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Abstract: In this paper, we introduce and study a new class of differential set-valued inverse vari-
ational inequalities in finite dimensional spaces. By applying a result on differential inclusions
involving an upper semicontinuous set-valued mapping with closed convex values, we first prove the
existence of Carathéodory weak solutions for differential set-valued inverse variational inequalities.
Then, by the existence result, we establish the stability for the differential set-valued inverse varia-
tional inequality problem when the constraint set and the mapping are perturbed by two different
parameters. The closedness and continuity of Carathéodory weak solutions with respect to the two
different parameters are obtained.
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1. Introduction

Let K be a nonempty closed convex set of Rn and F : Rn → 2Rn
be a set-valued

mapping. A set-valued inverse variational inequality, denoted by SIVI(K, F), is to find
u ∈ Rn and u∗ ∈ F(u) ∩ K such that

〈y− u∗, u〉 ≥ 0, ∀y ∈ K. (1)

The solution to this problem is denoted by SOL(K, F). We write ẋ := dx
dt for the time-

derivative of function x(t). In this paper, we study the following initial-value differential
set-valued inverse variational inequality (denoted by DSIVI):

ẋ(t) = f (t, x(t)) + B(t, x(t))u(t)
u(t) ∈ SOL(K, G(t, x(t)) + F(·))
x(0) = x0,

(2)

where Ω := [0, T] × Rm, ( f , B, G) := Ω → Rm × Rm×n × Rn, F := Rn → 2Rn
. Time-

dependent functions x(t) and u(t) satisfy (2) in the weak sense of Carathéodory for t ∈ [0, T]
means that x is an absolutely continuous function on [0, T] , x(t) satisfies the differential
equation for almost all t ∈ [0, T] and the initial-value condition. Moreover, u is an integrable
function on [0, T] and u(t) ∈ SOL(K, G(t, x(t)) + F) for almost all t ∈ [0, T].

Differential variational inequalities (DVIs) arise in some applied problems such as,
for example, differential Nash games, operations research, physical sciences, and struc-
tural dynamics [1,2]. DVIs were first systematically studied in finite dimensional spaces
by Pang and Stewart [1] in 2008 and gained much more attention to theoretical results,
numerical algorithms, and applications. Stewart [3] investigated the uniqueness for a class
of index-one DVIs in finite dimensional spaces. Li et al. [4,5] researched differential mixed
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variational inequalities and impulsive differential variational inequalities in finite dimen-
sional spaces and obtained some existence results and numerical methods by using some
results on differential inclusions and discrete Euler time-dependent procedures. Li et al. [6]
proved the existence of the Carathéodory weak solutions for differential inverse variational
inequalities in finite dimensional spaces and gave an application on the time-dependent
price equilibrium problem. In [7], Liu et al. first explored partial differential variational in-
equalities in Banach spaces and proved the nonemptiness and compactness of the solution
set. For more related work about DVIs, see [8–12].

The inverse variational inequality, like the variational inequality, has broad applica-
tions in optimization, engineering, economics, mechanics, and transportation [13–20]. Very
recently, Luo [21] studied the stability for the set-valued inverse variational inequality (1)
on Banach spaces. If F is single-valued, the set-valued inverse variational inequality (1)
can be reduced to the singe-valued inverse variational inequality in [13]. Furthermore,
if F is single-valued and inverse, the set-valued inverse variational inequality (1) can be
transformed into the classical variational inequality. However, the above transforms both
failed if F is set-valued.

The stability analysis of a DVI with perturbed data is very helpful in identifying
sensitive parameters, predicting the coming changes of the equilibria as a result of the
changes in the governing system, and providing helpful information for designing different
equilibrium systems. Gwinner [22] researched stability of the solution set for a DVI
and obtained a novel upper set convergence result with respect to perturbations in the
data. When the mapping and the constraint set are perturbed by different parameters,
Wang et al. [23] studied the stability for a class differential mixed variational inequality
in finite dimensional spaces. To the best of our knowledge, there are some results about
the existence of solutions for differential variational and inverse variational inequalities
in finite dimensional spaces. However, there are very few results about the existence of
solutions for differential set-valued inverse variational inequalities and the stability for
differential single-valued or set-valued inverse variational inequalities in finite dimensional
spaces. Motivated by the aforementioned work, in this paper we are devoted to stability
analysis for the DSIVI (2) in finite dimensional spaces.

The goal of this paper is to study the existence of the Carathéodory weak solutions
and the stability for DSIVI (2) in finite dimensional spaces with the constraint set K and the
set-valued mapping F being perturbed by two different parameters. Our results about the
existence of the Carathéodory weak solutions for DSIVI (2) generalize the corresponding
results in [6]. Our stability results about the differential set-valued inverse variational
inequality are very new. We also give an example of a time-dependent price equilib-
rium control problem influenced by the seasons to show that the realistic problem can be
transformed into the stability for the differential inverse variational inequality.

The paper is organized as follows. Section 2 contains some useful definitions and
lemmas. In Section 3, the existence and uniqueness results of Carathéodory solutions for
DSIVI (2) are considered. Furthermore, the closedness and continuity of Carathéodory
solution set with respect to the perturbed data in the constraint set K and the set-valued
mapping F are obtained.

2. Preliminaries

In this section, we will introduce some basic notations and preliminary results.

Definition 1 ([24]). Let X and Y be two metric spaces; Y∗ is the dual space of Y. We say a
set-valued mapping F : X → 2Y is

(i) Upper semicontinuous at x ∈ X if and only if for any neighborhood U of F(x), there exists the
neighborhood B(x, η) of x with η > 0 such that

∀x′ ∈ B(x, η), F(x′) ⊂ U;
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(ii) Lower semicontinuous at x ∈ X if and only if for any y ∈ F(x) and for any sequence of
elements xn ∈ X converging to x, there exists a sequence of elements yn ∈ F(xn) converging
to y;

(iii) Upper hemicontinuous at x ∈ X if and only if for any r ∈ Y∗, the function x 7→ sup
y∈F(x)

〈r, y〉

is upper semicontinuous at x.

