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Abstract: In this paper, we explore Ramanujan-type congruences modulo 4 for the function σ0(n),
counting the positive divisors of n. We consider relations of the form σ0

(
8(αn + β) + r

)
≡ 0 (mod 4),

with (α, β) ∈ N2 and r ∈ {1, 3, 5, 7}. In this context, some conjectures are made and some Ramanujan-
type congruences involving overpartitions are obtained.
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1. Introduction

Recall [1] that an overpartition of the positive integer n is an ordinary partition of
n where the first occurrence of parts of each size may be overlined. Let p(n) denote the
number of overpartitions of n. For example, the overpartitions of the integer 3 are:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1 and 1 + 1 + 1.

We see that p(3) = 8. It is well-known that the generating function of p(n) is given by

∞

∑
n=0

p(n)qn =
(−q; q)∞

(q, q)∞
.

Here and throughout this paper, we use the following customary q-series notation:

(a; q)n =

{
1, for n = 0,
(1− a)(1− aq) · · · (1− aqn−1), for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n.

Many congruences for the number of overpartitions have been discovered in the recent
years by authors such as Chen [2], Chen, Hou, Sun and Zhang [3], Chern and Dastidar [4],
Dou and Lin [5], Fortin, Jacob and Mathieu [6], Hirschhorn and Sellers [7], Kim [8,9],
Lovejoy and Osburn [10], Mahlburg [11], Xia [12], Xiong [13] and Yao and Xia [14].

Fortin, Jacob and Mathieu [6] founded in 2003 the first Ramanujan-type congruences
modulo power of 2 for p(n) and for all n that cannot be written as a sum of s or less squares,
they obtained that

p(n) ≡ 0 (mod 2s+1). (1)

This result is meaningful only for s < 4 since, by Lagrange’s four-square theorem,
all numbers can be written as a sum of four squares. A complete characterization of
Ramanujan-type congruences modulo 16 for the overpartition function p(n) was provided
in 2019 using the function σ0(n) that counts the positive divisors of n [15]. By the proofs of
Theorems 1.3 and 1.4 in [15], we easily deduce the following result.
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Theorem 1. Let r ∈ {3, 5} be a fixed integer. For all n > 0, we have

p(8n + r) ≡ 0 (mod 16) ⇐⇒ σ0(8n + r) ≡ 0 (mod 4).

In this paper, apart from p(n), we consider the overpartition function po(n) that
counts the overpartitions of n into odd parts. The generating function for the number of
overpartitions into odd parts is given by

∞

∑
n=0

po(n)qn =
(−q; q2)∞

(q; q2)∞
. (2)

The expression of the generating function for po(n) was first used by Lebesgue [16] in
1840 in the following series-product identity

∞

∑
n=0

(−1; q)nqn(n+1)/2

(q; q)n
=

(−q; q2)∞

(q; q2)∞
.

Although authors such as Bessenrodt [17], Santos and Sills [18] utilized more recently the
generating function (2) for po(n), none of them connected their works to overpartitions
into odd parts.

Many congruences for the number of overpartitions into odd parts have been discov-
ered lately [19,20]. It appears that the first Ramanujan-type congruences modulo power of 2
for po(n) was found in 2006 by Hirschhorn and Sellers [20]. Very recently, Theorem 1 in [21],
we introduced a complete characterization of Ramanujan-type congruences modulo 8 for
the overpartition function po(n) considering again the divisor function σ0(n). By the proof
of Theorem 1 in [21], we easily deduce the following result.

Theorem 2. Let r ∈ {1, 3} be a fixed integer. For all n > 0, we have

po(8n + r) ≡ 0 (mod 8) ⇐⇒ σ0(8n + r) ≡ 0 (mod 4).

Theorems 1 and 2 may be viewed as steps towards classifying all Ramanujan-type con-
gruences for overpartitions, particularly because the divisibility properties of multiplicative
functions are more directly accessible with elementary methods than those of functions
defined in terms of partitions. Recall that a multiplicative function is an arithmetic function
f (n) of a positive integer n with the property that f (1) = 1 and f (ab) = f (a) f (b) whenever
a and b are coprime.

