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Abstract: The estimation of the unknown parameters of Type II Half Logistic Weibull (TIIHLW)
distribution was analyzed in this paper. The maximum likelihood and Bayes methods are used
as estimation methods. These estimators are used to estimate the fuzzy reliability function and
to choose the best estimator of the fuzzy reliability function by comparing the mean square error
(MSE). The simulation’s results showed that fuzziness is better than reality for all sample sizes, and
fuzzy reliability at Bayes predicted estimates is better than the maximum likelihood technique. It
produces the lowest average MSE until a sample size of n = 50 is obtained. A simulated data set
is applied to diagnose the performance of the two techniques applied here. A real data set is used
as a practice for the model discussed and developed the maximum likelihood estimate alternative
model of TIIHLW as Topp Leone inverted Kumaraswamy, modified Kies inverted Topp–Leone,
Kumaraswamy Weibull–Weibull, Marshall–Olkin alpha power inverse Weibull, and odd Weibull
inverted Topp–Leone. We conclude that the TIIHLW is the best distribution fit for this data.

Keywords: type II half logistic Weibull distribution; reliability analysis; fuzzy numbers; MCMC;
highest posterior density

MSC: 62F10; 62F15; 62F40; 62N05; 62N86; 62-07

1. Introduction

The random variable was adopted for describing the objective randomness of such
variable, in the conventional reliability analysis. As one of the objective facts, fuzziness
exists in every problem related to real life. Fuzzy reliability theory is a new branch, which
combines reliability with fuzzy mathematics. It is more reasonable that some variables
and constraints are considered for the fuzziness from the point of view of engineering
practice. In the analysis of fuzzy reliability, for obtaining the concrete data of reliability,
the shape and values of parameters of membership function are adopted as a certainty
function; therefore, the self-contradictory exists. In Ref. ([1]), the following point of views
are pointed out: the books on Fuzzy Set Theory often describe a membership function on a
basis of Common Set Theory and its characteristic function; it is found that the method has
theoretical shortcomings of processing concept and definition absolutely. Many reliability
theories and models assume that all of the parameters of the life-time probability function
are strong. In real-world applications, it is necessary to generalise standard statistical
estimation methods for fuzzy numbers. This is owing to the fact that the parameters
of probability distributions can be represented incorrectly due to human error, personal
judgement, estimation, or unexpected events. The lifetime distributions’ parameters are
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fuzzy. As a result, dealing with the function of traditional reliability may present difficulties
for the system of reliability. As a result, we can deal with a larger definition of reliability
than the traditional one. The degree of belonging is established by the function of a given
membership, as well as the fuzzy likelihood of the vehicle or unit efficiently continuing to
work for a specified period of time.

The theory of fuzzy reliability was proposed and developed by several authors; Ref. [2]
discussed the Marshall-Model: Olkin’s comparison of interval estimations for P(X < Y),
Ref. [3] introduced nonparametric reliability function estimation, [4] presented an overview of
fuzzy sets, fuzzy logic, and fuzzy control systems. Furthermore, based on an exponential dis-
tribution, a fuzzy Bayesian system’s reliability is assessed in [5–7], presenting fuzzy probability
and statistics, Ref. [8] discussed unrepairable systems with fuzzy random lifetimes: reliability
and mean time to failure, Ref. [9] studied inference on reliability in a two-parameter expo-
nential stress–strength model. Ref. [10] showed the most effective techniques for testing
fuzzy hypotheses with conflicting data, Ref. [3] studied nonparametric estimation of a relia-
bility function, Ref. [11] presented the use of median and ranked set sampling approaches,
and stress–strength reliability for exponentiated Pareto distribution can be estimated. For
the inverse Rayleigh distribution, inference of a fuzzy reliability model and fuzzy reliability
estimation for Frechet distribution by using simulation is presented; see [12,13], respectively.
In addition, reliability estimation in Rayleigh distribution based on fuzzy lifetime data has
been studied by [14,15], introducing inferences for the stress–strength reliability model’s
strength variable in the presence of a partially accelerated life test.

The rest of this paper is organized as follows: In Section 2, we describe the model and
the formulation of fuzzy reliability. The fuzzy reliability of Type II half logistic Weibull
distribution is given in Section 3. In Section 4, the ML estimators of the parameters and
approximate confidence intervals are presented. We cover Bayes estimates and construction
of credible intervals using the MCMC techniques in Section 5. In Section 6, we provide
some simulation results in order to give an assessment of the performance of the different
estimation methods. Numerical examples are presented in Section 7 for illustration.

2. Model and Notation

In this section, we discussed the model assumption and notation of TIIHLW distribu-
tion and fuzzy reliability analysis.

2.1. TIIHLW Distribution

Ref. [16] introduced modelling lifetime data from biomedical research and engineering.
A variety of real data sets can properly be analyzed using the TIIHLW distribution since its
density function can have various shapes (symmetric, right skewed, reversed J-shaped, and
unimodal). Ref. [16] discusses the TIIHLW distribution and its features. When the cause of
the failure is known or unknown, the maximum likelihood method is applied; see [17,18].

TIIHLW (α, β, λ) has the cumulative distribution function

F(x; α, β, λ) =
2
[
1− e−αxβ

]λ

1 +
[
1− e−αxβ

]λ
; α, β, λ > 0, x > 0, (1)

and the probability density function is

f (x; α, β, λ) =
2α β λ xβ−1e−αxβ

[
1− e−αxβ

]λ−1

[
1 +

[
1− e−αxβ

]λ
]2 ; α, β, λ > 0, x > 0; (2)

the survival rate function is
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S(x; α, β, λ) =
1−

[
1− e−αxβ

]λ

1 +
[
1− e−αxβ

]λ
; α, β, λ > 0, x > 0, (3)

and the hazard rate function is

h(x) =
2λαβxβ−1 exp

(
−αxβ

)
(1− exp(−αxβ)λ−1

1− (1− exp
(
−αxβ

)
)2λ

, (4)

where λ and β are shape parameters, and α is the scale parameter.
Figure 1 shows the probability density and hazard rate function with different shapes

for the TIIHLW distribution. The behavior of the TIIHLW probability density curve may
have varied shapes as seen in these illustrations. It could be skewed to the right or even to
the left, or have an asymmetric or declining form, whereas the TIIHLW hazard rate curves
could be falling, implying that the proposed model is a good lifetime model. As mentioned
in the application section, the TIIHLW distribution has a lot of versatility when it comes
to modeling skewed data, thus it is often used in domains like biology, biomedical trials,
reliability, and survival studies.
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Figure 1. Probability density and hazard rate function with different shapes for the TIIHLW distribution.