Definition 2 ([23,25]). The set-valued mapping F : Rn → 2Rn
is said to be

(i) Strictly monotone on set L ⊂ Rn iff for any x, y ∈ L, x 6= y, x∗ ∈ F(x), y∗ ∈ F(y), we have

〈x∗ − y∗, x− y〉 > 0;

(ii) Strongly monotone with modulus µ > 0, if for any x, y ∈ Rn and x∗ ∈ F(x), y∗ ∈ F(y),
we have

〈x∗ − y∗, x− y〉 ≥ µ‖x− y‖2.

Definition 3. A mapping f : Ω → Rm (respectively, B : Ω → Rm×n) is said to be Lips-
chitz continuous if there exists a constant L f > 0 (respectively, LB > 0) such that, for any
(t1, x), (t2, y) ∈ Ω, we have

‖ f (t1, x)− f (t2, y)‖ ≤ L f (|t1 − t2|+ ‖x− y‖),

(respectively, ‖B(t1, x)− B(t2, y)‖ ≤ LB(|t1 − t2|+ ‖x− y‖)).

Lemma 1 ([26], Lemma 1). Let X and Y be metric spaces. If a set-valued mapping F : X →
Pf (Y) := {D ⊂ Y : D is nonempty, closed} is upper semicontinuous, then F is closed.

Lemma 2 ([27], Theorem 5.1). Let F : Ω→ 2Rm
be an upper semicontinuous set-valued mapping

with nonempty closed convex values. Suppose that there exists a scalar ρF > 0 satisfying

sup{‖y‖ : y ∈ F(t, x)} ≤ ρF(1 + ‖x‖), ∀(t, x) ∈ Ω. (3)

Then for every x0 ∈ Rm, the DI:

ẋ ∈ F(t, x), x(0) = x0

has a weak solution in the sense of Carathéodory.

Lemma 3 ([1], Lemma 6.3). Let h : Ω× Rn → Rm be a continuous function and U : Ω→ 2Rn

be a closed set-valued map such that for some constant ηU > 0,

sup
u∈U(t,x)

‖u‖ ≤ ηU(1 + ‖x‖), ∀(t, x) ∈ Ω.

Let v : [0, T] → Rm be a measurable function and x : [0, T] → Rm be a continuous function
satisfying v(t) ∈ h(t, x(t), U(t, x(t))) for almost all t ∈ [0, T]. There exists a measurable function
u : [0, T]→ Rn such that u(t) ∈ U(t, x(t)) and v(t) = h(t, x(t), U(t)) for almost all t ∈ [0, T].

Throughout the rest of this paper, let K ⊂ Rn be a nonempty, closed, and convex
subset. The symbols “ ⇀′′ and “→′′ are used to denote the weak convergence and strong
convergence. Let the barrier cone of K be denoted by

barr(K) := {y ∈ Rn : sup
x∈K
〈y, x〉 < ∞}.
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The recession cone of K, denoted by K∞, is defined by

K∞ := {d ∈ Rn : ∃tn → 0, ∃xn ∈ K, tnxn ⇀ d}.

The negative polar cone of the nonempty set D ⊂ Rn, denoted by D−, is defined by

D− := {y ∈ Rn : 〈y, x〉 ≤ 0, ∀x ∈ D}.

Lemma 4 ([21], Theorem 4.2). Let L : Z1 → 2Rn
be a continuous set-valued mapping; p0 ∈ Z1,

λ0 ∈ Z2 are given points; F : Rn × Z2 → 2Rn
is a set-valued mapping and lower semicontinuous

on Z2. Suppose that there exists a neighborhood of P×Λ of (p0, λ0), such that L(p) has nonempty,
closed, and convex values for any p ∈ P, and F(x, λ) has nonempty closed values for every x ∈ Rn

and λ ∈ Λ. Moreover, for each λ ∈ Λ and q ∈ G(Ω), the mapping x 7→ q + F(x, λ) is upper
hemicontinuous and monotone. If

(L(p0))∞ ∩ {x ∈ Rn : q + F(x, λ0) ∩ L(p0) 6= ∅}− = {0},

then there exists a neighborhood P′ ×Λ′ of (p0, λ0) with P′ ×Λ′ ⊂ P×Λ, such that for every
(p, λ) ∈ P′ ×Λ′ , the set SOL(L(p), q + F(·, λ)) is nonempty and bounded.

In the rest of this paper, we assume (A) and (B) hold.
(A) f , B and G are Lipschitz continuous functions on Ω with Lipschitz constants

L f > 0, LB > 0 and LG > 0, respectively;
(B) B is bounded on Ω with ffiB := sup

(t,x)∈Ω
‖ B(t, x) ‖.

Remark 1. If f : Ω→ Rm is a Lipschitz continuous function on Ω, we obtain that there exists a
constant ρ f > 0, for any (t, x) ∈ Ω, such that

‖ f (t, x)‖ = ‖ f (t, x)− f (t0, 0) + f (t0, 0)‖
≤ ‖ f (t, x)− f (t0, 0)‖+ ‖ f (t0, 0)‖
≤ L f (|t− t0|+ ‖x‖) + ‖ f (t0, 0)‖
≤ L f (2T + ‖x‖) + ‖ f (t0, 0)‖
≤ ρ f (1 + ‖x‖),

where t0 ∈ [0, T], ρ f = max{L f , 2L f T + ‖ f (t0, 0)‖}. Similarly, G : Ω → Rn is a Lipschitz
continuous function on Ω, so there exists a constant ρG > 0 such that ‖G(t, x)‖ ≤ ρG(1 + ‖x‖)
for any (t, x) ∈ Ω.

3. Existence and Uniqueness of Solutions for DSIVI (2)

In this section, we will show the existence and uniqueness of Carathéodory weak
solutions for DSIVI (2) by applying Lemmas 2 and 3. For this purpose, we define a set-
valued mapping F : Ω→ 2Rn

as follows:

F(t, x) := { f (t, x) + B(t, x)u : u ∈ SOL(K, G(t, x) + F(·))}. (4)

The following lemma presents some properties of the set-valued mapping F defined by (4)
under the hypotheses (A) and (B).

