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Abstract: We deal with a multidimensional Markovian backward stochastic differential equation
driven by a Poisson random measure and independent Brownian motion (BSDEJ for short). As
a first result, we prove, under the Lipschitz condition, that the BSDEJ’s adapted solution can be
represented in terms of a given Markov process and some deterministic functions. Then, by means
of this representation, we show existence results for such equations assuming that their generators
are totally or partially continuous with respect to their variables and satisfy the usual linear growth
conditions. The ideas of the proofs are to approximate the generator by a suitable sequence of
Lipschitz functions via convolutions with mollifiers and make use of the L2–domination condition,
on the law of the underlying Markov process, for which several examples are given.
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1. Introduction

Let {Ω,F, P} be a complete probability space, {Ft}t≥0 be a nondecreasing family of
sub-σ-algebras of F, on which are defined two fundamental time homogeneous indepen-
dent stochastic processes: a standard Rq-valued Wiener {Wt : t ∈ [0, T]} and a real-valued
Poisson random measure N(ds, de) defined in [0, T]× E, where E = Rq \ {0Rq}. We denote
also by dsν(de) the compensator of N, in other words:

Ñ(ds, de) = N(ds, de)− ν(de)ds,

Ñ is a martingale with mean zero called the compensated Poisson random measure. For the
theory of stochastic differential equations with Poisson’s measure we refer to [1].

We consider F = (Ft)t∈[0,T] to be the filtration generated by the two processes W and
Ñ. In this work, we are interested in the following backward stochastic differential equation
driven by both a Wiener and a Poisson random measure. For a given Rq-valued random
variable ξ defined on (Ω,FT , P) and an Rp-valued càdlàg Markov process (Xt)t∈[0,T] on
(Ω,FT ,F, P), we consider the following multidimensional BSDEJ: for any t ∈ [0, T]

Yt = ξ +
∫ T

t
f (r, Xr, Yr, Zr, Kr(·))dr (1)

−
∫ T

t
Zr dWr −

∫ T

t

∫
E

Kr(e)Ñ(dr, de).

Recall that BSDE (1) without the jump part was first studied by Pardoux and Peng [2],
whereby they addressed the existence and uniqueness problem under the globally Lipschitz
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condition. Since then, the theory of BSDE has known enormous growth and has been
applied to several domains such as stochastic control and optimization, game theory,
mathematical finance, economics, partial differential equations, etc. For more information,
we refer the reader to [3,4] and the references therein. Specifically, among these extensions
we mention that Tang and Li [5] were the first authors who studied BSDES driven by a
Poisson random measure and independent Brownian motion of the type BSDEJ (1). They
proved the existence of a unique solution for such equations under the Lipschitz conditions.

There is a huge literature devoted to the theory of one-dimensional BSDEs driven by
Brownian motion with continuous generators. Firstly, Lepeltier and Martin [6] proved the
existence of a solution for such BSDEs when the driver satisfies the linear growth condition,
and the terminal condition is square integrable. Later, Jia and Peng [7], based on the result
found in [6], showed that underlying BSDE has either one or uncountably many solutions.
They also provided the structure of those solutions. Then, Kobylanski [8] provided ex-
istence, comparison, and stability results for one-dimensional continuous BSDEs with a
quadratic growth in the Brownian component and the terminal condition is assumed to
be bounded. Finally, Fan and Jiang [9] discussed the existence of the minimal solution
to BSDE whose generator satisfies linear growth conditions in (y, z), left-continuous and
lower semi-continuous in y and continuous in z. Compared to the continuous setting there
were few papers dealing with the existence problem for BSDE with jumps and less regular
coefficients. Yin and Mao [4] dealt with a class of one-dimensional BSDE with Poisson
jumps and with random terminal times. They showed the existence and uniqueness of
a minimal solution for BSDE whose driver has a linear growth. Then, Qin and Xia [10]
proved the existence of a minimal solution for BSDEs driven by Poisson processes where
the coefficient is continuous and satisfies an improved linear growth assumption. They
also extended the result to the case where the coefficient is left or right continuous. More
recently, Madoui et al. [11] and Abdelhadi et al. [12] provided some examples that ensure
the connection between one type of quadratic BSDEs with jumps and standard BSDEs
with continuous drivers. It is worth pointing out that all the previously mentioned results
are given for one-dimensional BSDE and the main tools in the proofs are approximating
technique and the comparison theorem.

To the best of our knowledge, the first result dealing with multidimensional BSDE
with continuous generator was provided by Hamadène [13]. The author obtained the
existence of a solution for multidimensional BSDE under the assumptions that the generator
f is uniformly continuous with respect to y, z and the ith component fi of f depends
only on the ith row of z. Secondly, Hamadène and Mu [14], via an existence result for
a multidimensional Markovian BSDE with continuous coefficient and stochastic linear
growth, proved the existence of Nash equilibrium point for a non-zero-sum stochastic
differential games. Subsequently, the result was extended to a coupled system of BSDEs in
Mu and Wu [15]. Our results come to complete these studies in the setting of BSDEs with
jumps and continuous generators.

Since the aim of the first result of this paper is to investigate a deterministic represen-
tation theorem for the solution of the Equation (1). We first recall some existing results in
the literature that study regularity and representation of the viscosity solution of partial
differential equations via the solution of forward–backward stochastic differential equa-
tion driven by continuous Brownian motion. The first result that went in this direction
was established by Pardoux and Peng in [2] which claims the backward components Y
can be determined in terms of the forward component X, when the coefficients satisfy
the Lipschitz continuity condition. Then, they proved, under more strong smoothness
conditions on the coefficients (e.g., of class C3 in their spacial variables), that the Brown-
ian component Z has continuous paths. Two years later, under the previous smoothness
conditions, Ma et al. [16] proved the following explicit representation for all s in [t, T],
Yt,x

s = u(s, Xt,x
s ) and Zt,x

s = ∂xu(s, Xt,x
s )σ(s, Xt,x

s ). Subsequently, this result was weakened
by Ma and Zhang [17] where they relaxed the smoothness condition on the coefficients
by assuming that they are only C1 and the diffusion coefficient of the forward component
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is uniformly elliptic. Later, N’zi et al. [18] studied the regularity of the viscosity solution
of a quasi-linear parabolic partial differential equation with merely Lipschitz coefficients.
The main results are obtained by using Krylov’s inequality in the case, where the diffu-
sion coefficient of the forward equation is uniformly elliptic. In the degenerate case, they
exploited the idea used by Bouleau-Hirsch on absolute continuity of probability density
measures. On the other hand, when the Markov process is a solution of some SDE with
jumps, it is shown in Barles et al. [19] that the solution Yt,x

s of a class of BSDE with jumps
provides a viscosity solution of PIDE by mean the deterministic functions u(t, x) = Yt,x

t
but no representation has been given for the Zt,x

s and Kt,x
s (·).

As the first result of this paper, under standard assumptions where the generator f of
BSDEJ (1) satisfies the Lipschitz and of the linear growth conditions, we prove, without
using the connection with PIDE, a new representation theorem for BSDEs with jumps
(Theorem 1). This is performed with less regularity on the generator and the Markov
process. Based on the seminal paper on semi-martingale theory by Çinlar et al. [20] and
Çinlar and Jacod [21], we represent the components of the adapted solution in terms of the
Markov process (Xt,x

s )s∈[0,T] starting at x at time t. In other words, we prove the existence
of three deterministic functions u, v and θ such that for all s in [t, T], Yt,x

s = u(s, Xt,x
s ),

Zt,x
s = v(s, Xt,x

s ) and Kt,x
s (·) = θ(s, Xt,x

s−, ·). In fact, this result generalizes the one obtained
by El Karoui et al. [3] to the jump case.

As the second result, starting with the case where f satisfies the linear growth con-
dition, with the help of the L2-domination property and some lower and upper bounds
of the density of the law related to the transition probability of the underlying Markov
process, we prove an existence result for BSDEJ (1) with a continuous generator in y, z, and
globally Lipschitz in k(·) such that

∫ T
0 E|Yr|2dr < ∞. Then, for the case where f satisfies

the sub-linear growth condition, we prove that E sup0≤t≤T |Yt|2 < ∞. Finally, by assuming

that the generator f depends on x, y, z, and
∫ T

0 k(e)ν(de) rather than k(·), we obtain the
existence of at least one solution to BSDEJ whose generator is continuous in y, z, and k.
Notice that our results use neither a comparison theorem, nor a deterministic representation
usually obtained by partial integral differential equations.

This paper is divided into four sections. In Section 2, we shall give some preliminaries,
introduce some notations and definitions and state some technical results. Section 3 deals
with the deterministic representation of solutions of BSDEJ by means of the representation
of additive functionals of Markov processes to establish the existence and uniqueness of
solutions of our BSDEJ in the Markovian case.