In this paper, motivated by Theorems 1 and 2, we consider r ∈ {1, 3, 5, 7} to be a fixed
integer and investigate pairs (α, β) of positive integers for which the following statement
is true:

For all n > 0, σ0
(
8(α n + β) + r

)
≡ 0 (mod 4). (3)

There is a substantial amount of numerical evidence to conjecture the following.

Conjecture 1. If the statement (3) is true, then there is an odd prime p such that α is divisible by
p2 and 8β + r is divisible by p.

Since a multiplicative function is defined by its values at prime powers, this conjecture
boils down to understanding how the divisibility properties of the divisor function σ0(n)
at prime powers intersect with arithmetic progressions.

If the statement (3) is true for (α, β), then the statement (3) is true for any pair (kα, bα +
β), with k ∈ N and b ∈ {0, 1, . . . , k− 1}. To prove this fact, it is enough to replace n by
kn + b in (3). This makes us not very attracted to cases where α is not a square of an
odd prime.
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Definition 1. For each odd prime p, we define Br,p to be the set of nonnegative integers β < p2

such that
σ0
(
8(p2n + β) + r

)
≡ 0 (mod 4),

for all nonnegative integers n.

Assuming Conjecture 1, we state the following.

Conjecture 2. For each odd prime p, we have

|B1,p| =
{

p− 1, if p− 1 is cubefree,
(p− 1)/2, otherwise.

Conjecture 3. Let r ∈ {3, 5, 7} be a fixed integer. For each odd prime p, we have

|Br,p| =
{
(p− 1)/2, if p ≡ r (mod 8),
p− 1, otherwise.

Conjecture 4. Let r ∈ {1, 3, 5, 7} be a fixed integer. Then,

⋃
p odd prime

Br,p = {n ∈ N : σ0(8n + r) ≡ 0 (mod 4)} \
{
{3}, if r = 3,
∅, otherwise.

Assuming the last conjecture, we remark that there is not an odd prime p such that

σ0(8p2n + 27) ≡ 0 (mod 4),

for all nonnegative integers n.
In this paper, we consider some special cases of our conjectures and present a strategy

for proving them. These special cases together with our Theorems 1 and 2 allow us to easily
obtain some Ramanujan-type congruences for the overpartition functions p(n) and po(n).
Somewhat unrelated to our topics, we will show that these congruences are precursors of
stronger congruences. In fact, these stronger congruences were discovered considering few
Ramanujan-type congruences modulo 4 for the divisor function σ0(n).

2. Some Special Cases

This section is devoted to the presentation of the proof strategy of some special cases
of Conjectures 2 and 3 listed bellow. We will rely on the fact that the divisor function σ0(n)
is a multiplicative function.

Theorem 3.

(i) B1,3 = {4, 7};
(ii) B1,5 = {8, 13, 18, 23}.

Theorem 4.

(i) B3,3 = {6};
(ii) B3,5 = {4, 14, 19, 24}.

Theorem 5.

(i) B5,3 = {2, 8};
(ii) B5,5 = {10, 20}.

To proof these identities, the following steps have to be performed.
STEP 1. The first step in all our proofs is to verify that for each β ∈ Br,p, (8β+ r)/p ∈ N.
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STEP 2. For each β ∈ Br,p, we prove that gcd(p, 8pn + (8β + r)/p) = 1, for all n > 0.
STEP 3. For each β ∈ Br,p, we prove that 8pn + (8β + r)/p is not a square, for all n > 0.

Thus, for each β ∈ Br,p, we deduce that

σ0(8p2n + 8β + r) = σ0(p) σ0

(
8pn +

8β + r
p

)
≡ 0 (mod 4).

