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Metric Space over Topological Modules
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Department of Mathematics and Computer Science, Lucian Blaga University of Sibiu, Dr. I. Raţiu Street, No. 5–7,
550012 Sibiu, Romania; marian.olaru@ulbsibiu.ro

Abstract: One recent and prolific direction in the development of fixed point theory is to consider
an operator T : X → X defined on a metric space (X, d) which is an F—contraction, i.e., T verifies a
condition of type τ + F(d(T(x), T(y)) ≤ F(d(x, y)), for all x, y ∈ X, T(x) 6= T(y), where τ > 0 and
F : (0, ∞) → R satisfies some suitable conditions which ensure the existence and uniqueness for
the fixed point of operator T. Moreover, the notion of F-contraction over a metric space (X, d) was
generalized by considering the notion of (G, H)—contraction, i.e., a condition of type G(d(Tx, Ty)) ≤
H(d(x, y)), for all x, y ∈ X, Tx 6= Ty for some appropriate G, H : (0, ∞) → R functions. Recently,
the abovementioned F-contraction theory was extended to the setup of cone metric space over the
topological left modules. The principal objective of this paper is to introduce the concept of vectorial
dislocated metric space over a topological left module and the notion of A-Cauchy sequence, as
a generalization of the classical Cauchy sequence concept. Furthermore, based on the introduced
concept, a fixed point result is provided for an operator T : X → X, which satisfies the condition
(G, H)—contraction, where G, H are defined on the interior of a solid cone.

Keywords: vectorial dislocated metric spaces; topological left modules; fixed point theorems;
generalized contraction

MSC: 47H09; 47H10

1. Introduction

A.I. Perov and his collaborators ([1–3]) presented the fixed point theory in K-metric
and K-normal space. The general idea is the usage of an ordered Banach space, considered
an alternative for the set of real numbers, as the codomain for a metric. To have a deeper
analysis of the fixed point theory in K-metric and K-normed spaces, we guide the reader
to [4]. Another important work is provided by Huang and Zhang [5], who presented
this type of spaces as cone metric spaces, where the notion of convergent and Cauchy
sequence was defined by using the solid cone notion, i.e., a cone with a nonempty interior.
The authors also demonstrated some fixed point theorems in such spaces, further studies
in fixed point results in cone metric spaces later being conducted. Another important
result is the development of fixed point theory in ordered K-metric spaces or cone metric
spaces provided by W.S. Du in [6]. It was shown that fixed point results in ordered K-
metric spaces for map, fulfilling contractive conditions of a linear type in K-metric spaces,
are treated as the corollaries of the matching theorems in metric spaces. In addition,
in [7], another approach can be distinguished to demonstrate the equivalence between the
vectorial version of fixed point results and the scalar one. I.M Olaru and N.A. Secelean,
in [8] enlarged the abovementioned outcomes to a nonlinear contractive condition on TVS-
cone metric space, further generalization being later identified. Liu and Xu [9] considered
Banach algebra instead a Banach space, proposing the concept of cone metric space over the
Banach algebra. The notions mentioned in [9] were broadened to the theory of cone metric
space over the topological left modules in [10]. The authors of [10] extended the fixed
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point results for linear contractions to cone metric spaces over topological left modules
and built an example which showed that the abovementioned spaces cannot be metrizable.
Another direction in the development of fixed point theory was given by Wardowski [11]
in which the author introduced the notion of F-contraction over the scalar metric spaces.
The abovementioned F-contraction theory was extended to the cone metric space over the
topological left modules by A. Branga [12]. Furthermore, I.M Olaru and N.A. Secelean [13]
generalized the notion of F-contraction, considering for an operator T : X → X, a general
contractive condition named (G, H)−contraction for some suitable G, H functions. In this
paper, we aim to extend the results from [13] to the setup of dislocated metric space over
topological left modules. More specifically, our aim is to introduce the notion of A-Cauchy
sequence which represents a generalization of the well-known Cauchy sequence definition.
In addition, we introduce the notion of vectorial dislocated metric space as an extension of
scalar dislocated metric space. Next, following the concepts from [10], we define a solid
cone on a topological left module and by considering adequate condition for it we give
a lemma used for proving the fact that the iteration sequence associated to an operator
defined on a vectorial dislocated metric space is an A-Cauchy sequence. The main result of
this paper is a fixed point result for an operator T defined on a vectorial dislocated metric
space which satisfies the condition (1).

G(d(Tx, Ty)) ≤ H(d(x, y)), (∀)x, y ∈ X, Tx 6= Ty (1)

2. Methods

In this section, concepts related to the topological ordered ring are presented. The
reader can obtain more details from the work of Arnautov [14], Steinberg [15] and
Warner [16].