In Section 4, we deal with Markovian BSDEJ with a continuous generator and prove
the existence of at least one solution to our Markovian BSDEJ using the so-called L2-
domination technique and some regularization and approximation arguments. Further-
more, some special cases on linear and sub-linear growth conditions and the regularity
of the generator are discussed. We conclude this paper with several examples of Markov
processes with the L2-domination property.

2. Preliminaries and Auxiliary Results

In this section, we collect some technical results that will be needed in the proofs of our
main results along different sections of the paper. We start by providing some definitions
and notations.

• For any x ∈ Rq, |x|2 = ∑
q
i=1 x2

i denotes its Euclidean norm.
• L2(Ω,F, P,Rq): the Banach space of Rq-valued, square-integrable random variables

on (Ω,F,P).
• M2

F(0, T,Rq): the Banach space of Rq-valued Ft-adapted processes ϕ· such that

∫ T

0
E|ϕt|2dt < ∞.
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• L2,q
ν := L2(E,Rq, ν(de)): the Banach space of Rq-valued deterministic functions

(ϕ(e))e∈E such that

‖ϕ(·)‖2
q,ν =

∫
E
|ϕ(e)|2ν(de) < ∞.

• M2
F([0, T] × E,Rq, dtν(de)): the Banach space of Rq-valued Ft-adapted processes

(ψt(e))0≤t≤T,e∈E such that

∫ T

0
E‖ψt(·)‖2

q,νdt =
∫ T

0

∫
E
E|ψt(e)|2ν(de)dt < ∞.

• S2
F(0, T;Rq): the Banach space of Rq-valued, Ft-adapted, and càdlàg processes

(Yt)0≤t≤T such that
E sup

0≤t≤T
|Yt|2 < ∞.

• For the convenience of notations we set:

M2 =M2
F(0, T,Rq)×M2

F(0, T,Rq×q)×M2
F([0, T]× E,Rq, dtν(de)),

and

M2
S = S2

F(0, T;Rq)×M2
F(0, T,Rq×q)×M2

F([0, T]× E,Rq, dtν(de)).

Representation of Additive Functionals of Markov Processes

Let X = (Ω,F,Ft, θt, Xt, Px) be a right-continuous left-hand limited strong Markov
process with an infinite lifetime, with state space Rp. The operators θt, t ≥ 0, are called the
shift operators defined by

Xs(θt(ω)) = Xt+s(ω),

where as usual X is the coordinate process.
Assume further, along the rest of the paper, that X is a right process in the sense of

Getoor see ([22], [(9.7) Terminology p. 55]).

Definition 1. (i) An additive locally square integrable martingale on (X, (Ft)0≤t≤T) is an Rp-
valued process Y that is adapted to (Ft)0≤t≤T , is right-continuous, is a locally square integrable
local martingale on (Ω,F, (Ft)0≤t≤T , Px) for every x ∈ Rp and is additive with respect to (θt)
(vanishing at 0), and for every pair (t, u),

Yt+u = Yt + Yu ◦ θt

almost surely.
(ii) We say that Y is quasi-left-continuous if YTn −→ YT almost surely for every increasing
predictable sequence (Tn)n≥0 of stopping times with finite limit T.

First, we recall some more facts about semi-martingales which are defined on the proba-
bility space

(
Ω,F, (Ft)t≥0, Px

)
. We consider a q-dimensional semi-martingale Y· = (Yi

· )1≤i≤q.
We define the q-dimensional process Ye

· =
(
(Ye
· )

i)
1≤i≤q

Ye
t = ∑

0<s≤t
∆Ys11{|∆Ys |≥1},

where 11G stands for the indicator function of the set G and ∆Ys = Ys − Ys−. It is well
known that Ye

· is a right-continuous pure jump process which has finitely many jumps in
any finite interval. Therefore, the semi-martingale Y· −Ye

· has bounded jumps and can be
decomposed uniquely as follows

Yt −Ye
t = Y0 + Yb

t + Yc
t + Yd

t ,
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where Yb
· is a predictable process of bounded variation on every finite interval Yc

· is a con-
tinuous local martingale, and Yd

· is a purely discontinuous local martingale (corresponding
to the a compensated sum of jumps). Moreover, Yc

0 = Yd
0 = 0. The canonical decomposition

of the q-dimensional special semi-martingale Y· is

Yt = Y0 + Yb
t + Yc

t + Yd
t + Ye

t . (2)

In fact, the decomposition (2) is unique up to a Px-null set. All the above processes are
q-dimensional, for example, the ith component of Yc

t is simply Yic
t .

We define the following integer-valued random measure Γ on R+ ×Rq by

Γ(ω, dt, dy) = ∑
s>0

1{∆Ys(ω) 6=0}δ(s,∆Ys(ω))(dt, dy),

Γ is called the jump measure of Y.
Let Bt = Yb

t in the decomposition (2) Ct = (Cij
t )1≤i,j≤q = (

〈
Yic
· , Y jc

.
〉

t)1≤i,j≤q and γ is
the dual predictable projection of Γ (called also the compensator).

The triplet (B, C, γ) is called the local characteristics of Y which is unique, up to a P-null
set. In fact, one can choose a version of (B, C, γ) that satisfies the following conditions:

a. For all t ≥ s ≥ 0, Ct − Cs is a non-negative symmetric matrix;

b. Γ(ω,R+ × {0Rq}) = 0;

c.
∫
Rq(1∧ |y|2)γ(ω, [0, t], dy) < ∞ for every t ≥ 0.

According to ([21], [Theorem 2.43]), a q-dimensional additive semi-martingale has the
decomposition (2), Moreover, B·, and C· are F-predictable additive processes and γ is an
F-predictable additive random measure.

Lemma 1 ([21], Theorem 2.44). Let Y be a q-dimensional additive semi-martingale on
(
Ω, (Ft)t≥0, P

)
which is quasi-left-continuous. Then, there exist:

(i) An (Ft)-adapted continuous increasing additive functional A;

(ii) An B(Rq)-measurable Rq-valued function b = (b1, . . . , bq);

(iii) An B(Rq×q)-measurable Rq×q-valued function lower triangular matrix-valued function
c = (cij)1≤i,j≤q of measurable functions such that cij = 0 if j > i, or if cjj = 0;

(iv) A positive kernel Θ(x, dy) from (Rq,B(Rq)) to (Rq,B(Rq) having

Θ(x, {0Rq}) = 0 for all x ∈ Rq such that∫
Rq

f (x, y)Θ(x, dy) < ∞ for all x ∈ E. (3)

for B(Rq)⊗B(E)-measurable strictly positive function f .

Such that

Bt =
∫ t

0
b(Xs)dAs, Ct =

∫ t

0
cc∗(Xs)dAs and γ(ds, dy) = Θ(Xs, dy)dAs,

define a version (B, C, γ) of the triplet of local characteristics of Y under every Px, x ∈ Rp.

Consider the following assumptions:

(A1) Let Y = (Yi)1≤i≤q be a collection of continuous additive local martingales, on(
Ω, (Ft)t≥0

)
such that d

〈
Yi
· , Yi
·
〉

t � dt almost surely, for all 1 ≤ i ≤ q.
Let c = (cij)1≤i,j≤q be the collection of B(Rq×q)-measurable functions whose existence
and properties are given by the Lemma 1 with At = t;
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(A2) Let Γ be an additive integer-valued random measure on R+ × Rq defined over(
Ω, (Ft)t≥0

)
. Let γ be its dual predictable projection. For each G in B(Rq) and

t > 0 set γG
t = γ([0, t]× G). Assume that dγG

t � dt almost surely such that the
mapping t 7−→ γG

t is locally integrable. This is equivalent to the existence of a positive
kernel Θ(x, dy) on (Rq,B(Rq)) satisfying (3) and γ(ds, dy) = Θ(Xs, dy)ds a.s.

Lemma 2 ([21], Lemma 3.4 and Theorem 3.7). Under the assumptions (A1) and (A2), there
exists a Wiener process and a Poisson random measure both still denoted by W = (Wi)1≤i≤q and
N on R+ ×Rq with compensator dsν(de) (by extending the probability space if necessary by usual
product spaces) such that

Yi
t =

q

∑
j=1

∫ t

0
cij(Xs)dW j

s for all i = 1, 2, . . . , q,

and
Γ(G) =

∫ ∫
R+×E

11G(s, θ(Xs−, e))N(ds, de) for all G ∈ B(R+)⊗B(Rq),

where θ is a measurable function satisfying

Θ(x, H) =
∫

E
11H(θ(x, e)ν(de)) for all x ∈ Rp and for all H ∈ B(Rq).