STEP 4. For each β ∈ {0, 1, 2, . . . , p2 − 1} \ Br,p, we show that there is an integer n
such that

σ0(8p2n + 8β + r) 6≡ 0 (mod 4).

Now, we provide full details for the proofs of Theorems 3–5.

Proof of Theorem 3.
(i).
STEP 1. We have (8× 4 + 1)/3 = 11 and (8× 7 + 1)/3 = 19.
STEP 2. For all n > 0, it is clear that gcd(3, 24n + 11) = 1 and gcd(3, 24n + 19) = 1.
STEP 3. We suppose that there is an integer n > 0 such that 24n + 11 is a square. Thus,

we deduce that 24n + 11 = (2k + 1)2 or 12n + 5 = 2k2 + 2k. This identity is not possible,
because 12n + 5 is odd and 2k2 + 2k is even. It is clear that 24n + 11 cannot be a square.
Similarly, it can be proved that 24n + 19 is not a square. For all n > 0, we deduce that

σ0
(
8(9n + 4) + 1

)
= σ0(72n + 33) = σ0(3) σ0(24n + 11) ≡ 0 (mod 4)

and
σ0
(
8(9n + 7) + 1

)
= σ0(72n + 57) = σ0(3) σ0(24n + 19) ≡ 0 (mod 4).

STEP 4. Considering that

σ0
(
8(9× 1 + 0) + 1

)
≡ σ0

(
8(9× 2 + 1) + 1

)
≡ σ0

(
8(9× 0 + 2) + 1

)
≡ σ0

(
8(9× 1 + 3) + 1

)
≡ σ0

(
8(9× 0 + 5) + 1

)
≡ σ0

(
8(9× 2 + 6) + 1

)
≡ σ0

(
8(9× 1 + 8) + 1

)
≡ 2 (mod 4),

the proof is finished.
(ii).
STEP 1. We have (8× 8 + 1)/5 = 13, (8× 13 + 1)/5 = 21, (8× 18 + 1)/5 = 29 and

(8× 23 + 1)/5 = 37.
STEP 2. For all n > 0, it is clear that gcd(5, 40n + 13) = 1, gcd(5, 40n + 21) = 1,

gcd(5, 40n + 29) = 1 and gcd(5, 40n + 37) = 1.
STEP 3. We suppose that there is an integer n > 0 such that 40n + 13 is a square.

Thus, we deduce that 40n + 13 = (2k + 1)2 or 10n + 3 = k2 + k. This identity is not
possible, because 10n + 3 is odd and k2 + k is even. It is clear that 40n + 13 cannot be a
square. Similarly, it can be proved that 40n + 21, 40n + 29 and 40n + 37 are not squares. For
β ∈ B1,5 and n > 0, we deduce that

σ0(200n + 8β + 1) = σ0(5) σ0

(
40n +

8β + 1
5

)
≡ 0 (mod 4).

STEP 4. For β ∈ {0, 1, . . . , 24} \
{
B1,5 ∪ {4, 7, 16, 20, 22}

}
, it is not difficult to check that

σ0
(
8(25× 0 + β) + 1

)
is not congruent to 0 mod 4. In addition, for β ∈ {4, 7, 20}, we have

σ0
(
8(25× 1 + β) + 1

)
6≡ 0 (mod 4). For β ∈ {16, 22}, we see that σ0

(
8(25× 2 + β) + 1

)
is

not congruent to 0 mod 4. The proof is finished.

Proof of Theorem 4.
(i).
STEP 1. We have (8× 6 + 3)/3 = 17.
STEP 2. For all n > 0, it is clear that gcd(3, 24n + 17) = 1.
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STEP 3. We suppose that there is an integer n > 0 such that 24n + 17 is a square. Thus,
we deduce that 24n + 17 = (2k + 1)2 or 3n + 2 = k(k + 1)/2. On the other hand,

k(k + 1)
2

≡
{

1 (mod 3), if k ≡ 1 (mod 3)
0 (mod 3), otherwise.

