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Abstract: Post-translational glycosylation and glycation are common types of protein post-translational
modifications (PTMs) in which glycan binds to protein enzymatically or nonenzymatically, respec-
tively. They are associated with various diseases such as coronavirus, Alzheimer’s, cancer, and
diabetes diseases. Identifying glycosylation and glycation sites is significant to understanding their
biological mechanisms. However, utilizing experimental laboratory tools to identify PTM sites is
time-consuming and costly. In contrast, computational methods based on machine learning are
becoming increasingly essential for PTM site prediction due to their higher performance and lower
cost. In recent years, advances in Transformer-based Language Models based on deep learning have
been transferred from Natural Language Processing (NLP) into the proteomics field by developing
language models for protein sequence representation known as Protein Language Models (PLMs). In
this work, we proposed a novel method, PTG-PLM, for improving the performance of PTM glycosyla-
tion and glycation site prediction. PTG-PLM is based on convolutional neural networks (CNNs) and
embedding extracted from six recent PLMs including ProtBert-BFD, ProtBert, ProtAlbert, ProtXlnet,
ESM-1b, and TAPE. The model is trained and evaluated on two public datasets for glycosylation
and glycation site prediction. The results show that PTG-PLM based on ESM-1b and ProtBert-BFD
has better performance than PTG-PLM based on the other PLMs. Comparison results with the
existing tools and representative supervised learning methods show that PTG-PLM surpasses the
other models for glycosylation and glycation site prediction. The outstanding performance results of
PTG-PLM indicate that it can be used to predict the sites of the other types of PTMs.

Keywords: protein language model; deep learning; machine learning; PTMs; glycosylation sites
prediction; glycation sites prediction

1. Introduction
1.1. Overview

Glycosylation and glycation are enzymatic and nonenzymatic reactions, respectively,
in which glycan bind covalently with the other molecules like proteins [1]. They are
common types of protein post-translational modifications (PTMs). Both glycosylation and
glycation have been indicated to play a significant role in human health. They are closely
associated with various diseases such as coronavirus, Alzheimer’s, cancer, and diabetes
diseases [2–6].

N-linked glycosylation (Ngly) and O-linked glycosylation(Ogly) are the two most
abundant types of protein glycosylation. Typically, N-linked glycosylation occurs when
the glycan attaches to the Nitrogen atom of the Asparagine (Asn or N) amino acid of the
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protein. Ngly is identified by the sequence pattern N-X-S/T, where X is any amino acid
other than Proline (P). The O-linked glycosylation occurs when the glycan attaches to the
hydroxyl group of Serine (Ser or S) or Threonine (Thr or T) amino acid of the protein [7].
The lysine glycation (Kgly) is the common glycation in which the glycan attaches to the
lysine (Lys or K) amino acid of the protein [8].

The identification of protein glycosylation/glycation sites benefits understanding the
biological mechanism of PTM glycosylation/glycation and also helps treat their related
diseases. However, not all these sites are glycosylated or glycated. It is known that the
detection of glycosylation/glycation sites using experimental laboratory tools, like mass
spectrometry and electrochemical chip, is time and cost-consuming. Alternatively, several
computational approaches using machine learning have been implemented to predict the
glycosylation/glycation sites efficiently [9,10].

1.2. Literature Review

Several representative tools for PTM glycosylation/glycation site prediction are briefly
discussed here. Firstly, glycosylation site prediction methods are summarized. GPP [11]
uses the random forest (RF) machine learning method for predicting N-linked and O-
linked glycosylation sites based on pairwise sequence patterns and structural features and
protein–peptide sequences. Both GlycoPP [12] and GlycoEP [7] employ support vector
machine learning method (SVM) for predicting N-linked and O-linked glycosylation sites in
prokaryotes and Eukaryotic, respectively, based on amino acid composition (AAC), Binary
encoding, position-specific scoring matrix (PSSM), and structural features. GlycoMine [13]
and GlycoMinestruct [14] are tools to predict N-linked and O-linked glycosylation sites
using the random forest (RF) technique. GlycoMine utilizes functional and sequence-based
properties for feature representation while the GlycoMinestruct uses both sequence and
structural features. SPRINT-Gly [15] identifies N-linked and O-linked glycosylation sites
using deep neural networks and SVM that are trained on huge datasets gathered from
six human and mouse databases and based on various sequence, profile, and structural-
based features. N-GlyDE [16] is a two-stage N-linked glycosylation site prediction method
that employs similarity voting as well as the SVM technique based on gapped dipeptide,
Structural-based features. GlycoMine_PU [10] predicts N-linked, O-linked, and C-linked
glycosylation sites using a positive unlabeled (PU) learning algorithm based on a variety
of sequence, profile and structural-based features. N-GlycoGo [17] predicts N-linked
glycosylation sites using XGBoost, an ensemble machine learning model based on eleven
feature extraction techniques. PUStackNGly [18] uses PU and stacking ensemble-based
learning to predict N-linked glycosylation sites based on various sequence and structure-
based features.

Regarding glycation site prediction, NetGlycate [19] is a sequence-based predictor for
glycation site prediction based on artificial neural networks (ANNs). PreGly [20] uses SVM
for the prediction of glycation sites based on AAC, amino acid Factor and composition
k-spaced amino acid pairs (CKSAAP) features and using maximum relevance minimum
redundancy (mRMR) and the incremental feature selection (IFS) methods for feature
selection. Xu et al. developed Gly-PseAAC [21], a glycation site prediction model based
on sequence order information and position-specific amino acid propensity features using
the SVM classifier. BPB_GlySite [1] uses SVM to develop a glycation site prediction model
based on bi-profile Bayes feature extraction. Zhao et al. developed Glypre [22] model using
SVM and based on position scoring function, AAindex, CKSAAP, and structure-based
features. Islam et al. proposed iProtGly-SS [5] to predict glycation sites using the SVM
method and based on sequence and structure-based features. Reddy et al. [9] developed
GlyStruct, a glycation site predictor, using SVM machine learning and based on structural
information of the amino acid residues. PredGly [8] employs XGboost and SVM technique
to predict glycation site based on combining physicochemical properties, evolutionary-
derived and sequence-based features. Chen et al. [6] proposed DeepGly model for glycation
site prediction using a recurrent neural network (RNN) and a convolutional neural network
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(CNN). Liu et al. [23] proposed BERT-Kgly using CNN deep learning to predict glycation
site prediction and based on feature extracted by the Bidirectional Encoder Representations
from Transformer (BERT). Our previous reviews [24,25] discuss the previous studies of
PTM glycosylation/glycation site prediction in more details.