Definition 1. A ring (R,+, ·) together with a partial order � is named partially ordered ring if:

(R1) r1 � r2 entails α + r1 + β � α + r2 + β, for all r1, r2, α, β ∈ R.
(R2) 0 � α and 0 � β entails 0 � α · β, for all α, β ∈ R.

Next we define Positive(R) = {α ∈ R | 0 � α}, U(R) the set of invertible elements of
R and U(R) ∩ Positive(R) will stands for U+(R).

Definition 2. A ring (R,+, ·), with 1R 6= 0R endowed with a topology τR is named a topological
ring if the following maps are continuous:

(i) R× R 3 (r1, r2) 7→ r1 + r2 ∈ R;
(ii) R 3 r 7→ −r ∈ R;
(iii) R× R 3 (r1, r2) 7→ r1 · r2 ∈ R.

If τR is a Hausdorff topology, then (R,+, ·, τR) is named Hausdorff topological ring.

Definition 3. Let us consider (R,+R, ·R) a ring. A left R-module is an abelian group (E,+) with
the external product · : R× E→ E, (r, x) 3 R× E→ r · x ∈ E having the following properties:

(i) (r1 +R r2) · x = r1 · x + r2 · x, for all r1, r2 ∈ R, x ∈ E;
(ii) r · (x1 + x2) = r · x1 + r · x2, for all r ∈ R, x1, x2 ∈ E;
(iii) 1R · x = x, for all x ∈ E;
(iv) (r1 ·R r2) · x = r1 · (r2 · x) for all r1, r2 ∈ R, x ∈ E.

Definition 4. Let us consider (R,+R, ·R) a ring. A right R-module is an abelian group (E,+) with
the external product · : E× R→ E, (x, r) 3 E× R→ x · r ∈ E having the following properties:

(i) x · (r1 +R r2) = x · r1 + x · r2, for all r1, r2 ∈ R, x ∈ E;
(ii) (x1 + x2) · r = x1 · r + x2 · r, for all r ∈ R, x1, x2 ∈ E;
(iii) x · 1R = x, for all x ∈ E;
(iv) x · (r1 ·R r2) = (x · r1) · r2 for all r1, r2 ∈ R, x ∈ E.
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Definition 5. Let us consider (R,+, ·, τR) a topological ring. A left R-module (E,+, ·) endowed
with a topology τE is called topological leftR−module if the maps

(i) E× E 3 (e1, e2) 7→ e1 + e2 ∈ E;
(ii) E 3 e 7→ −e ∈ E;
(iii) R× E 3 (α, x) 7→ α · x ∈ E,

are continuous. A topological left R—module is denoted as (E,+, ·, τE), and in a simpler notation
(E, τE).

3. Results

Definition 6. Let us consider (E,+, ·, τE) a topological left R-module. By cone, we understand a
nonempty set P ⊂ E which satisfies the next properties:

(P1) P is closed with respect to τE and P 6= {0E};
(P2) α, β ∈ Positive(R) and x, y ∈ P entails α · x + β · y ∈ P;
(P3) P ∩−P = {0E}.

Moreover, if the interior of P, denoted by int(P), is not empty the the cone P is named
solid cone.

Let us consider the cone P ⊂ E and the partial order relation ≤P by

x ≤P y⇐⇒ y− x ∈ P. (2)

In this paper, the notation x <P y will represent that x ≤P y but x 6= y, and x � y indicates
that y− x ∈ int(P).

Lemma 1. Let us consider (R,⊕,�, τR,�) a partially ordered topological ring, having identity
1R ∈ Positive(R), (E,+, ·, τE) be a topological left R-module and P ⊂ E be a solid cone E.
The next conclusions hold:

(i) P + P ⊆ P;
(ii) if e1 ≤P e2 and e2 �P e3, then e1 �P e3, for all e1, e2, e3 ∈ E;
(iii) if u1 ≤P v1 and u2 ≤P v2, then u1 + u2 ≤P v1 + v2, for all u1, u2, v1, v2 ∈ E.

Proof. (i) It follows for a = b = 1R in Definition 6;
(ii) It should be demonstrated that e3 − e1 ∈ int(P) if e2 − e1 ∈ P and e3 − e2 ∈ int(P).