2.2. Fuzzy Reliability

Let T be a continuous random variable that represents a system’s failure time. The
fuzzy reliability can be calculated using the fuzzy probability formula proposed by [4],

R̃(t) = P(T > t) =
∞∫

t

µ(x) f (x)dx, 0 ≤ t ≤ x < ∞, (5)

where µ(x) is a membership function that describes the degree to which each element of a
given universe belongs to a fuzzy set.

Now, assume that µ(x) is

µ(x) =


0 , x ≤ t1

x−t1
t2−t1

, t1 < x < t2,t1 ≥ 0
1 , x ≥ t2

(6)

where 0 ≤ t1 ≤ t2.
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For µ(x), by the computational method of the function of fuzzy numbers, the lifetime
x(γ) can be obtained corresponding to a certain value of γ− Cut, γ ∈ [0, 1], as follows [4]:
µ(x) = γ→ x−t1

t2−t1
= γ, then

x(γ) ≤ t , γ = 0
x(γ) = t1 + γ(t2 − t1) , 0 < γ < 1

x(γ) ≥ t2 , γ = 1
(7)

Thus, for all γ values, fuzzy reliability values can be calculated as

R̃(t)γ=0 =

t1∫
t1

f (x) dx = 0, (8)

R̃(t)0<γ<1 =

x(γ)=t1+γ(t2−t1)∫
t1

f (x) dx, (9)

and

R̃(t)γ=1 =

t2∫
t1

f (x) dx. (10)

3. Fuzzy Reliability of Type II Half Logistic Weibull Distribution

We consider fuzzy reliability of type II half logistic Weibull distribution depends on
the definition of fuzzy reliability. Assume that f (x) in Equations (5), (8), (9), and (10)
represent the pdf of Type II half logistic Weibull distribution as in Equation (2).

The fuzzy reliability definition,

R̃(t)γ =

x(γ)∫
t1

µ(x)
2α β λ xβ−1e−α xβ

[
1− e−α xβ

]λ−1

[
1 +

[
1− e−α xβ

]λ
]2 dx, (11)

where µ(x) as in Equation (6) and x(γ) as in Equation (7), then

R̃(t)γ=0 = 0, (12)

R̃(t)0<γ<1 =

t1+γ(t2−t1)∫
t1

x− t1

t2 − t1

2α β λ xβ−1e−α xβ
[
1− e−α xβ

]λ−1

[
1 +

[
1− e−α xβ

]λ
]2 dx, (13)

and

R̃(t)γ=1 =

t2∫
t1

2α β λ xβ−1e−α xβ
[
1− e−α xβ

]λ−1

[
1 +

[
1− e−α xβ

]λ
]2 dx

= 2

(1 +
(

1− e−α tβ
1

)λ
)−1

−
(

1 +
(

1− e−α tβ
2

)λ
)−1

. (14)

4. Maximum Likelihood Estimation

In this section, we study type II half logistic Weibull parameters estimating problem
using the maximum-likelihood estimators. Let X have the Type II half logistic Weibull
three-parameter PDF distribution like Equation (2).
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The maximum likelihood method is given by

L(α, β, λ|data) =
n

∏
i=1

f (xi; α, β, λ)

= 2n αn βn λn
n

∏
i=1

xβ−1
i e−α xβ

i

[
1− e−α xβ

i

]λ−1

[
1 +

(
1− e−α xβ

i

)λ
]2 . (15)

By taking log function on both sides, we obtain

`(α, β, λ|data) = n log 2 + n log α + n log β + n log λ + (β− 1)
n

∑
i=1

log xi

−α
n

∑
i=1

xβ
i + (λ− 1)

n

∑
i=1

log[1− e−α xβ
i ]− 2

n

∑
i=1

log[1 +
(

1− e−α xβ
i

)λ

]. (16)

The type II half logistic Weibull distribution parameters α, β and λ are obtained by
the solution of the following equations with maximum likelihood estimator under fuzzy
reliability. By differentiating the natural logarithm, `(α, β, λ|data), partially with respect
to α, β and λ, and then equating to zero,

∂`

∂α
=

n
α
−

n

∑
i=1

xβ
i + (λ− 1)

n

∑
i=1

xβ
i e−α xβ

i

[1− e−α xβ
i ]
− 2λ

n

∑
i=1

xβ
i e−α xβ

i

(
1− e−α xβ

i

)λ−1

[
1 +

(
1− e−α xβ

i

)λ
] , (17)

∂`

∂β
=

n
β
+

n

∑
i=1

log xi + α (λ− 1)
n

∑
i=1

xβ
i log xi e−α xβ

i

[1− e−α xβ
i ]

−2λα
n

∑
i=1

xβ
i log xi e−α xβ

i

(
1− e−α xβ

i

)λ−1
[

1 +
(

1− e−α xβ
i

)λ
]

[
1 +

(
1− e−α xβ

i

)λ
] , (18)

and

∂`

∂λ
=

n
λ
+

n

∑
i=1

log[1− e−α xβ
i ]− 2

n

∑
i=1

(
1− e−α xβ

i

)λ

log[1− e−α xβ
i ][

1 +
(

1− e−α xβ
i

)λ
] . (19)

Since Equations (17)–(19) cannot be solved analytically, some numerical methods such
as Newton’s method must be employed to solve Equations (17), (18), and (19) and obtain
estimates of the parameters α, β , and λ.

The delta method is a result concerning the approximate probability distribution for
a function of an asymptotically normal statistical estimator from the knowledge of the
limiting variance of that estimator. Therefore, the delta method can be used to estimate the
fuzzy reliability function R̃ of the Type II half logistic Weibull distribution, as follows:

R̃(t)0<γ<1 = 2

(1 +
(

1− e−α̂ tβ̂
1

)λ̂
)−1

−
(

1 +
(

1− e−α̂ (x(γ))β̂
)λ̂
)−1, x(γ) = t1 + γ(t2 − t1) (20)
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and

R̃(t)γ=1 = 2

(1 +
(

1− e−α̂ tβ̂
1

)λ̂
)−1

−
(

1 +
(

1− e−α̂ tβ̂
2

)λ̂
)−1, (21)

4.1. Confidence Intervals

Along with the point estimator, another statistic of interest is the confidence interval
estimator. The probability that the interval includes the parameter value is what we call the
confidence level. Since the ML estimators of the parameters cannot be defined in analytic
forms, the actual distributions of ML estimators cannot be derived.

