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Abstract: A system of generalized fuzzy random differential equations with boundary conditions
is investigated, which is a fuzzy version of a system of general random differential equations.
We first present random fixed point (RFP) theorems in fuzzy metric space (FM). In the sequel, we
define the operators that are of integral type. Furthermore, these operators are related to a part
of random differential equations (RDE). For the desired system with boundary conditions, we study
the suitable integral operators associated with a large family of random differential equations. Finally,
we prove the existence of a unique random solution (EURS).
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1. Introduction

Inspired by the basic notions of random normed spaces introduced by S̆erstnev [1],
and studied by Mus̆tari [2] and Radu [3], Cheng and Mordeson [4] defined fuzzy normed
spaces. In this paper, using iterative methods from the random fixed point theory in a fuzzy
normed space, together with the theory of measurable spaces and monotone operators,
we study a nonlinear boundary value problem (BVP) for a system of random differential
equations. The motivation for such equations is as follows (see also the books of Bharucha-
Reid [5] and Skorohod [6]): the mathematical model representations of natural phenomena
arising in biology, physics, and engineering processes deal with specific parameters that
may be unknown values in general. Furthermore, our results and methods can develop
further research in the area and investigate uncertain cases of random equations.

The paper is structured as follows: In Section 2, we explain the notions of the triangular
norm (t-norm), FM space, FN space, fuzzy Carathéodory function, and random fixed point.
Section 3 introduces a general system of fuzzy random equations under nonlinear boundary
conditions (2), which is a fuzzy version of a system of general random differential equations
from [7]. Section 4 deals with some contraction results in FM space. In Section 5, we prove
EURS for BVP (2).

2. Preliminaries

Following [8–10], we denote I as the unit interval [0, 1]. Let the binary operation
∗ : I × I → I be a topological commutative monoid with unit 1 such that a ∗ b 6 c ∗ d
whenever a 6 c and b 6 d (a, b, c, d ∈ I). In this case, ∗ is said to be a continuous t-norm.
For some examples, a ∗ b = a× b and a ∗ b = min(a, b) are continuous t-norms.
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Assume that U is an arbitrary set, ∗ is a continuous t-norm, and M is a fuzzy set
on U2×]0, ∞[. Then (U, M, ∗) is called a fuzzy metric space (FM space for short), when
for every u, v, w ∈ U and t, s > 0,

(FM1) M(u, v, t) = 1 for every t > 0 if and only if u = v;
(FM2) M(u, v, t) = M(v, u, t);
(FM3) M(u, w, t + s) > M(u, v, t) ∗M(v, w, s);
(FM4) M(u, v, .) :]0, ∞[→]0, 1] is continuous.

Assume that V is a linear space, ∗ is a continuous t-norm and N is a fuzzy set
on V×]0, ∞[. Then, (V, N, ∗) is called a fuzzy normed space (FN space for short), when
for every u, v ∈ X and t, s > 0, we have

(FN1) N(u, t) = 1 for every t > 0 if and only if u = 0;

(FN2) N(au, t) = N
(

u, t
|a |

)
for any a 6= 0;

(FN3) N(u + v, t + s) > N(u, t) ∗ N(v, s);
(FN4) N(u, .) :]0, ∞[→]0, 1] is continuous.

Let (V, N, ∗) be a FN space. We define M(u, v, t) = N(u− v, t). Then M is a fuzzy
metric on V, which is called the fuzzy metric induced by the fuzzy norm N.

We assume that there exists an n(ε) ∈ N such that 0 < ε < 1. Therefore, for n > n(ε),
we have M(xn, x, t) > 1− ε. Then the sequence {xn} converges to x. If, for every 0 < ε < 1,
there is an n(ε) ∈ N such that M(xn, xm, t) > 1− ε for every n, m > n(ε), then we say that
{xn} is a Cauchy sequence. A FM space is complete if every Cauchy sequence is convergent
in it. It is well known that for a metric space (X, d) we say it is separable if there exists
a countable dense subset Y of X. Let (X, d) be a metric space and x0 ∈ X and let f : X → X
be a given mapping. The sequence {xn} with initial point x0 is a Picard sequence (PS)
where xn = f n(x0) = f (xn−1) and n ∈ N.

Assume that for every ε ∈ ]0, 1[, there exists a δ ∈ ]0, 1[ (which does not depend on k)
such that the following inequality holds

k︷ ︸︸ ︷
(1− δ) ∗ · · · ∗ (1− δ) > 1− ε, for each k ∈ {2, 3, . . .}. (1)

Lemma 1 ([8]). Let (U, M, ∗) be a complete fuzzy metric space such that ∗ satisfies (1). If in U
there exits a sequence {xn} such that, for all n ∈ N, we have M(xn, xn+1, t) > M(x0, x1, knt)
for all k > 1, then the sequence {xn} is a Cauchy sequence in U.

We consider the FM space X. We define a Borel σ-algebra (B-σA) on this space
and denote it by B(X). For a given measurable space (Γ, Λ), we denote by Λ ⊗ B(X)
the smallest σ-algebra on Γ× X containing all sets A× B (for A ∈ Λ and B ∈ B(X)).

Definition 1. We consider two FM spaces X and Y. We also assume that (Γ, Λ) is a measurable
space ((Γ, Λ)-MS). The function γ → G(γ, x) is a (Λ,B(Y))-measurable function ((Λ,B(Y))-
MF) where x ∈ X and for any γ ∈ Γ. Moreover, the continuous function x → G(γ, x) for γ ∈ Γ
is called fuzzy Carathéodory (F-C) function.

For the completeness of the paper, we prove the following theorem obtained in [11].

Theorem 1. We consider (Γ, Λ), (X, M, ∗), (Y, M, ∗), and G : Γ× X → Y, which are respec-
tively MS, separable FMS, FMS, and F-CF. With these conditions, G is a Λ⊗B(X)-measurable
(Λ⊗B(X)-M).