1.3. Protein Language Models

In recent years, deep learning-based language models (LMs) have advanced in the
Natural Language Processing (NLP) field by feeding large text corpora. Deep learning LMs
represent the language by learning to predict the next word in a sentence based on previous
context or to reconstruct the corrupted text. These improvements have successfully been
moved to the proteomics field by developing Transformer-based Language models for
protein sequence representation learning known as Protein Language Models (PLMs) [26].
PLMs based on the transformer architecture are trained on large protein sequence databases
to predict masked or missing amino acids in the protein sequences using the masked
language model. The transformer is a deep learning approach for producing a contextual
embedding of amino acids in a protein sequence. By utilizing the masked language model,
PLMs have the ability to establish a context around each amino acid and learn to “attend” or
“focus” on amino acids and peptides that are significant in the current context. In addition,
PLMs can capture the complicated interactions between amino acids in proteins [27,28].

Tokenization is one of the basic preprocessing steps in the NLP, which is splitting the
sequence into individual atomic units of information called tokens. Most NLP models use
the word as a token, but some models use the character as a token [29]. Because protein
sequences only have a small 20-character (’A’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’K’, ’L’, ’M’,
’N’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’V’, ’W’, ’Y’) which expressing amino acids (denoted as residues),
modeling problem is represented by character-level (amino acid level) PLMs rather than
word-level models.

For prediction purposes, the protein sequence is encoded into numeric representing
relevant features or descriptors by utilizing different feature extraction methods. Many
methods have been implemented to extract meaningful and significant information from
protein sequences such as amino acid compositions, evolutionary information, physico-
chemical, structural properties, and multiple sequence alignments (MSAs). In contrast, the
sequence is embedded into numeric arrays using transformer-based PLMs without taking
advantage of the properties and MSA of proteins.

1.4. Deep Learning

Deep Learning (DL) is the most recent advancement in the machine learning field
based on artificial neural networks (ANNs). It has demonstrated near-human, and now
super-human skills in a variety of applications such as pattern recognition, healthcare,
autonomous vehicles, voice-to-text translations, NLP, and so on. DL consists of input,
multiple hidden, and output layers. DLs with several hidden layers can have the powerful
power to represent numerous features, process massive dataset sizes, and learn complex
models for prediction purposes [30,31]. There are various types of DLS depending on the
types of layers and learning methods used. The most common types of DLs are Recurrent
Neural Network (RNN) [32] and Convolutional Neural Network (CNN) [33]. RNN is
widely employed in research with sequential data in which it has the ability to memory.
RNN has achieved a great performance in multiple areas such as NLP, speech recognition,
as well as bioinformatics [34,35].

CNN, a public type of deep learning neural network, is originally proposed for image
processing and computer vision, however, CNN has some successful examples that are
used to process sequential data. CNN has the ability to extract the hierarchal and local
feature patterns of raw data. Thus, CNN has achieved a great performance in several
domains [30,35]. With Bioinformatics, CNN is applied in multiple areas such as cancer
type classification [36], protein–protein interaction [37], DNA/RNA/residues binding
prediction [38], and protein structure prediction [39]. In addition, there are some PTM site
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prediction studies that used CNN like in [6,23,40–43]. The CNN consists of a convolutional
layer and an optional pooling layer with some extra variations to improve performance like
batch normalization, data augmentation, dropout, and regularization. CNN is categorized
into three types based on the moving direction of the kernel including 1-dimensional CNN
(CNN1D), 2-dimensional CNN (CNN2D), and 3-dimensional CNN (CNN3D). The general
type is the CNN2D which is used with the image data and CNN1D is usually with the
sequential data [30].

In this paper, we propose PTG-PLM, to improve the prediction performance of PTM
site prediction. The PTG-PLM is based on convolutional neural network 1D (CNN1D),
and embedding extracted from six recently published transformer-based protein language
models (PLMs) including ProtBert-BFD, ProtBert, ProtAlbert, ProtXlnet, ESM-1b, and
TAPE. Considering peptide sequences as sentences, such that PLMs transformers extract
existing embedding characteristics and features from the natural language domain. Two
benchmark datasets are used in this study for glycosylation and glycation site prediction.
The model is evaluated and compared with the state-of-the-art existing tools as well
as with state-of-the-art machine learning classifiers. The study shows that PTG-PLM
outperforms the other tools and classifiers in terms of accuracy, recall, precision, F1, AUC,
and MCC measuring metrics. The data and code of PTG-PLM are available in (https:
//github.com/Alhasanalkuhlani/PTG-PLM). The PTG-PLM can be adjusted to be used
for other types of PTM site prediction by modifying the parameters in the code.

2. Materials and Methods

The general flowchart of PTG-PLM is shown in Figure 1. PTG-PLM is a prediction
model for glycan PTM site prediction, which is considered a binary classification problem.
Firstly, protein sequences from public databases in FASTA format as well as the positive
sites in each protein are fed as input. Then n-size peptides or fragments centered at the
target sites are constructed from each protein sequence. Features for each peptide are
extracted from six pre-trained protein language models (PLMs). For prediction purposes,
the CNN deep learning model is used for training and evaluation. The model is evaluated
by 5-fold cross-validation and independent tests using accuracy, recall, precision, F1, AUC,
and MCC performance measures. The PTG-PLM is compared with the existing tools as
well as the representative supervised-learning algorithms.