Then we can find the neighborhood V of 0E with e3 − e2 + V ⊂ P. Consequently,
e3 − e1 + V = (e3 − e2) + V + (e2 − e1) ⊂ P + P ⊂ P. Therefore e3 − e1 ∈ int P;

(iii) Let us consider u1, u2, v1, v2 as in hypothesis (iii). Then v1 − u1 ∈ P and v2 − u2 ∈
P. Taking into consideration the fact that 1R ∈ Positive(R), we obtain further that
v1 − u1 + v2 − u2 ∈ P and consequently u1 + u2 ≤P v1 + v2.

Lemma 2. Let us suppose that (R,⊕,�, τR,�) is a partially ordered topological, (E,+, ·, τE) is a
topological left R-module and P ⊂ E a solid cone. The next conclusions hold:

(i) if (R, τR) is a Hausdorff topological space, 0R ∈ Positive(R)′, where Positive(R)′ is derived
set of Positive(R), r · int(P) ⊆ int(P) for all r ∈ Positive(R) \ {0R} and x ∈ P, x �P
c + c for all c ∈ int(P), then x = 0E;

(ii) if {xn}n∈N, {yn}n∈N ⊂ E, x, y ∈ E, xn
n→ x, yn

n→ y, and xn ≤P yn for all n ≥ N0, then
x ≤P y.

Proof. (i) Let us consider c ∈ int(P). Due to the fact that 0R ∈ Positive(R)′ there is a
sequence (αn)n∈N ∈ R+ \ {0R} such that αn → 0R, as n → ∞. Then αn · c ∈ int(P)
and consequently αn · c + αn · c− u ∈ int(P). Therefore, lim

n→∞
(αn · c + αn · c− u) =

−u ∈ P = P. In this way, u ∈ P ∩−P = {0E}.
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(ii) Since xn ≤P yn for all n ≥ N0 we have that yn − xn ∈ P, n ≥ N. By passing to limit as
n→ ∞ and considering that P is a closed set we have the conclusion.

Definition 7. Let (R,⊕,�, τR,�) be a partially ordered topological, (E,+, ·, τE) be a topological
left R-module, P be a solid cone of E and X be a nonempty set. By vectorial dislocated metric on X
we understand a function d : X× X → E that satisfies the following rules:

(d1) 0E ≤P d(x, y) for all x, y ∈ X;
(d2) d(x, y) ∈ Fr(P) implies x = y;
(d3) d(x, y) = d(y, x) for all x, y ∈ X;
(d4) d(x, y) ≤P d(x, z) + d(z, y) for all x, y, z ∈ X.

The pair (X, d) will be named vectorial dislocated metric space over the topological left R-
module. Moreover, if the condition (d1), (d3), (d4) are fulfilled and additionally

(d′2) d(x, y) = 0E ⇐⇒ x = y, (∀)x, y ∈ X

then d is a cone metric and the pair (X, d) will be named cone metric space over the topological left
R-module.

Example 1. Let us consider E = ∏
m∈N∗

R, P = ∏
m∈N∗

R+, X = C([0, 1], ∏
i∈N

Rn) and

d : X× X → P expressed by
d(x, y) = (di(x, y))i∈N,

where
di(x, y) := sup

t∈[0,1]
‖pri(x)(t)− pri(y)(t)‖Rn · e−t.

Then (X, d) is a vectorial dislocated metric space.

Proof. (d1) Since di(x, y) ∈ R+, for all x, y ∈ X it follows that d(x, y) ∈ P i.e 0E ≤P d(x, y).
(d2) Let us assume that d(x, y) ∈ Fr(P). It can be seen that there is m0 ∈ N such that

dm0(x, y) = 0. Consequently we obtain x = y.
(d3) It can be demonstrated using the fact that di(x, y) = di(y, x) for all x, y ∈ X.
(d4) It can be proved using the fact that di(x, y) ≤ di(x, y) + di(y, z) for all x, y, z ∈ X.

Example 2. Let us consider E = R2, P = R2
+, X = R2 and d : X× X → P expressed by

d(x, y) = (d1(x, y), d2(x, y))

where:
d1(x, y) = max{‖x‖R2 , ‖y‖R2}

d2(x, y) =
{

2 , x = y = (0, 0)
1 , otherwise

Then (X, d) is a vectorial dislocated metric space which is not cone metric space.

Proof. (d1) Since di(x, y) ∈ R+, i = 1, 2 for all x, y ∈ X it follows that d(x, y) ∈ P i.e.,
0E ≤P d(x, y).

(d2) Let us assume that d(x, y) ∈ Fr(P). Then d1(x, y) = 0 and consequently we obtain
x = y.

(d3) It can be demonstrated using the fact that di(x, y) = di(y, x) for all x, y ∈ X and
i = 1, 2.

