef]
20. Paule, P.; Radu, C.-S. Partition analysis, modular functions, and computer algebra. In Recent Trends in Combinatorics; Beveridge, A., Griggs, J.R., Hogben, L., Musiker, G., Tetali, P., Eds.; Springer: Cham, Germany, 2016; pp. 511-543.
21. Smoot, N.A. On the computation of identities relating partition numbers in arithmetic progressions with eta quotients: An implementation of Radu's algorithm. J. Symb. Comput. 2021, 104, 276-311. [CrossRef]