2.1. Datasets

In this work, we use two benchmark datasets for Ngly and Kgly site prediction. The
two datasets have been used in previous studies. The first dataset (Ngly dataset) was
obtained from the UniProt [44] database and was previously used in our PUStackNGly [18]
study. Using the CD-HIT program [45], the dataset’s redundancy was removed at the
protein sequence and peptide levels with 30% identity. Ngly dataset contains 825 experi-
mentally verified glycoproteins. These glycoproteins hold 2073 positive samples and 13,737
negative samples. The dataset is divided into 3 sets, including training, validation, and
testing sets. For training and validation sets, a 1:1 balanced dataset that constructed, with
2027 positive samples and the same number of randomly selected negative samples, with
90% of these samples being used for training and 10% for validation. For independent
testing and comparing, the same testing glycoproteins and samples in PUStackNGly were
utilized, which contained 46 positive and 179 negative samples.

https://github.com/Alhasanalkuhlani/PTG-PLM
https://github.com/Alhasanalkuhlani/PTG-PLM
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Figure 1. The general flowchart of PTG-PLM.

The second dataset (Kgly dataset) is collected in PredGly by Yu et al. [8] and is also used
in BERT-Kgly [23]. It was collected from the PLMD database (http://plmd.biocuckoo.org/
(accessed on 4 February 2022)). After redundancy removal by CD-HIT, the dataset contains
3969 positive and 82,270 negative samples. A balanced dataset consisting of 3573 positive
and the same number of randomly selected negative samples for training and validation
with 90% of these samples being used for training and 10% for validation. For independent
testing and comparing, we utilized the same testing samples were used in BERT-Kgly,
which contained 200 positive and 200 negative samples.

The samples in Ngly or Kgly are represented as fragments by using a sliding window
approach in which the PTM site is in the middle and surrounded by w-residues from the
downstream and upstream as shown in Figure 2. The optimal size for the fragment used
with the Ngly dataset in the PUStackNGly study was n = 25 (that means w = 12 downstream
and upstream residues). With the Kgly dataset in the PredGly study, the optimal size for
the fragment was n = 31 (that means w = 15 downstream and upstream residues). The
number of surrounding residues (w) can be set to a different value in PTG-PLM.

http://plmd.biocuckoo.org/


Axioms 2022, 11, 469 6 of 20

Figure 2. Window size of sample sequence. The size of the window is n = 2 ∗ w + 1 in which w
residues surrounding the PTM site from both left and right sides.

2.2. Embedding Using PLMs

PLMs allow us to extract features from only the evolutionary relationships present in
tokens (amino acids) of protein sequences. Embedding is a way to encode the sequence
(peptide sequence) into numeric representation by PLMs. Given peptide sequence P
(T1, T2, . . . , Tn) where each token Ti represents one amino acid and n is the length of the
peptide sequence, the embedding can be represented as:

[V1, V2, . . . , Vn] = emb(T1, T2, . . . , Tn) (1)

where Vi is embedded numeric vectors that represent the token Ti.
Six pre-trained transformer-based PLMs are used to encode the peptide sequences in-

cluding ProtBERT-BFD [46], ProtBERT [46], ProtALBERT [46], ProtXLNet [46], ESM-1b [47]
and TAPE [48]. These PLMs are based on self-supervised masked language models, such as
BERT [49], Albert [50], and XLNet [51], that have demonstrated state-of-the-art performance
on various NLP tasks. In the masked language models, a small percentage of randomly
selected tokens are masked to an extra token, for example, to “X”. The masked language
models model the product of conditional probabilities of tokens in each position given all
other tokens in the sequence by replacing the token at each position with the masked token.
This allows gaining the conditional non-independence between tokens on both sides of the
masked token [28]. The formula of the masked language model is represented as follows:

p(T) =
n

∏
i
(p(Ti|T1, T2, . . . , T(i−1), T(i+1), . . . , Tn) (2)

where Ti is the token in position i and n is the length of the sequence. The key differences be-
tween the used PLMs are the used dataset, pre-trained LM, number of layers, hidden layers
size, number of attention heads, and number of parameters which are shown in Table 1.

Table 1. Key differences between the six used protein language models.

PLM Dataset Pretrained LM # of Layers Hidden Layers Size # of Attention Heads # of Parameters

ProtBERT-BFD [46] BFD BERT 30 1024 16 420 M
ProtBERT [46] UniRef100 BERT 30 1024 16 420 M

ProtALBERT [46] UniRef100 Albert 12 4096 64 224 M
ProtXLNet [46] UniRef100 XLNet 30 1024 16 409 M

ESM-1b [47] UniRef50 BERT 33 1280 20 650 M
TAPE [48] Pfam BERT 12 768 12 92 M

2.2.1. ProtBERT-BFD

ProtBERT-BFD is based on the BERT language model that is trained on the BFD [52]
(Big Fantastic Database) with over 2 billion protein sequences or 393 billion tokens. The
number of layers was increased compared with the original BERT model. The features are
extracted (embedding) from the last hidden state of the PLM with a size of 1024 × n, where
n is the length of the peptide sequence (n = 25 for Ngly dataset and 31 for Kgly dataset).
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2.2.2. ProtBERT

ProtBERT is based on the BERT language model that is trained on the UniRef100 [53]
database with about 216 million protein sequences. The number of layers was also increased
compared with the original BERT model. The features are extracted (embedding) from the
last hidden state of the PLM with the size 1024 × n, where n is the length of the peptide
sequence.

2.2.3. ProtAlbert

ProtAlbert is based on the Albert language model that is trained on the UniRef100 [53]
database with about 216 million protein sequences. The number of layers was also increased
compared with the original Albert model. In addition, the global batch size was increased
from 4096 to 10,752 because of the small number of vocabularies (20 amino acids) in proteins
compared to thousands of words. The features are also extracted (embedding) from the last
hidden state of the PLM with a size 4096 × n, where n is the length of the peptide sequence.