Approximate Confidence Intervals

This subsection presents the obtaining of 100(1− δ) CI for the parameters using the
asymptotic Fisher information matrix Î(α, β, λ), which is given by

Î(α, β, λ) =


− ∂2`

∂α2 − ∂2`
∂α∂β − ∂2`

∂α∂λ

− ∂2`
∂β∂α − ∂2`

∂β2 − ∂2`
∂β∂λ

− ∂2`
∂λ∂a − ∂2`

∂λ∂β − ∂2`
∂λ2


↓{α=α̂,β=β̂,λ=λ̂}

. (22)

Therefore, the asymptotic variance-covariance matrix is given by

V̂ = Î−1(α̂, β̂, λ̂) =

 v̂ar(α) cov(α, β) cov(α, λ)

cov(β, α) v̂ar(β) cov(β, λ)

cov(λ, α) cov(λ, β) v̂ar(λ)


↓{α̂,β̂,λ̂}

. (23)

Hence, α, β, and λ have approximately normal distribution with mean vector (α̂, β̂, λ̂)
and covariance matrix Î−1(α, β, λ). Thus, the (1− δ)100% ACIs for α, β, and λ are given by

[α̂± Zδ/2

√
v̂ar(α)], [β̂± Zδ/2

√
v̂ar(β)], [λ̂± Zδ/2

√
v̂ar(λ)], (24)

where Zδ/2 is the percentile of the standard normal distribution with right-tail probability γ/2.
In order to compute the asymptotic CI of the fuzzy reliability function, we must first

find the variance. To find approximate estimates of R̃ variance, the delta approach was
applied. For MLE functions, the delta technique gives a general method for determining
CIs [19]. It takes a function that is too complicated to calculate the variance analytically,
makes a linear approximation of it, and then computes the variance of the smaller linear
function that may be used for large sample inference; see [20]. We define

Ǵ =

(
∂R̃
∂α

,
∂R̃
∂β

,
∂R̃
∂λ

)
.

Then, the approximate estimates of Var( ˆ̃R) are given, respectively, by

V̂ar( ˆ̃R) '
[

ǴI−1G
]
(α,β,λ)=(α̂ML ,β̂ML ,λ̂ML)

.

In addition, calculate the following statistic:(
ˆ̃R− R̃

)
√

V̂ar( ˆ̃R)
∼ N(0, 1);
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these results yield the approximate CIs for R̃ as

ˆ̃R± Z γ
2

√
V̂ar( ˆ̃R). (25)

5. Bayesian Estimation

The Bayesian approach addresses the parameters randomly and uncertainties about
the parameters are represented with a joint prior distribution, established before the failed
data are collected. The flexibility to incorporate prior knowledge into the analyses makes
the Bayesian approach very valuable in assessing reliability since the limited availability of
data is one of the primary problems of reliability analysis.

The parameters α, β , and λ are assumed to be independent and follow the gamma
distributions. This is done accordingly

π1(α) ∝ αa1−1e−b1α , α > 0, a1 > 0, b1 > 0,

π2(β) ∝ βa2−1e−b2β , β > 0, a2 > 0, b2 > 0, (26)

π3(λ) ∝ λa3−1e−b3λ , λ > 0, a3 > 0, b3 > 0,

where the hyper-parameters ai and bi, i = 1, 2, 3 are assumed to be known and selected to
reflect the prior assumption on the unknown parameters.

The posterior distribution of the parameters α, β and λ denoted by π∗(α, β, λ | data)
up to proportionality can be obtained by combining the likelihood function Equation (15)
with the prior via Bayes’ theorem, and it can be written as

π∗(α, β, λ | data) =
L(α, β, λ | data) π1(α) π2(β) π3(λ)

∞∫
0

∞∫
0

∞∫
0

L(α, β, λ | x) π1(α) π2(β) π3(λ) dα dβ dλ

. (27)

The joint posterior to the proportionality can be written as

π∗(α, β, λ | data) ∝ 2n αn+a1−1 βn+a2−1 λn+a3−1e−b1α−b2β−b3λ

n

∏
i=1

xβ−1
i e−α xβ

i

[
1− e−α xβ

i

]λ−1

[
1 +

(
1− e−α xβ

i

)λ
]2 . (28)

Now, according to Equations (12)–(14), we obtain

R̃(t)γ=0 = 0, (29)

R̃(t)0<γ<1 = 2

(1 +
(

1− e−α tβ
1

)λ
)−1

−
(

1 +
(

1− e−α (x(γ))β
)λ
)−1

, x(γ) = t1 + γ(t2 − t1), (30)

and

R̃(t)γ=1 = 2

(1 +
(

1− e−α tβ
1

)λ
)−1

−
(

1 +
(

1− e−α tβ
2

)λ
)−1

. (31)

As a symmetric loss function, the squared error loss is

R̃(t)BS
γ = E[R̃(t)γ]

=

∞∫
0

R̃(t)γ π∗(α, β, λ | data) dα dβ dλ. (32)
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Then, we obtained

R̃(t)BS
0<γ<1 =

∞∫
0

2n+1

(1 +
(

1− e−α tβ
1

)λ
)−1

−
(

1 +
(

1− e−α (x(γ))β
)λ
)−1


αn+a1−1 βn+a2−1 λn+a3−1e−b1α−b2β−b3λ

n

∏
i=1

xβ−1
i e−α xβ

i

[
1− e−α xβ

i

]λ−1

[
1 +

(
1− e−α xβ

i

)λ
]2 dα dβ dλ, (33)

and

R̃(t)BS
γ=1 =

∞∫
0

2n+1

(1 +
(

1− e−α tβ
1

)λ
)−1

−
(

1 +
(

1− e−α tβ
2

)λ
)−1



αn+a1−1 βn+a2−1 λn+a3−1e−b1α−b2β−b3λ
n

∏
i=1

xβ−1
i e−α xβ

i

[
1− e−α xβ

i

]λ−1

[
1 +

(
1− e−α xβ

i

)λ
]2 dα dβ dλ.