(d4) It can be proved using the fact that di(x, y) ≤ di(x, y) + di(y, z) for all x, y, z ∈ X and
i = 1, 2.
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Moreover we observe that for x = y = (1, 0) we have d(x, y) = (1, 1) 6= (0, 0) and
thus one has that d is not a cone metric.

Definition 8. Let (R,⊕,�, τR,�) be a partially ordered topological, (E,+, ·, τE) a topological
left R-module, P a solid cone of E and (X, d) a vectorial dislocated metric space over the topological
left R-module.

(1) A sequence {xk}k∈N ⊂ X, satisfying the condition:

for every 0E �P c there exists a number k(c) ∈ N such that for all k ≥ k(c) we have
d(xk, x)�P c,

is named convergent to a point x ∈ X;
(2) A sequence {xk}k∈N ⊂ X is called as an A−Cauchy sequence if there exists a set A ⊆

P + Fr(P) fulfilling the property: for every c ∈ A + int(P) there exists a number k(c) ∈ N
in order that d(xk, xl)�P c, for all k, l ≥ k(c);

(3) A sequence {xk}k∈N ⊂ X is called as an Cauchy sequence if for every c ∈ int(P) there is a
number k(c) ∈ N such that for all k, l ≥ n(c) we have d(xk, xl)�P c.

(4) The vectorial dislocated metric space (X, d) is named A—complete if the following condition
holds: any A−Cauchy sequence of points in X is convergent in X.

Remark 1. If 0E ∈ Fr(P) we note that P = P = P − {0E} ⊆ P − Fr(P). Hence Fr(P) =
P ∩ CE(int(P)) ⊆ (P− Fr(P)) ∩ CE(int(P)).

Remark 2. If 0E ∈ Fr(P), then for A = {0E} we obtain the notion of Cauchy sequence.

Proof. Since 0E = 0E + 0E ∈ P + Fr(P) one has A ⊆ P + Fr(P) and A + int(P) =
int(P).

Definition 9. Let us consider (R,⊕,�, τR,�) a partially ordered topological, (E,+, ·, τE) a
topological left R-module. A set A ⊂ E is named bounded if for every neighborhood V of 0E there is
λV ∈ U(Positive(R)) in order that A ⊆ λV ·V.

Next we make the following hypotheses:
Hypotheses 1 (H1). P =

⋃
i∈I

Ki, where

(a) Ki ⊆ P are sequentially compact subsets of E, for every i ∈ I ;
(b) for every bounded sequence {xn}n∈N ⊂ P there exists i0 ∈ I and N(i0) ∈ N such that

xn ∈ Ki0 , for all n ≥ N(i0).

Hypotheses 2 (H2). there exists the sets Bj ⊂ E, j ∈ J, such that for every J1 ⊂ J the family
(Bj)j∈J1 is summable in E and

(a) ∑
j∈J1

Bj ⊆ Fr(P);

(b) ∑
j∈J1

Bj + ∑
j∈J1

Bj + ∑
j∈J1

Bj + ∑
j∈J1

Bj ⊆ Fr(P).

Hypotheses 3 (H3). (R, τR) is a Hausdorff topological space (i.e., any two distinct elements of R
can be separated by two disjoint neighbourhoods of them), 0R ∈ Positive(R)′, where Positive(R)′

is derived set of Positive(R) and r · int(P) ⊆ int(P) for all r ∈ Positive(R) \ {0R}.

Example 3. Let us consider P = ∏
m∈N∗

R+. Then

(a) the Hypothesis (H1) is fulfilled for Ki = ∏
m∈N∗

[0, i], i ∈ N∗;

(b) the Hypothesis (H2) is satisfied for Bj = {(0, · · · , 0, xj, 0, · · · ) | xj ∈ R+} ⊂ P, j ∈ N∗;
(c) the Hypothesis (H3) is satisfied.
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We mention that the above hypotheses are necessary to prove the following lemma
which represents the vectorial version of Lemma 1.1 pp.3 from [17]. It represents a useful
instrument to prove that a sequence of elements from a dislocated metric space is an
A—Cauchy sequence.

Lemma 3. Let {xn}n∈N be a sequence in a vectorial dislocated metric space (X, d) satisfying
the properties:

(i) the set {d(xn, xm) | n, m ∈ N} is bounded;
(ii) the hypotheses (H1) and (H2) are fulfilled;
(iii) τE is a Hausdorff topology;
(iv) 0E ∈ Fr(P).