It is clear that 24n + 17 cannot be a square. For all n > 0, we deduce that

σ0
(
8(9n + 6) + 3

)
= σ0(72n + 51) = σ0(3) σ0(24n + 17) ≡ 0 (mod 4).

STEP 4. Taking into account that

σ0
(
8(9× 0 + 0) + 3

)
≡ σ0

(
8(9× 0 + 1) + 3

)
≡ σ0

(
8(9× 0 + 2) + 3

)
≡ σ0

(
8(9× 1 + 3) + 3

)
≡ σ0

(
8(9× 1 + 4) + 3

)
≡ σ0

(
8(9× 0 + 5) + 3

)
≡ σ0

(
8(9× 0 + 7) + 3

)
≡ σ0

(
8(9× 0 + 8) + 3

)
≡ 2 (mod 4),

the proof is finished.
(ii).
STEP 1. We have (8× 4 + 3)/5 = 7, (8× 14 + 3)/5 = 23, (8× 19 + 3)/5 = 31 and

(8× 24 + 4)/5 = 39.
STEP 2. For all n > 0, it is clear that gcd(5, 40n + 7) = 1, gcd(5, 40n + 23) = 1,

gcd(5, 40n + 31) = 1 and gcd(5, 40n + 39) = 1.
STEP 3. We suppose that there is an integer n > 0 such that 40n + 7 is a square. Thus,

we deduce that 40n + 7 = (2k + 1)2 or 20n + 3 = 2k2 + 2k. This identity is not possible,
because 20n + 3 is odd and 2k2 + 2k is even. It is clear that 20n + 3 cannot be a square.
Similarly, it can be proved that 40n+ 23, 40n+ 31 and 40n+ 39 are not squares. For β ∈ B3,5
and n > 0, we deduce that

σ0(200n + 8β + 3) = σ0(5) σ0

(
40n +

8β + 3
5

)
≡ 0 (mod 4).

STEP 4. For β ∈ {0, 1, . . . , 24} \
{
B3,5 ∪ {3, 6, 11, 15, 23}

}
, it is not difficult to check that

σ0
(
8(25× 0 + β) + 3

)
is not congruent to 0 mod 4. In addition, for β ∈ {3, 6, 23}, we have

σ0
(
8(25× 1 + β) + 3

)
6≡ 0 (mod 4). For β ∈ {11, 15}, we see that σ0

(
8(25× 2 + β) + 3

)
is

not congruent to 0 mod 4. The proof is finished.

Proof of Theorem 5.
(i).
STEP 1. We have (8× 2 + 5)/3 = 7 and (8× 8 + 5)/3 = 23.
STEP 2. For all n > 0, it is clear that gcd(3, 24n + 7) = 1 and gcd(3, 24n + 23) = 1.
STEP 3. We suppose that there is an integer n > 0 such that 24n + 7 is a square. Thus,

we deduce that 24n + 7 = (2k + 1)2 or 12n + 3 = 2k2 + 2k. This identity is not possible,
because 12n + 3 is odd and 2k2 + 2k is even. It is clear that 24n + 7 cannot be a square.
Similarly, it can be proved that 24n + 23 is not a square. For all n > 0, we deduce that

σ0
(
8(9n + 2) + 5

)
= σ0(72n + 21) = σ0(3) σ0(24n + 7) ≡ 0 (mod 4)

and
σ0
(
8(9n + 8) + 5

)
= σ0(72n + 69) = σ0(3) σ0(24n + 23) ≡ 0 (mod 4).

STEP 4. For β ∈ {0, 1, . . . , 8} \ B5,3, it is not difficult to check that σ0
(
8(9× 0 + β) + 5

)
is congruent to 2 mod 4. The proof is finished.

(ii).
STEP 1. We have (8 · 10 + 5)/5 = 17 and (8 · 20 + 5)/5 = 33.
STEP 2. For all n > 0, it is clear that gcd(5, 40n + 17) = 1 and gcd(5, 40n + 33) = 1.