Remark 1. Suppose (Xt)0≤t≤T is a semi-martingale Markov process on Rp that is not time-
homogeneous, then the time-homogeneous process (t, Xt − X0) is an Rp+1-valued semi-martingale
additive functional. Therefore, the measurable functions bi(x), cij(x), and θ(x, e) become bi(s, x),
cij(s, x), and θ(s, x, e).

3. Deterministic Representation for Markovian BSDEJ

In this section, we are interested in a class of multidimensional BSDE with jumps for
which the generator f and the random terminal value ξ at time T are both functions of a
right process X on the filtered probability space (Ω,FT , (Ft)t∈[0,T], Px) for x ∈ Rp. Notice that
the filtration (Ft)t∈[0,T] is generated by the Markov process X and two processes obtained

in the Lemma 2, still denoted W and Ñ.
Our objective is to generalize to the jump case the work of El Karoui et al. ([3],

Theorem 4.1, p. 46). That is, to represent the components of the BSDEJ’s adapted solution
in Lipschtiz framework in terms of X and some deterministic functions. Compared with
the representation by the well-known Feynman–Kac formula using PIDEs, our method
does not require regularity on the coefficients.

From now, we shall deal with the following Markovian BSDEJ: for all t ≤ s ≤ T and
x ∈ Rp

Yt,x
s = g(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r , Kt,x
r (·))dr

−
∫ T

s
Zt,x

r dWr −
∫ T

s

∫
E

Kt,x
r (e)Ñ(dr, de), (4)

where (Xt,x
s )s≥0 is an Rp-valued right process and Xt,x

s = x if s ≤ t.
The following assumptions will be considered in this paper.

f : [0, T]×Rp ×Rq ×Rq×q ×L2,q
ν −→ Rq, g : Rp −→ Rq

are measurable functions, and satisfy the following hypotheses:

(H3.1) sup0≤s≤T E[|Xt,x
s |2] < ∞.
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(H3.2) For any (r, x, y, z) ∈ [0, T]×Rp ×Rq ×Rq×q and k ∈ L2,q
ν , |g(x)| ≤ C(1 + |x|) and

| f (r, x, y, z, k(·))| ≤ C(1 + |x|+ |y|+ |z|+ ‖k(·)‖q,ν).

(H3.3) There exists L ≥ 0, such that for all r ∈ [0, T], ∀ x ∈ Rp, ∀ (y, y′) ∈ Rq, ∀ (z, z′) ∈
Rq×q and (k(·), k′(·)) ∈ L2,q

ν∣∣ f (r, x, y, z, k(·))− f (t, x, y′, z′, k′(·))
∣∣ ≤ L(

∣∣y− y′
∣∣+ ∣∣z− z′

∣∣+ ∥∥(k− k′
)
(·)
∥∥

q,ν).

In view of the hypotheses (H3.1), (H3.2), and (H3.3) the Lemma 2.4 in [5], see also [23–26]
among others, confirms that the BSDEJ (4) admits a unique solution (Yt,x

s , Zt,x
s , Kt,x

s (·))s≤T
which belongs to M2.

In what follows, we are interested to establish a Markovian structure of the solution
(Yt,x

s , Zt,x
s , Kt,x

s (·))s≤T of a BSDEJ in terms of some deterministic measurable functions
evaluated at (s, Xt,x

s ).
The following Lemma is found to be useful.

Lemma 3. Under the assumptions (H3.1)–(H3.3). There exists a constant C such that for any
t ≤ s ≤ T, we have

E
[∣∣Yt,x

s
∣∣2 + ∫ T

0

(∣∣Zt,x
r
∣∣2 + ∥∥Kt,x

r (·)
∥∥2

q,ν

)
dr
]
≤ C

(
1 + |x|2

)
. (5)

Proof. Applying Itô’s formula from s to T, to |y|2 with the Equation (4), we obtain

∣∣Yt,x
s
∣∣2 + ∫ T

s

(∣∣Zt,x
r
∣∣2 + ∥∥Kt,x

r (·)
∥∥2

q,ν

)
dr

=
∣∣∣g(Xt,x

T )
∣∣∣2 + 2

∫ T

s
Yt,x

r f (r, Xt,x
r , Yt,x

r , Zt,x
r , Kt,x

r (·))dr

−(Mt,x
T −Mt,x

s )− (Nt,x
T − Nt,x

s ),

where
Mt,x

s = 2
∫ s

0
Yt,x

r Zt,x
r dWr + 2

∫ s

0

∫
E

Yt,x
r Kt,x

r (e)Ñ(dr, de)),

and
Nt,x

s =
∫ s

0

∫
E

∣∣Kt,x
r (e)

∣∣2Ñ(dr, de)),

are real-valued martingales.
If we take the expectation in each member, we obtain

E
[∣∣Yt,x

s
∣∣2 + ∫ T

s

(∣∣Zt,x
r
∣∣2 + ∥∥Kt,x

r (·)
∥∥2

q,ν

)
dr
]

= E
∣∣∣g(Xt,x

T )
∣∣∣2 + 2E

[∫ T

s
Yt,x

r f (r, Xt,x
r , Yt,x

r , Zt,x
r , Kt,x

r (·))dr
]

.

Making use of the linear growth of g and f and |ab| ≤ ε|a|2 + 1
ε
|b|2 for any ε > 0 and

a, b ∈ Rq, we obtain, by the usual techniques for BSDEs,

E
[∣∣Yt,x

s
∣∣2 + 1

2

∫ T

s

(∣∣Zt,x
r
∣∣2 + ∥∥Kt,x

r (·)
∥∥2

q,ν

)
dr
]

(6)

≤ C
(

1 +E
∣∣∣Xt,x

T

∣∣∣2 + ∫ T

s
E
∣∣Xt,x

r
∣∣2dr +

∫ T

s
E
∣∣Yt,x

r
∣∣2dr

)
.
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It follows, thanks to Gronwall’s Lemma and Assumption (H3.1), that

E
∣∣Yt,x

s
∣∣2 ≤ C

(
1 + sup

0≤s≤T
E
∣∣Xt,x

s
∣∣2) ≤ C(1 + |x|2).

Similarly, from (6), one can arrive at

E
[∫ T

s

(∣∣Zt,x
r
∣∣2 + ∥∥Kt,x

r (·)
∥∥2

q,ν

)
dr
]
≤ C(1 + |x|2).

Finally, a combination of the two above inequalities leads to (5), which achieves
the proof.

Theorem 1. Under the assumptions (H3.1)–(H3.3), there exist three measurable and deterministic
functions u : [0, T]×Rp −→ Rq, v : [0, T]×Rp −→ Rq×q and θ : [0, T]×Rp −→ L2,q

ν such
that for any (s, e) ∈ [t, T]× E

Yt,x
s = u(s, Xt,x

s ), Zt,x
s = v(s, Xt,x

s ) and Kt,x
s (e) = θ(s, Xt,x

s−, e).

Moreover, ∀ (s, x) ∈ [t, T]×Rp,

u(s, x) = E
[

g(Xs,x
T ) +

∫ T

s
f (r, Xs,x

r , Ys,x
r , Zs,x

r , Ks,x
r (·))dr

]
.

and is continuous such that |u(t, x)| ≤ C(1 + |x|) ∀ (t, x) ∈ [0, T]×Rp.

Proof. We split it up into two steps.
Step 1. In this step, we suppose that f does not depend on y, z and k(·), in which case,
Equation (4) becomes

Yt,x
s = g(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r )dr−
∫ T

s
Zt,x

r dWr −
∫ T

s

∫
E
Kt,x

r (e)Ñ(dr, de) (7)

Therefore, by taking the conditional expectation with respect to Fs, we obtain for all
t ≤ s ≤ T

Yt,x
s = E

[
g(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r )dr | Fs

]
=

∫ s

0
f (r, Xt,x

r )dr +E
[

g(Xt,x
T ) +

∫ T

0
f (r, Xt,x

r )dr | Fs

]
. (8)

Now, by the Markov property of (s, Xt,x
s − Xt,x

t ) = (s, Xt,x
s − x) for all s ≥ t, we can

write Yt,x
s = u(s, Xt,x

s ) where

u(s, y) = E
[

g(Xs,y
T ) +

∫ T

s
f (r, Xs,y

r )dr
]

.

The regularity of u can be checked similarly as in Proposition 2.5 in [19].
Define G = (Gs)s∈[0,T] the filtration generated by the deterministic functions∫ T

t Eψ(r, Xt,y
r )dr where ψ is a continuous Rq-valued function. Thus, for any G-measurable

f and g such that

E|g(Xt,x
T )|2 +

∫ T

0
E
∣∣ f (r, Xt,x

r )
∣∣2dr < ∞.

Notice that we do not change the filtration here, we have just introduced the appropri-
ate filtration to guarantee the measurability of the deterministic function u.
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The process (Yt,x
s )s∈[0,T] admits a càdlàg version given by Yt,x

s = u(s, Xt,x
s ) thanks to

the decomposition (8) as the sum of an absolutely continuous process and a martingale
which can be chosen to be càdlàg.