In the following, L2([0, T]; Rn) is the set of all measurable functions u : [0, T] → Rn,
that satisfies

∫ T
0 ‖u(t)‖

2dt < +∞. The norm of ‖u‖ is defined by

‖u‖ := (
∫ T

0
‖u(t)‖2dt)

1
2 .
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Lemma 5. Let ( f , G, B) satisfy conditions (A) and (B). Let K ⊂ Rn be a nonempty, bounded,
closed, and convex set and F : Rn → 2Rn

be an upper semicontinuous set-valued mapping with
nonempty closed convex values. Suppose that there exists a constant ρ > 0 such that, for all
q ∈ G(Ω),

sup{‖u‖ : u ∈ SOL(K, q + F(·))} ≤ ρ(1 + ‖q‖). (5)

Then, there exists a constant ρF > 0 such that (3) holds for the mapping F. Hence, F is an upper
semicontinuous closed-valued mapping on Ω.

Proof. We first prove that there is a constant ρF > 0 such that (3) holds for the mapping F.
For any y ∈ F(t, x), from the definition of F, we know there exists u ∈ SOL(K, G(t, x) + F(·))
such that y = f (t, x) + B(t, x)u. From conditions (A) and (B), it is easy to see that there
exists positive constants ρ f and ρG such that

‖ f (t, x)‖ ≤ ρ f (1 + ‖x‖), (6)

and

‖G(t, x)‖ ≤ ρG(1 + ‖x‖). (7)

Applying (5), we obtain

‖y‖ ≤ ‖ f (t, x)‖+ ‖B(t, x)u‖ ≤ (ρ f + δBρ + δBρρG)(1 + ‖x‖).

If we let ρF = ρ f + δBρ + δBρρG, then (3) holds.
Next, we prove that F is upper semicontinuous. We note that under the linear growth

condition (3), the upper semicontinuity of F holds if F is closed. Therefore, we need to prove F
is closed on Ω. Let {(tn, xn)} ⊂ Ω be a sequence converging to some vector (t0, x0) ∈ Ω and
{ f (tn, xn) + B(tn, xn)un} ⊂ F(tn, xn) converging to z0, where un ∈ SOL(K, G(tn, xn) + F(·)).
It follows that sequence {un} is bounded by (5). Therefore, {un} has a convergent subsequence,
denoted again by {un}, with a limit point u0 ∈ Rn. According to un ∈ SOL(K, G(tn, xn)+ F(·)),
it is easy to see that there exists u∗n ∈ F(un) and G(tn, xn) + u∗n ∈ K such that

〈y− G(tn, xn)− u∗n, un〉 ≥ 0, ∀y ∈ K.

By the boundedness of K, we get {u∗n} is bounded and has a convergent subsequence
with a limit u∗0 , as the set-valued mapping F is upper semicontinuous with nonempty
closed convex values. By Lemma 1, we obtain that F is closed, which means Graph(F) :=
{(x, y) ∈ Rn × Rn : y ∈ F(x)} is closed. We know (un, u∗n) ∈ Graph(F) since u∗n ∈ F(un).
Therefore, u∗0 ∈ F(u0). Since G is Lipschitz continuous, it follows {G(tn, xn)} converges to
G(t0, x0). Since K is closed, it follows that G(t0, x0) + u∗0 ∈ (G(t0, x0) + F(u0)) ∩ K and

〈y− G(t0, x0)− u∗0 , u0〉 ≥ 0, ∀y ∈ K.

That means u0 ∈ SOL(K, G(t0, x0) + F(·)) and so

f (tn, xn) + B(tn, xn)un → z0 = f (t0, x0) + B(t0, x0)u0 ∈ F(t0, x0).

Therefore, F is closed. This completes the proof. �

Remark 2. We would like to point out that Lemma 5 extends Lemma 2.5 in [6].

Theorem 1. Let ( f , G, B) satisfy conditions (A) and (B). Let K ⊂ Rn be a nonempty, bounded,
closed, and convex set and F : Rn → 2Rn

be an upper semicontinuous set-valued mapping with
nonempty closed convex values. Suppose for any q ∈ G(Ω), there exists a constant ρ > 0 such



Axioms 2022, 11, 475 6 of 16

that (5) holds and the set SOL(K, q + F(·)) is nonempty, closed, and convex. Then, DSIVI (2) has
a Carathéodory weak solution.

Proof. By Lemma 5, we obtain that there exists a constant ρF > 0 such that (3) holds for
the mapping F defined by (4) and F is an upper semicontinuous closed-valued mapping
on Ω. Next, for any (t, x) ∈ Ω, we prove F(t, x) is convex. Since for any q ∈ G(Ω),
SOL(K, q + F(·)) is nonempty, it is easy to see that F(t, x) is nonempty. However, for any
f (t, x) + B(t, x)u1, f (t, x) + B(t, x)u2 ∈ F(t, x), where u1, u2 ∈ SOL(K, G(t, x) + F(·)), by
the convex of SOL(K, G(t, x) + F(·)), we know that there exists a constant η ∈ (0, 1) such that

η( f (t, x) + B(t, x)u1) + (1− η)( f (t, x) + B(t, x)u2)

= f (t, x) + B(t, x)(ηu1 + (1− η)u2) ∈ F(t, x),

where ηu1 + (1− η)u2 ∈ SOL(K, G(t, x) + F(·)). This means F(t, x) is convex.
Because F is an upper semicontinuous set-valued mapping with nonempty closed

convex values and there exists a constant ρF > 0 such that (3) holds for the mapping F, by
Lemma 2, we obtain that the following differential inclusion ẋ ∈ F(t, x), x(0) = x0 has a
Carathéodory weak solution x(t). Thus, we have for any t ∈ [0, T],∫ t

0
ẋ(s)ds =

∫ t

0
[ f (s, x(s)) + B(s, x(s))u(s)]ds,

and

‖x(t)‖ ≤ ‖x0‖+
∫ t

0
ρF(1 + ‖x(s)‖)ds.

