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Abstract: In this paper, we introduce a notion of free cofibrations of permutative categories. We
show that each cofibration of permutative categories is a retract of a free cofibration. The main goal
of this paper is to show that the natural model category of permutative categories is a left proper
model category.
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1. Introduction

A permutative category is a symmetric monoidal category whose associativity and unit
natural isomorphisms are identities. Permutative categories have generated significant
interest in topology. An infinite loop space machine was constructed on permutative cat-
egories in [1]. A K-theory (multi-)functor from a multicategory of permutative categories
into a symmetric monoidal category of symmetrical spectra, which preserves the multi-
plicative structure, was constructed in [2]. In [3], the K-theory of [2] was enhanced to a
lax symmetric monoidal functor. It was shown in [4] that permutative categories model
connective spectra.

Every symmetric monoidal category is equivalent (by a symmetric monoidal functor)
to a permutative category. The category of symmetric monoidal categories SMCAT does
NOT have a model category structure; however, its subcategory of permutative categories
and strict symmetric monoidal functors Perm carries a model category structure. The
category Perm is isomorphic to the category of algebras over the (categorical) Barrat–
Eccles operad. Using this fact, the model category structure follows from [5] and ([6],
Thm. 4.5). This model category structure is called the natural model category structure of
permutative categories.

The main objective of this paper is to identify a class of cofibrations in the natural
model category Perm called free cofibrations such that every cofibration in Perm is a retract
of a free cofibration. A desirable property of free cofibrations is that cobase changes along
a free cofibration preserve acyclic fibrations in the natural model category Perm. This
property allows us to prove our main result that the natural model category Perm is left
proper. Our primary motivation for proving the main result of this paper is the existence of
left Bousfield localizations in combinatorial left-proper model categories ([7], Thm. 4.7).
The main result of this paper has allowed us to construct two left Bousfield localizations of
the natural model category Perm which are the model category of (permutative) compact
closed categories Permcc [8] and the model category of (permutative) Picard groupoids
(Perm,P ic) [9].

Finally in Appendix A we present a construction of Gabriel Factorization of a unital
symmetric monoidal functor between permutative categories. Our construction factors a
unital symmetric monoidal functor into an essentially surjective strict symmetric monoidal
functor followed by a fully faithful unital symmetric monoidal functor.
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Remark 1. Some proofs in this paper assume standard results in homotopical algebra. We would
like to provide the uninformed reader a list of references to standard textbooks on the subject: [10–12].

2. Free Cofibrations in Perm

In this section, we define a class of maps called free cofibrations in the natural model
category of permutative categories Perm. We show that a strict symmetric monoidal functor
is a cofibration in Perm if and only if it is a retract of a free cofibration. A characterization
of cofibrations in Perm was formulated purely in terms of object functions (which are
monoid homomorphisms) of the underlying strict symmetric monoidal functor in [13].
In order to define free cofibrations, we will start by reviewing some basic notions of
permutative categories:

Definition 1. A symmetric monoidal category is called a permutative category or a strict sym-
metric monoidal category if it is strictly associative and strictly unital.

Remark 2. A permutative category is an internal category in the category of monoids.

We recall that the forgetful functor U : Perm→ Cat has a left adjointF : Cat→ Perm.

Definition 2. A monoid M is called a free monoid if there exists a (dotted) lifting monoid homo-
morphism whenever we have the following (outer) commutative diagram of monoid homomorphisms:

∗ //

��

N

p
��

M //

>>

Q

where p is a surjective monoid homomorphism, and ∗ is a zero object in the category of monoids.

Definition 3. A free cofibration of permutative categories is a (strict symmetric monoidal) functor
i : A → C whose object function is the inclusion Ob(i) : Ob(A) → (Ob(A) ∨M) = Ob(C),
where M is a free monoid and the coproduct is taken in the category of monoids.

The next proposition presents the desired characterization of cofibrations:

Proposition 1. A strict symmetric monoidal functor F : C → D is a cofibration in Perm if and
only if it is a retract of a free cofibration by a map that fixes C.