(34)

Both the integral in Equation (28) and the normalized constant Equation (27) have no
analytical solutions. Bayesian analysis should be used to evaluate the underlying model
using numerical methods. Among many methods to analyze it, we will choose the Markov
Chain Monte Carlo (MCMC) simulation methodology. MCMC methods can be adjusted to
obtain random drawings from the posterior distribution of density in Equation (27) without
having to compute the normalized constant. After that, we can use random drawings to
conduct any analysis. We need visibility and model parameters. Equation (34) contains the
relation on how to estimate the fuzzy reliability after estimating the unknown parameters
by using the Bayesian technique.

5.1. Markov Chain Monte Carlo Method

For estimating complex Bayesian models, Markov chain Monte Carlo is an effective
technique. The Gibbs sampling and Metropolis–Hastings algorithms are two of the most
widely used Markov chain Monte Carlo methods in statistics, statistical physics, digital
communications, signal processing, and machine learning, among other fields. They have
attracted the attention of researchers due to their efficiency, and remarkable results have
been obtained. For more information and examples using MCMC, see [21–23].

The algorithm of Metropolis–Hastings to simulate random draws from the posterior
distribution g(θ | .):

(1) Start with initial guess θ(0);
(2) Set a size of trails M, and the random draws;
(3) For i = 1, ..., M, repeat the following steps:

(i) Set θ = θ(i−1);
(ii) Generate a candidate θ∗ from a proposal distribution P(θ∗ | θ);
(iii) Evaluate the acceptance probability

ηθ = min
[

1,
g(θ∗ | .) P(θ∗ | θ)

g(θ∗ | .) P(θ∗ | θ)

]
;

(iv) Generate a u1 from a Uniform (0, 1) distribution.
If u1 < ηθ , accept the proposal and set θ(i) = θ∗, else set θ(i) = θ(i−1).
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Under some regularity conditions on the proposal density P(θ∗ | θ), the sequence of

the simulated draws
{

θ(i)
}M

i=1
will converge to random draws that follow the posterior

density g(θ | .). The highest posterior density (HPD) interval as the interval estimator in
the Bayesian method is used to credible confidence intervals for MCMC estimates. For
more information, see Turkkan and Pham-Gia [24] and Chen and Shao [25,26].

5.2. The Highest Posterior Density

The highest posterior density (HPD) intervals [25] discussed this technique to generate
the HPD intervals of unknown parameters of the benefit distribution. In this study, samples
drawn with the proposed MH algorithm should be used to generate time-lapse estimates.
From the percentile tail points, for instance, a 100(1− γ)% HPD interval can be obtained
with two points for parameters of (α, β, λ), from the MCMC sampling outputs. It is some-
times useful to present the posterior median to informally check for possible asymmetry
in the posterior density of a parameter. According to [25,27], the BCIs of the parameters
of the model of study (α, β, λ) can be obtained through the essential steps of the algo-
rithm as follows: (i) Order the sample observations generated through the M–H algorithm
α̃, β̃, λ̃, R̃F as (α̃[1] ≤ α̃[2] ≤ ... ≤ α̃[A]), (β̃[1] ≤ β̃[2] ≤ ... ≤ β̃[A]), (λ̃[1] ≤ λ̃[2] ≤ ... ≤ λ̃[A])

and ( ˜̃R[1] ≤ ˜̃R[2] ≤ ... ≤ ˜̃R[A]), where A denotes the length of the generated MH algorithm.
(ii) The 100(1− γ)%, symmetric Bayesian credible interval for (α, β, λ), is given by(

α̃[(γ/2)M], α̃[(1−γ/2)M]
)

,
(

β̃[(γ/2)M], β̃[(1−γ/2)M]
)

,
(

λ̃[(γ/2)M], λ̃[(1−γ/2)M]
)

and(
˜̃R[(γ/2)M], ˜̃R[(1−γ/2)M]

)
.

6. Simulation

The performance of the MLE and Bayesian estimation of the parameters α, β, λ and
fuzzy reliability of the TIIHLW distribution in terms of bias, mean square errors (MSE),
and confidence intervals (CI) are evaluated in this section. For n sample size, we consider
the values 30, 50, and 100. For n sample size, we consider the numbers 30, 50, and 100.
We consider the following scenarios for the parameters α, β, λ and the interval of the
membership function (t1, t2):

Case 1: α = 0.5, β = 1.2, t1 = 0.025, t2 = 3 and λ = 0.8 and 1.5;
Case 2: α = 2.2, β = 1.2, t1 = 0.1, t2 = 1, and λ = 0.8 and 1.5;
Case 3: α = 2.2, β = 3, t1 = 0.2, t2 = 0.8, and λ = 0.8 and 1.5;
Case 4: α = 1, β = 1.2, t1 = 0.2, t2 = 0.8, and λ = 0.8 and 1.5.

We consider replicating the process 5000 iterations. In each setting, we obtain the bias
of the estimates of the corresponding MSE and CI (lower and upper). We also obtain the
corresponding coverage probabilities (CP) of MLE parameters and fuzzy reliability. These
results are displayed in Tables 1–4.
In Tables 1–4, we conclude these points:

1. The MSEs decrease as the sample size increases in all of the cases;
2. Additionally, as the sample size increases, the bias of estimates tends to zero values;
3. Furthermore, as the sample size grows, the length of the CI of estimates tends to zero

values, with the lower values of CI increasing and the upper values of CI decreasing
to true values;

4. Furthermore, in the estimation of fuzzy reliability, when the value of γ increases, the
measures of performance are improved.

5. These results indicate that the MLE and Bayesian estimation methods of the parame-
ters α, β, λ, and fuzzy reliability are asymptotically unbiased and consistent.

6. As expected, the estimates by using the Bayesian estimation method perform better
than those by using the MLE method in terms of measures of performance.

7. When λ values increase, then the measures of parameters get better for α and β where
MSE decreases while λ does not get better where MSE increases.
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8. When α values increase, then the measures of parameters do not get better for α and β
where MSE increases, while λ does get better where MSE decreases.

9. When β values increase, then the measures of parameters do not get better for all
parameters α, β, and λ where MSE increases.

Table 1. Bias, MSE, and CI for fuzzy reliability and parameters of model in case 1.