2.2.4. ProtXLNet

ProtXLNet is based on the XLNet language model that is trained on the UniRef100 [53]
database with about 216 million protein sequences. The number of layers was increased to
30 layers compared with the original XLNet model. In addition, the global batch size was
reduced to 1024. The features are also extracted (embedding) from the last hidden state of
the PLM with the size 1024 × n, where n is the length of the peptide sequence.

2.2.5. ESM-1b

ESM-1b is a transformer PLMs from Facebook AI Research based on the BERT language
model that is trained on the UniRef50 [53] database. The features are also extracted
(embedding) from the last hidden state of the PLM with a size 1280 × n, where n is the
length of the peptide sequence.

2.2.6. TAPE

Tasks Assessing Protein Embeddings (TAPE) is based on the BERT language model
that is trained on the Pfam database [54] with about 31 million protein sequences. The
features are also extracted (embedding) from the last hidden state of the PLM with a size
768 × n, where n is the length of the peptide sequence.

The number of extracted features for each sample or peptide sequence in the two
datasets using embedding by each PLM is shown in Table 2 which is calculated by the
product between the length of the sequence and the number of last hidden layers of
the PLMs.

Table 2. The size of embedding features that are extracted for a sample of both Ngly and Kgly
datasets based on each used PLM.

PLM # of Features in Ngly Dataset # of Features in Kgly Dataset

ProtBERT-BFD 25,600 31,744
ProtBERT 25,600 31,744

ProtALBERT 102,400 126,976
ProtXLNet 25,600 31,744

ESM-1b 32,000 39,680
TAPE 19,200 23,808

2.3. CNN Deep Learning

The structure of the used CNN model is shown in Figure 1. The CNN model consists
of multiple blocks/layers that map the embedded features to the target PTM site class (0
for negative or 1 for positive):

(i) Input:
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The input to the CNN model is the extracted features from PLMs embedding. It is
a 3D array with size (m, n, f ) where m is the number of samples, n is the length of
the sample and f is the number of features for each token in the sample.

(ii) Convolutional block:
A convolutional block consists of three sublayers: the first is the CNN1D layer,
batch normalization, and activation function. Unlike fully connected networks,
CNNs includes conditional connections to calculate local features called feature
map. The filters and kernel size (k) that represent the output of CNN1D and the
length of the CNN1D window, respectively, are used as parameters by CNN1D
to handle convolution operations. Depending on the kernel (k), multiple feature
extractors K_i where i = {1, 2, . . . , k}, represented as follows [55]:

Z(l)
i = H(l−1)

i ∗ Kl
i (3)

where * represents the convolution operation, H(l−1)
i represents the grid repre-

sentation for the previous layer. The convolution outputs Z(l)
1 , Z(l)

2 , . . . , Z(l)
k are

treated as slides and compounded to form a large tensor of convolution layer. The
previous equation represents the convolution operation that can be presented as
the transformation similar to DNN:

z(l) = W lh(l−1) + b(l) (4)

where z(l) is the original vector representation of Z(l), which is gained as a result of
the convolution of the input data from the previous layer (h(l−1)) with the tensor
W (containing filters), and adding bias b.
The second sublayer of the convolution block is the batch normalization that typi-
cally normalizes the input data for the next layers, reduces the risk of overfitting,
allows higher learning rates, and makes the training of the CNN faster and more
stable [55]. The third sublayer of the convolution block is the activation function
which is a non-linear mathematical function used to generate a high-level feature
map of CNN. We use the present rectified linear unit (ReLU) activation function
which is represented as:

f (x) = max(0, x) (5)

(iii) Flatten layer:
The output feature map of the CNN layer is typically flattened, i.e., converted into
low-dimension to be fitted to the next fully connected network layers.

(iv) Last layer activation function:
Finally, a different activation function is applied to the output of the last FNN. This
function is a decision function for the final output of the CNN model. Since our
data class label is binary, the Sigmoid function is used which gives a value between
0 and 1. The Sigmoid function is represented as:

φ(x) =
1

1− e−x (6)

CNN model is trained to classify glycosylation/glycation sites into two classes: posi-
tive (glycosylated/glycated) or negative (non-glycosylated/non-glycated) using the binary
cross-entropy as a loss function and Adam optimizer. This optimizer depends on the
learning rate, batch size, and maximum epoch hyperparameters which help the model to
adjust its kernels or weights during the training. The early stopping strategy is utilized on
the cost of the validation set to terminate the training process when the accuracy does not
increase with the patience value “8”.
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Different hyperparameters have experimented with the different layers of the CNN
model based on the two datasets and the different PLMs. The optimal hyperparameters are
clarified in Table 3.

Table 3. The optimal hyperparameters for the CNN model are based on each PLMs using both Ngly
and Kgly datasets.

Dataset PLM CNN1D
Filters

CNN1D
Kernel FNN1 Layers FNN2 Layers Learning Rate Batch Size

Ngly

ProtBERT-BFD 256 3 128 32 0.0001 64
ProtBERT 256 5 128 32 0.0001 64

ProtALBERT 128 3 64 32 0.0001 64
ProtXLNet 512 3 256 32 0.001 8

ESM-1b 128 3 64 16 0.00001 64
TAPE 128 3 64 32 0.00001 64

Kgly

ProtBERT-BFD 256 10 128 64 0.0001 64
ProtBERT 128 8 64 32 0.0001 64

ProtALBERT 128 8 64 32 0.001 64
ProtXLNet 512 8 256 32 0.0001 64

ESM-1b 256 8 128 32 0.00001 64
TAPE 256 8 128 16 0.0001 64

2.4. Machine Learning Algorithms

To demonstrate the effectiveness of the embeddings of PLMs, the CNN model is
compared with four machine learning algorithms namely, SVM, Logistic Regression (LR),
RF, and XGBoost. SVM, LR, and RF algorithms are applied using the Scikit-learn Python
library [56], while XGBoost is applied using the XGBoost Python library [57].