Then:

(1) if {xn}n∈N is not an A−Cauchy sequence, then there exists c0 ∈ A + int(P) and the
subsequences {xm(k)}k∈N, {xn(k)}k∈N, checking for all k ∈ N the properties

n(k) > m(k) > k, d(xm(k), xn(k)) 6�P c0, (3)

d(xm(k), xn(k)−1)�P c0; (4)

(2) in addition, if {xn}n∈N is such that lim
n→∞

d(xn, xn+1) = z0 ∈
⋃

J1⊂J
( ∑

j∈J1

Bj), then there exist

two elements l ∈ int(P), L ∈ int(P)− z0 − z0 such that

lim
k→∞

d(xm(k), xn(k)) = l, (5)

lim
k→∞

d(xm(k)−1, xn(k)−1) = L, (6)

l − z0 − z0 ≤P L ≤P l + z0 + z0. (7)

Proof. (1) Assuming that {xn}n∈N is not an A—Cauchy sequence. Then, we can point
out c0 ∈ A + int(P) and the subsequences {xm1(k)}k∈N, {xn1(k)}k∈N, in order that n1(k) >
m1(k) > k and c0 − d(xm1(k), xn1(k)) /∈ int(P) for all k ∈ N. Furthermore, for every k ∈ N,
corresponding to m1(k), we can take n1(k) to be the minimum integer with n1(k) > m1(k)
and d(xm1(k), xn1(k)) 6�P c0, therefore d(xm1(k), xn1(k)−1)�P c0.

According to the hypothesis (H1) applied for {d(xm1(k), xn1(k))}k∈N, there is i0 ∈ I and
N(i0) ∈ N in order that d(xm1(k), xn1(k)) ∈ Ki0 , for all k ≥ N(i0). Since Ki0 is a sequentially
compact set, it can be seen that there is a subsequence of {d(xm1(k), xn1(k))}k∈N which
converges to a point l ∈ Ki0 ⊆ P. Therefore, a strictly increasing function r : N → N is
obtained verifying for all k ∈ N we have n1(r(k)) > m1(r(k)) > k, r(k) > k and

l = lim
k→∞

d(xm1(r(k)), xn1(r(k))).

By using similar arguments as the abovementioned applied to {d(xm1(r(k))−1, xn1(r(k))−1)}k∈N,
a strictly increasing function s : N→ N is obtained, verifying for all k ∈ N the properties
n1(r(s(k))) > m1(r(s(k))) > k, s(k) > k and a point L ∈ P such that

L = lim
k→∞

d(xm1(r(s(k)))−1, xn1(r(s(k)))−1)

Consequently, the properties (3) and (4) are verified for m, n : N → N, m(k) =
m1(r(s(k))), n(k) = n1(r(s(k))), which are strictly increasing functions with n(k) > m(k) >
k. Furthermore, we obtained that

l = lim
k→∞

d(xm1(r(k)), xn1(r(k))) = lim
k→∞

d(xm1(r(s(k))), xn1(r(s(k)))) = lim
k→∞

d(xm(k), xn(k)) (8)
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and
L = lim

k→∞
d(xm1(r(s(k)))−1, xn1(r(s(k)))−1) = lim

k→∞
d(xm(k)−1, xn(k)−1). (9)

(2) Next, to prove the relation (5), we remark that (3) implies c0 − d(xm(k), xn(k)) /∈
int(P), for all k ∈ N and thus c0 − d(xm(k), xn(k)) ∈ CE(int(P)). For k→ ∞ via relation (8)
we find

c0 − l ∈ CE(int(P)) = CE(int(P)). (10)

On the other side, we have that, for each k ∈ N,

d(xm1(r(k)), xn1(r(k))) ≤P d(xm1(r(k)), xn1(r(k))−1) + d(xn1(r(k))−1, xn1(r(k)))�P

c0 + d(xn1(r(k))−1, xn1(r(k))),

thus
c0 − d(xm1(r(k)), xn1(r(k))) + d(xn1(r(k))−1, xn1(r(k))) ∈ int(P).

Considering the relation (8) and the hypothesis lim
n→∞

d(xn, xn+1) = z0 and passing to the

limit as k→ ∞ in the previous relation, we deduce

c0 − l + z0 ∈ int(P) ⊆ P.

Since z0 ∈
⋃

J1⊂J
( ∑

j∈J1

Bj), it can be seen that there is J1 ⊂ J such that z0 ∈ ∑
j∈J1

Bj. Taking into

account the hypothesis (H2)(a), we obtain z0 ∈ Fr(P). Therefore,

c0 − l ∈ P− z0 ⊆ P− Fr(P). (11)

Consequently, from the relations (10) and (11) we obtain

c0 − l ∈ (P− Fr(P)) ∩ CE(int(P)).