α = 0.5, β = 1.2, t1 = 0.025, t2 = 3

MLE Bayesian

λ n γ Bias MSE Lower Upper CP Bias MSE Lower Upper

0.8

30

α 0.0836 0.2242 0.0331 1.4986 95.27% 0.0915 0.0453 0.2536 0.9356

β 0.2309 0.3995 0.2758 2.5861 97.30% 0.0280 0.0250 0.9521 1.5298

λ 0.1921 0.5406 0.0401 2.3856 95.27% 0.1144 0.0607 0.5478 1.3713

0.25 R̃ −0.0048 0.0045 0.3891 0.6527 97.30% 0.0013 0.0034 0.4356 0.6584

0.55 R̃ 0.0040 0.0034 0.6571 0.8842 95.27% 0.0175 0.0028 0.6930 0.8877

0.9 R̃ 0.0058 0.0019 0.8035 0.9723 97.30% 0.0169 0.0016 0.8177 0.9634

50

α 0.0601 0.1548 0.1203 1.3229 94.80% 0.0777 0.0415 0.2720 0.9685

β 0.1636 0.2608 0.4144 2.3128 97.20% 0.0254 0.0266 0.9030 1.5390

λ 0.1243 0.3210 0.0616 2.0088 94.80% 0.1017 0.0581 0.5369 1.3373

0.25 R̃ −0.0011 0.0030 0.4175 0.6317 97.20% 0.0019 0.0023 0.4417 0.6337

0.55 R̃ 0.0035 0.0023 0.6773 0.8630 94.80% 0.0158 0.0020 0.6982 0.8618

0.9 R̃ 0.0047 0.0013 0.8179 0.9557 97.20% 0.0158 0.0012 0.8262 0.9473

100

α 0.0171 0.0961 0.1590 1.1245 95.60% 0.0605 0.0320 0.2735 0.8928

β 0.1544 0.2007 0.5294 2.1795 95.60% 0.0317 0.0283 0.9654 1.6195

λ 0.0438 0.1655 0.0950 1.6372 95.60% 0.0820 0.0488 0.5607 1.2195

0.25 R̃ −0.0013 0.0020 0.4379 0.6111 95.60% 0.0019 0.0015 0.4585 0.6096

0.55 R̃ 0.0026 0.0014 0.6953 0.8432 95.60% 0.0148 0.0014 0.7178 0.8479

0.9 R̃ 0.0043 0.0008 0.8324 0.9404 95.60% 0.0153 0.0009 0.8480 0.9462

1.5

30

α 0.0442 0.1455 0.0199 1.2875 95.00% 0.0589 0.0245 0.3088 0.8259

β 0.1972 0.2882 0.4176 2.3768 96.00% 0.0372 0.0222 0.9792 1.5240

λ 0.2400 1.1754 0.0334 3.8143 95.00% 0.1241 0.0784 1.1328 2.0946

0.25 R̃ −0.0066 0.0043 0.1534 0.4096 96.00% −0.0004 0.0040 0.1655 0.3996

0.55 R̃ 0.0052 0.0052 0.4997 0.7807 95.00% 0.0187 0.0051 0.5142 0.7812

0.9 R̃ 0.0107 0.0030 0.7448 0.9570 96.00% 0.0189 0.0028 0.7607 0.9507

50

α 0.0389 0.0837 0.0235 1.1013 96.80% 0.0347 0.0141 0.3268 0.7495

β 0.0931 0.1433 0.5733 2.0129 93.60% 0.0299 0.0167 0.9924 1.4809

λ 0.1704 0.6118 0.1727 3.1681 96.80% 0.0908 0.0666 1.1519 2.0463

0.25 R̃ −0.0030 0.0028 0.1810 0.3891 93.60% −0.0040 0.0026 0.1880 0.3857

0.55 R̃ 0.0018 0.0030 0.5292 0.7443 96.80% 0.0097 0.0029 0.5301 0.7391

0.9 R̃ 0.0041 0.0017 0.7647 0.9241 93.60% 0.0121 0.0016 0.7788 0.9247

100

α −0.0252 0.0394 0.0884 0.8612 96.00% 0.0289 0.0125 0.3449 0.7635

β 0.1047 0.0835 0.7763 1.8331 95.60% 0.0229 0.0153 1.0045 1.4772

λ −0.0239 0.2357 0.5247 2.4276 96.00% 0.0896 0.0735 1.1440 2.0904

0.25 R̃ −0.0033 0.0013 0.2149 0.3548 95.60% −0.0061 0.0013 0.2228 0.3565

0.55 R̃ −0.0025 0.0015 0.5576 0.7075 96.00% 0.0061 0.0014 0.5693 0.7159

0.9 R̃ 0.0009 0.0009 0.7836 0.8986 95.60% 0.0092 0.0009 0.7878 0.8993
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Table 2. Bias, MSE, and CI for fuzzy reliability and parameters of the model in case 2.