Axioms 2022, 11, 342 6 of 12

STEP 3. We suppose that there is an integer n > 0 such that 40n + 17 is a square. Thus,
we deduce that 40n + 17 = (2k + 1)2 or 5n + 2 = k(k + 1)/2. On the other hand,

k(k + 1)
2

≡


3 (mod 5), if k ≡ 2 (mod 5)
1 (mod 5), if k ≡ {1, 3} (mod 5)
0 (mod 5), otherwise.

It is clear that 40n + 17 cannot be a square. Similarly, we suppose that there is an integer
n > 0 such that 40n + 33 is a square. Thus, we deduce that 40n + 33 = (2k + 1)2 or
5n + 4 = k(k + 1)/2. Because k(k + 1)/2 6≡ 4 mod 5, this identity is not possible. For
β ∈ B5,5 and n > 0, we deduce that

σ0(200n + 8β + 5) = σ0(5) σ0

(
40n +

8β + 5
5

)
≡ 0 (mod 4).

STEP 4. For β ∈ {0, 1, . . . , 24} \
{
B5,5 ∪ {2, 8, 9, 11, 15, 16, 17, 23}

}
, it is not diffi-

cult to check that σ0
(
8(25× 0 + β) + 5

)
is congruent to 2 mod 4. In addition, for β ∈

{8, 9, 11, 15, 16, 23}, we have σ0
(
8(25× 1 + β) + 5

)
≡ 2 (mod 4). For β ∈ {2, 17}, we see

that σ0
(
8(25× 2 + β) + 5

)
is congruent to 2 mod 4. The proof is finished.

It seems that the approach outlined in Steps 1, 2 and 4 can be easily automated.
Unfortunately, we cannot say the same about Step 3 because we do not have a criterion
which establishes the parity of (8β + r)/p. Is the number (8β + r)/p always odd? When
(8β + r)/p is an odd number, we need to investigate identities of the form

8pn +
8β + r

p
− 1 = 4k(k + 1).

When (8β + r)/p is an even number, we need to investigate identities of the form

8pn +
8β + r

p
= 4k2.

Can the investigation of these identities be automated? We do not have an answer to this
question yet.

3. Some Ramanujan-Type Congruences

Let a(n) be a sequence of integers defined by

∞

∑
n=0

a(n) qn = ∏
δ|M

(qδ; qδ)rδ
∞, (4)

where M is a positive integer and rδ are integers. Based on the ideas of Rademacher [22],
Newman [23,24] and Kolberg [25], Radu [26] developed in 2009 an algorithm to verify
the congruences

a(mn + t) ≡ 0 (mod u),

for any given m, t and u, and for all n > 0.
In 2015, Radu [27] constructed an algorithm, called the Ramanujan–Kolberg algo-

rithm, to derive identities on the generating functions of a(mn + t) using modular func-
tions for Γ0(N). A description of the Ramanujan–Kolberg algorithm can be found in
Paule and Radu [28]. Recently, Smoot [29] provided a successful Mathematica implementa-
tion of Radu’s algorithm. This package is called RaduRK.

In this section, we use the RaduRK package to obtain some Ramanujan-type congru-
ences for the overpartition functions p(n) and po(n). According to Theorems 2 and 3, we
can write the following result.
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Corollary 1. For n ≡ {4, 7} (mod 9) or n ≡ {8, 13, 18, 23} (mod 25), we have

po(8n + 1) ≡ 0 (mod 8).

Upon reflection, one expects that there might be a stronger result.

Theorem 6.

(i) For all n ≡ {4, 7} (mod 9), we have

po(8n + 1) ≡ 0 (mod 24).

(ii) For all n ≡ {8, 13, 18, 23} (mod 25), we have

po(8n + 1) ≡ 0 (mod 32).

Proof. The generating function for po(n) can be written as

(q2; q2)3
∞

(q; q)2
∞ (q4; q4)∞

.