2.4.1. SVM

SVM is a state-of-the-art classifier originally developed by Vapnik and Cortes [58].
SVM has been widely used in computational biology and bioinformatics. The mean idea of
SVM is to classify by determining the optimal separator hyperplane that maximizes the
margin between the classes.

2.4.2. Logistic Regression (LR)

Because the dependent outcome is discrete (positive/negative), LR is a common ma-
chine learning method in clinical research. For classification, LR calculates the probability
of the discrete binary classes [59].

2.4.3. Random Forest (RF)

RF [60] is an ensemble-based machine learning algorithm that is based on the decision
tree approach. It is used extensively in computational biology because it is simple and
appropriate for high-dimensional data. It is made up of several decision trees, each of
which has multiple nodes and routes. Each node has its own set of rules for choosing
between two or more routes. The final result of RF is generated by combining the decision
tree outcomes.

2.4.4. XGBoost (XGB)

XGB [57] is also an ensemble learning method that is based on the tree boosting
framework. It is an ensemble tree algorithm that implements boosting learners using the
gradient descent technique which has the benefit to deal with high dimensional data.

The hyperparameters for the four machine learning classifiers are shown in Table 4
along with the used value for each parameter.
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Table 4. Hyperparameters setting for the used machine learning classifiers and the used value for
each parameter.

Classifier Parameter Range of Values Used Value

SVM

kernal linear, poly, rbf, sigmoid rbf
C 1 × 10−1 ,1, . . . , 1 × 106 1

gama scale, auto scale

LR penalty L1, L2 L2

RF n_estimators 100 to 1000 100

XGB

booster gbtree, gblinear gbtree
learning_rate 0.01, 0.02, . . . , 0.1 0.1
max_depth 2 to 10 5

min_child_weight 1 to 9 5
subsample 0.2, 0.3, . . . , 0.9 0.9

2.5. Model Evaluation

Five-fold cross-validation and independent test are used to evaluate the PTG-PLM
model and compare it with the other tools. Several evaluation metrics are employed in this
work, including accuracy, Matthew’s correlation coefficient (MCC), recall, precision, and
F1-score which are illustrated as:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(8)

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

F1 =
2× recall × precision

recall + precision
(11)

where TP (True Positive) is the number of positive sites that are correctly predicted, TN
(True Negative) is the number of negative sites that are correctly predicted, FP (False
Positive) is the number of positive sites that are incorrectly predicted, and FN (False
Negative) is the number of negative sites that are incorrectly predicted. In addition, we
use the AUC metric, the area under the receiver operating characteristic curve (ROC), that
measures the classifier’s ability for separating data of the two classes by plotting the true
positive rate (TPR) against the false positive rate (FPR).

3. Results

In this section, we present the achieved experimental results of PTG-PLM. PTG-PLM
is performed on the Ngly and Kgly datasets for glycosylation/glycation site prediction.
Each dataset is divided into three sets: training, validation, and testing set. The number of
samples in each dataset was described in Section 2.1. The training sets are used for training
the models as well as evaluating using the cross-validation method. The validation sets
are used by the CNN model to adjust its hyperparameters and weights during the training
process. In contrast, the testing sets are used for independent testing and comparing PTG-
PLM with the other machine learning techniques as well as comparing with the existing
tools of glycosylation/glycation site prediction. Six recent PLMs including ProtBERT-
BFD, ProtBERT, ProtALBERT, ProtXLNet, ESM-1b and TAPE are employed to encode
peptide (samples) sequences. PLMs extract features from the peptide sequences based
on the tokenization and embedding strategies. The description of PLMs was clarified in
Section 2.2. PTG-PLM is performed using each PLMs individually. The PLMs embedding
and CNN model training are implemented using Python 3.7.13 on Google Colab Pro
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(https://colab.research.google.com/ (accessed on 10 February 2022)) with GPUs (RAM
16g) and high RAM (28G).

3.1. Evaluation Using Cross-Validation on the Ngly Dataset

A five-fold cross-validation method is used in which the Ngly training set is randomly
divided into five sets (folds). Overall the five-folds, four folds are used for training and the
remaining one for testing. Table 5 and Figure 3 show the performance of the CNN model
using cross-validation on the extracted features from the Ngly training set based on the six
PLMs embedding. From Table 5 and Figure 3, the performance of the CNN model based
on the embedding extracted from ESM-1b PLM is generally better than the embeddings
extracted from the other PLMs in terms of accuracy, recall, precision, F1, AUC, and MCC
performance metrics. The performance of the CNN model based on all PLMs is great in
general and close to each other except with the ProtXLNet. The model performance based
on ProtXLNet PLM decreases about 10% from the ESM-1b PLM in terms of MCC measure.
The five-fold cross-validation standard deviations are also consistently low based on the six
PLMs (Table 5). These results demonstrated that the prediction capabilities of the models
in general are stable.

Figure 3. Cross-validation performance results of PTG-PLM on the Ngly training dataset based on
the six PLMs.

Table 5. Cross-validation performance results of CNN model based on the six PLMs on the Ngly
dataset. The results of the five-fold cross-validation on the training dataset are represented by the
average ± standard deviation for all performance measures.