α = 2.2, β = 1.2, t1 = 0.1, t2 = 1

MLE Bayesian

λ n γ Bias MSE Lower Upper CP Bias MSE Lower Upper

0.8

30

α 0.3477 1.0233 0.6840 4.4114 97.60% 0.1850 0.1868 1.7551 3.2432

β 0.3663 0.7323 0.0490 3.0837 97.20% 0.0596 0.0281 0.9554 1.5523

λ 0.1315 0.4751 0.0396 2.2591 97.60% 0.0869 0.0444 0.5623 1.2777

0.25 R̃ 0.0041 0.0019 0.2722 0.4409 97.20% 0.0184 0.0011 0.3216 0.4307

0.55 R̃ 0.0103 0.0038 0.4189 0.6572 97.60% 0.0369 0.0038 0.4733 0.6657

0.9 R̃ 0.0113 0.0050 0.4880 0.7611 97.20% 0.0434 0.0056 0.5399 0.7719

50

α 0.1710 0.4813 1.0518 3.6902 96.20% 0.1299 0.1499 1.6904 3.0400

β 0.2055 0.3405 0.3339 2.4771 97.40% 0.0449 0.0262 0.9207 1.5135

λ 0.0986 0.2972 0.1534 1.9506 96.20% 0.0793 0.0398 0.5385 1.2107

0.25 R̃ 0.0010 0.0011 0.2877 0.4192 97.40% 0.0159 0.0009 0.3242 0.4181

0.55 R̃ 0.0040 0.0022 0.4409 0.6226 96.20% 0.0312 0.0026 0.4859 0.6397

0.9 R̃ 0.0048 0.0028 0.5148 0.7213 97.40% 0.0372 0.0036 0.5549 0.7353

100

α 0.0589 0.1651 1.4701 3.0477 93.80% 0.0783 0.1026 1.6262 2.8592

β 0.1236 0.1707 0.5500 2.0972 94.80% 0.0358 0.0233 0.9437 1.5099

λ 0.0170 0.0868 0.2401 1.3940 93.80% 0.0580 0.0352 0.5620 1.2335

0.25 R̃ 0.0008 0.0005 0.3081 0.3985 94.80% 0.0135 0.0006 0.3269 0.4035

0.55 R̃ 0.0045 0.0012 0.4651 0.5993 93.80% 0.0283 0.0019 0.4983 0.6224

0.9 R̃ 0.0061 0.0016 0.5415 0.6971 94.80% 0.0348 0.0027 0.5733 0.7239

1.5

30

α 0.0778 0.6497 0.7045 3.8511 95.00% 0.1360 0.1495 1.6736 3.0468

β 0.4523 0.8849 0.0348 3.2698 93.90% 0.0679 0.0223 1.0465 1.5581

λ −0.0360 0.7863 0.0427 3.2014 95.00% 0.0591 0.0431 1.2037 1.9627

0.25 R̃ −0.0096 0.0032 0.2371 0.4573 93.90% −0.0086 0.0019 0.2651 0.4345

0.55 R̃ −0.0009 0.0045 0.5094 0.7733 95.00% 0.0083 0.0020 0.5679 0.7354

0.9 R̃ 0.0066 0.0034 0.6915 0.9177 93.90% 0.0163 0.0018 0.7424 0.8951

50

α 0.0795 0.4378 0.9914 3.5676 95.50% 0.1068 0.1144 1.7045 2.9413

β 0.2840 0.5679 0.1153 2.8528 95.10% 0.0624 0.0197 1.0355 1.5186

λ 0.0311 0.6881 0.1215 3.4404 95.50% 0.0579 0.0409 1.1519 1.9944

0.25 R̃ −0.0037 0.0020 0.2652 0.4411 95.10% −0.0083 0.0012 0.2852 0.4173

0.55 R̃ 0.0021 0.0029 0.5397 0.7490 95.50% 0.0082 0.0015 0.5773 0.7241

0.9 R̃ 0.0062 0.0021 0.7158 0.8926 95.10% 0.0165 0.0014 0.7452 0.8773

100

α 0.0303 0.1901 1.3773 3.0832 95.60% 0.0564 0.0661 1.8053 2.7666

β 0.1150 0.1554 0.5756 2.0543 94.50% 0.0483 0.0158 1.0235 1.4706

λ 0.0641 0.3750 0.3699 2.7583 95.60% 0.0518 0.0401 1.2120 2.0282

0.25 R̃ −0.0027 0.0010 0.2917 0.4166 94.50% −0.0096 0.0008 0.3001 0.4009

0.55 R̃ 0.0004 0.0013 0.5716 0.7137 95.60% 0.0045 0.0009 0.5900 0.7000

0.9 R̃ 0.0030 0.0010 0.7391 0.8629 94.50% 0.0131 0.0009 0.7576 0.8631
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Table 3. Bias, MSE, and CI for fuzzy reliability and parameters of models in case 3.