This can be described by setting M = 4 and r1 = −2, r2 = 3, r4 = −1.
(i) Considering the RaduRK program with

RK[12,4,{-2,3,-1},72,33]

and
RK[12,4,{-2,3,-1},72,57],

we deduce that
∞

∑
n=0

po(72n + 33) qn ≡ 0 (mod 24)

and
∞

∑
n=0

po(72n + 57) qn ≡ 0 (mod 24).

(ii) To obtain the second congruence identity, we consider the RaduRK program with

RK[2,4,{-2,3,-1},200,65]

and
RK[2,4,{-2,3,-1},200,105].

We deduce that(
∞

∑
n=0

po(200n + 65) qn

)(
∞

∑
n=0

po(200n + 185) qn

)
≡ 0 (mod 210)

and (
∞

∑
n=0

po(200n + 105) qn

)(
∞

∑
n=0

po(200n + 145) qn

)
≡ 0 (mod 210).
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Having

po(65) = 25 × 16 851,

po(200 + 105) = 25 × 6 293 025 198 351,

po(145) = 25 × 64 201 703,

po(185) = 25 × 1 713 260 289,

for α ∈ {65, 105, 145, 185}, we notice that

∞

∑
n=0

po(200n + α) qn 6≡ 0 (mod 26)

and
∞

∑
n=0

po(200n + α) qn ≡ 0 (mod 25).

This concludes the proof.

According to Theorems 1, 2 and 4, we can write the following result.

Corollary 2. For n ≡ 6 (mod 9) or n ≡ {4, 14, 19, 24} (mod 25), we have

p(8n + 3) ≡ 0 (mod 16) and po(8n + 3) ≡ 0 (mod 8).

There are stronger results.

Theorem 7.

(i) For all n ≡ 6 (mod 9), we have

po(8n + 3) ≡ 0 (mod 24).

(ii) For all n ≡ {4, 14, 19, 24} (mod 25), we have

po(8n + 3) ≡ 0 (mod 64).

Proof. (i) To obtain the first congruence identity, we consider the RaduRK program with

RK[4,4,{-2,3,-1},72,51]

and obtain
∞

∑
n=0

po(72n + 51) qn ≡ 0 (mod 24).

(ii) To obtain the second congruence identity, we consider again the RaduRK program with

RK[2,4,{-2,3,-1},200,35]

and
RK[2,4,{-2,3,-1},200,155].

These give us(
∞

∑
n=0

po(200n + 35) qn

)(
∞

∑
n=0

po(200n + 115) qn

)
≡ 0 (mod 212)
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and (
∞

∑
n=0

po(200n + 155) qn

)(
∞

∑
n=0

po(200n + 195) qn

)
≡ 0 (mod 212).

Having

po(35) = 26 × 113,

po(115) = 26 × 2 041 219,

po(200 + 155) = 26 × 59 890 735 496 633,

po(195) = 26 × 1 844 065 971,

for α ∈ {35, 115, 155, 195}, we notice that

∞

∑
n=0

po(200n + α) qn 6≡ 0 (mod 27)

and
∞

∑
n=0

po(200n + α) qn ≡ 0 (mod 26).

This concludes the proof.

Theorem 8. For all n ≡ {19, 24} (mod 25), we have

p(8n + 3) ≡ 0 (mod 160).

Proof. To obtain this congruence identity, we consider the RaduRK program with

RK[2,2,{-2,1},200,155].

This gives us(
∞

∑
n=0

p(200n + 155) qn

)(
∞

∑
n=0

p(200n + 195) qn

)
≡ 0 (mod 25600).

Having

25600 = 210 × 52,

p(155) = 25 × 5× 32 × 13× 1693× 2 402 791,

p(195) = 25 × 5× 3× 6091× 2 417 744 023,

for α ∈ {155, 195}, we notice that

∞

∑
n=0

p(200n + α) qn 6≡ 0 (mod 26)

and
∞

∑
n=0

p(200n + α) qn 6≡ 0 (mod 52).