PLM Accuracy Recall Precision F1 AUC MCC

ProtBert-BFD 0.922 ± 0.008 0.987 ± 0.005 0.873 ± 0.012 0.926 ± 0.007 0.922 ± 0.009 0.85 ± 0.016
ProtBert 0.918 ± 0.01 0.982 ± 0.01 0.871 ± 0.02 0.923 ± 0.01 0.918 ± 0.01 0.843 ± 0.018

ProtAlbert 0.92 ± 0.009 0.988 ± 0.005 0.87 ± 0.012 0.925 ± 0.009 0.92 ± 0.009 0.848 ± 0.016
ProtXLNet 0.875 ± 0.016 0.911 ± 0.02 0.85 ± 0.018 0.879 ± 0.017 0.875 ± 0.016 0.752 ± 0.033

ESM-1b 0.922 ± 0.01 0.984 ± 0.009 0.875 ± 0.018 0.927 ± 0.011 0.922 ± 0.008 0.851 ± 0.017
TAPE 0.916 ± 0.01 0.967 ± 0.013 0.877 ± 0.013 0.916 ± 0.01 0.916 ± 0.011 0.836 ± 0.02

3.2. Evaluation Using Cross-Validation on the Kgly Dataset

Five-fold cross-validation is also applied to the training set of Kgly dataset to evaluate
the CNN model based on the embedding from the six PLMs. Table 5 and Figure 4 show
the performance of the CNN model using cross-validation on the extracted features from
the Kgly training set based on the six PLMs embedding. From Table 6 and Figure 4, the

https://colab.research.google.com/
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performance of the CNN model based on the embedding extracted from ESM-1b PLM is
also better than the embeddings extracted from the other PLMs in terms of accuracy, recall,
precision, F1, AUC, and MCC performance metrics. The performance of the CNN model
based on all PLMs is great in general and close to each other except PTG-PLM with the
ProtXLNet that gets some The model performance based on ProtXLNet PLM decreases
about 5% from the ESM-1b PLM in the term of MCC measure. The five-fold cross-validation
standard deviations are also consistently low based on the six PLMs (Table 6). These results
demonstrated that the prediction capabilities of the models in general are stable.

Table 6. Cross-validation performance of CNN model based on the six PLMs on the Kgly dataset.
The results of the five-fold cross-validation on the training dataset are represented by the average ±
standard deviation for all performance measures.

PLM Accuracy Recall Precision F1 AUC MCC

ProtBert-BFD 0.599 ± 0.01 0.612 ± 0.04 0.594 ± 0.017 0.603 ± 0.02 0.599 ± 0.01 0.198 ± 0.014
ProtBert 0.597 ± 0.014 0.64 ± 0.041 0.588 ± 0.017 0.613 ± 0.017 0.59 ± 0.015 0.196 ± 0.031

ProtAlbert 0.593 ± 0.012 0.584 ± 0.05 0.614 ± 0.026 0.599 ± 0.05 0.591 ± 0.012 0.186 ± 0.024
ProtXLNet 0.568 ± 0.01 0.576 ± 0.05 0.57 ± 0.021 0.573 ± 0.06 0.568 ± 0.008 0.144 ± 0.02

ESM-1b 0.599 ± 0.009 0.563 ± 0.035 0.604 ± 0.009 0.583 ± 0.018 0.599 ± 0.008 0.199 ± 0.017
TAPE 0.595 ± 0.009 0.572 ± 0.043 0.598 ± 0.021 0.594 ± 0.03 0.595 ± 0.007 0.192 ± 0.014

Figure 4. Cross-validation performance results of PTG-PLM on the Kgly training dataset based on
the six PLMs.

3.3. Comparing with Supervised Learning Methods

On the testing sets of Ngly and Kgly datasets, the PTG-PLM model is compared
with four state-of-the-art supervised learning methods: SVM, LR, RF, and XGB based on
the embedding extracted for the six PLMs. Table 7 illustrates the performance of PTG-
PLM compared with supervised learning methods based on embedding extracted from
the six PLMs on the Ngly independent dataset. The comparison is measured by three
performance metrics: accuracy, AUC, and MCC. Generally, the PTG-PLM outperforms the
other supervised learning methods in terms of accuracy, AUC, and MCC. Moreover, Table 7
shows that the highest performance of PTG-PLM on the independent dataset is based on the
embedding of the ESM-1b transformer with a 0.965 accuracy, 0.978 AUC, and 0.902 MCC.
On the other hand, the highest performance between the four supervised learning methods
is with the XGB model and based on the embedding of ProtBert-BFD transformer with a
0.952 accuracy, 0.970 AUC, and 0.871 MCC. The comparison of performance between the
best PTG-PLM model based on ESM-1b and the best-supervised learning model (XGB)
based on ProtBert-BFD is shown in Figure 5.
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Table 7. Performance of PTG-PLM compared with four supervised learning methods on the Ngly
independent dataset based on the six PLMs.

PLM -> ProtBert-BFD ProtBert ProtAlbert ProtXLNet ESM-1b TAPE

Metric\
Model

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

SVM 0.947 0.967 0.861 0.943 0.964 0.851 0.943 0.964 0.851 0.877 0.858 0.66 0.947 0.967 0.861 0.943 0.964 0.851
LR 0.947 0.959 0.856 0.947 0.943 0.847 0.947 0.943 0.847 0.872 0.847 0.643 0.934 0.926 0.81 0.934 0.926 0.81
RF 0.947 0.943 0.847 0.943 0.94 0.836 0.943 0.956 0.845 0.89 0.874 0.694 0.952 0.97 0.871 0.947 0.967 0.861

XGB 0.952 0.97 0.871 0.938 0.945 0.83 0.947 0.967 0.861 0.903 0.923 0.756 0.947 0.967 0.861 0.943 0.964 0.851
PTG-PLM 0.956 0.972 0.881 0.956 0.972 0.881 0.952 0.97 0.871 0.938 0.929 0.821 0.965 0.978 0.902 0.956 0.972 0.881

Figure 5. Comparison of performance between the best PTG-PLM model (based on ESM-1b) and
best-supervised learning model (XBG based on ProtBert-BFD) on the Ngly independent dataset.

Based on the Kgly independent set, the PTG-PLM is also compared with the four
supervised learning based on the embedding features extracted using the six PLMs. Table 8
shows the comparative performance in terms of accuracy, AUC, and MCC. As shown in
the table, the PTG-PLM outperforms the four supervised learning methods across all the
PLMs. Furthermore, PTG-PLM with the ProtBert-BFD PLM has the best performance on
the Kgly independent dataset with a 0.641 accuracy, 0.641 AUC, and 0.282 MCC. When
comparing the four supervised learning methods, SVM with the ProtBert-BFD PLM has the
highest performance on the Kgly independent dataset with a 0.631 accuracy, 0.631 AUC,
and 0.261 MCC. The comparison of performance between the two best models, PTG-PLM
with the ProtBert-BFD and SVM with the ProtBert-BFD, on the Kgly dataset is shown in
Figure 6.
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Table 8. Performance of PTG-PLM compared with four supervised learning methods on the Kgly
independent dataset based on the six PLMs.