Proof. Assume that D is a countable dense subset of X and C is a closed subset of Y.
We consider the subset Cn =

{
y ∈ Y : My(y, C, t) > 1− 1

n

}
, where My is a fuzzy metric

on Y. Then, G(γ, x) ∈ C if and only if for every n > 1 there exists v ∈ D such that
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MX(x, v, t) > 1− 1
n and G(γ, v) ∈ Cn (here MX is a fuzzy metric on X). Hence, we

conclude that

G−1(C)

=
⋂

n>1

⋃
v∈D
{γ ∈ Γ : G(γ, v) ∈ Cn} ×

{
x ∈ X : MX(x, v, t) > 1− 1

n

}
∈ Λ⊗B(X),

which implies that G is Λ⊗B(X)-measurable.

Corollary 1. We consider (Γ, Λ), X, Y, G : Γ× X → Y, and u : Γ→ X which are, respectively
MS, separable FMS, FMS, F-CF, and Λ-measurable map. With these conditions,γ→ G(γ, u(γ))
from Γ into Y is a Λ-measurable mapping (Λ⊗B(X)-MM).

Proof. Let k : Γ → Γ × X be given by k(γ) = (γ, u(γ)). Therefore k is Λ ⊗ B(X)-
measurable and G(γ, u(γ)) = (i f G o k)(γ). Additionally, by Theorem 1 G is Λ⊗B(X)-
measurable. Therefore, it follows readily that γ→ (i f G o k)(γ) is Λ-measurable.

Consider a measurable space (Γ, Λ), a separable FM space X and a FM space Y.
If the mapping γ → H(γ, u(γ)) from Γ to Y for every Λ-MM u : Γ → X is Λ-M, then we
say H : Γ× X → Y is superpositionally measurable (SUP-M). According to the definition
of the SUP-M, we have the following results (see Denkowski-Migórski-Papageorgiou ([11],
Remark 2.5.26)):

• Considering Corollary 1, we conclude that a F-C mapping is SUP-M;
• Every Λ⊗B(X)-MM is SUP-M.

Furthermore, if γ → F(γ, x) is Λ-M, then we say that F : Γ× X → X is a random
operator (RO) for every x ∈ X. Therefore, every fixed point of the random operator (RO)
F is also a random point (RP) such as the Λ-MM z : Γ → X (z(γ) = F(γ, z(γ)) for every
γ ∈ Γ). Our results can extend some recent ones and improve them to obtain new results
(see [12–17]).

3. A General System of Fuzzy Random Equations

Let C(I,R) be all continuous scalar-valued mappings from (S-VM) onto I. For these
mappings, the following partial order relation for f , g ∈ C(I,R) and every p ∈ I always holds

f - g if and only if f (p) 6 g(p).

We extend this relation on C(I,R)× C(I,R) as follows:

( f , g), (h, k) ∈ C(I,R)× C(I,R), ( f , g) - (h, k)⇐⇒ f - h, g - k.

In this work, we consider a nonlinear boundary value problem (N-BVP) for a system
of random differential equations. This problem is given below for two functions q1, q2 :
Γ× I ×R×R→ R with regular properties

f ′′(γ, p) = q1(γ, p, f (γ, p), g(γ, p)), 0 < p < 1, γ ∈ Γ,

g′′(γ, p) = q2(γ, p, f (γ, p), g(γ, p)), 0 < p < 1, γ ∈ Γ,

f (γ, 0) = 0, f (γ, 1) = ψ1

(∫ 1

0
f (γ, p)dp

)
, γ ∈ Γ, ψ1 ∈ C(R,R),

g(γ, 0) = 0, g(γ, 1) = ψ2

(∫ 1

0
g(γ, p)dp

)
, γ ∈ Γ, ψ2 ∈ C(R,R).

(2)
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Two measurable functions ( f , g) : Γ → C(I,R)× C(I,R) are a pair of random solu-
tions (RS) for system (2). If we want to take into account of this uncertainty, a way to model
it is based on the parameter γ ∈ Γ.

In particular, under the absence of the parameter γ, we obtain the following system
from (2) for q1, q2 ∈ C(I ×R×R,R)

f ′′(p) = q1(p, f (p), g(p)), 0 < p < 1,

g′′(p) = q2(p, f (p), g(p)), 0 < p < 1,

f (0) = 0, f (1) = ψ1

(∫ 1

0
f (p)dp

)
, ψ1 ∈ C(R,R),

g(0) = 0, g(1) = ψ2

(∫ 1

0
g(p)dp

)
, ψ2 ∈ C(R,R).

(3)

Two measurable functions ( f , g) ∈ C(I,R) × C(I,R) are a pair of solutions (RS)
for system (3). According to Green’s function, these two functions are as follows

f (p) =
∫ 1

0
T(p, s)q1(s, f (s), g(s))ds + ψ1

(∫ 1

0
f (s)ds

)
p, 0 < p < 1,

g(p) =
∫ 1

0
T(p, s)q2(s, f (s), g(s))ds + ψ2

(∫ 1

0
g(s)ds

)
p, 0 < p < 1,

where

T(p, s) =

{
−p(1− s), 0 6 p 6 s 6 1,
−s(1− p), 0 6 s 6 p 6 1.

(4)

Our main goal in this article is to investigate the three general RFP theorems in FM
space. Finally, we prove the existence of a unique random solution (EURS) for system (2).
In fact, our work is in a fuzzy state of [7] (see also [18–21]).

4. Fixed Point Theorems

We assume that Γ and X are two non-empty sets. We consider the mapping
f : Γ× X → X. In the following, we propose and prove some theorems that show the exis-
tence of a unique random solution (EURS) for mapping f in a FMS. We denote all mappings
from Γ to X by XΓ, so that X is a FMS and (Γ, Λ) is a MS. A subset of this set is denoted
by U (Γ, X), which contains all Λ-measurable mappings (Λ-MMs). We consider g, h ∈ XΓ.
We say that g and h are comparable, if we have

g(γ) - h(γ),

or
h(γ) - g(γ),

where - is a partial relationship in X. The sequence {hn} in which hn(γ) = f (γ, hn−1(γ)),
forγ ∈ Γ and n ∈ N and with starting point h0 is called a Picard sequence.