Then, by the Gronwall inequality, we obtain

‖x(t)‖ ≤ (‖x0‖+ ρFT)eρFT . (8)

Therefore, from the above two inequalities we can obtain that x(t) is absolutely continuous
on [0, T]. Let U(t, x) := SOL(K, G(t, x) + F(·)) and h(t, x, u) := f (t, x) + B(t, x)u. We con-
clude by Lemma 3 that there exists a measurable function u(t) such that
u(t) ∈ SOL(K, G(t, x(t)) + F(·)) and ẋ(t) = f (t, x) + B(t, x)u(t) for almost all t. By
Lemma 6, it follows that for almost all t ∈ [0, T], there exists ρ > 0 such that

‖u(t)‖ ≤ ρ(1 + ‖G(t, x(t))‖),

where u(t) ∈ SOL(K, G(t, x(t)) + F(·)). From (6) and (8), it follows from the above inequal-
ity that for almost all t ∈ [0, T],

‖u(t)‖ ≤ ρ(1 + ρG(1 + (‖x0‖+ ρFT)eρFT)).

Therefore, u(t) is integrable on [0, T]. This completes the proof. �

Lemma 6. Let ( f , G, B) satisfy conditions (A) and (B). Let K ⊂ Rn be a nonempty, bounded,
closed, and convex set. Suppose the following statements hold:

(i) F : Rn → 2Rn
is strictly monotone and upper hemicontinuous on Rn;

(ii) For any q ∈ G(Ω), K∞ ∩ {x ∈ Rn : q + F(x) ∩ K 6= ∅}− = {0};
(iii) The interior of barr(K) is nonempty.

Then, SOL(K, q + F(·)) is a singleton for any q ∈ G(Ω). Moreover, there exists a constant ρ > 0
such that (5) holds for any q ∈ G(Ω).
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Proof. Using conditions (i)–(iii) and according to Theorem 3.2 in [21], we can obtain that
SOL(K, q + F(·)) 6= ∅ for any q ∈ G(Ω). Next, we show SOL(K, q + F(·)) is a singleton for
any q ∈ G(Ω). We assume u1, u2 ∈ SOL(K, q + F(·)) and u1 6= u2, and we have

q + u∗1 ∈ (q + F(u1)) ∩ K, 〈y− q− u∗1 , u1〉 ≥ 0, ∀y ∈ K, (9)

and

q + u∗2 ∈ (q + F(u2)) ∩ K, 〈y− q− u∗2 , u2〉 ≥ 0, ∀y ∈ K. (10)

Letting y = q + u∗2 in (9), we have

〈u∗2 − u∗1 , u1〉 ≥ 0.

Letting y = q + u∗1 in (10), we have

〈u∗1 − u∗2 , u2〉 ≥ 0.

It follows from the above two inequalities that

〈u∗2 − u∗1 , u1 − u2〉 ≥ 0. (11)

Since F is strictly monotone, u1 6= u2, u∗1 ∈ F(u1), u∗2 ∈ F(u2), we obtain

〈u∗2 − u∗1 , u2 − u1〉 > 0,

which contradicts (11). That means SOL(K, q + F(·)) is a singleton for any q ∈ G(Ω) and
so there exists a constant ρ > 0 such that (5) holds for any q ∈ G(Ω). This completes
the proof.

Theorem 2. Let K ⊂ Rn be a nonempty, bounded, closed, and convex set. Let ( f , G, B) satisfy
conditions (A) and (B). Suppose the following statements hold:

(i) F : Rn → 2Rn
is strictly monotone and upper hemicontinuous on Rn;

(ii) F : Rn → 2Rn
is an upper semicontinuous set-valued map with nonempty closed convex

values;
(iii) For any q ∈ G(Ω), K∞ ∩ {x ∈ Rn : q + F(x) ∩ K 6= ∅}− = {0};
(iv) The interior of barr(K) is nonempty.

Then, DSIVI (2) has a Carathéodory weak solution.

Proof. It follows from conditions (i), (iii), (iv), and Lemma 6 that (5) holds. By condition
(ii) and Lemma 5, we know there exists a constant ρF > 0 such that (3) holds, where F is
defined by (4). Applying Theorem 1, we get DSIVI (2) has a Carathéodory weak solution.
This completes the proof. �

Remark 3. From the above proof, it is easy to see that u ∈ L2([0, T]; Rn).

Theorem 3. Assume conditions (ii)–(iv) in Theorem 2 hold and F : Rn → 2Rn
is strongly

monotone and upper hemicontinuous on Rn. Then, DSIVI (2) has a unique Carathéodory weak
solution (x, u) ∈ C([0, T]; Rm)× L2([0, T]; Rn).

Proof. By Theorem 2, we know DSIVI (2) has Carathéodory weak solutions. Now, we
only need to prove the uniqueness of the Carathéodory weak solution for DSIVI (2). For
this purpose, we let (x1, u1) and (x2, u2) be the Carathéodory weak solutions for DSIVI (2).
Therefore,
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 x1(t) = x0 +
∫ t

0 f (τ, x1(τ)) + B(τ, x1(τ))u1(τ)dτ, for any t ∈ [0, T]
u1(t) ∈ SOL(K, G(t, x1(t)) + F(·)), for almost all t ∈ [0, T]
x1(0) = x0,

(12)

and  x2(t) = x0 +
∫ t

0 f (τ, x2(τ)) + B(τ, x2(τ))u2(τ)dτ, for any t ∈ [0, T]
u2(t) ∈ SOL(K, G(t, x2(t)) + F(·)), for almost all t ∈ [0, T]
x2(0) = x0.