Proof. Let us first assume that F is a retract of a free cofibration i : E → M. We observe
that the object function of a free cofibration has the left lifting property with respect to
all surjective monoid homomorphisms; therefore, each free cofibration is a cofibration in
Perm. A retract of a cofibration is again a cofibration. Thus, F is a cofibration in Perm.

Conversely, let us assume that F is a cofibration in Perm. We have the following
(outer) commutative diagram in the category of monoids

Ob(C) i //

Ob(F)
��

Ob(C) ∨ Fm(Ob(D))

p
��

Ob(D)

L

66

Ob(D)

where Fm(Ob(D)) is the free monoid generated by the set Ob(D), i is the inclusion into the
coproduct, and p = Ob(F) ∨ ε. The summand ε : Fm(Ob(D)) → Ob(D) is the counit of
the reflection:

Fm : Set � Mon : U
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Since the right vertical homomorphism of monoids is surjective and F is a cofibration
by assumption, there therefore exists a (dotted) lifting homomorphism L which makes the
whole diagram commutative. Thus, Ob(F) is a retract of the inclusion i in the category of
monoids. We will construct a strict symmetric monoidal functor I : C → E whose object
function is the inclusion i and show that F is a retract of I. We begin by constructing the
category E:

The object set of E is Ob(C)∨ F(Ob(D)). The morphism monoid of E is defined by the
following pullback square in the category of monoids:

Mor(E)
p1

//

p2

��

Mor(D)

(sD ,tD)

��

(Ob(C) ∨ F(Ob(D)))× (Ob(C) ∨ F(Ob(D)))
p×p

// Ob(D)×Ob(D)

(1)

We will denote the projection map p2 in the above Cartesian square by (sE, tE). This
pair will be source and target maps for the proposed category E. The projection map p1 in
the above Cartesian diagram restricts to a map between the set of composable arrows in E
and D:

pc
1 : Mor(E) ×

sE=tE
Mor(E)→ Mor(D) ×

sD=tD
Mor(D).

Now, we observe the composite (− ◦
D
−) ◦ pc

1 factors through Mor(E) as follows:

Mor(E) ×
sE=tE

Mor(E)
−◦

E
−
//

pc
1

��

Mor(E)

p1

��

Mor(D) ×
sD=tD

Mor(D)−◦
D
−
// Mor(D)

(2)

The map − ◦
E
− in the above commutative diagram provides the composition of

category E. Finally, we define the symmetry natural transformation of E as follows:

γE
z1,z2

:= γD
p(z1),p(z2)

(3)

for each pair of objects z1, z2 ∈ Ob(E). This defines a permutative category (E,−�
E
−, γE),

where the tensor product is uniquely determined by the monoid structures on Ob(E) and
Mor(E).

The commutative diagrams (1) and (2) and the definition of the symmetry natural
transformation (3) together imply that there is a strict symmetric monoidal functor P : E→
D whose object homomorphism is p and morphism homomorphism is p1. Further, P is
surjective on objects and also fully faithful. This implies that P is an acyclic fibration in the
natural model category Perm.

Now, we construct the free cofibration I : C → E mentioned above. The object
homomorphism of I is the inclusion i : Ob(C) → Ob(C) ∨ F(Ob(D)). The morphism
homomorphism of I is defined as follows:

Mor(I) := Mor(F).

In other words, I( f ) = F( f ) for each morphism f ∈ Mor(C). Now, we have the
following (outer) commutative diagram in Perm:
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C I //

F
��

E

P
��

D
L

>>

D

Since F is a cofibration and P is an acyclic fibration in the natural model category Perm,
there exists a (dotted) lifting arrow L which makes the entire diagram commutative. This
implies that F is a retract of the free cofibration I in the natural model category Perm.

3. Left Properness of the Natural Model Category Perm

In this section we show that the natural model category of permutative categories
Perm is left proper. We recall that a model category is left proper if the cobase change of a
weak-equivalence along a cofibration is again a weak-equivalence. We will first show that
the cobase change of a weak-equivalence along a free cofibration is a weak-equivalence.
Using this intermediate result, we will prove the left properness of Perm.