Now we consider the following assumptions:

Hypothesis 0 (H0). For each γ ∈ Γ and considering (Γ, Λ), (X, M, ∗,-), and F : Γ× X → X,
which are MS, separable complete ordered FM space (SCO-FMS), and random mapping (RM),
respectively, the mapping x → F(γ, x) is a monotone operator. Additionally, ∗ in SCO-FMS
applies to (1).
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Hypothesis 1 (H1). For the function ϕγ : [0, ∞[→ [0, ∞[, which is a non-decreasing function,
we have

lim
n→∞

ϕn
γ(t) = ∞,

for every t > 0 and for each γ ∈ Γ. Moreover,

M(F(γ, x), F(γ, y), t) > M(x, y, ϕγ(t)),

for every γ ∈ Γ, x, y ∈ X, x - y and t > 0;

Hypothesis 2 (H2). there exists a mapping x0 ∈ U (Γ, X) with “x0(γ) - F(γ, x0(γ)), for each
γ ∈ Γ” or “x0(γ) % F(γ, x0(γ)), for each γ ∈ Γ”;

Hypothesis 3 (H3). if {xn} is a monotone sequence in X and xn → x, then xn and x are
comparable for every n ∈ N.

Remark 1. (i) (H0) describes the space we use as well as the monotonicity of the mapping
x → F(γ, x).

(ii) (H1) states the Matkowski-contraction condition (see [22]).
(iii) Assumption (H3) shows the existence of the partial order relation in the case that F is not

F-Carathéodory.

We first assume that F is F-Carathéodory mapping (F-CM), then we prove the theorem
with this assumption. Then, we further show our theorem without this assumption.

Theorem 2. We consider the assumptions of (H0)–(H2). We assume that G is a F-CM.
Therefore, G has a RFP such as a z ∈ U (Γ, X). Furthermore, if there exists u ∈ XΓ such
that for every x, y ∈ U (Γ, X), u is comparable to x and y, then u is a unique random solution
(URS) of G.

Proof. We consider the Picard sequences {xn} and {un} with starting points x0, u0 ∈ XΓ

such that x0 and u0 are comparable. Then, we prove

lim
n→∞

M(xn(γ), un(γ), t) = 1, for every γ ∈ Γ, t > 0. (5)

Considering that the function x → G(γ, x) is a monotone operator, for every n ∈ N and ev-
ery constant γ ∈ Γ, we have the comparability of xn(γ) and un(γ). Now, if xn(γ) = un(γ),
it is clear that (5) is established and the proof is complete. Then for any n ∈ N, we assume
xn(γ) 6= un(γ). Then by (H1), we have

M(xn(γ), un(γ), t) (6)

= M(G(γ, xn−1(γ)), G(γ, un−1(γ)), t)

> M
(

x0(γ), u0(γ), ϕn
γ(t)

)
,

for every n ∈ N, t > 0. Now, when n→ ∞, according to (6) and considering the property
of ϕγ, we have

lim
n→∞

M(xn(γ), un(γ), t) = 1.

Clearly, this holds for every γ ∈ Γ , t > 0. We assume that x0 ∈ U (Γ, X) is a mapping
like the one introduced in hypothesis (H2). If, for each γ ∈ Γ, G(γ, x0(γ)) = x0(γ), then x0
is a RFP of G. Suppose that, for some γ ∈ Γ, G(γ, x0(γ)) 6= x0(γ). By (H2), we have that x0
and x1 are two comparable elements of XΓ. Then, by (5), if we choose u0 = x1, we obtain

lim
n→∞

M(xn(γ), xn+1(γ), t) = 1, for every γ ∈ Γ, t > 0. (7)
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Now, we show that {xn(γ)} is a Cauchy sequence for each γ ∈ Γ. Let γ ∈ Γ be fixed.
Using (7) and considering ϕγ(0) = 0 and ϕγ(t) > t fort > 0, there is a n(ε) ∈ N for
0 < ε < 1 such that

M(xn(γ), xn+1(γ), t) = M(G(γ, xn−1), G(γ, xn), t)

> M(xn(γ), xn+1(γ), ϕγ(t))

. . .

> M(x0(γ), x1(γ), ϕn
γ(t)),

for every m ∈ N, m > n(ε). By Lemma 1, we obtain that {xn(γ)} is a Cauchy sequence
for every γ ∈ Γ. Then there exists z ∈ XΓ such that

z(γ) = lim
n→∞

xn(γ), for every γ ∈ Γ.

Using Corollary 1 and considering that z ∈ U (Γ, X), we have xn ∈ U (Γ, X) for every
n ∈ N. In the following, considering the assumption that G is a F-CM, we prove that
for every γ ∈ Γ, z(γ) = G(γ, z(γ)). With the assumption considered, we have

M(z(γ), G(γ, z(γ)), t) = lim
n→+∞

M(xn(γ), G(γ, xn(γ)), t), for every γ ∈ Γ, t > 0.

From

M(xn(γ), G(γ, xn(γ)), t) = M(G(γ, xn−1(γ)), G(γ, xn(γ)), t)

> M(xn−1(γ), xn(γ), ϕγ(t))

> . . . > M(x0(γ), x1(γ), ϕn
γ(t)),

letting n → ∞, we obtain M(z(γ), G(γ, z(γ)), t) = 1 for every γ ∈ Γ, t > 0.
Thus z(γ) = G(γ, z(γ)) for each γ ∈ Γ, that is, z is a RFP of G. Next, we prove the unique-
ness of the solution. To begin this proof, first we consider another RFP such as v ∈ U (Γ, X)
for G and assume that these two solutions are comparable; then, using (H1), we obtain

• z = v;
• M(z(γ), G(γ, z(γ)), t) = 1 when n→ ∞.