(13)

For almost all t ∈ [0, T], it is easy to see u1(t) ∈ SOL(K, G(t, x1(t)) + F(·)) and u2(t) ∈
SOL(K, G(t, x2(t)) + F(·)). Therefore, there exists a measurable E on [0, T] with mE = 0
(mE denotes the Lebesgue measure of the set E on [0, T]) such that for any t ∈ [0, T] \ E,
there exists u∗1(t) ∈ F(u1(t)) and G(t, x1(t)) + u∗1(t) ∈ K such that

〈y− G(t, x1(t))− u∗1(t), u1(t)〉 ≥ 0, ∀y ∈ K (14)

and there exists u∗2(t) ∈ F(u2(t)) and G(t, x2(t)) + u∗2(t) ∈ K such that

〈y− G(t, x2(t))− u∗2(t), u2(t)〉 ≥ 0, ∀y ∈ K. (15)

For t ∈ [0, T] \ E, letting y = G(t, x2(t)) + u∗2(t) in (14), we get

〈G(t, x2(t)) + u∗2(t)− G(t, x1(t))− u∗1(t), u1(t)〉 ≥ 0.

For t ∈ [0, T] \ E, letting y = G(t, x1(t)) + u∗1(t) in (15), we get

〈G(t, x1(t)) + u∗1(t)− G(t, x2(t))− u∗2(t), u2(t)〉 ≥ 0.

Therefore, for t ∈ [0, T] \ E, one has

〈G(t, x1(t)) + u∗1(t)− G(t, x2(t))− u∗2(t), u2(t)− u1(t)〉 ≥ 0,

and
〈G(t, x1(t))− G(t, x2(t)), u2(t)− u1(t)〉 ≥ 〈u∗1(t)− u∗2(t), u1(t)− u2(t)〉.

Since F is strongly monotone on Rn, it yields for almost all t ∈ [0, T],

〈u∗1(t)− u∗2(t), u1(t)− u2(t)〉 ≥ µ‖u1(t)− u2(t)‖2. (16)

From the Cauchy–Schwarz inequality, we know that

〈G(t, x1(t))− G(t, x2(t)), u2(t)− u1(t)〉
≤ ‖G(t, x1(t))− G(t, x2(t))‖‖u1(t)− u2(t)‖. (17)

Therefore, combining (16) and (17), we get for almost all t ∈ [0, T],

µ‖u1(t)− u2(t)‖ ≤ ‖G(t, x1(t))− G(t, x2(t))‖
≤ LG‖x1(t)− x2(t)‖ (18)

and

‖u1(t)− u2(t)‖ ≤
LG
µ
‖x1(t)− x2(t)‖. (19)
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Furthermore, from (12), (13), and (18), we infer that for any t ∈ [0, T],

‖x1(t)− x2(t)‖

=
∫ t

0
‖ f (τ, x1(τ)) + B(τ, x1(τ))u1(τ)− f (τ, x2(τ)) + B(τ, x2(τ))u2(τ)‖dτ

≤
∫ t

0
‖ f (τ, x1(τ))− f (τ, x2(τ))‖dτ + δB

∫ t

0
‖u1(τ)− u2(τ)‖dτ

≤ L f

∫ t

0
‖x1(τ)− x2(τ)‖dτ + δB

LG
µ

∫ t

0
‖x1(τ)− x2(τ)‖dτ

≤ (L f + δB
LG
µ

)
∫ t

0
‖x1(τ)− x2(τ)‖dτ.

Apparently, there exists a constant C = L f + δB
LG
µ > 0 such that

‖x1(t)− x2(t)‖ ≤ C
∫ t

0
‖x1(τ)− x2(τ)‖dτ.

According to the Gronwall inequality, we get x1(t) = x2(t) for all t ∈ [0, T], so x1 = x2 in
C([0, T], Rm). From (18), we have u1(t) = u2(t) in Rn for almost all t ∈ [0, T]. This means
u1 = u2 in L2([0, T], Rn). This completes the proof. �

4. Stability for DSIVI (2)

In this section, we aim to study the stability for DSIVI (2) in finite dimensional
spaces when both the mapping and the constraint set are perturbed by two different
parameters. For this purpose, we consider the parametric DSIVI, denoted by DSIVI (L(p),
G(t, x(t)) + F(·, λ)), as follows:

ẋ(t) = f (t, x(t)) + B(t, x(t))u(t)
u(t) ∈ SOL(L(p), G(t, x(t)) + F(·, λ))
x(0) = x0,

(20)

where (Z1, d1) and (Z2, d2) are two metric spaces. The nonempty closed convex subset K
of Rn in DSIVI (2) is perturbed by a parameter p, which varies over (Z1, d1). Therefore, K is
a perturbed set. That means L : Z1 → 2Rn

is a set-valued mapping with nonempty closed
convex values. The mapping F : Rn → 2Rn

is a set-valued mapping that is perturbed by a
parameter λ, and λ varies over (Z2, d2). That is to say, F : Rn × Z2 → 2Rn

. In what follows,
to simplify notation, we let S(p, λ) denote the Carathéodory weak solution for DSIVI (20).
Next, we will establish the closedness and continuity of the mapping (p, λ)→ S(p, λ).

Theorem 4. Let ( f , G, B) satisfy conditions (A) and (B), p0 ∈ Z1, λ0 ∈ Z2 be two given points.
Assume the following conditions hold.

(i) L : Z1 → 2Rn
is a continuous set-valued mapping with nonempty bounded closed convex

values and
⋃

p∈U(p0)
L(p) is compact, where U(p0) is a neighborhood of p0;

(ii) F : Rn × Z2 → 2Rn
is an upper semicontinuous set-valued mapping with nonempty closed

convex values on Rn × Z2 and lower semicontinuous on Z2;
(iii) There exists a neighborhood Λ of λ0, for each λ ∈ Λ, the mapping x 7→ q + F(x, λ) is upper

hemicontinuous and monotone for any q ∈ G(Ω);
(iv) The set SOL(L(p0), q + F(·, λ0)) is nonempty and bounded for any q ∈ G(Ω);
(v) F : Rn × Z2 → 2Rn

is strictly monotone and upper hemicontinuous on Rn .

Then, S(p, λ) is closed at (p0, λ0) ∈ Z1 × Z2.