We deduce that
l ∈ c0 − (P− Fr(P)) ∩ CE(int(P))

⊆ A + int(P)− (P− Fr(P)) ∩ CE(int(P)). (12)

Since A ⊆ P + Fr(P) and Fr(P) ⊆ (P− Fr(P)) ∩ CE(int(P)), we obtain

A ⊆ P + (P− Fr(P)) ∩ CE(int(P)),

hence
A− (P− Fr(P)) ∩ CE(int(P)) ⊆ P.

Consequently,
l ∈ int(P) + P ⊆ int(P). (13)

Furthermore, by applying the triangular inequality, it is obtained that

d(xm1(m2(m3(k))), xn1(n2(n3(k)))) ≤P

d(xm1(m2(m3(k))), xm1(m2(m3(k)))−1) + d(xm1(m2(m3(k)))−1, xn1(n2(n3(k))))

≤P d(xm1(m2(m3(k))), xm1(m2(m3(k)))−1)

+d(xm1(m2(m3(k)))−1, xn1(n2(n3(k)))−1) + d(xn1(n2(n3(k)))−1, xn1(n2(n3(k))))

d(xm1(m2(m3(k))), xn1(n2(n3(k))))− d(xm1(m2(m3(k)))−1, xm1(m2(m3(k))))

−d(xn1(n2(n3(k)))−1, xn1(n2(n3(k)))) ≤P d(xm1(m2(m3(k)))−1, xn1(n2(n3(k)))−1)

and
d(xm1(m2(m3(k)))−1, xn1(n2(n3(k)))−1) ≤P d(xm1(m2(m3(k))), xn1(n2(n3(k))))
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+d(xm1(m2(m3(k)))−1, xm1(m2(m3(k)))) + d(xn1(n2(n3(k)))−1, xn1(n2(n3(k)))).

From the above inequalities, we infer

l − z0 − z0 ≤P L ≤P l + z0 + z0.

As l ∈ int(P), we have 0E �P l. The last inequalities lead us to

0E �P l ≤P L + z0 + z0,

hence
L + z0 + z0 ∈ int(P),

thus
L ∈ int(P)− z0 − z0.

Definition 10. Let us consider (R,⊕,�, τR,�) a partially ordered topological ring and (E,+, ·, τE)
a topological left R-modul, P ⊂ E a solid cone. G is defined as the set of all pairs of mappings
G, H : int(P)→ E which fulfill the following conditions:

(C1) G and H are sequentially continuous on int(P);
(C2) if {dn}n∈N ⊂ P is such that dn+1 � dn for all n ∈ N and for every c ∈ int(P) there

is a number N(c) ∈ N in order that for all n ≥ N(c) we have G(dn) + c �P 0E, then
dn → z0 ∈

⋃
J1⊂J

( ∑
j∈J1

Bj);

(C3) for every r, t ∈ P, r 6= t, satisfying G(r) ≤P H(t), we have r �P t;
(C4) for every r, t ∈ P, r ≤P t, we have H(r) ≤P H(t);
(C5) if {dn}n∈N ⊂ P is such that dn+1 � dn for all n ∈ N and c ∈ int(P) then there is N(c) ∈ N

in order that G(d0) +
n
∑

k=1
(H(dk−1)− G(dk−1)) + c�P 0E, for every n ≥ N(c).

Theorem 1. Let (R,⊕,�, τR,�) be a partially ordered topological ring (E,+, ·, τE) a Hausdorff
topological left R-modul, P ⊂ E a solid cone, (X, d) an A− complete vectorial dislocated metric
space and T : X → X such that

(i) the hypothesis (H1), (H2) and (H3) hold;
(ii) D = {d(T(x), T(y)) | x, y ∈ X} is bounded;
(iii) 0E ∈ Fr(P);
(iv) there exists (G, H) ∈ G in order that

G(d(Tx, Ty)) ≤P H(d(x, y))), (∀)x, y ∈ X, d(Tx, Ty) ∈ int(P). (14)

Then T has an unique fixed point x? ∈ X, and for every x0 ∈ X the sequence {Tnx0}n∈N is
convergent to x? ∈ X.

Proof. In the first place, we remark that the condition (14) leads us to the fact that T has
at most one fixed point. Indeed, if x?1 , x?2 ∈ X is in order that Tx?1 = x?1 6= x?2 = Tx?2 , then
using relation (14) we find

G(d(Tx?1 , Tx?2)) ≤P H(d(x?1 , x?2)),

hence
G(d(x?1 , x?2)) ≤P H(d(x?1 , x?2)),

thus d(x?1 , x?2)� d(x?1 , x?2), which is in contradiction with 0E ∈ Fr(P). Therefore, x?1 = x?2 ,
i.e., T has at most one fixed point.