PLM -> ProtBert-BFD ProtBert ProtAlbert ProtXLNet ESM-1b TAPE

Metric\
Model

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

A
ccuracy

A
U

C

M
C

C

SVM 0.631 0.631 0.261 0.596 0.595 0.191 0.585 0.586 0.171 0.573 0.573 0.146 0.608 0.608 0.219 0.583 0.583 0.166
LR 0.613 0.613 0.226 0.558 0.558 0.116 0.606 0.606 0.211 0.565 0.565 0.131 0.573 0.573 0.147 0.54 0.541 0.082
RF 0.563 0.563 0.127 0.55 0.55 0.101 0.533 0.533 0.066 0.52 0.52 0.041 0.523 0.523 0.046 0.578 0.578 0.156

XGB 0.591 0.59 0.181 0.623 0.623 0.246 0.543 0.541 0.099 0.553 0.553 0.106 0.563 0.563 0.126 0.601 0.601 0.201
PTG-PLM 0.641 0.641 0.282 0.633 0.633 0.268 0.628 0.628 0.258 0.621 0.621 0.241 0.636 0.636 0.272 0.626 0.626 0.251

Figure 6. Comparison of performance between the best PTG-PLM model (based on ProtBert-BFD)
and the best-supervised learning model (SVM based on ProtBert-BFD) on the Kgly independent
dataset.

3.4. Comparing with Existing Tools for Ngly Site Prediction

The prediction performance of PTG-PLM is compared with the existing tools for
Ngly site prediction on the Ngly independent dataset which is obtained from a previ-
ous study, PUStack-NGly. Besides PUStack-NGly, six other tools including SPRINT-GLY,
GlycoMine_PU, GlycoMine, GlycoEP, GlycoPP, and GPP are compared with PTG-PLM
on the same testing dataset. These tools are described briefly in Section 1.2 On the Ngly
independent dataset, PTG-PLM based on embedding extracted from ESM-1b PLM has the
best performance as was shown in Table 7. So, we compare the performance of PTG-PLM
based on ESM-1b embedding against the seven Ngly existing tools in terms of accuracy,
recall, precision, F1, AUC, and MCC as shown in Table 9 and Figure 7. It is shown that
PTG-PLM outperforms the existing tools for Ngly site prediction with a 0.965 accuracy,
1 recall, 0.852 precision, 0.92 F1, 0.978 AUC, and 0.902 MCC.
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Table 9. Comparison of performance of PTG-PLM against the existing tool for Ngly site prediction.

Metric
Accuracy Recall Precision F1 AUC MCC

Tool

GPP [11] 0.7333 1 0.434 0.605 0.8324 0.5371
GlycoPP [12] 0.6578 0.891 0.363 0.516 0.7445 0.3945
GlycoEP [7] 0.7956 0.957 0.5 0.657 0.8554 0.5874

GlycoMine [13] 0.4489 0.4565 0.175 0.253 0.4517 −0.0781
GlycoMine_PU [10] 0.9378 1 0.767 0.868 0.9609 0.8407

SPRINT-Gly [15] 0.9422 1 0.78 0.877 0.9637 0.8503
PUStackNGly [18] 0.9511 1 0.807 0.893 0.9693 0.8703

PTG-PLM 0.965 1 0.852 0.920 0.978 0.902

Figure 7. Chart for the performance of PTG-PLM and the existing tools for Ngly site prediction.

3.5. Comparing with Existing Tools for the Kgly Site Prediction

The prediction performance of PTG-PLM is compared with the existing tools for Kgly
site prediction on the Kgly independent dataset which is obtained from PredGly and is
BERT-Kgly. We compare PTG-PLM with four existing tools for Kgly site prediction includ-
ing BERT-Kgly, NetGlycate, Gly-PseAAC, and BPB- GlySite on the same Kgly independent
dataset. These tools are also described briefly in Section 1.2. On the Kgly independent
dataset, PTG-PLM based on embedding extracted from ProtBert-BFD PLM has the best
performance as was shown in Table 8. So, we compare the performance of PTG-PLM based
on ProtBert-BFD embedding against the four Kgly existing tools in terms of accuracy, recall,
precision, F1, AUC, and MCC as shown in Table 10 and Figure 8. It is shown that PTG-PLM
outperforms the existing tools for Kgly site prediction with a 0.64 accuracy, 0.67 recall, 0.64
precision, 0.65 F1, and 0.28 MCC. Regarding the AUC metric, the BERT-Kgly is better than
our model.



Axioms 2022, 11, 469 16 of 20

Table 10. Comparison of the performance of PTG-PLM against the existing tool for Kgly
site prediction.

Metric
Accuracy Recall Precision F1 AUC MCC

Tool

NetGlycate [19] 0.54 0.54 0.53 0.54 0.54 0.07
Gly-PseAAC [21] 0.17 0.16 0.16 0.16 0.17 0
BPB_GlySite [1] 0.51 0.51 0.51 0.51 0.5 0.16
BERT-Kgly [23] 0.61 0.49 0.64 0.56 0.69 0.23

PTG-PLM 0.64 0.67 0.64 0.65 0.64 0.28

Figure 8. Chart for the performance of PTG-PLM and the existing tools for Kgly site prediction.