Therefore, assuming that z and v are comparable, we have nothing to prove. Now we
assume that z and v are not comparable and further we assume that u ∈ XΓ is an element
comparable to z and v. Considering the Picard sequence {un} with starting point u0 = u
and also x0 = z and x0 = v, we have

lim
n→∞

M(z(γ), un(γ), t) = lim
n→∞

M(v(γ), un(γ), t) = 1. (8)

Therefore, we conclude that z is a unique random solution (URS) for G because using
(8) we have z = v.

Now, we change the considered assumptions and with these new assumptions we
prove another theorem, which also shows the existence of a RBF for G. We consider
condition (H3) instead of condition F-Carathéodory (F-C) and also assume that H is a sup-
measurable mapping (SUP-MM).

Theorem 3. We consider assumptions (H0)–(H3) as well as SUP-M mapping H. Then, there is
a RFP of H like a mapping z ∈ U (Γ, X).

Proof. We consider {xn} and z ∈ U (Γ, X) as introduced in Theorem 2. According to the as-
sumption that we considered a SUP-MM like H and according to condition (H3), we
conclude that for each n ∈ N and γ ∈ Γ, z ∈ U (Γ, X), and xn(γ) and z(γ) are comparable.
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and γ ∈ Γ. From (H1) we obtain

M(z(γ), H(γ, z(γ)), 2t) > M(z(γ), H(γ, xn(γ)), t) ∗M( f (γ, xn(γ), H(γ, z(γ)), t)

> M(z(γ), H(γ, xn(γ)), t) ∗M(xn(γ), z(γ), ϕγ(t))

> M(z(γ), xn+1(γ), t) ∗M(xn(γ), z(γ), ϕγ(t)).

Letting n → ∞, we obtain M(z(γ), H(γ, z(γ)), 2t) = 1 for every γ ∈ Γ. This means
that z is a RFP of H.

Considering the generalized FM space (GFMS), we consider the previous assumptions
to solve the above RFP problem corresponding to this space.

Definition 2. Let ∗ be a continuous t-norm on I. Let a = (a1, . . . , ak) and b = (b1, . . . , bk) be
in Ik. We define a binary operation ? on Ik by

a ? b = (a1 ∗ b1, . . . , ak ∗ bk).

Then we call ? a continuous t-norm on Ik.

Definition 3 ([23]). Let Rk
+ := {a ∈ Rk : aj > 0 for every j = 1, . . . , k}, where Rk is equipped

with the following partial order

a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Rk, a � b⇐⇒ aj 6 bj for every j = 1, . . . , k.

Additionally, a ≺ b denote that a � b and a 6= b; a� b and aj < bj for every j = 1, . . . , k.

We define ā := (

k︷ ︸︸ ︷
a, . . . , a) in Rk. Specifically, the zero vector is denoted by 0̄ :=

(

k︷ ︸︸ ︷
0, . . . , 0).

Definition 4. Assume that X 6= ∅, ? is a continuous t-norm on Ik and MV is a vector-value
fuzzy set on X2×]0, ∞[k. Then, (X, MV , ?) is called a fuzzy vector-valued metric space (FVVM
space for short) when for every u, v, w ∈ X, t � 0̄,

(FVM1) MV(u, v, t)� 0̄;
(FVM2) MV(u, v, t) = 1̄ for every t � 0̄ if and only if u = v;
(FVM3) MV(u, v, t) = MV(v, u, t);
(FVM4) MV(u, v, t + s) � MV(u, w, t) ? MV(w, v, s);
(FVM5) MV(u, v, .) :]0, ∞[k→]0, 1]k is continuous.

Example 1. Let (X, d) be a vector-valued metric space. Let a = (a1, . . . , ak) and b = (b1, . . . , bk)
be in Ik. We define,

a ? b = min(a, b) := (min(a1, b1), min(a2, b2), . . . , min(ak, bk)),

and

MV(x, y, t) =
(

t1

t1 + d(x, y)
,

t2

t2 + d(x, y)
, . . . ,

tk
tk + d(x, y)

)
,

for every x, y ∈ X and t = (t1, t2, . . . , tk) ∈ ]0, ∞[k. Then
(
X, MV , ?

)
is a FVVM space.

Definition 5. Assume that X is a vector space, ? is a continuous t-norm on Ik and NV is a vector-
valued fuzzy set on X×]0, ∞[k. Then,

(
X, NV , ?

)
is called a fuzzy vector-valued norm space

(FVVN space for short) when for every u, v ∈ X, t, s� 0̄,

(FVN1) NV(u, t)� 0̄;
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(FVN2) NV(u, t) = 1̄ for every t � 0̄ if and only if u = 0;

(FVN3) NV(au, t) = NV
(

u, 1
|a | t

)
for every a 6= 0;

(FVN4) NV(u + v, t + s) � NV(u, t) ? NV(v, s);
(FVN5) NV(u, .) :]0, ∞[k→ (0, 1]k is continuous.

We assume further that all t–norms satisfy (1). Let Rk be the family of all non-
decreasing maps ϕ = (ϕ1, . . . , ϕk) : Rk

+ → Rk
+ such that

(i) lim
n→+∞

ϕn(t) = ∞̄ for every t ∈ Rk
+ with 0̄ ≺ t;

(ii) ϕ(0̄) = 0̄ and ϕ(t) � t for t ∈ Rk
+ \ {0̄};

(iii) 0̄� t implies ϕ(t)� t.

Example 2. We consider an A = diag(a1, . . . , ak)-like diagonal matrix. According to A, the func-
tion ϕ : Rk

+ → Rk
+ is defined as follows

ϕ(t) = AtT for every t = (t1, . . . , tk) ∈ Rk
+, and for aj > 1, j = 1, . . . , k,

then ϕ ∈ Rk.

Remark 2. For the completeness, we consider hypotheses (H4) and (H6), which are completely
similar to the introduced hypotheses (H0) and (H2), differing only in the

(
X, MV , ?

)
space.

Next, we add the following conditions to complete the work.