Proof. From Theorem 3.2 in [21], we know that condition (iv) is equivalent to conditions
(iii) and (iv) in Theorem 2. By conditions (i)–(iv), it follows from Lemma 4 that there exists
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a neighborhood P′ ×Λ′ of (p0, λ0), P′ ×Λ′ ⊂ P×Λ, such that for each (p, λ) ∈ P′ ×Λ′,
the set SOL(L(p), q + F(·, λ)) is nonempty and bounded. It follows from Lemma 6 that
there exists a constant ρ > 0 such that (5) holds for any q ∈ G(Ω). It is obvious that DSIVI
(20) has solutions by Theorem 2.

Now, we prove S(p, λ) is closed at (p0, λ0). Let {(pn, λn)} ⊂ P × Λ be a given
sequence with (pn, λn) → (p0, λ0) and (xn, un) ∈ S(pn, λn) with (xn, un) → (x0, u0) in
C([0, T]; Rm)× L2([0, T], Rn). Therefore,

(a) For any 0 ≤ s ≤ t ≤ T,

xn(t)− xn(s) =
∫ t

s
f (τ, xn(τ)) + B(τ, xn(τ))un(τ)dτ;

(b) For almost all t ∈ [0, T], there exists u∗n(t) ∈ F(un(t), λn) and G(t, xn(t))+ u∗n(t) ∈ L(pn),
for any yn ∈ L(pn), such that

〈yn − G(t, xn(t))− u∗n(t), un(t)〉 ≥ 0;

(c) The initial condition
xn(0) = x0.

From the convergence un converges to u0 in L2([0, T], Rn), we obtain∫
[0,T]
‖un(t)− u0(t)‖2dt < ∞

and

lim
n→∞

‖un − u0‖L2 = lim
n→∞

(
∫
[0,T]
‖un(t)− u0(t)‖2dt)

1
2

= 0.

Moreover, applying the Holder inequality, we know∫
[0,T]
‖un(t)− u0(t)‖dt ≤ (

∫
[0,T]
‖un(t)− u0(t)‖2dt)

1
2 (

∫
[0,T]

12dt)
1
2

and

lim
n→∞

∫
[0,T]
‖un(t)− u0(t)‖dt ≤ lim

n→∞
(
∫
[0,T]
‖un(t)− u0(t)‖2dt)

1
2 = 0.

This means un converges to u0 in L1([0, T], Rn), which is equivalent to ‖un − u0‖L1 → 0. By
Theorem 4.9 in [28], there exists a sequence un(t) and a function h ∈ L1 such that

un(t)→ u0(t), for almost all t ∈ [0, T] (21)

and

‖un(t)‖ ≤ h(t), for almost all t ∈ [0, T]. (22)

Combining (21) and (22), by the Lebesgue control convergence theorem, we know

lim
n→∞

∫
[0,T]

un(t)dt =
∫
[0,T]

u0(t)dt.

However, from (b), it is easy to see that G(t, xn(t)) + u∗n(t) ∈ L(pn) for almost all t ∈
[0, T]. By condition (i), there exists a neighborhood U(p0) of p0 such that

⋃
p∈U(p0)

L(p)
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is compact. Therefore, {u∗n(t)} has a subsequence, denoted again by {u∗n(t)}, such that
u∗n(t) → u∗0(t). Since (un, λn) → (u0, λ0), it follows from Lemma 1 and condition (ii)
that u∗0(t) ∈ F(u0(t), λ0). Moreover, the lower semicontinuity of L implies that, for any
y ∈ L(p0), there exists a sequence {yn} with yn ∈ L(pn) such that yn → y.

Now, by (a), (b), and (c), we have

(a′) For any 0 ≤ s ≤ t ≤ T,

x0(t)− x0(s) =
∫ t

s
f (τ, x0(τ)) + B(τ, x0(τ))u0(τ)dτ;

(b′) For almost all t ∈ [0, T], there exists u∗0(t) ∈ F(u0(t), λ0) and G(t, x0(t)) + u∗0(t) ∈ L(p0),
for any y ∈ L(p0), such that

〈y− G(t, x0(t))− u∗0(t), u0(t)〉 ≥ 0;

(c′) The initial condition
x0(0) = x0.

Therefore, it deduces that (x0, u0) ∈ S(p0, λ0). This completes the proof. �

Theorem 5. Let ( f , G, B) satisfy conditions (A) and (B); p0 ∈ Z1, λ0 ∈ Z2 are given points.
Assume the following conditions hold.

(i) L : Z1 → 2Rn
is a continuous set-valued mapping with nonempty bounded closed convex

values, and there exists a neighborhood U(p0) of p0 such that
⋃

p∈U(p0)
L(p) is compact;

(ii) F : Rn × Z2 → 2Rn
is a upper semicontinuous set-valued mapping with nonempty closed

convex values on Rn × Z2 and lower semicontinuous on Z2;
(iii) For each λ ∈ Λ and q ∈ G(Ω), the mapping x 7→ q + F(x, λ) is upper hemicontinuous and

monotone, where Λ is a neighborhood of λ0;
(iv) There exists a neighborhood U(p0, λ0) of (p0, λ0) such that⋃

(p,λ)∈U(p0,λ0)

SOL(L(p), q + F(·, λ))

is bounded for any q ∈ G(Ω);
(v) F : Rn × Z2 → 2Rn

is strongly monotone and upper hemicontinuous on Rn .

Then, S(p, λ) is continuous at (p0, λ0) ∈ Z1 × Z2.

Proof. From Theorem 3.2 in [21], we know that condition (iv) is equivalent to conditions
(iii) and (iv) in Theorem 2. It follows from Theorem 3 that S(p, λ) is a singleton by
conditions (i), (ii), (iv), and (v). Let S(pn, λn) = (xn, un) with (pn, λn) → (p0, λ0). Next,
we need to prove sequence {xn} and {un} have convergent subsequences, respectively.