4. Discussion

In this work, we built a new model, PTG-PLM, for glycosylation/glycation site pre-
diction based on features extracted from pre-trained protein language models (PLMs) and
CNN deep learning. Generally, although CNN is ideal for image data while RNN is ideal
for sequential data, there are successful studies that use CNN applied to sequence data
and got great performance like [23,41,42]. In addition, CNN is easier and faster in training
when compared with RNN [41]. Thus, we used CNN deep learning method to build our
PTG-PLM model. Regarding feature extraction, According to the advances in protein
language models (PLMs) that are based on state-of-the-art transformers, six pre-trained
PLMs were used for extracting embedding features from protein–peptide sequences. These
PLMs include ProtBERT-BFD, ProtBERT, ProtALBERT, ProtXLNet, ESM-1b, and TAPE.
Experimental results indicate that PTG-PLM based on these PLMs embedding outperforms
the existing tools for Ngly/Kgly site prediction except the PTG-PLM based on ProtXLNet
embedding for Ngly site prediction that gave lower performance than some existing tools
(Tables 9 and 10). Generally, we can see that PTG-PLM models based on ESM-1b and
ProtBERT-BFD have better performance than the models based on the other four PLMs
and they were considered for comparison with the existing tools for Ngly and Kgly site
prediction, respectively. We think this advantage comes from the fact that ESM-1b and
ProtBERT-BFD are trained on large datasets and have larger layers (33 layers and 30 layers,
respectively) when compared with the other four PLMs. Overall, we found that Ngly’s
performance results with all models are far superior to Kgly’s performance results. That
is because the Ngly sites typically occur in the pattern or motif N-X-S/T where X is any
amino acid other than Proline (P), whereas Kgly sites lack any pattern or motifs.
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Furthermore, four supervised learning methods (SVM, LR, RF, and XBG) were trained
on the Ngly and Kgly datasets based on the same embedding extracted from the six PLMs.
These machine learning methods were compared with PTG-PLM on the independent
datasets for a fair evaluation of PTG-PLM. The performance was compared based on each
PLM individually and the results showed that PTG-PLM has the best performance on the
independent set (Tables 7 and 8). Although the extracted features from the embedding of
PLMs are large (Table 2), some supervised learning methods achieved great performance
as XBG based on ProtBert-BFD on the Ngly dataset and SVM based on ProtBert-BFD on
the Kgly dataset. This indicates that features extracted using the embedding from PLMs
transformer-based have a better performance than the features extracted by using the
physicochemical, evolutionary, MSA, or structural-based properties for the peptide se-
quences. Likewise, the combination of PLMs embedding and CNN deep learning produces
a model which outperformed the existing tools and the state-of-the-art machine learning
methods on both Ngly and Kgly datasets.

Thus, PTG-PLM can be appropriate to predict the other types of PTMs. We can do that
by configuring some important parameters of PTG-PLM like:

1. Fasta file that contains the protein sequences.
2. The number of residues that are surrounding the PTM residue from both sides (repre-

sented by w), in which the window size n = 2 ∗ w + 1. For example, if w = 12 then
the window size n = 25.

3. PTM site residues represent the amino acid symbols that are related to the targeted
PTM type. For example, for O-linked glycosylation site prediction, site = (’S’, ’T’); or
for N-linked glycosylation site prediction, site = ’N’ and so on.

4. The used protein language model (PLM).

5. Conclusions

In this work, we proposed a new model (PTG-PLM) for Ngly and Kgly site prediction.
Recently, NLP pre-trained language models have been transferred to process protein
sequences. Our proposed, PTG-PLM, is based on CNN and embedding extracting using six
protein language models (PLMs) including ProtBert-BFD, ProtBert, ProtAlbert, ProtXlnet,
ESM-1b, and TAPE. The PLMs embedding extract information of evolutionary relationships
and complicated interactions between tokens (amino acids) of peptide sequences without
using the standard feature extraction methods such as MSA. The model was trained and
evaluated on two Ngly and Kgly datasets that were used in previous studies. For evaluation,
the model was evaluated using a five-fold cross-validation method based on every PLMs
individually. The PTG-PLM models based on ESM-1b and ProtBert-BFD have resulted in
better performance than the other used PLMs.

In addition, PTG-PLM was compared with SVM, LR, RF, and XBG machine learning
methods. The performance results demonstrated that PTG-PLM outperforms the other
models in terms of accuracy, AUC, and MCC. Moderately, XBG and SVM models based
on ProtBert-BFD had a good performance. Moreover, seven existing tools for Ngly site
prediction: PUStack-NGly, SPRINT-GLY, GlycoMine_PU, GlycoMine, GlycoEP, GlycoPP,
and GPP were compared with PTG-PLM based on each used PLMs. Except with ProtXLNet
PLM, PTG-PLM outperforms the existing tools for Ngly site prediction in terms of accuracy,
recall, precision, F1, AUC, and MCC. Likewise, four existing tools for Kgly site prediction:
BERT-Kgly, NetGlycate, Gly-PseAAC, and BPB- GlySite were compared with PTG-PLM
based on each used PLMs. PTG-PLM also outperforms the existing tools for Kgly site
prediction in terms of accuracy, recall, precision, F1, AUC, and MCC. The evaluation and
comparison results indicate that the extracted features using PLMs are more informative
than features extracted by the other feature extraction methods in the existing studies.
In addition, CNN deep learning is better than the other machine learning methods in
which the same features extracted by the six PLMs used in PTG-PLM that result in better
performance. Thus, PTG-PLM can be used to predict the other types of PTMs by adjusting
the PTG-PLM parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area under the curve
CNNs Convolutional Ceural Networks
CNN1D 1-dimensional CNN
DL Deep Learning
DNN Deep Learning
FNN Fully Connected Networks
Kgly lysine glycation
LM Language Model
LR Logistic Regression
Ngly N-linked glycosylation
MCC Matthews Correlation Coefficient
ML Machine learning
MSA Multiple sequence alignments
NLP Natural Language Processing
Ogly O-linked glycosylation
PLM Protein Language Model
PTMs Post-Translational Modifications
ReLU Rectified linear unit
RF Random Forest
RNNs Recurrent Neural Network
ROC Receiver-operating characteristic
SVM Support Vector Machine
XBG XGBoost
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