Hypothesis 4 (H4). Considering (Γ, Λ),
(
X, MV , ?,-

)
, and F : Γ × X → X, which are MS,

separable complete ordered FVVM space (SCO-FVVMS), and RO, respectively, x → F(γ, x) is
a monotone operator for every γ ∈ Γ. In the assumed space of

(
X, MV , ?,-

)
, ? in (1) satisfies.

Hypothesis 5 (H5). There exists a function ϕγ = (ϕγ,1, . . . , ϕγ,k) ∈ Rk such that for each
γ ∈ Γ,

MV(F(γ, x), F(γ, y), t) � MV(x, y, ϕγ(t)) for every x, y ∈ X, x - y, t � 0̄;

Hypothesis 6 (H6). There exists a mapping x0 ∈ U (Γ, X) with “x0(γ) - F(γ, x0(γ)), for every
γ ∈ Γ” or “x0(γ) % F(γ, x0(γ)), for every γ ∈ Γ”.

Now we define the complete FVVM space (CFVVMS). For this purpose, we consider
a FVVM space such as

(
X, MV , ?

)
and a sequence such as {xn}. If for every x ∈ X and

every ε̄ ∈ Rk
+ with 0̄ � ε̄ � 1̄, there exists an n(ε) ∈ N such that for every n > n(ε) we

have MV(xn, x, t)� 1− ε, then we say that the sequence {xn} converges to x and therefore
it is a Cauchy sequence. A space X is a CFVVMS if every Cauchy sequence converges in it.

In the following, we state a result similar to Theorem 2, which is the third theorem to
prove the existence of a RFP for F.

Theorem 4. Assume that the conditions (H4)–(H6) are fulfilled and G as a F-C mapping, then
there is a RFP such as z ∈ U (Γ, X) for G.

Proof. To prove this theorem, we consider the cases introduced in Theorem 2. For example,
we consider the sequences {xn} and {un} as well as x0, u0 ∈ XΓ such that these two
comparable members are the starting point of the sequences {xn} and {un}. Now, we
prove that

lim
n→∞

MV(xn(γ), un(γ), t) = 1̄ for every γ ∈ Γ, t � 0̄. (9)
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Therefore, considering that for each n ∈ N, xn(γ) and un(γ) are comparable and
x → G(γ, x) is a monotone, then using (H5)

MV(xn(γ), un(γ), t) � MV(xn−1(γ), un−1(γ), ϕγ(t)),� MV(x0(γ), u0(γ), ϕn
γ(t)),

for each γ ∈ Γ , t � 0̄ , n ∈ N.

Let n → ∞ and property (i) hold for members of Rk, then (9) is true. We consider
x0 ∈ U (Γ, X) as the mapping introduced in (H6). Therefore, the following condition holds
for every γ ∈ Γ

G(γ, x0(γ)) = x0(γ),

and this means that x0 is a RFT for G and the proof is finished. Now, we assume that
G(γ, x0(γ)) 6= x0(γ) for some γ ∈ Γ and we also consider the Picard sequence {xn} with
the starting point x0. Considering (H6) and choosing two comparable members x0 and x1
and using (9) to choose u0 = x1, we have

lim
n→∞

MV(xn(γ), xn+1(γ), t) = 1̄, for each γ ∈ Γ , t � 0̄. (10)

In the following, for the constant γ ∈ Γ, we show that {xn(γ)} is a Cauchy sequence.

MV(xn(γ), xn+1(γ), t) = MV(G(γ, xn−1), G(γ, xn), t)

� MV(xn(γ), xn+1(γ), ϕγ(t))

� . . . � MV(x0(γ), x1(γ), ϕn
γ(t)),

and this means that {xn(γ)} is a Cauchy sequence. Then, we conclude that there exists
z ∈ XΓ such that

z(γ) = lim
n→∞

xn(γ), for every γ ∈ Γ.

From Corollary 1, for every n ∈ N, we have xn ∈ U (Γ, X) and z ∈ U (Γ, X). Given that
G is a FC-M, we obtain that

MV(z(γ), G(γ, z(γ)), t) = lim
n→∞

MV(xn(γ), G(γ, xn(γ)), t), for every γ ∈ Γ, t � 0̄.

From

MV(xn(γ), G(γ, xn(γ)), t) = MV(G(γ, xn−1(γ)), G(γ, xn(γ)), t)

� MV(xn−1(γ), xn(γ), ϕγ(t))

� . . . � MV(x0(γ), x1(γ), ϕn
γ(t)),

letting n → ∞, we obtain MV(z(γ), G(γ, z(γ)), t) = 1̄ for every γ ∈ Γ , t � 0̄.
Thus z(γ) = G(γ, z(γ)) for each γ ∈ Γ , t � 0̄, that is, z is a RFP of G.

Remark 3. By adding the assumptions in Theorem 2, we can also prove Theorem 4. For this
purpose, we prove the uniqueness of RBF by eliminating duplicate problems.

5. Investigating the Solution for a BVP

In this section, we investigate EURS for (2). We state our investigations in the form
of a theorem.

We consider the following

• The measurable space of (Γ, Λ);
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• We consider functions q1, q2 : Γ× I×R×R→ R which are of F-C type. Then, for each
(p, u, v) ∈ I ×R×R and γ ∈ Γ where i = 1, 2, γ→ qi(γ, p, u, v) are measurable and
(p, u, v)→ qi(γ, p, u, v) are continuous;

• For each u ∈ C(I,R) and each (γ, p) ∈ Γ× I, we consider a family of F-C functions such
as r : Γ× I ×R → R, where ri, u : Γ× I → R is defined as ri, u(γ, p) = r(γ, p, u(p)).
We denote this set of functions with the letter G.

Now we define the integral operator Q : Γ× C(I,R)× C(I,R) → C(I,R)× C(I,R)
as follows:

Q(γ, f , g)(p) = (Q1(γ, f , g)(p), Q2(γ, f , g)(p)), f , g ∈ C(I,R), p ∈ I,

with

Q1(γ, f , g)(p) =
∫ 1

0
T(p, s)q1(γ, s, f (s), g(s))ds + r1,x(γ, p), (11)

Q2(γ, f , g)(p) =
∫ 1

0
T(p, s)q2(γ, s, f (s), g(s))ds + r2,y(γ, p), (12)

where T : I × I → R is a continuous function such that |T(p, s)| 6 1 for every p, s ∈ I and
r1, r2 ∈ G.