Step 1. {xn} is uniformly bounded.
It is known that (xn, un) ∈ S(pn, λn). Therefore, for almost all t ∈ [0, T],

ẋn(t) = f (t, xn(t)) + B(t, xn(t))un(t), n = 1, 2, · · · . (23)

Since F(t, xn) defined by (4) satisfies (3), for any t ∈ [0, T], we have

‖xn(t)‖ ≤ ‖x0‖+
∫ t

0
ρF(1 + ‖xn(s)‖)ds.

Applying the Gronwall inequality, we know

‖xn(t)‖ ≤ (‖x0‖+ ρFT)eρFT .
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Clearly, {xn} is uniformly bounded with ‖x‖ = sup
t∈[0,T]

‖x(t)‖.

Step 2. {xn} is an equicontinuous family of functions. Since (xn, un) ∈ S(pn, λn),
for almost all t ∈ [0, T], un(t) ∈ SOL(L(pn), G(t, xn(t)) + F(·, λn)). By condition (iv), for
almost all t ∈ [0, T] and n = 1, 2, · · · , there exists a constant C such that ‖un(t)‖ ≤ C.

In reality, (23) means for all 0 ≤ s ≤ t ≤ T,

xn(t)− xn(s) =
∫ t

s
f (τ, xn(τ)) + B(τ, xn(τ))un(τ)dτ, n = 1, 2, · · · .

We note that f is a Lipschitz continuous function on Ω, so for all (t, x) ∈ Ω, there exists a
constant ρ f > 0 such that

‖ f (t, x)‖ ≤ ρ f (1 + ‖x‖). (24)

Since B is bounded on Ω and {un(t)} is bounded for almost all t ∈ [0, T], by (24), we have

‖xn(t)− xn(s)‖

= ‖
∫ t

s
f (τ, xn(τ)) + B(τ, xn(τ))un(τ)dτ‖

≤
∫ t

s
‖ f (τ, xn(τ))‖dτ +

∫ t

s
‖B(τ, xn(τ))un(τ)‖dτ

≤
∫ t

s
‖ f (τ, xn(τ))‖dτ +

∫ t

s
‖B(τ, xn(τ))‖‖un(τ)‖dτ

≤
∫ t

s
ρ f (1 + ‖xn(τ)‖)dτ + δBC|t− s|

≤ ρ f |t− s|+ ρ f (‖x0‖+ ρFT)eρFT |t− s|+ δBC|t− s|

≤ (ρ f (1 + (‖x0‖+ ρFT)eρFT) + δBC)|t− s|.

Let M = ρ f (1 + (‖x0‖+ ρFT)eρFT) + δBC. Therefore, there exists a constant M such that,
for any n = 1, 2, · · · ,

‖xn(t)− xn(s)‖ ≤ M|t− s|.

Then, sequence {xn} is equicontinuous. We can apply the Arzelà–Ascoli theorem to deduce
that {xn} has a subsequence, denoted again by {xn}, which converges to x0.

Step 3. S(pn, λn) → S(p0, λ0) in C([0, T]; Rm)× L2([0, T]; Rn). We know that un(t) ∈
SOL(L(pn), G(t, xn(t)) + F(·, λn)) for almost all t ∈ [0, T]. Then, there exists a measure E
with mE = 0 such that un(t) ∈ SOL(L(pn), G(t, xn(t)) + F(·, λn)) for any t ∈ [0, T] \ E. That
is, for any t ∈ [0, T] \ E, there exists u∗n(t) ∈ F(un(t), λn) and G(t, xn(t)) + u∗n(t) ∈ L(pn)
such that

〈y− G(t, xn(t))− u∗n(t), un(t)〉 ≥ 0, ∀y ∈ L(pn). (25)

Take any small h such that t + h ∈ [0, T] \ E and un(t + h) ∈ SOL(L(pn), G(t + h, xn(t +
h)) + F(·, λn)). Then, there exists u∗n(t + h) ∈ F(un(t + h), λn) and G(t + h, xn(t + h)) +
u∗n(t + h) ∈ L(pn) such that, for any t + h ∈ [0, T] \ E,

〈y− G(t + h, xn(t + h))− u∗n(t + h), un(t + h)〉 ≥ 0, ∀y ∈ L(pn). (26)

For any t + h ∈ [0, T] \ E, letting y = G(t + h, xn(t + h)) + u∗n(t + h) in (25), we have

〈G(t + h, xn(t + h)) + u∗n(t + h)− G(t, xn(t))− u∗n(t), un(t)〉 ≥ 0.

For any t ∈ [0, T] \ E, letting y = G(t, xn(t)) + u∗n(t) in (26), we have

〈G(t, xn(t)) + u∗n(t)− G(t + h, xn(t + h))− u∗n(t + h), un(t + h)〉 ≥ 0.
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Therefore,

〈G(t + h, xn(t + h))− G(t, xn(t)), un(t)− un(t + h)〉 (27)

≥ 〈u∗n(t)− u∗n(t + h), un(t)− un(t + h)〉. (28)

By the monotonicity of F,

〈u∗n(t)− u∗n(t + h), un(t)− un(t + h)〉 ≥ µ‖un(t)− un(t + h)‖2.

Applying the Cauchy–Schwarz inequality, we get

〈G(t + h, xn(t + h))− G(t, xn(t)), un(t)− un(t + h)〉
≤ ‖G(t + h, xn(t + h))− G(t, xn(t))‖‖un(t)− un(t + h)‖.