Thus, for α ∈ {155, 195}, we deduce that

∞

∑
n=0

p(200n + α) qn ≡ 0 (mod 25 · 5).
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This concludes the proof.

According to Theorems 1 and 5, we can write the following result.

Corollary 3. For n ≡ {2, 8} (mod 9) or n ≡ {10, 20} (mod 25), we have

p(8n + 5) ≡ 0 (mod 16).

There are stronger results.

Theorem 9. For all n ≡ 8 (mod 9), we have

p(8n + 5) ≡ 0 (mod 32).

Proof. To obtain this congruence identity, we consider the RaduRK program with

RK[2,2,{-2,1},72,69].

This gives us
∞

∑
n=0

p(72n + 69) qn ≡ 0 (mod 32).

4. Open Problems and Concluding Remarks

In this paper, we show that each odd prime generates four families of Ramanujan-type
congruences modulo 4 for the number of divisors. Assuming Conjecture 1, the algorithm
for generating Br,p is not difficult because 8β + r must be a multiple of the odd prime p.
Related to the case r = 1 of Conjecture 4, we remark that there is a substantial amount of
numerical evidence to conjecture the following.

Conjecture 5. If n is an integer that is not the difference between a triangular number and a square
number, then

σ0(8n + 1) ≡ 0 (mod 4).

We focused on the cases (α, β), where α is the square of an odd prime. When α is a
multiple of the square of an odd prime, we can derive other pairs (α′, β′) for which the
statement (3) is true. For example, considering B1,3 = {4, 7}, we easily deduce that the
statement (3) is true if

(α, β) ∈ {(81, 4), (81, 7), (81, 13), (81, 16), (81, 22), (81, 25),

(81, 31), (81, 34), (81, 40), (81, 43), (81, 49), (81, 52),

(81, 58), (81, 61), (81, 67), (81, 70), (81, 76), (81, 79)}.

We remark that there are two pairs, (81, 37) and (81, 64), which cannot be derived
from the pairs (9, 4) or (9, 7). In addition, we remark that

σ0
(
8(81n + 37) + 1

)
= σ0

(
27(24n + 11)

)
≡ 0 (mod 8)

and
σ0
(
8(81n + 64) + 1

)
= σ0

(
27(24n + 19)

)
≡ 0 (mod 8),

for all n > 0. The proof of these congruences follows easily if we consider that

gcd(27, 24n + 11) and gcd(27, 24n + 19) = 1,

for all n > 0. Moreover, 24n + 11 and 24n + 19 cannot be squares.
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The study of congruences of the form

σ0(8n + r) ≡ 0 (mod 2k),

with r ∈ {1, 3, 5, 7}, can be a very appealing topic. In analogy with (3), we can consider the
following statement:

For all n > 0, σ0
(
8(α n + β) + r

)
≡ 0 (mod 2k). (5)

There is a substantial amount of numerical evidence to state the following generaliza-
tion of Conjecture 1.

Conjecture 6. If the statement (5) is true, then there is a sequence of odd prime numbers,
p1 6 p2 6 . . . 6 pk−1, such that α is divisible by (p1 p2 · · · pk−1)

2 and 8β + r is divisible
by p1 p2 · · · pk−1.

On the other hand, our investigations indicate that Conjecture 6 can be generalized if
we consider congruences of the form

σ0(αn + β) ≡ 0 (mod 2k).

In analogy with (5), we can consider the following statement:

For all n > 0, σ0(α n + β) ≡ 0 (mod 2k). (6)

We state the following generalization of Conjecture 6.

Conjecture 7. If the statement (6) is true, then there is a sequence of prime numbers, p1 6 p2 6
. . . 6 pk−1, such that α is divisible by (p1 p2 · · · pk−1)

2 and β is divisible by p1 p2 · · · pk−1.

Because σ0(n) is a multiplicative function, these conjectures motivate the question of
identifying all Ramanujan-type congruences for multiplicative functions.
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