α = 2.2, β = 3 and t1 = 0.2, t2 = 0.8

MLE Bayesian

λ n γ Bias MSE Lower Upper CP Bias MSE Lower Upper

0.8

30

α 0.4625 1.0897 0.8274 4.4976 96.20% 0.2094 0.2136 1.6354 3.2315

β 0.2391 1.6792 0.7416 5.7366 96.30% 0.0142 0.0105 2.8137 3.2068

λ 0.3126 0.8681 0.0609 2.8338 96.20% 0.0674 0.0263 0.6043 1.1440

0.25 R̃ 0.0010 0.0016 0.1025 0.2573 96.30% −0.0077 0.0010 0.1055 0.2233

0.55 R̃ 0.0104 0.0041 0.3411 0.5886 96.20% −0.0024 0.0016 0.3703 0.5277

0.9 R̃ 0.0138 0.0038 0.6118 0.8488 96.30% 0.0089 0.0012 0.6589 0.7895

50

α 0.2230 0.5556 1.0283 3.8177 95.70% 0.1587 0.1785 1.6471 3.1347

β 0.3673 1.4003 1.1614 5.5732 96.50% 0.0139 0.0101 2.7764 3.2176

λ 0.0962 0.2755 0.1155 1.9080 95.70% 0.0515 0.0172 0.6228 1.0910

0.25 R̃ −0.0012 0.0008 0.1230 0.2324 96.50% −0.0063 0.0006 0.1265 0.2197

0.55 R̃ 0.0015 0.0024 0.3597 0.5522 95.70% −0.0014 0.0011 0.3883 0.5186

0.9 R̃ 0.0045 0.0026 0.6213 0.8207 96.50% 0.0076 0.0011 0.6604 0.7864

100

α 0.1572 0.2423 1.4425 3.2719 96.00% 0.1155 0.1074 1.7232 2.9011

β 0.0916 0.5368 1.6662 4.5171 96.90% 0.0123 0.0098 2.7795 3.2899

λ 0.1038 0.1912 0.0707 1.7368 96.00% 0.0404 0.0108 0.6729 1.0308

0.25 R̃ 0.0003 0.0004 0.1383 0.2201 96.90% −0.0060 0.0004 0.1355 0.2056

0.55 R̃ 0.0041 0.0012 0.3899 0.5273 96.00% −0.0018 0.0006 0.4064 0.5047

0.9 R̃ 0.0060 0.0012 0.6554 0.7897 96.90% 0.0069 0.0007 0.6739 0.7728

1.5

30

α 0.2505 0.8275 0.7356 4.1653 96.50% 0.1352 0.1320 1.7240 3.0249

β 0.5053 2.3515 0.6661 6.3444 97.70% 0.0345 0.0133 2.8154 3.2366

λ 0.5446 2.9301 0.1378 5.2269 96.50% 0.0875 0.0448 1.2315 1.9657

0.25 R̃ −0.0021 0.0006 0.0009 0.0926 97.70% −0.0038 0.0004 0.0131 0.0811

0.55 R̃ −0.0070 0.0042 0.1198 0.3715 96.50% −0.0097 0.0029 0.1458 0.3498

0.9 R̃ −0.0004 0.0056 0.4719 0.7654 97.70% −0.0017 0.0032 0.5057 0.7255

50

α 0.1420 0.4515 1.0540 3.6299 95.50% 0.1084 0.1073 1.7384 2.9163

β 0.3371 1.5045 1.0244 5.6497 96.00% 0.0316 0.0130 2.7169 3.2388

λ 0.3146 1.3864 0.1411 4.0396 95.50% 0.0834 0.0397 1.2622 1.9604

0.25 R̃ −0.0019 0.0004 0.0091 0.0831 96.00% −0.0047 0.0003 0.0147 0.0726

0.55 R̃ −0.0056 0.0025 0.1503 0.3437 95.50% −0.0118 0.0020 0.1530 0.3180

0.9 R̃ −0.0010 0.0034 0.5033 0.7328 96.00% −0.0038 0.0022 0.5230 0.7065

100

α 0.0269 0.1939 1.3651 3.0887 95.20% 0.0561 0.0657 1.8009 2.7655

β 0.2392 0.8517 1.4912 4.9871 95.10% 0.0268 0.0126 2.7880 3.2628

λ 0.0860 0.4431 0.2916 2.8805 95.20% 0.0526 0.0281 1.2695 1.8645

0.25 R̃ 0.0003 0.0002 0.0209 0.0757 95.10% −0.0036 0.0002 0.0215 0.0674

0.55 R̃ −0.0017 0.0013 0.1804 0.3214 95.20% −0.0097 0.0012 0.1843 0.3126

0.9 R̃ −0.0022 0.0018 0.5348 0.6990 95.10% −0.0049 0.0014 0.5380 0.6821
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Table 4. Bias, MSE, and CI for fuzzy reliability and parameters of model in case 4.

α = 1, β = 1.2 and t1 = 0.2, t2 = 0.8

MLE Bayesian

λ n γ Bias MSE Lower Upper CP Bias MSE Lower Upper

0.8

30

α 0.0432 0.4142 −0.2160 2.3025 95.50% 0.1442 0.1294 0.5982 1.8053

β 0.4273 0.7146 0.1970 3.0576 97.20% 0.0648 0.0342 0.9313 1.5827

λ 0.0762 0.4601 −0.4455 2.1978 95.50% 0.0865 0.0482 0.5419 1.2648

0.25 RF 0.0014 0.0005 0.1128 0.2043 97.20% 0.0083 0.0004 0.1303 0.2009

0.55 RF 0.0047 0.0016 0.2163 0.3721 95.50% 0.0195 0.0015 0.2485 0.3757

0.9 RF 0.0087 0.0027 0.3044 0.5045 97.20% 0.0287 0.0028 0.3446 0.5110

50

α 0.0567 0.2835 0.0185 2.0948 96.30% 0.1068 0.0824 0.6537 1.6186

β 0.1876 0.2939 0.3902 2.3851 96.90% 0.0345 0.0263 0.9321 1.5310

λ 0.1126 0.3397 −0.2088 2.0340 96.30% 0.0845 0.0451 0.5494 1.2083

0.25 RF 0.0013 0.0004 0.1211 0.1959 96.90% 0.0066 0.0003 0.1366 0.1925

0.55 RF 0.0031 0.0010 0.2298 0.3553 96.30% 0.0162 0.0010 0.2565 0.3576

0.9 RF 0.0050 0.0017 0.3213 0.4799 96.90% 0.0244 0.0020 0.3513 0.4901

100

α 0.0255 0.1338 0.3100 1.7411 95.90% 0.0621 0.0495 0.6924 1.4883

β 0.1070 0.1622 0.5456 2.0684 95.70% 0.0342 0.0261 0.8995 1.5254

λ 0.0466 0.1217 0.1686 1.5246 95.90% 0.0688 0.0393 0.5365 1.2094

0.25 RF 0.0007 0.0002 0.1324 0.1834 95.70% 0.0049 0.0001 0.1430 0.1854

0.55 RF 0.0015 0.0005 0.2481 0.3338 95.90% 0.0121 0.0005 0.2665 0.3428

0.9 RF 0.0023 0.0008 0.3438 0.4520 95.70% 0.0187 0.0011 0.3652 0.4685

1.5

30

α −0.0190 0.3250 −0.1363 2.0983 98.10% 0.0682 0.0476 0.7119 1.5046

β 0.3712 0.6819 0.1247 3.0177 94.50% 0.0528 0.0231 0.9814 1.5399

λ 0.1202 1.1053 −0.4280 3.6684 98.10% 0.0782 0.0575 1.1854 2.0476

0.25 RF −0.0036 0.0007 0.0693 0.1721 94.50% −0.0033 0.0006 0.0772 0.1683

0.55 RF −0.0048 0.0023 0.1779 0.3658 98.10% −0.0001 0.0017 0.2009 0.3574

0.9 RF −0.0030 0.0038 0.3059 0.5482 94.50% 0.0070 0.0026 0.3441 0.5378

50

α −0.0018 0.2499 0.0179 1.9785 97.30% 0.0358 0.0317 0.7128 1.3734

β 0.2248 0.3584 0.3368 2.5128 94.40% 0.0527 0.0192 1.0014 1.4828

λ 0.1569 0.9451 −0.2245 3.5383 97.30% 0.0761 0.0526 1.1745 1.9814

0.25 RF −0.0040 0.0005 0.0778 0.1627 94.40% −0.0064 0.0004 0.0799 0.1550

0.55 RF −0.0054 0.0016 0.1946 0.3478 97.30% −0.0055 0.0011 0.2057 0.3348

0.9 RF −0.0038 0.0024 0.3301 0.5224 94.40% 0.0011 0.0016 0.3486 0.5034

100

α −0.0100 0.1471 0.2382 1.7418 96.30% 0.0252 0.0231 0.7458 1.3359

β 0.1276 0.1623 0.5782 2.0769 96.10% 0.0387 0.0162 1.0086 1.4850

λ 0.0829 0.5082 0.1945 2.9713 96.30% 0.0707 0.0505 1.1763 1.9598

0.25 RF −0.0027 0.0002 0.0913 0.1518 96.10% −0.0059 0.0002 0.0887 0.1450

0.55 RF −0.0038 0.0008 0.2172 0.3285 96.30% −0.0055 0.0006 0.2204 0.3166

0.9 RF −0.0031 0.0013 0.3561 0.4979 96.10% −0.0003 0.0009 0.3712 0.4864
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7. Application of Real Data