Let G : A → B be an acyclic fibration in Perm and iA : A → C be a free cofibration.
Therefore, the object monoid of C can be written as a coproduct Ob(A) ∨V, where V is a
free monoid. We observe that the following commutative square is co-Cartesian:

Ob(A)
Ob(iA) //

Ob(G)

��

Ob(A) ∨V

Ob(G)∨id
��

Ob(B)
iB

// F(B) ∨V

We will construct the following pushout square in Perm:

A
iA //

G
��

C

��

B // B t
A

C

A strict symmetric monoidal functor G : A→ B is an acyclic fibration in Perm if and
only if there exists a unital symmetric monoidal section ([13], Cor. 3.5(3)) S : B→ A such
that GS = idD and a monoidal natural isomorphism εS : SG ∼= id. Let us fix such a section
S : B→ A and natural isomorphism εS.

Remark 3. The above characterization of acyclic fibrations implies that S : B → A is a left-
adjoint-right-inverse of G : A → B. This means that εS : SG ∼= idA is a counit of an adjoint
equivalence whose unit η : GS = idB is the identity natural transformation. This further implies
that GεS · ηG = idG. In other words, for each a ∈ A, we have the following equality:

G(εS(a)) ◦ η(G(a)) = idG(a).

Since it follows from ([13], Cor. 3.5(3)) that the unit natural transformation η is the identity,
GεS = G.

Remark 4. Let b1, b2 be a pair of objects in B. Since εS is a monoidal natural transformation, we
have the following commutative diagram:
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SG(S(b1)⊗ S(b2))
εS(S(b1),S(b2))

//

λS(b1,b2)
��

S(b1)⊗ S(b2)

S(GS(b1)⊗ GS(b2)) S(b1)⊗ S(b2)

Thus, we have shown that
λS = εSS.

This further implies that
GλS = GεSS = GS = idB.

The unital symmetric monoidal functor S gives us the following unital symmetric
monoidal functor:

S ∨ F (C; V) : B ∨ F (C; V)→ A ∨ F (C; V),

where F (C; V) is the full permutative subcategory of C whose object set is the (free)
monoid V, and the notation S ∨ F (C; V) is an abbreviation for the coproduct of functors
S ∨ idF (C;V). We observe that S ∨ F (C; V) is a section of the strict symmetric monoidal
functor G ∨ F (C; V) i.e., (G ∨ F (C; V)) ◦ (S ∨ F (C; V)) = id. Moreover, we obtain a
monoidal natural isomorphism

εS ∨ F (C; V) : (S ∨ F (C; V)) ◦ (G ∨ F (C; V)) ∼= id

Hence, the functor G ∨ F (C; V) is an acyclic fibration in the natural model category
Perm by ([13], Cor. 3.5(3)).

We observe the free cofibration iA factors as follows:

A //

ιA %%

C

A ∨ F (C; V)

iA,V

99 (4)

where ιA : A→ A ∨F (C; V) is the inclusion into the coproduct, and iA,V : A ∨F (C; V)→
C is the unique map induced by the inclusions iA : A→ C and iV : F (C, V)→ C

Remark 5. The following commutative square is a co-Cartesian:

A
ιA //

G
��

A ∨ F (C; V)

G∨F (C;V)

��

B
ιB
// B ∨ F (C; V)

(5)

We observe that the object monoid of C is the same as the object monoid of A∨F (C; V),
namely the coproduct (Ob(A)) ∨ V. This implies that for each c ∈ Ob(C) there is the
following isomorphism in C:

(iA,V ◦ (εS ∨ F (C; V)))(c) : (S ∨ F (C; V)) ◦ (G ∨ F (C; V))(c) ∼= c,

Now, it follows from ([13], Prop. 2.7) that there exists a (uniquely defined) functor
SC : C → C and a natural isomorphism δC : idC ∼= SC. The functor SC is defined on objects
as follows:

SC(c) := (S ∨ F (C; V)) ◦ (G ∨ F (C; V))(c).