Remark 4. For ( f , g) ∈ C(I,R)× C(I,R), qi and ri (i = 1, 2) are functions which are of F-C
type. For constant s ∈ I, the F-C function, h : Γ× I → R is defined as follows

h(γ, p) = T(p, s)qi(γ, s, f (s), g(s)).

Functions γ→ Q1(γ, f , g) and γ→ Q2(γ, f , g) are measurable functions, because the func-
tions in integrals (11) and (12) are measurable. In fact, these integrals are limits of a finite sum
of measurable functions. Consequently, Q is a random operator (RO).

At this step, we consider the following assumptions

Hypothesis 7 (H7). There exists a non-decreasing function φγ = (φγ,1, φγ,2) : R2
+ → R2

+

such that

NV(qi(γ, p, x, y)− qi(γ, p, u, v), t) � (N(x− u, φγ,i(t)), N(y− v, φγ,i(t))), i = 1, 2,

for each γ ∈ Γ and for every p ∈ I and all x, y, u, v ∈ R with (x, y) � (u, v) and t � 0̄;

Hypothesis 8 (H8). For each γ ∈ Γ, there exists a function ϕγ = (ϕγ,1, ϕγ,2) ∈ R2 such that(
inf
p∈I

N(( f − h)(p), φγ,1(t)), inf
p∈I

N((g− k)(p), φγ,1(t))
)
? NV(r1,x(γ, p)− r1,u(γ, p), t)

�
(

inf
p∈I

N(( f − h)(p), ϕγ,1(t)), inf
p∈I

N((g− k)(p), ϕγ,1(t)
)

,

(
inf
p∈I

N(( f − h)(p), φγ,2(t)), inf
p∈I

N((g− k)(p), φγ,2(t))
)
? NV(r2,x(γ, p)− r2,u(γ, p), t)

�
(

inf
p∈I

N(( f − h)(p), ϕγ,2(t)), inf
p∈I

N((g− k)(p), ϕγ,2(t))
)

,

for each p ∈ I, f , g, h, k ∈ C(I,R) and t � 0̄;

Hypothesis 9 (H9). For each γ ∈ Γ fixed, (x, y) → qi(γ, p, x, y) and x → ri(γ, p, x), i = 1, 2,
(for every p ∈ I), are all non-decreasing or all non-increasing operators;
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Hypothesis 10 (H10). One of the following conditions holds:

0 6 qi(γ, p, 0, 0), 0 6 ri(γ, p, 0), for every p ∈ I, γ ∈ Γ, i = 1, 2,

or

0 > qi(γ, p, 0, 0), 0 > ri(γ, p, 0), for every p ∈ I, γ ∈ Γ, i = 1, 2.

We consider the FVVM MV on C(I,R)× C(I,R) as follows

MV(( f , g), (h, k), t) =
(

inf
p∈I

N(( f − h)(p), t), inf
p∈I

N((g− k)(p), t)
)

,

for every ( f , g), (h, k) ∈ C(I,R)× C(I,R), t � 0̄.

Theorem 5. We consider assumptions (H7)–(H10). We prove that the random integral operator Q
has a unique RFP.

Proof. We first show that ( f , g)→ Q(γ, f , g) is a continuous operator for constant γ ∈ Γ.
For this purpose, we consider the sequence {( fn, gn)} on C2(I,R) such that ( fn, gn) →
( f , g) ∈ C(I,R)× C(I,R) when n→ ∞. For p ∈ I, we have

NV(Q1(γ, fn, gn)(p)−Q1(γ, f , g)(p), t)

= NV
( ∫ 1

0
T(p, s)[q1(γ, s, fn(s), gn(s))− q1(γ, s, f (s), g(s))]ds

+ [r1, fn(γ, p) + r1, f (γ, p)], t
)

� NV
(∫ 1

0
T(p, s)[q1(γ, s, fn(s), gn(s))− q1(γ, s, f (s), g(s))]ds,

1
2

t
)

? NV
(

r1, fn(γ, p) + r1, f (γ, p)],
1
2

t
)

= NV

(
lim
‖∆s‖→0

k

∑
i=1

T(p, ηi)[q1(γ, ηi, fn(ηi), gn(ηi))− q1(γ, ηi, f (ηi), g(ηi))]∆si,
1
2

t

)

? NV
(

r1, fn(γ, p)− r1, f (γ, p),
1
2

t
)

,

where 0 = η1 < η2 < . . . < ηk = 1, ∆si = ηi − ηi−1 = 1
k , i = 1, 2, . . . , k and ‖∆s‖ =

max
16i6k

(∆si).

For any given p ∈ I and t � 0̄, then we have
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NV(Q1(γ, fn, gn)(p)−Q1(γ, f , g)(p), t)

� lim
‖∆s‖→0

NV

(
k

∑
i=1

T(p, ηi)[q1(γ, ηi, fn(ηi), gn(ηi))− q1(γ, ηi, f (ηi), g(ηi))]∆si,
1
2

t

)

? NV
(

r1, fn(γ, p)− r1, f (γ, p),
1
2

t
)

� lim
‖∆s‖→0

[
NV
(

T(p, η1)[q1(γ, η1, fn(η1), gn(η1))− q1(γ, η1, f (η1), g(η1))],
1

2|∆s1|
t
)

? · · · ? NV
(

T(p, ηk)[q1(γ, ηk, fn(ηk), gn(ηk))− q1(γ, ηk, f (ηk), g(ηk))],
1

2|∆sk|
t
)]

? NV
(

r1, fn(γ, p)− r1, f (γ, p),
1
2

t
)