Obviously, the stochastic process (Ỹs)s∈[t,T]

Ỹs :=
∫ s

t
f (r, Xt,x

r )dr + Yt,x
s = E

[
g(Xt,x

T ) +
∫ T

t
f (r, Xt,x

r )dr | Fs

]
, (9)

is an additive square-integrable martingale and therefore, by Lemma 4.1. [3] p. 45, or by
Lemma 2, with X starting at x at time t, it admits the following representation:

Ỹs =
∫ s

t
v
(
r, Xt,x

r
)

dWr +
∫ s

t

∫
E

θ
(

r, Xt,x
r−, e

)
Ñ(dr, de),

where v(r, x) ∈ Rq×q and θ(r, x, ·) ∈ L2,q
ν are two measurable functions [0, T]×Rp. More-

over, for s = T, we have

ỸT =
∫ T

t
v
(
r, Xt,x

r
)

dWr +
∫ T

t

∫
E

θ
(

r, Xt,x
r−, e

)
Ñ(dr, de)

and then compute the difference ỸT − Ỹs. On the one hand, we have

ỸT − Ỹs =
∫ T

s
v
(
r, Xt,x

r
)

dWr +
∫ T

s

∫
E

θ
(

r, Xt,x
r−, e

)
Ñ(dr, de).

On the other hand, in view of the equality (9),

ỸT − Ỹs =
∫ T

t
f (r, Xt,x

r )dr + Yt,x
T −

∫ s

t
f (r, Xt,x

r )dr + Yt,x
s

= g(Xt,x
T ) +

∫ T

s
f (r, Xt,x

r )dr−Yt,x
s ,

hence,

Yt,x
s = g(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r )dr

−
∫ T

s
v
(
r, Xt,x

r
)

dWr −
∫ T

s

∫
E

θ
(

r, Xt,x
r−, e

)
Ñ(dr, de)

= g(Xt,x
T ) +

∫ T

s
f (r, Xt,x

r )dr

−
∫ T

s
Zt,x

r (e) dWr −
∫ T

s

∫
E

Kt,x
r (e)Ñ(dr, de).

Now, due to the uniqueness of the solution of Equation (7), we obtain

Zt,x
r = v(r, Xt,x

r ) and Kt,x
r (e) = θ(r, Xt,x

r−, e),

that is exactly our BSDEJ.
Step 2. In this step, we shall consider the general case where the generator f depends on r,
x, y, z and k(·). Let us introduce the following sequence (Yt,x,n, Zt,x,n, Kt,x,n(·))n∈N defined
by Yt,x,0 = 0, Zt,x,0 = 0 and Kt,x,0 = 0 and

Yt,x,n+1
s = g(Xt,x

T ) +
∫ T

s
f (r, Xt,x,n

r , Yt,x,n
r , Zt,x,n

r , Kt,x,n
r (·))dr

−
∫ T

s
Zt,x,n+1

r dWr −
∫ T

s

∫
E

Kt,x,n+1
r (e)Ñ(dr, de).
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Since we are still under the Lipschitz condition of the generator, one can show exactly
as in the proof of the Lemma 2.4 in [5] (see also [23–26]) that (Yt,x,n

· , Zt,x,n
· , Kt,x,n

· (·))n∈N is a
Cauchy sequence in the Banach space M2, and hence,

(Yt,x
· , Zt,x

· , Kt,x
· (·)) = lim

n→+∞
(Yt,x,n
· , Zt,x,n

· , Kt,x,n
· (·)). (10)

From the previous step, for any r ∈ [t, T], we know that there exist three measurable
functions u1, v1 and θ1 such that

(Yt,x,1
r , Zt,x,1

r , Kt,x,1
r (e)) = (u1(r, Xt,x

r
)
, v1(r, Xt,x

r
)
, θ1(r, Xt,x

r , e
)
), P-a.s.

We conclude, by recursion, for any n ∈ N there exist measurable functions un, vn,and
θn such that P-a.s. ∀ r ∈ [t, T]

(Yt,x,n
r , Zt,x,n

r , Kt,x,n
r (e)) =

(
un(r, Xt,x

r
)
, vn(r, Xt,x

r
)
, θn(r, Xt,x

r , e
))

. (11)

Notice that theses representations have been studied in the literature for smooth
coefficients by Barles et al. [19], (Bouchard and Elie [27] [Section 4]) and Delong [24].

Set

u
(
r, Xt,x

r
)
= lim

n→+∞
sup un(r, Xt,x

r
)
, v
(
r, Xt,x

r
)
= lim

n→+∞
sup vn(r, Xt,x

r
)
,

and
θ
(
r, Xt,x

r , e
)
= lim

n→+∞
sup θn(r, Xt,x

r , e
)
.

Then, by invoking (10) and (11), it follows that P-a.s. ∀ r ∈ [t, T]

u
(
r, Xt,x

r
)
= lim

n→+∞
sup un(r, Xt,x

r
)
= lim

n→+∞
Yt,x,n

r = Yt,x
r .

the same convergence holds true for v and θ. Finally, the linear growth condition on u is a
simple consequence of the previous representation in step 2 and Lemma 3. This completes
the proof.

4. Markovian BSDEJs with Continuous Generators

Our aim in this section is to handle the existence problem for multidimensional
Markovian BSDE driven by both q-dimensional Brownian motion and compensated Poisson
random measure on E. We first study the case when the BSDEJ generator is only continuous
with respect to the state variable along with the Brownian component and Lipschitz in the
jump component. The idea of the proof is to approximate the BSDEJ under consideration
by a suitable sequence of, BSDEJs having globally Lipschitz coefficients that guarantee the
existence and uniqueness of solution and then obtain the existence result of the original
equation by using limit arguments in appropriate spaces. The drawback to relaxing
the Lipschitz condition on k(·) is that it belongs to the functional space L2,q

ν and thus,
the approximating technique does not work in this situation. However, if we allow the
generator f to depend on

∫
E k(e)ν(de) rather than k(·), as a particular case, we can prove

an existence result in the case where f is also continuous in k. Finally, due to the lack of
the comparison principle between solutions of multidimensional Markovian BSDE, the
technique used in [6] cannot be applied in our situation. As the trade-off, we shall use the
relationship between the processes Xt,x

· and (Yt,x
· , Zt,x

· , Kt,x
· (·)) established in Theorem 1

and the L2-domination technique to be defined below.
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4.1. Partially Continuous Case

Let us consider the BSDEJ of the following type for all s ∈ [0, T]

Y0,x0
s = g(X0,x0

T ) +
∫ T

s
f (r, X0,x0

r , Y0,x0
r , Z0,x0

r , K0,x0
r (·))dr (12)

−
∫ T

s
Z0,x0

r dWr −
∫ T

s

∫
E

K0,x0
r (e)Ñ(dr, de),

where X0,x0
0 = x0 ∈ Rp, g is the same as in BSDEJ (4). Throughout this section, we assume

that f satisfies the following assumptions:

(H4.1) The mapping (y, z) 7→ f (s, x, y, z, k(·)) is continuous for any fixed

(s, x, k(·)) ∈ [0, T]×Rp ×L2,q
ν .

(H4.2) For any (t, x, y, z) ∈ [0, T]×Rp ×Rq ×Rq×q and k, k′ ∈ L2,q
ν∣∣ f (t, x, y, z, k(·))− f (t, x, y, z, k′(·))

∣∣ ≤ C
∥∥(k− k′

)
(·)
∥∥

q,ν.

Before we state and prove the main results of this section, let us first recall the precise
definition of the L2-domination condition, as given in Hamadène [14].

Definition 2. (L2-domination condition) For a given t ∈ [0, T], a family of probability measures
{µ1(s, dx), s ∈ [t, T]} defined on Rp is said to be L2-dominated by another family of probability
measures {µ0(s, dx), s ∈ [t, T]}, if for any ε ∈ (0, T − t], there exists an application φt : [t +
ε, T]×Rp −→ R+ such that

(i) ∀ N ≥ 1, φt ∈ L2([t + ε, T]× [−N, N]p; µ0(s, dx)ds).
(ii) µ1(s, dx)ds = φt(s, x)µ0(s, dx)ds on [t + ε, T]×Rp.

Let x0 ∈ Rp, (t, x) ∈ [0, T]× Rp, s ∈ [t, T] and µ(t, x; s, dy) the law of our Markov
process (Xt,x

s )t≤s≤T , defined for each A ∈ B(Rp), by µ(t, x; s, A) = P(Xt,x
s ∈ A).

We further assume the following assumption:

(H4.3) For each t ≥ 0 and for each x ∈ Rp the family {µ(t, x; s, dy), s ∈ [t, T]} is L2-
dominated by {µ(0, x0; s, dy), s ∈ [t, T]}.