To demonstrate that T has a fixed point let x0 ∈ X be an arbitrary point. We define
a sequence {xn}n∈N by xn = Txn−1, n ≥ 1 and let denote dn = d(xn+1, xn) ∈ P, n ∈ N.
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If there is n0 ∈ N in order that d(xn0 , xn0+1) ∈ Fr(P) then xn0+1 = xn0 and therefore xn0 is
a fixed point of T. Next, we suppose that d(xn+1, xn) ∈ int(P) for all n ∈ N. The relation
(14) implies that G(dn) ≤P H(dn−1) for all n ≥ 1 and consequently dn � dn−1 for all n ≥ 1.
From the previous inequality we obtain that

n

∑
k=1

(G(dk)− G(dk−1)) ≤P

n

∑
k=1

(H(dk−1)− G(dk−1))

so

G(dn) ≤P G(d0) +
n

∑
k=1

(H(dk−1)− G(dk−1)),

for every n ≥ 1. Let us consider c ∈ int(P) is an arbitrary element. From condition (C5) we
deduce that there is N(c) ∈ N in order that

G(dn)) + c ≤P G(d0) +
n

∑
k=1

(H(dk−1)− G(dk−1)) + c�P 0E,

for every n ≥ N(c). Hence, G(dn)) + c�P 0E for every n ≥ N(c) and via condition (C2)
we find that there exists an element z0 ∈

⋃
J1⊂J

( ∑
j∈J1

Bj) such that dn → z0.

Now, we assume that {xn}n∈N is not an A−Cauchy sequence. According to Lemma 3,
we can obtain two subsequences {xm(k)}k∈N, {xn(k)}k∈N and two elements l ∈ int(P),
L ∈ int(P)− z0 − z0 such that

lim
k→∞

d(xm(k), xn(k)) = l,

lim
k→∞

d(xm(k)−1, xn(k)−1) = L,

l − z0 − z0 ≤P L ≤P l + z0 + z0.

Since l ∈ int(P) and lim
k→∞

d(xm(k), xn(k)) = l, we deduce that there is K ∈ N in order that

d(xm(k), xn(k)) ∈ int(P), for all k ≥ K. Via relation (14), hypothesis (H2)(a) and condition
(C4) it follows that

G(d(xm(k), xn(k))) ≤P H(d(xm(k)−1, xn(k)−1)) ≤P H(d(xm(k)−1, xn(k)−1) + z0 + z0),

for every k ≥ K. As G and H are sequentially continuous on int(P) from the last inequality
we obtain

G(l) ≤P H(L + z0 + z0).

By using condition (C3), we obtain l �P L + z0 + z0. Considering the relation L ≤P
l + z0 + z0, from the previous inequality we find l �P l + z0 + z0 + z0 + z0, hence z0 +
z0 + z0 + z0 ∈ int(P). On the other hand, z0 ∈

⋃
J1⊂J

( ∑
j∈J1

Bj), thus there exists J1 ⊂ J

such that z0 ∈ ∑
j∈J1

Bj. Therefore, z0 + z0 + z0 + z0 ∈ ∑
j∈J1

Bj + ∑
j∈J1

Bj + ∑
j∈J1

Bj + ∑
j∈J1

Bj

and using Hypothesis (H2)(b) it follows that z0 + z0 + z0 + z0 ∈ Fr(P). Consequently,
z0 + z0 + z0 + z0 ∈ int(P) ∩ Fr(P) = ∅, which is a contradiction. Hence, {xn}n∈N is an
A—Cauchy sequence and from the A—completeness of X there exists x? ∈ X such that
xn → x? as n→ ∞.

Next we prove that Tx? = x?. Arguing by contradiction, let us suppose that Tx? 6= x?.
We define the set B = {n ∈ N | xn = Tx?}. There are two cases relative to the set B. In the
first case, if B is not a finite set, then we can find {xn(k)}k∈N of {xn}n∈N which converges to
Tx?. However, xn → x? as n → ∞ and the uniqueness of the limit leads us to Tx? = x?.
In the second case, if B is a finite set, then d(xn, Tx?) ∈ int(P), for infinitely many n ∈ N.
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Hence, there is a subsequence {xm(k)}k∈N of {xn}n∈N such that d(xm(k), Tx?) ∈ int(P),
for all k ∈ N. Using relation (14), we obtain

G(d(Tx?, xm(k))) ≤P H(d(x?, xm(k)−1)) for all k ∈ N.