� lim
‖∆s‖→0

[
NV
(

q1(γ, η1, fn(η1), gn(η1))− q1(γ, η1, f (η1), g(η1)),
1

2|∆s1||T(p, η1)|
t
)

? · · · ? NV
(

q1(γ, ηk, fn(ηk), gn(ηk))− q1(γ, ηk, f (ηk), g(ηk),
1

2|∆sk||T(p, ηk)|
t
)]

? NV
(

r1, fn(γ, p)− r1, f (γ, p),
1
2

t
)

� lim
‖∆s‖→0

min NV
(

q1(γ, ηi, fn(ηi), gn(ηi))− q1(γ, ηi, f (ηi), g(ηi)),
1
2

t
)

? NV
(

r1,xn(γ, p)− r1,x(γ, p),
1
2

t
)

� inf
s∈I

NV
(

q1(γ, s, fn(s), gn(s))− q1(γ, s, f (s), g(s)),
1
2

t
)

? NV
(

r1, fn(γ, p)− r1,x(γ, p),
1
2

t
)

�
(

inf
s∈I

N
(
( fn − f )(s), φγ,i

(
1
2

t
))

, inf
s∈I

N
(
(gn − g)(s), φγ,i

(
1
2

t
)))

? NV
(

r1, fn(γ, p)− r1, f (γ, p),
1
2

t
)

�
(

inf
s∈I

N
(
( fn − f )(s), ϕγ,i

(
1
2

t
))

, inf
s∈I

N
(
(gn − g)(s), ϕγ,i

(
1
2

t
)))

,

which implies that

inf
s∈I

NV(Q1(γ, fn, gn)(s)−Q1(γ, f , g)(s), t)

�
(

inf
s∈I

N(( fn − f )(s), ϕγ,1(t)), inf
s∈I

N((gn − g)(s), ϕγ,1(t))
)

,

by (H8). By analogous reasoning, one has

inf
s∈I

NV(Q2(γ, fn, gn)(s)−Q2(γ, f , g)(s), t)

�
(

inf
s∈I

N(( fn − f )(s), ϕγ,2(t)), inf
s∈I

N((gn − g)(s), ϕγ,2(t))
)

.

Then MV(Q(γ, fn, gn), Q(γ, f , g), t) → 1̄ as n → ∞, implies that ( f , g) → Q(γ, f , g)
is a continuous operator, for each fixed γ ∈ Γ and for every t � 0̄. In addition, for each
γ ∈ Γ and ( f , g) → Q(γ, f , g) is a monotone operator. Indeed, consider ( f , g), (h, k) ∈
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C(I,R)×C(I,R) such that ( f , g) - (h, k); that is, f (p) 6 h(p), g(p) 6 k(p), for every p ∈ I.
For every p ∈ I, if ( f , g) → qi(γ, p, f , g) and f → ri(γ, p, f ), i = 1, 2, are non-decreasing
operators, then

qi(γ, p, f (p), g(p)) 6 qi(γ, p, h(p), k(p)), for every p ∈ I, i = 1, 2,

r1(γ, p, f (p)) 6 r1(γ, p, h(p)), for every p ∈ I,

r2(γ, p, g(p)) 6 r2(γ, p, k(p)), for every p ∈ I,

which implies that

Qi(γ, f , g)(p) 6 Qi(γ, h, k)(p), for every p ∈ I, i = 1, 2.

Therefore Q(γ, f , g) - Q(γ, h, k). In a similar way, we can conclude that if the func-
tions ( f , g)→ qi(γ, p, f , g) and f → ri(γ, p, f ) are non-decreasing functions, then for every
p ∈ I and i = 1, 2, we have Q(γ, h, k) - Q(γ, f , g). Next, we have to show that Q is
a contraction operator. At this step, we consider condition (H5) and assume that γ ∈ Γ and
( f , g), (h, k) ∈ C(I,R)× C(I,R) such that ( f , g) - (h, k). We have to show

MV(Q(γ, f , g), Q(γ, h, k), t) � MV(( f , g), (h, k), ϕγ(t)).

Again, consider γ ∈ Γ fixed. Let ( f , g), (h, k) ∈ C(I,R)× C(I,R) be such that ( f , g) -
(h, k), p ∈ I, then

NV(Q1(γ, f , g)(p)−Q1(γ, h, k)(p), t)

= NV
( ∫ 1

0
T(p, s)[q1(γ, s, f (s), g(s))− q1(γ, s, h(s), k(s))]ds

+ [r1, f (γ, p) + r1,h(γ, p)], t
)

� NV
(∫ 1

0
T(p, s)[q1(γ, s, f (s), g(s))− q1(γ, s, h(s), k(s))]ds,

1
2

t
)

? NV
(

r1, f (γ, p) + r1,h(γ, p)],
1
2

t
)

= NV

(
lim
‖∆s‖→0

k

∑
i=1

T(p, ηi)[q1(γ, ηi, f (ηi), g(ηi))− q1(γ, ηi, h(ηi), k(ηi))]∆si,
1
2

t

)

? NV
(

r1, f (γ, p)− r1,h(γ, p),
1
2

t
)

,

where 0 = η1 < η2 < . . . < ηk = 1, ∆si = ηi − ηi−1 = 1
k , i = 1, 2, . . . , k and ‖∆s‖ =

max
16i6k

(∆si).