Lemma 4. Let f satisfy (H3.1), (H3.2), (H4.1), and (H4.2). Then, there exists a sequence of
functions ( fn)n≥1 such that:

(a) supt,x| fn(t, x, y, z, k(·))− fn(t, x, y′, z′, k′(·))|
≤ C

(
|y− y′|+ |z− z′|+ ‖(k− k′)(·)‖q,ν

)
, for some positive constant C;

(b) | fn(t, x, y, z, k(·))| ≤ C(1 + |x|+ |y|+ |z|+ ‖k(·)‖q,ν), for all (t, x, y, z, k(·)) ∈ [0, T]×
Rp ×Rq ×Rq×q ×L2,q

ν ;
(c) For all (t, x, y, z, k(·)) ∈ [0, T]×Rp ×Rq ×Rq×q ×L2,q

ν and n ∈ N, there exists positive a
constant C such that | fn(t, x, y, z, k(·))| ≤ C(1 + |x|);

(d) For any (t, x, k(·)) ∈ [0, T]×Rp ×L2,q
ν , and for any compact subset S ⊂ Rq ×Rq×q

sup
(y,z)∈S

| fn(t, x, y, z, k(·))− f (t, x, y, z, k(·))| −→ 0 as n→ +∞.

Proof. Let ψ be an element of C∞(Rq ×Rq×q,R) with compact support and satisfy∫
Rq+q×d

ψ(−→u )d−→u = 1,
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where −→u = (y, z) ∈ Rq+q×d. We define

f (t, x, (·)) ∗ ψ(n(·))(−→u ) =
∫
Rq+q×d

f (t, x,−→v )ψ(n(−→u −−→v ))d−→v

and ψ̄ ∈ C∞(Rq ×Rq×q,R) such that

ψ̄(−→u ) =

{
1,
∣∣−→u ∣∣2 ≤ 1,

0,
∣∣−→u ∣∣2 ≥ 2.

Obviously, the sequence of the measurable functions { fn, n ≥ 1}, such that

fn(t, x,−→u ) = n2ψ̄(
−→u
n
)( f (t, x, (·)) ∗ ψ(n(·)))(−→u ),

satisfies all the assertions of Lemma 4.

Next, we state and prove the first main result in this section. The following theorem
extends a part from the paper [14], from BSDEs driven by Brownian motion to BSDEs with
jumps. However, our generator depends also on the state variable y which is not covered
in [14].

Theorem 2. Assume that (H3.1)–(H3.2) and (H4.1)–(H4.3) are in force. Then, there exists a triple
of processes (Y·, Z·, K·(·)) belonging to M2 that solves the BSDEJ (12).

Proof. We first define the following family of approximating BSDEJs obtained by replacing
the generator f in BSDEJ (4) by fn defined in Lemma 4.

Yt,x;n
s = g(Xt,x

T ) +
∫ T

s
fn(r, Xt,x

r , Yt,x;n
r , Zt,x;n

r , Kt,x;n
r (·))dr (13)

−
∫ T

s
Zt,x;n

r dWr −
∫ T

s

∫
E

Kt,x;n
r (e)Ñ(dr, de).

On the one hand, since for each n ≥ 1, fn is uniformly Lipschitz with respect to
(y, z, k(·)), so Lemma 2.4 in [5] or [23–26] shows that there exists a unique solution

(Yt,x;n
· , Zt,x;n

· , Kt,x;n
· (·))n≥1 ∈M2

S,

which solves BSDEJ (13).
On the other hand, since fn satisfies the property (c) in Lemma 4, Theorem 1 yields that,

there exist three sequences of deterministic measurable functions un : [0, T]×Rp −→ Rq,
vn : [0, T]×Rp −→ Rq×q and θn : [0, T]×Rp −→ L2,q

ν such that

Yt,x;n
s = un(s, Xt,x

s ), Zt,x;n
s = vn(s, Xt,x

s ) and Kt,x;n
s (e) = θn(s, Xt,x

s−, e).

Furthermore, we have the following deterministic expression for the function un such
that for n ≥ 1,

un(t, x) = E
[

g(Xt,x
T ) +

∫ T

t
Fn(s, Xt,x

s )ds
]

, ∀ (t, x) ∈ [0, T]×Rp, (14)

where
Fn(t, x) = fn(t, x, un(t, x), vn(t, x), θn(t, x, ·)).
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Hence, keeping in mind the property (b), as in Lemma 3, one can show that there
exists a constant C > 0 (independent from n) such that for any n ≥ 1 and s ∈ [t, T],

E
[∣∣un(s, Xt,x

s )
∣∣2 + ∫ T

0

(∣∣Zt,x;n
r

∣∣2+∥∥Kt,x;n
r (·)

∥∥2
q,ν

)
dr
]
≤ C(1 + |x|2).

In particular, due to the fact that Xt,x
t = x, we obtain

|un(t, x)|2 ≤ C(1 + |x|2) ∀ n ≥ 1 and t ∈ [0, T],

consequently |un(t, x)| ≤ C(1 + |x|) ∀ n ≥ 1 and t ∈ [0, T], and thus, for any s ∈ [0, T] and
n ≥ 1,

|Yn
s | =

∣∣∣un(s, X0,x0
s )

∣∣∣ ≤ C(1 + |X0,x0
s |), dP-a.s. (15)

The remainder of the proof will be broken down into the following three steps.
Step 1. In this step, we will prove, for each (t, x) ∈ [0, T]× Rp, that (un(t, x))n≥1 has a
convergent subsequence in Rq. On one hand, since fn satisfies the property (b), the same
technique as in the proof of Lemma 3, yields

sup
n≥1

E
[∣∣∣Y0,x0;n

s

∣∣∣2 + ∫ T

0

(∣∣∣Z0,x0;n
r

∣∣∣2 + ∥∥∥K0,x0;n
r (·)

∥∥∥2

q,ν

)
dr
]
≤ C, ∀ s ≤ T. (16)

We now apply the property (b) with Assumption (H4.3), (H3.1), and the estimate (16)
to show that there exists a positive constant C such that, for any n ≥ 1,∫ T

0

∫
Rp
|Fn(s, y)|2µ(0, x0; s, dy)ds = E

∫ T

0

∣∣∣Fn(s, X0,x0
s )

∣∣∣2ds ≤ C. (17)

Therefore, there exists a subsequence {nj}, (which is still labeled by {n}), andB([0, T])⊗
B(Rp)-measurable deterministic function F(s, x) such that

Fn −→ F weakly in L2([0, T]×Rp; µ(0, x0; s, dxds)). (18)

On the other hand, let (t, x) be fixed, ε > 0, N, n, and m ≥ 1 be integers. Then,
from (14), we have

|un(t, x)− um(t, x)| =

∣∣∣∣E[∫ T

t
(Fn(s, Xt,x

s )− Fm(s, Xt,x
s ))ds

]∣∣∣∣
≤ E

[∫ t+ε

t

∣∣Fn(s, Xt,x
s )− Fm(s, Xt,x

s )
∣∣ds
]

+

∣∣∣∣E[∫ T

t+ε
(Fn(s, Xt,x

s )− Fm(s, Xt,x
s ))11{|Xt,x

s |≤N}ds
]∣∣∣∣

+E
[∫ T

t+ε

∣∣Fn(s, Xt,x
s )− Fm(s, Xt,x

s )
∣∣11{|Xt,x

s |>N}ds
]

= In,m,ε
1 +

∣∣In,m,ε
2

∣∣+ In,m,ε
3 . (19)

We first estimate In,m,ε
1 . According to the Schwarz inequality and (17), we obtain

In,m,ε
1 ≤ ε

1
2

{
E
[∫ T

0

∣∣Fn(s, Xt,x
s )− Fm(s, Xt,x

s )
∣∣2ds

]} 1
2

≤ C
√

ε.
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Next, the L2-domination property implies

In,m,ε
2 =

∫
Rp

∫ T

t+ε
(Fn(s, y)− Fm(s, y))11{|y|≤N}µ(t, x; s, dy)ds

=
∫
Rp

∫ T

t+ε
(Fn(s, y)− Fm(s, y))11{|y|≤N}φt,x(s, y)µ(0, x0; s, dy)ds.

Since φt,x(s, y) ∈ L2([t + ε, T]× [−N, N]p; µ(0, x0; s, dy)ds), for k ≥ 1, it follows from
(18) that for any t ≥ 0, µ(0, x0; s, dy)-almost every x ∈ Rp, we have

E
[∫ T

t+ε
(Fn(s, Xt,x

s )− Fm(s, Xt,x
s ))11{|Xt,x

s |≤N}ds
]
−→ 0 as n, m −→ ∞.