In this section, the flexibility and potentiality of the TIIHLW distribution are examined
using two real data sets. We provide an application of the TIIHLW distribution with
Fuzzy reliability. The cancer data set is given by [28], which represents remission times (in
months) of a random sample of 128 bladder cancer patients. In Table 5, the TIIHLW model
has the highest p-value and the lowest distance (D) of the Kolmogorov–Smirnov (K-S) value.
Bayesian estimation methods have smaller stander error (SE). Table 6 discussed the MLE
estimate alternative model of TIIHLW as Topp Leone inverted Kumaraswamy (TLIK) [29],
modifed Kies inverted Topp–Leone (MKITL) [30], Kumaraswamy Weibull–Weibull (KW-
W) [31], Marshall–Olkin alpha power inverse Weibull (MOAPIW) [32], and Odd Weibull ITL
(OWITL) [33]. Table 7 shows that the TIIHLW fits the data by the Akaike information criterion
(AIC), Anderson–Darling (AD), Bayesian information criterion (BIC), and Cramér–von Mises
criterion (CVM) values. Figure 2 shows the fit of the empirical CDF, histogram, and PP-plot.
Figure 3 shows convergence plots of MCMC for parameter estimates of TIIHLW distribution.
Figure 4 shows the estimates exist and have maximum log-likelihood value. We conclude that
the TIIHLW is the best distribution fit for this data.

Table 5. MLE and Bayesian estimation for parameters of TIIHLW distribution.

Estimates SE Lower Upper

MLE

α 0.2008 0.1377 0.0069 0.4706

β 0.8118 0.1766 0.4656 1.1580

λ 2.0828 0.8296 0.4568 3.7089

Bayesian

α 0.1981 0.0628 0.0844 0.3117

β 0.8284 0.0943 0.6536 1.0117

λ 2.0609 0.4079 1.3090 2.8671
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for the TIIHLW distribution.
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Figure 3. Convergence plots of MCMC for parameter estimates of TIIHLW distribution.
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Table 6. MLE with SE for an alternative model of TIIHLW.

TLIK MKITL KW-W MOAPIW OWITL

Estimates SE Estimates SE Estimates SE Estimates SE Estimates SE

α 1.9018 0.6338 1.4058 0.1039 1.6434 0.0031 100.0941 850.8987 1.2686 0.2379

β 9.2617 4.7748 0.4269 0.0196 0.7084 0.0031 1.7014 0.1306 0.5490 0.4581

λ 0.6536 0.1671 4.5002 0.0069 799.9982 1374.6087 0.5814 0.2641

θ 0.1606 0.0143 0.0058 0.0028

Table 7. AIC, CAIC, KS test, CVM, and AD.

KS p-Value AIC BIC CVM AD

TIIHLW 0.0404 0.9851 827.1032 835.6593 0.0396 0.2676

TLIK 0.0982 0.1697 855.5293 864.0854 0.3349 2.1509

MKITL 0.0502 0.9034 828.3362 834.0403 0.0683 0.4629

KW-W 0.0813 0.3655 836.8575 848.2656 0.1081 0.7183

MOAPIW 0.0410 0.9824 831.3024 842.7105 0.0482 0.3475

OWITL 0.0538 0.8531 829.9590 838.5150 0.0687 0.4553

Table 8 shows fuzzy reliability by different γ values and different intervals of mem-
bership function. We note that, when the value of γ increases, the fuzzy reliability that is
improved tends to 1. As expected, the estimates by using the Bayesian estimation method
perform better than those by using the MLE method in terms of fuzzy reliability and SE.

Table 8. Fuzzy reliability.

MLE Bayesian

γ 2, 12 1.5, 18 2, 12 1.5, 18

0.3 0.2648 0.4106 0.2723 0.4214

0.6 0.4479 0.6278 0.4584 0.6400

0.9 0.5676 0.7397 0.5785 0.7500

For Figures 5 and 6, the proposed distribution (normal) of the MH algorithm and the
prior distributions of the subsequent terms of the MCMC was the same as the posterior
distribution. In both cases, problems seem to have been solved: the trace plots of the
MCMC samples do not show any apparent anomaly. Figure 7 shows an auto-correlation
plot for fuzzy reliability estimation of TIIHLW distribution by using MCMC results. In the
graph, there is a vertical line corresponding to each lag. The height of each spike shows the
value of the auto-correlation function for the lag. In this figure, the spikes are statistically
significant for lags up to 40. This means that the fuzzy reliability estimation of TIIHLW
distribution by using MCMC results are highly correlated with each other.
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Figure 5. The auto-correlation plot of MCMC for fuzzy reliability R̃ of TIIHLW distribution where
lower is 2 and upper is 12.
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Figure 6. The auto-correlation plot of MCMC for fuzzy reliability R̃ of TIIHLW distribution where
lower is 1.5 and upper is 18.
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Figure 7. The auto-correlation of fuzzy reliability R̃ by MCMC results of TIIHLW distribution.

8. Conclusions

In this paper, we introduced classical and Bayesian estimation approaches for fuzzy
reliability estimation using the lifetime Type II Half Logistic Weibull distribution model,
using it as a base. We calculated parameters and reliability fuzzy estimations using MLE and
Bayesian procedures. In addition, the asymptotic confidence intervals were created. The
MCMC method is used to create Bayesian credible intervals. We use Monte Carlo simulation
to compare the results of different methods. The simulation results indicate that, in the case
of point estimation, the performances of the classical and Bayesian estimators are nearly
identical, especially for large sample sizes. The results of the simulation study indicated
that the MSEs of Bayes estimates for informative priors were significantly lower than those
of the others. In addition, the HPD credible intervals outperform the competition. The
simulation results indicate that reliability under fuzzy is better than traditional reliability
for all sample sizes, and that fuzzy reliability at Bayes estimates is better than the maximum
likelihood method. The empirical study using a real data set for bladder cancer patients to
evaluate the flexibility of the TIIHLW distribution fits well with the proposed distribution.
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