For any given p ∈ I and t � 0̄, then we have
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NV(Q1(γ, f , g)(p)−Q1(γ, h, k)(p), t)

� lim
‖∆s‖→0

NV

(
k

∑
i=1

T(p, ηi)[q1(γ, ηi, f (ηi), g(ηi))− q1(γ, ηi, h(ηi), k(ηi))]∆si,
1
2

t

)

? NV
(

r1, f (γ, p)− r1,h(γ, p),
1
2

t
)

� lim
‖∆s‖→0

[
NV
(

T(p, η1)[q1(γ, η1, f (η1), g(η1))− q1(γ, η1, h(η1), k(η1))],
1

2|∆s1|
t
)

? · · · ? NV
(

T(p, ηk)[q1(γ, ηk, f (ηk), g(ηk))− q1(γ, ηk, h(ηk), k(ηk)),
1

2|∆sk|
t
)]

? NV
(

r1, f (γ, p)− r1,h(γ, p),
1
2

t
)

� lim
‖∆s‖→0

[
NV
(
[q1(γ, η1, f (η1), g(η1))− q1(γ, η1, h(η1), k(η1))],

1
2|∆s1||T(p, η1)|

t
)

? · · · ? NV
(
[q1(γ, ηk, f (ηk), g(ηk))− q1(γ, ηk, h(ηk), k(ηk)],

1
2|∆sk||T(p, ηk)|

t
)]

? NV
(

r1, f (γ, p)− r1,h(γ, p),
1
2

t
)

� lim
‖∆s‖→0

min NV
(

q1(γ, ηi, f (ηi), g(ηi))− q1(γ, ηi, h(ηi), k(ηi)),
1
2

t
)

? NV
(

r1, f (γ, p)− r1,h(γ, p),
1
2

t
)

� inf
s∈I

NV
(

q1(γ, s, f (s), g(s))− q1(γ, s, h(s), k(s)),
1
2

t
)

? NV
(

r1, f (γ, p)− r1,h(γ, p),
1
2

t
)

�
(

inf
s∈I

N
(
( f − h)(s), φγ,i

(
1
2

t
))

, inf
s∈I

N
(
(g− k)(s), φγ,i

(
1
2

t
)))

? NV
(

r1, f (γ, p)− r1,h(γ, p),
1
2

t
)

�
(

inf
s∈I

N
(
( f − h)(s), ϕγ,i

(
1
2

t
))

, inf
s∈I

N
(
(g− k)(s), ϕγ,i

(
1
2

t
)))

,

which implies that

inf
s∈I

NV(Q1(γ, f , g)(s)−Q1(γ, h, k)(s), t)

�
(

inf
s∈I

N
(
( f − h)(s), ϕγ,1(t)

)
, inf

s∈I
N
(
(g− k)(s), ϕγ,1(t)

))
,

by (H8). By analogous reasoning, one has

inf
s∈I

NV(Q2(γ, f , g)(s)−Q2(γ, h, k)(s), t)

�
(

inf
s∈I

N
(
( f − h)(s), ϕγ,2(t)

)
, inf

s∈I
N
(
(g− k)(s), ϕγ,2(t)

))
,

then

MV(Q(γ, f , g), Q(γ, h, k), t) � MV(( f , g), (h, k), ϕγ(t)).
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Next, we have to show that (H6) holds. We prove using (H10)

0 6 Q1(γ,×, 0, 0) and 0 6 Q2(γ,×, 0, 0), for every γ ∈ Γ,

or

0 > Q1(γ,×, 0, 0) and 0 > Q2(γ,×, 0, 0), for every γ ∈ Γ,

that is, Q(γ, 0, 0) � 0̄ for every γ ∈ Γ or Q(γ, 0, 0) � 0̄ for every γ ∈ Γ. Then, for null
random variables 0̄ : Γ→ C2(I,R), which are defined as follows

0̄(γ) = 0̄,

one of the following conditions is true

Q(γ, 0̄(γ)) � 0̄(γ), for every γ ∈ Γ,

or

Q(γ, 0̄(γ)) � 0̄(γ), for every γ ∈ Γ.

Considering that the condition of uniqueness also exists, then all the conditions
of Theorem 4 are satisfied and we conclude that there is a unique FP for Q, which results
directly from Theorem 4.

Here we have a theorem that gives us a unique random solution (URS) of (2).
This theorem is proposed for a specific selection of FC functions r1, r2 : Γ× I ×R → R.
Therefore, we consider

• ri(γ, p, h(p)) = ψi

(∫ 1
0 h(γ)(s)ds

)
p, where ψi ∈ C(R,R), for i = 1, 2;

• the random integral operator

Q̃(γ, f , g)(p) =
(

Q̃1(γ, f , g)(p), Q̃2(γ, f , g)(p)
)

, f , g ∈ C(I,R), p ∈ I,

with

Q̃1(γ, f , g)(p) =
∫ 1

0
T(p, s)q1(γ, s, f (s), g(s))ds + ψ1

(∫ 1

0
f (γ)(s)ds

)
p,

Q̃2(γ, f , g)(p) =
∫ 1

0
T(p, s) f2(γ, s, x(s), y(s))ds + ψ2

(∫ 1

0
g(γ)(s)ds

)
p,

where T : I × I → R is given by (4).

Theorem 6. We assume that conditions (H7)–(H10) are fulfilled. Then (2) has a URS.

Proof. Here we point out that every RBF of Q̃ is a solution of (2) and also every solution
of (2) is a RBF of Q̃. That is, considering the random variables ( f , g) : Γ→ C(I,R)×C(I,R),
we have

Q̃(γ, f (γ), g(γ)) = ( f (γ), g(γ)), for every γ ∈ Γ,

is equivalent to

f (γ)(p) =
∫ 1

0
T(p, s)q1(γ, s, f (γ)(s), g(γ)(s))ds + ψ1

(∫ 1

0
f (γ)(s)ds

)
p, 0 < p < 1,

g(γ)(p) =
∫ 1

0
T(p, s)q2(γ, s, f (γ)(s), g(γ)(s))ds + ψ2

(∫ 1

0
g(γ)(s)ds

)
p, 0 < p < 1,
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Such that f (γ, p) = f (γ)(p), g(γ, p) = g(γ)(p) for p ∈ I and γ ∈ Γ is a solution of (2).
Then, by Theorem 5, there exists a unique random solution of the Problem (2).

6. Conclusions

In this paper, a general system of fuzzy random differential equations with boundary
conditions has been investigated. In addition, the existence theorem that yields a unique
random solution was proved by a random fixed point theorem in fuzzy metric spaces.
The obtained results would be used for modelling dynamical systems in environments,
especially in air pollution problems. The applied procedure can also be useful in the future
for some other types of fuzzy equations.
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