Finally,

In,m,ε
3 ≤

{
E
[∫ T

t+ε
11{|Xt,x

s |>N}ds
]} 1

2
{
E
[∫ T

t+ε

∣∣Fn(s, Xt,x
s )− Fm(s, Xt,x

s )
∣∣2ds

]} 1
2

≤ C√
N

.

Therefore, by letting N and (m, n) tend to infinity successively, the sequence (un(t, x))n≥1
has a convergence subsequence in Rq with limit u(t, x) for any t ≥ 0 and every x ∈ Rp.
Step 2. We are going to show the existence of a subsequence still denoted

(Y0,x0;n
· , Z0,x0;n

· , K0,x0;n
· )n≥1,

which converges in M2 to (Y·, Z·, K·(·)) solution of the BSDEJ (12).
From step 1, there exists a measurable function u on [0, T]×Rp, such that for any t ∈ [0, T],

lim
n→+∞

Y0,x0;n
t = u(t, X0,x0

t ), P-a.s.

Considering (15), and using Lebesgue’s dominated convergence Theorem, the se-
quence (Y0,x0;n

t )n≥1 converges to Y0,x0
t := u(t, X0,x0

t ) inM2
F(0, T,Rq), that is,

E
[∫ T

0

∣∣∣Y0,x0;n
t −Y0,x0

t

∣∣∣2dt
]
−→ 0. (20)

Next, we will show the convergence of (Z0,x0;n
· )n≥1 and (K0,x0;n

· )n≥1 respectively in
M2

F(0, T,Rq×q) andM2
F([0, T]× E,Rq, dtν(de)) as n→ +∞. For the sake of convenience,

we omit the subscript (0, x0).
To simplify the notations, for any n, m ≥ 1, and s ≤ T, we set:

Ȳn,m
s := Yn

s −Ym
s , Z̄n,m

s := Zn
s − Zm

s and K̄n,m
s (·) := Kn

s (·)− Km
s (·)

and
f̄ n,m(s) := fn(s, X0,x0

s , Yn
s−, Zn

s , Kn
s (·))− fm(s, X0,x0

s , Ym
s−, Zm

s , Km
s (·)).

Itô’s formula applied to
∣∣Ȳn,m

s
∣∣2 leads to

∣∣Ȳn,m
s
∣∣2 + ∫ T

s
|Z̄n,m

r |
2dr +

∫ T

s
‖K̄n,m

r (·)‖q,νdr

= 2
∫ T

s
Ȳn,m

r f̄ n,m(r)dr− (Mn,m
T −Mn,m

s )− (Nn,m
T − Nn,m

s ), (21)

where
Mn,m

s = 2
∫ s

0
Ȳn,m

r Z̄n,m
r dWr − 2

∫ s

0

∫
E

Ȳn,m
r K̄n,m

r (e)Ñ(dr, de),
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and
Nn,m

s =
∫ s

0

∫
E
|K̄n,m

r (e)|2)Ñ(dr, de).

are real-valued martingales. Hence, according to property (b), the Assumption (H3.1) and
the estimate (16), we obtain by taking the expectation in (21)∫ T

0
E
[
|Z̄n,m

r |
2 + ‖K̄n,m

r (·)‖2
q,ν

]
dr ≤ C

[∫ T

0
E
[∣∣Ȳn,m

r
∣∣2]dr

]
.

Thanks to (20), it follows that ((Zn
· )n≥1, (Kn

· (·))n≥1)) converges to some (Z·, K·(·)) in
M2

F(0, T,Rq×q) ×M2
F([0, T] × E,Rq, dtν(de))). Finally, we have proved that for a sub-

sequence nj,

(Y
nj
· , Z

nj
· , K

nj
· (·))j≥1 −→ (Y·, Z·, K·(·)) in M2. (22)

Step 3. In this step, we will verify that the limits of the subsequences are exactly the
solutions to BSDEJ (12). It remains to prove that fn(t, X0,x0

t , Yn
t , Zn

t , Kn
t (·)) converges to

f (t, X0,x0
t , Yt, Zt, Kt(·)) dt⊗ dP. For N ≥ 1, we define

AN : = {(r, ω) : |Yn
r |+ |Zn

r | ≤ N}, ĀN := Ω \ AN , (23)

then, we have

E
[∫ T

0

∣∣∣ fn(r, X0,x0
r , Yn

r , Zn
r , Kn

r (·))− f (r, X0,x0
r , Yr, Zr, Kr(·))

∣∣∣dr
]

≤ E
[∫ T

0

∣∣∣ fn(r, X0,x0
r , Yn

r , Zn
r , Kn

r (·))− fn(r, X0,x0
r , Yn

r , Zn
r , Kr(·))

∣∣∣dr
]

+E
[∫ T

0

∣∣∣( fn − f )(r, X0,x0
r , Yn

r , Zn
r , Kr(·))

∣∣∣11AN dr
]

,

+E
[∫ T

0

∣∣∣( fn − f )(r, X0,x0
r , Yn

r , Zn
r , Kr(·))

∣∣∣11ĀN
dr
]

,

+E
[∫ T

0

∣∣∣ f (r, X0,x0
r , Yn

r , Zn
r , Kr(·))− f (r, X0,x0

r , Yr, Zr, Kr(·))
∣∣∣dr
]

,

= In
1 + In

2 + In
3 + In

4 .

Thanks to (a) in Lemma 4 and (22) In
1 converges to 0. Again, according to (22) and

the continuity of f with respect to (y, z, k(·)), it follows, using Assumptions (H3.1), (H3.2)
and Lebesgue’s dominated theorem, that In

4 converges to 0 as n tends toward infinity.
Moreover, since fn satisfies the property (b) in Lemma 4, f satisfies (H3.1), (H3.2), and the
estimate (16), a simple computation shows that there is a positive constant C such that
In
3 ≤ CN−

1
2 . Now, we return to estimate the second term In

2 . The linear growth condition
(b) together with (H3.1) and (H3.2) imply that:∣∣∣( fn − f )(r, X0,x0

r , Yn
r , Zn

r , Kr(·))
∣∣∣11AN ≤ 2C(1 + N +

∣∣∣X0,x0
r

∣∣∣).
On the other hand, it is easy to see that∣∣∣( fn − f )(r, X0,x0

r , Yn
r , Zn

r , Kr(·))
∣∣∣11AN

≤ sup
{(y,z),|y|+|z|≤N}

∣∣∣( fn − f )(r, X0,x0
r , y, z, Kr(·))

∣∣∣.
Then, from the property (d) in Lemma 4, we conclude that the second term of the last

inequality converges to 0. Finally, Lebesgue’s dominated convergence theorem asserts that
In
2 converges also to 0 in L1([0, T]×Ω, dt⊗ dP).
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Eventually, we find, by sending n and N to infinity, the converges of sequence

( fn(t, X0,x0
t , Yn

t , Zn
t , Kn

t (·)))0≤t≤T)n≥1

to
( f (t, X0,x0

t , Yt, Zt, Kt(·)))0≤t≤T

in L1([0, T] ×Ω, dt ⊗ dP), and then F(t, X0,x0
t ) = f (t, X0,x0

t , Yt, Zt, Kt(·)), dt ⊗ dP-a.s. It
follows clearly that (Y·, Z·, K·(·)) solves Equation (12).

To obtain the convergence in M2
S , we add the following assumption on the generator f :

(H4.4) f : [0, T] × Ω × Rp × Rq × Rq×q × L2,q
ν −→ Rq is measurable and for any

(t, x, y, z, k(·)) ∈ [0, T] × Rp × Rq × Rq×q × L2,q
ν , there exists a constant C > 0 and

0 ≤ β < 1 such that

| f (t, x, y, z, k(·))| ≤ C(1 + |x|+ |y|+ |z|+ ‖k(·)‖q,ν)
β.

Corollary 1. Assume that (H3.1) and (H4.1)−(H4.4) are in force. Then, there exists a triple of
processes (Y·, Z·, K·(·)) belonging to M2

S that solves the BSDEJ (12).