Thus, combining the above two inequalities and applying the Lipschitz continuity of G,
we obtain

µ‖un(t)− un(t + h)‖ ≤ ‖G(t + h, xn(t + h))− G(t, xn(t))‖
≤ LG(|h|+ ‖xn(t + h)− xn(t)‖),

which means

‖un(t)− un(t + h)‖ ≤ LG
µ

(|h|+ ‖xn(t + h)− xn(t)‖)

≤ LG
µ

(|h|+ M|h|)

≤ LG
µ

(M + 1)|h|. (29)

Let l = LG
µ (M + 1). Since {xn} is equicontinuous, it follows from (29) that for any ε > 0,

there exists δ = min{T, ε
l
√

2T
} such that, for all n = 1, 2, . . . and all |h| ≤ δ,

∫ T−h

0
‖un(t + h)− un(h)‖2dt ≤

∫ T−h

0
l2h2dt

≤ l2h2(T − h)

≤ l2δ2(T + δ)

< ε2. (30)

It is known that ‖un‖L2 = (
∫
[0,T] ‖un(t)‖2dt)

1
2 < ∞, which means {un} is bounded in

L2[0, T]. Applying inequality (30) and the boundedness of {un}, by Corollary 1.34 in [29],
we get that the sequence {un} is relatively compact in L2[0, T]. We can obtain the closure
of {un} is compact. Therefore, {un} exists a convergent subsequence, denoted again
by {un}, which converges to u0. Up to now, we get subsequence (xn, un) = S(pn, λn)
with xn → x0 and un → u0. From Theorem 4, S(p, λ) is closed at (p0, λ0). This means
(xn, un) → (x0, u0) = S(p0, λ0) and so S(p, λ) is continuous at (p0, λ0). This completes
the proof. �

5. An Example of a Time-Dependent Spatial Price Equilibrium Control Problem

In this section, we will give an example of the differential inverse variational inequal-
ity to the time-dependent spatial price equilibrium control problem. As discussed by
Scrimali [15], assume that a single commodity is produced at m supply market, with typical
supply market denoted by i, and is consumed at n demand markets, with typical demand
market denoted by j, during the time interval [0, T] with T > 0. Let (i, j) denote the typical
pair of producers and consumers for i = 1, 2, · · · , m and j = 1, 2, · · · , n. Let Si(t) be the
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supply of the commodity produced at supply market i at time t ∈ [0, T] and group the
supplies into a column vector

S(t) = (S1(t), · · · Sm(t)) ∈ Rm.

Let Dj(t) be the demand of the commodity associated with demand market j at time
t ∈ [0, T] and group the demands into a column vector

D(t) = (D1(t), · · ·Dn(t)) ∈ Rn.

Let xij(t) be the commodity shipment from supply market i to demand market j at time
t ∈ [0, T] and group the commodity shipments into a column vector x(t) ∈ Rmn.

Li et al. [6] studied the time-dependent spatial price equilibrium control problem
by establishing the relation between the problem and a differential inverse variational
inequality. We restate it here with a concise version.

Assume that, for any t ∈ [0, T],

Si(t) =
n

∑
j=1

xij(t), Dj(t) =
m

∑
i=1

xij(t)

and resource exploitations S(x(t), u(t)) at supply market and consumption D(x(t), u(t))
at demands market can be controlled by adjusting the tax u(t). Let

W(t, x(t), u(t)) = (S(x(t), u(t)), D(x(t), u(t))), ∀t ∈ [0, T],

which can be written as

W(t, x(t), u(t)) = G(t, x(t)) + F(u(t)),

where G(t, x) is a Carathéodory function with γ(t) ∈ L2[0, T] such that

‖G(t, x)‖ ≤ γ(t) + ‖x‖.

and F is a continuous mapping. Let

L = {w ∈ L2([0, T], Rm+n) : w(t) ≤ w(t) ≤ w(t) for almost all t ∈ [0, T]}

be the set of a feasible state influenced by the adjusted taxes u(t), where w(t) = (S(t), D(t))
and w(t) = (S(t), D(t)) denote the lower and upper capacity constraints, respectively.
Under some appropriate assumptions, finding the solution of a time-dependent optimal
control equilibrium problem is equivalent to finding the Carathéodory solution (x(t), u(t))
for the following differential inverse variational inequality:

ẋ(t) = f (t, x(t)) + B(t, x(t))u(t)
u(t) ∈ SOL(−L,−G(t, x(t))− F(·))
x(0) = x0,

For more details, we refer the reader to [6].
However, the total amount of supply for a commodity and the relevant tax adjustments

policy on the markets always vary with the sales season and the off-season [21]. In real
life, any minute change in the proportion of each strategy seen will lead to a change
in strategy. Let 0 denote the off-season and 1 denote the sales season. During the off-
season, policy-makers will motivate manufacturers to develop resources by lowering the
taxes they need to bear. During the sales season, policy-makers resist more development
resources by increasing taxes on manufacturers. That means the set L of a feasible state
is influenced by a parameter p, where p ∈ {0, 1}. Because the supply and demand of the
commodity are also influenced by the seasons, we assume the mapping F is influenced by a
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parameter λ, where λ ∈ {0, 1}. Now, the time-dependent spatial price equilibrium control
problem can be transformed into the following differential inverse variational inequality
including parameters:

ẋ(t) = f (t, x(t)) + B(t, x(t))u(t)
u(t) ∈ SOL(−L(p),−G(t, x(t))− F(·, λ))
x(0) = x0,

Therefore, the time-dependent spatial price equilibrium control problem influenced by seasons
will lead to a stability problem for a class of differential inverse variational inequalities.

6. Conclusions

The paper is concerned with the stability analysis of differential set-valued inverse
variational inequalities in finite dimensional spaces. First, we proved an important result
about a set-valued mapping, Lemma 5, which extends Lemma 2.5 in [6] and plays an
important role in proving the existence of Carathéodory weak solutions for DSIVI (2).
Then we obtained the existence of Carathéodory weak solutions for DSIVI (2). Second, we
established closedness and continuity for the differential set-valued inverse variational
inequality problem when the constraint set and the mapping are perturbed by two different
parameters. Finally, we gave an example of a time-dependent spatial price equilibrium
control problem, which can be transformed into a differential inverse variational inequality
in finite dimensional spaces.

For further research, we can note the following directions: First, to adapt the main
methods to study the existence of Carathéodory weak solutions and stability for differential
set-valued inverse mixed variational inequalities in finite dimensional spaces; second, to
use the theory of semigroups, set-valued mappings, and variational inequality to study the
partial differential set-valued inverse variational inequalities in Banach spaces.
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