Taking into account the condition (C3), we deduce

d(Tx?, xm(k))�P d(x?, xm(k)−1).

By using the previous relation and the triangle inequality for the vectorial dislocated metric
d, we find

d(Tx?, x?) ≤P d(Tx?, xm(k)) + d(xm(k), x?)

�P d(x?, xm(k)−1) + d(xm(k), x?) for all k ∈ N. (15)

We select c ∈ int(P) be an arbitrary element. Because xn → x?, for n → ∞ we have
d(xn, x?) �P c, for any n ≥ N(c). Since m(k) > k for all k ∈ N, it follows that
d(xm(k), x?)�P c, d(xm(k)−1, x?)�P c for all k ≥ N(c) + 1. For this reason,

d(xm(k), x?) + d(xm(k)−1, x?)�P c + c for all k ≥ N(c) + 1. (16)

From the inequalities (15) and (16), we obtain

d(Tx?, x?)�P c + c for all c ∈ int(P).

Considering the hypothesis (H3) and utilizing Lemma 2 (i), it can be deduced that
d(Tx?, x?) = 0E ∈ Fr(P), hence Tx? = x?, so x? is a fixed point of T.

Example 4. Let us consider X = C([0, 1], ∏
i∈N

Rn) , the vectorial dislocated metric d defined as in

Example 1 and the following integral

x(t) = f (t) +
t∫

0

K(t, s, x(s))ds, t ∈ [0, 1] (17)

where

(i) f ∈ C([0, 1], ∏
i∈N

Rn), K ∈ C([0, 1]× [0, 1]× ∏
i∈N

Rn), ∏
i∈N

Rn));

(ii) there exists τi > 0 such that

‖pri(K(t, s, x(s)))− pri(K(t, s, y(s)))‖Rn ≤ ‖pri(x(s))− pri(y(s))‖Rn

τi · di(x, y) + 1
,

for each i ∈ N, x, y ∈ C([0, 1], ∏
i∈N

Rn).

Then Equation (17) has a unique solution in C([0, 1], ∏
i∈N

Rn).

Proof. Let us consider
T : X → X,

T(x)(t) = f (t) +
t∫

0

K(t, s, x(s))ds

and G, H : int(P)→ E defined by

G(a1, a2, · · · , ai, · · · ) = (τ1 −
1
a1

, τ2 −
1
a2

, · · · , τi −
1
ai

, · · · )
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H(a1, a2, · · · , ai, · · · ) = (− 1
a1

,− 1
a2

, · · · ,− 1
ai

, · · · ),

where ai > 0 for all i ∈ N. We remark that the pair (G, H) ∈ G and for each x, y ∈ X
we have

Gd(T(x), T(y))) ≤P H(d(x, y)). (18)

Indeed Equation (18) is equivalent with

τi −
1

di(T(x), T(y))
< − 1

di(x, y)
. (19)

The relation (19) can be obtained taking into account that for all x, y ∈ X and t ∈ [0, 1]
we have:

‖pri(T(x))(t)− pri(T(y))(t)‖Rn ≤
t∫

0

‖pri(K(t, s, x(s)))− pri(K(t, s, y(s)))‖Rn ds ≤

1
τi · di(x, y) + 1

·
t∫

0

‖pri(x(s))− pri(y(s))‖Rn ds ≤ di(x, y)
τi · di(x, y) + 1

· et.

Therefore

di(T(x), T(y)) ≤ di(x, y)
τi · di(x, y) + 1

and thus relation (19).

4. Conclusions

In this paper we have achieved the following:

• Introduced the notion of vectorial dislocated metric space on a topological left module
as an extension of scalar dislocated metric space. This concept generalizes the concept
of cone metric space over a topological left module from [10];

• Introduced the notion of A-Cauchy sequence which represents a generalization of the
well-known Cauchy sequence definition;

• By using the notion of a solid cone on a topological left module and considering an
adequate condition for it, we give a lemma used for proving the fact that the iteration
sequence associated to an operator defined on a vectorial dislocated metric space is an
A-Cauchy sequence. In this way, we generalized the results from [17];

• As a main result of this paper, we provided a fixed point result for a self operator
T defined on a vectorial dislocated metric space which satisfies the condition (1). It
represents a generalization of results from [12];

• There was an application of the main result given to the existence and uniqueness of
the solution for a vectorial integral equation.

As further research direction we can mention the following ones:

• To adapt the main results to an iterative system function with application to fractals
theory;

• To realize a study related with data dependence: continuity and smooth dependence
for the fixed point of the operator T;

• To simplify the condition imposed to the solid cone.
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