Proof. By using the inequality |x|β ≤ 1 + |x|, it is easy to check that the sub-linear growth
condition (H4.4) implies the linear growth condition (H3.2), thus the above theorem con-
firms that there exists a triple (Y·, Z·, K·(·)) solution to the BSDEJ (12) which belongs to M2.
It remains to prove that the sequence (Yn

s )n≥1 = (un(s, X(0,x0)
s ))n≥1 defined in the above

proof converges to Y· in S2
F(0, T,Rq). From (12) and (13), squaring both sides of (Yn

r −Yr),
taking the supremum, the conditional expectation, using BDG inequality, we obtain

E
[

sup
0≤r≤T

|Yn
r −Yr|2

]
≤ C

[
E
∫ T

0

∣∣∣( fn − f )(r, X0,x0
r , Yn

r , Zn
r , Kr(·))

∣∣∣211AN dr (24)

+E
∫ T

0

∣∣∣( fn − f )(r, X0,x0
r , Yn

r , Zn
r , Kr(·))

∣∣∣211ĀN
dr

+E
∫ T

0

∣∣∣ f (r, X0,x0
r , Yn

r , Zn
r , Kr(·))− f (r, X0,x0

r , Yr, Zr, Kr(·))
∣∣∣2dr

+E
∫ T

0
|Zn

r − Zr|2dr +E
∫ T

0
‖(Kn

r − Kr)(·)‖2
q,νdr

]
,

where AN and ĀN are defined by (23).
Since (Zn

· )n≥1 (respectively (Kn
· (·))n≥1) converges in L2

F(0, T,Rq×q) (respectively
M2

F([0, T]× E,Rq, dtν(de)) to Z· (respectively, K·(·))), the fourth and fifth terms on the
right-hand side of the above inequality tends to 0 as n goes towards infinity. Then, by using
similar arguments to estimate In

2 (respectively, In
4 ) in the previous step, one can prove that

the first (respectively, the third) term also tends to 0 as n tends to infinity.
Next, we proceed to estimate the second term in inequality (24). Since fn satisfies the

property (b) in Lemma 4 and f satisfies (H4.4), we have

E
[∫ T

0

∣∣∣( fn − f )(r, X0,x0
r , Yn

r , Zn
r , Kr(·))

∣∣∣211ĀN
dr
]

≤ CE
[∫ T

0
(1 +

∣∣∣X0,x0
r

∣∣∣+ |Yn
r |+ |Zn

r |+ ‖Kr(·)‖q,ν)
2β11ĀN

dr
]

.

Thanks to Hölder’s inequality applied with p = 1
β and q = 1

1−β , along with (H3.1)

and the estimate (16), one can show that
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E
[∫ T

0

∣∣∣( fn − f )(r, X0,x0
r , Yn

r , Zn
r , Kr(·))

∣∣∣211ĀN
dr
]
≤ C(TP(ĀN))

1−β.

Chebyshev’s inequality yields that there is a positive constant C such that

E
[∫ T

0

∣∣∣( fn − f )(r, X0,x0
r , Yn

r , Zn
r , Kn

r (·))
∣∣∣211ĀN

dr
]
≤ CNβ−1.

By letting N tend to infinity, the previous inequality tends to 0 as n goes to infinity.
Consequently, (Yn

· )n≥1 converges to Y· in S2
F(0, T,Rq).

Remark 2. Note that all the previous results of this section still hold true if the Markov process X·
is constant with value x ∈ Rp on [0, t].

4.2. Totally Continuous Case

So far, we have investigated the existence results for BSDEs driven by a Brownian
motion and a compensated Poisson random measure. The case of BSDEJ with continuous
generators y and z and Lipschitz continuous on k(·) is considered. We claim that, from a
mathematics point of view, it is hard to deal with the general case where the generator f
is continuous in (y, z, k(·)). Indeed, the difficulty comes from the fact that the process k(·)
takes values in the functional space L2,q

ν not in Rq. In the remainder of this paper, we try to
relax the globally Lipschitz condition on k(·) by considering the following special case

Yt,x
s = g(Xt,x

T ) +
∫ T

s
f
(

r, Xt,x
r , Yt,x

r , Zt,x
r ,
∫

E
Kt,x

r (e)ν(de)
)

dr (25)

−
∫ T

s
Zt,x

r dWr −
∫ T

s

∫
E

Kt,x
r (e)Ñ(dr, de),

where Xt,x
s = x for s ∈ [0, t]. For a given measurable function f defined from [0, T]×Rp ×

Rq ×Rq×q ×Rq into Rq, we consider the three assumptions:

(H4.5) for any (t, x, y, z, k) ∈ [0, T]×Rp ×Rq ×Rq×q ×Rq, there exists a constant C > 0
such that

| f (t, x, y, z, k)| ≤ C(1 + |x|+ |y|+ |z|+ |k|).

(H4.6) for any (t, x, y, z, k) ∈ [0, T]×Rp ×Rq ×Rq×q ×Rq, there exists a constant C > 0
and 0 ≤ β < 1 such that

| f (t, x, y, z, k)| ≤ C(1 + |x|+ |y|+ |z|+ |k|)β.

(H4.7) the mapping (y, z, k) 7−→ f (t, x, y, z, k) is continuous for any fixed (t, x) ∈ [0, T]×Rp.

Theorem 3. Under (H3.1), (H4.5), and (H4.7) BSDEJ (25) has at least one solution (Y·, Z·, K·(·))
which belongs to M2. Furthermore, if f satisfies (H3.1), (H4.6), and (H4.7), then the solution is
in M2

S .

Proof. For a given Ψ, an element of C∞(Rq × Rq×q × Rq,R) with a compact support
such that ∫

Rq+q×q+q
Ψ(−→u )d−→u = 1,

where −→u = (y, z, k) ∈ Rq+q×q+q. We define

f (t, x, (·)) ∗Ψ(n(·))(−→u ) =
∫
Rq+q×q+q

f (t, x,−→v )Ψ(n(−→u −−→v ))d−→v

and Ψ̄ ∈ C∞(Rq ×Rq×q ×Rq,R) such that
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Ψ̄(−→u ) =

{
1,
∣∣−→u ∣∣2 ≤ 1,

0,
∣∣−→u ∣∣2 ≥ 2.

Let f be a function satisfying (H4.5) and (H4.7). The sequence of the measurable
functions { fn, n ≥ 1}, defined by

fn(t, x,−→u ) = n3Ψ̄(
−→u
n
)( f (t, x, (·)) ∗Ψ(n(·)))(−→u ),

satisfies the following proprieties

(i) supt,x| fn(t, x, y, z, k)− fn(t, x, y′, z′, k′)| ≤ C(|y− y′|+ |z− z′|+ |k− k′|) for some posi-
tive constant C;

(ii) | fn(t, x, y, z, k)| ≤ C(1 + |x|+ |y|+ |z|+ |k|), for all (t, x, y, z, k) in the product space
[0, T]×Rp ×Rq ×Rq×q ×Rq;

(iii) For all (t, x, y, z, k) ∈ [0, T]×Rp ×Rq ×Rq×q ×Rq and n ∈ N, there exists positive
constant C such that | fn(t, x, y, z, k)| ≤ C(1 + |x|);

(iv) For any (t, x) ∈ [0, T]×Rp, and for any compact subset S ⊂ Rq ×Rq×q ×Rq,

sup
(y,z,k)∈S

| fn(t, x, y, z, k)− f (t, x, y, z, k)| −→ 0 as n→ +∞.

Firstly, to prove the existence, we define the following family of approximating BSDEJs
obtained by replacing the generator f in BSDEJ (25) with fn defined above.

Yt,x;n
s = g(Xt,x

T ) +
∫ T

s
fn

(
r, Xt,x

r , Yt,x;n
r , Zt,x;n

r ,
∫

E
Kt,x;n

r (e)ν(de)
)

dr (26)

−
∫ T

s
Zt,x;n

r dWr −
∫ T

s

∫
E

Kt,x;n
r (e)Ñ(dr, de).

By Lemma 2.4 in [5] Equation (26) admits a unique solution denoted

(Yt,x;n
· , Zt,x;n

· , Kt,x;n
· (·))n≥1

and belongs to M2. Taking into account that fn satisfies the above (iii), Theorem 1 confirms
the existence of three sequences of measurable and deterministic functions un : [0, T]×
Rp −→ Rq, vn : [0, T]×Rp −→ Rq×q and θn : [0, T]×Rp −→ L2,q

ν such that

Yt,x;n
r = un(r, Xt,x

r ), Zt,x;n
r = vn(r, Xt,x

r ) and Kt,x;n
r (e) = θn(r, Xt,x

r−, e).

Furthermore, we have the following equality

un(t, x) = E
[

g(Xt,x
T ) +

∫ T

t
Fn(r, Xt,x

r )dr
]

, ∀ (t, x) ∈ [0, T]×Rp,

where we have denoted by

Fn(t, x) = fn

(
t, x, un(t, x), vn(t, x),

∫
E

θ(n)(t, x, e)ν(de)
)

.

Starting from the sequence defined in (26) and reasoning as in the three steps of the proof
of Theorem 2, we can also establish the existence of at least one solution (Yt,x

· , Zt,x
· , Kt,x

· (·))
to BSDEJ (25) which belongs to M2 provided that (H3.1), (H4.5), and (H4.7) hold true.
Furthermore, using similar arguments in the proof of Corollary 1, one can prove that
the solution (Yt,x

· , Zt,x
· , Kt,x

· (·)) is in fact in M2
S whenever (H3.1), (H4.6), and (H4.7) are

in force.
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4.3. Examples of Markov Processes Satisfying L2-Domination Condition

Let us give some examples of Markov processes satisfying our assumption (H4.3).

1. Obviously, the Brownian Motion with drift, starting at x at time t: Xt,x
s = Bt,x

s + as,
where Bt,x

s = x ∈ Rp for all s ≤ t and Bt,x
· is an Rp-valued Brownian motion and

a ∈ Rp, satisfies the (H4.3) since it has a density;
2. Let us now consider a more general Markov process solution to the following SDE

Xt,x
s = x +

∫ s

t
b(r, Xt,x

r )dr +
∫ s

t
σ(r, Xt,x

r )dWr, (27)

with Xt,x
s = x if s ≤ t. The functions b : [0, T]×Rp −→ Rp, σ : [0, T]×Rp −→ Rp×q,

satisfy the following conditions:

(a) σ is Lipschitz with respect to x uniformly in t;
(b) σ is invertible and bounded and its inverse is bounded;
(c) b is Lipschitz with respect to x uniformly in t and of linear growth.

According to Lemma 4.3 in [14], the law µ(t, x; s, dy) of Xt,x
s satisfies (H4.3).

3. Let (Wt,x
s )t≤s≤T be an Rd-valued Brownian motion such that Wt,x

s = x if s ≤ t and
(As)0≤s≤T an α

2 -stable subordinator starting at zero, 0 < α < 2, independent of Wt,x
·

for every Px. Set Xt,x
s = Wt,x

Ar
a rotationally invariant α-stable process whose generator

is the fractional power of order α
2 of the negative Laplacian, corresponding to the

Riesz potential of order α.
It is well known that Xt,x

· is a Markov process and the law µ(t, x; s, dy) of Xt,x
s has a

transition density p(t, x; s, y) satisfying the following upper and lower estimates

c1(s− t)−
d
α ∧ s− t
|x− y|d+α

≤ p(t, x; s, y)

= p(t− s, x− y) ≤ c2(s− t)−
d
α ∧ s− t
|x− y|d+α

,

for all s ≥ t, and x, y ∈ Rd. Under a simple relation between α and d, the law
µ(t, x; s, dy) of Xt,x

s satisfies (H4.3).
4. Let D be an open subset of Rd and τX

D = inf{s > 0 : Xs /∈ D} be the exit time of X
from D. The process X killed upon exiting D is defined by

XD
s =

{
Xs if s < τX

D
κ if s ≥ τX

D ,
=

{
WAs if s < τX

D
κ if s ≥ τX

D ,

where κ is an isolated point. The infinitesimal generator of the Markov process XD
· is

the Dirichlet fractional Laplacian, −(−∆)
α
2 |D, i.e., the fractional Laplacian with zero

exterior conditions.
It is shown in ([28], Theorem 1.1) that when D is a C1,1 open set in Rd, d ≥ 1 the heat
kernel pD(t, x; s, y) of −(−∆)

α
2 |D which is also the transition density of XD

· has the
following lower and upper estimates: for every T > 0 and (s, x, y) ∈ (t, T]× D× D,

c1

(
1∧ $(x)

α
2

√
s− t

)(
1∧ $(y)

α
2

√
s− t

)

≤ pD(t, x; s, y)
p(t, x; s, y)

≤ c2

(
1∧ $(x)

α
2

√
s− t

)(
1∧ $(y)

α
2

√
s− t

)
,
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where $(x) denotes the distance between x and Dc, the complement of D and
p(t, x; s, y) is the transition density defined in example 3. Therefore, under a sim-
ple condition on α and d, the law µ(t, x; s, dy) of Xt,x

s satisfies (H4.3).
5. For simplicity and ease of notation, we shall take t = 0. The Brownian motion killed

upon exiting D is defined as

WD
s =

{
Ws if s < τW

D
κ if s ≥ τW

D .

Now, we define the subordinate killed Brownian motion, YD
s = WD

As
for all s ≥ 0, as

the process obtained by subordinating WD
· via the α

2 -stable subordinator A· That is

YD
s =

{
WD

As
if s < τW

D
κ if s ≥ τW

D .

Let rD(t, x; s, y) be the transition density of YD. It is proved in ([29], Lemma 2.1) that if
D is a bounded C1,1 domain in Rp, p ≥ 1 then for any T > 0, there exist two positive
constants C3 and C4 such that for any s ∈ (t, T] and x, y ∈ D.

C3qD(s− t, x, y) ≤ rD(t, x; s, y)
p(t, x; s, y)

≤ C4qD(s− t, x, y),

where

qD(s, x, y) =

(
$(x)

(s
1
α + |x− y|)

∧ 1

)(
$(y)

(s
1
α + |x− y|)

∧ 1

)
.

Therefore, under a condition on α and p, the law µ(t, x; s, dy) of Xt,x
s satisfies (H4.3).

6. For d ≥ 2, we consider the time-inhomogeneous and non-symmetric non-local operators:

Lt f (x) = La
t f (x) + bt · ∇ f (x) + Lκ

t f (x), (28)

where

La
t f (x) =

1
2

d

∑
i,j=1

ai,j(t, x)
∂2 f

∂xixj
(x), bt · ∇ f (x) =

d

∑
i=1

bi(t, x)
∂ f
∂xi

(x)

and

Lκ
t f (x) =

∫
Rd

(
f (x + z)− f (x)− 11{|z|≤1}z · ∇ f (x)

)κ(t, x, z)
|z|d+α

dz,

where a(t, x) := (aij(t, x))1≤i,j≤d is a d × d-symmetric matrix-valued measurable
function on R+ ×Rd, b(t, x) : R+ ×Rd −→ Rd and κ(t, x, z) : R+ ×Rd ×Rd −→ Rd

are measurable functions, and α ∈ (0, 2).
We denote by p(t, x; s, y) the fundamental solution of the operator {La

t , t ≥ 0} and
q(t, x; s, y) the fundamental solution of the operator {Lt, t ≥ 0}. From (28) Lt can be
interpreted as a perturbation of La

t by the operator bt · ∇+ Lκ
t , so the heat kernels p

and q are related by the following Duhamel formula:

q(t, x; s, y) = p(t, x; s, y) (29)

+
∫ s

t

∫
Rd

q(t, x; r, z)(br · ∇+ Lκ
r )p(r, ·; s, y)(z)dzdr

= p(t, x; s, y)

+
∫ s

t

∫
Rd

p(t, x; r, z)(br · ∇+ Lκ
r )q(r, ·; s, y)(z)dzdr

for all 0 ≤ t < s < ∞ and x, y ∈ Rd.
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For any T > 0 and ε ∈ [0, T), we denote

DT
ε =

{
(t, x; s, y) : s, t ≥ 0 and x, y ∈ Rd with ε < s− t < T

}
.

It is proved under some mild conditions of the coefficients a, b, and κ (see (Ha),
and (Hκ) in [30], Theorem 1.1) that there exists a unique heat kernel q(t, x; s, y) sat-
isfying (29). Moreover, q(t, x; s, y) is the transition density of the Markov process
X associated to the operator {Lt, t ≥ 0}. The two-sided estimates below of q were
established in ([30], Corollary 1.5): For any T > 0, there exist constants C, λ ≥ 1 such
that on DT

0 :

bC−1
(
(s− t)−

d
α e−λ−1 |x−y|2

s−t + mκ(s− t)
(
(s− t)

1
2 + |x− y|

)−d−α
)

≤ q(t, x; s, y),

and

q(t, x; s, y)

≤ C
(
(s− t)−

d
α e−λ

|x−y|2
s−t + ‖κ‖∞(s− t)

(
(s− t)

1
2 + |x− y|

)−d−α
)

,

where mκ = inf(t,x) essinfz∈Rd κ(t, x, z).
The law µ(t, x; s, dy) of Xt,x

s satisfies (H4.3).

5. Concluding Remarks

In this paper, we discuss the issues of the global existence of the solutions for a class
of multidimensional Markovian backward stochastic differential equations driven by a
Poisson random measure and an independent Brownian motion. We first generalized
the representation obtained by El Karoui et al. [3] to the jump case which clams that the
solution of Markovian BSDEJ with Lipschitz generator can be represented in terms of the
Markov process and some deterministic functions. This result, with the help of so-called
L2-domination condition, on the law of the underlying Markov process, played a crucial
role in proving the main results of this paper. More precisely, we proved that BSDEJ (1) in
the case where its generator is continuous with respect to y and z and globally Lipschitz in
k(·) has at least a solution. Then, we extended the latter result by allowing the generator to
be also continuous in k(·), but only for a particular form of BSDEJ (1). We hope to treat in
future research the more general case where the generator of BSDEJ (1) is totally continuous
with respect to all its state variables to fill the gaps and solve this open problem.
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