The following lemma now tells us that SC is a unital symmetric monoidal functor, and
δC is a monoidal natural isomorphism:
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Lemma 1. Given a unital oplax symmetric monoidal functor (F, λF) between two symmetric
monoidal categories C and D, a functor G : C → D and a unital natural isomorphism α : F ∼= G,
there is a unique natural isomorphism λG which enhances G to a unital oplax symmetric monoidal
functor (G, λG) such that α is a monoidal natural isomorphism. If (F, λF) is unital symmetric
monoidal, then so is (G, λG).

Proof. We consider the following diagram:

C× C

F×F

}}

G×G

!!

−⊗
C
−

// C

G

}}

F

!!

α×αks α +3

D× D −⊗
D
−

// D

This diagram helps us define a composite natural isomorphism λG : G ◦ (−⊗
C
−)⇒

(−⊗
D
−) ◦ G× G as follows:

λG := (id−⊗
D
− ◦ α× α) · λF · (α−1 ◦ id−⊗

C
−). (6)

This composite natural isomorphism is the unique natural isomorphism which makes
α a unital monoidal natural isomorphism. Now, we have to check that λG is a unital
monoidal natural isomorphism with respect to the above definition. Clearly, λG is unital
because both α and λF are unital natural isomorphisms. We first check the symmetry
condition ([13], Defn. 2.4 OL. 2). This condition is satisfied because the following composite
diagram commutes

G(c1 ⊗
C

c2)
α−1(c1⊗

C
c2)

//

G(γC(c1,c2))

��

F(c1 ⊗
C

c2)

F(γC(c1,c2))

��

λF(c1,c2)
// F(c1)⊗

D
F(c2)

γD(F(c1),F(c2))

��

α(c1)⊗
D

α(c2)
// G(c1)⊗

D
G(c2)

γD(G(c1),G(c2))

��

G(c2 ⊗
C

c1)
α−1(c2⊗

C
c1)

// F(c2 ⊗
C

c1)
λF(c2,c1)

// F(c2)⊗
D

F(c1)
α(c2)⊗

D
α(c1)
// G(c2)⊗

D
G(c1)

The condition ([13], Defn. 2.4 OL. 3) follows from the following equalities

αD(G(c1), G(c2), G(c3)) ◦ λG(c1, c2)⊗
D

idG(c3)
◦ λG(c1 ⊗

C
c2, c3) =

(α(c1)⊗
D

α(c2))⊗
D

α(c3) ◦ αD(F(c1), F(c2), F(c3)) ◦ λF(c1, c2)⊗
D

idF(c3)
◦

λF(c1 ⊗
C

c2, c3) ◦ α−1((c1 ⊗
C

c2)⊗
C

c3) =

(α(c1)⊗
D

α(c2))⊗
D

α(c3) ◦ idF(c1)
⊗
D

λF(c1, c2) ◦ λF(c1, c2 ⊗
C

c3) ◦ F(αC(c1, c2, c3))

◦ α−1((c1 ⊗
C

c2)⊗
C

c3) =

idG(c1)
⊗
D

λG(c1, c2) ◦ λG(c1, c2 ⊗
C

c3) ◦ G(αC(c1, c2, c3)).

If F = (F, λF) is a symmetric monoidal functor, then so is G = (G, λG) because (6) is a
natural isomorphism.



Axioms 2023, 12, 87 7 of 12

The section S ∨ F (C; V) provides us with a unital symmetric monoidal functor iA,V ◦
(S ∨ F (C; V)) : B ∨ F (C; V)→ C which we denote by SF . The unital symmetric monoidal
functor SF has the following Gabriel factorization:

B ∨ F (C; V)
SF //

ΓSF &&

C

G(SF )
∆

==

By Lemma A1, (G(SF ),−�−, γ) is a permutative category structure. In addition, by
the same lemma, Γ is a strict symmetric monoidal functor.

Remark 6. The following diagram of unital symmetric monoidal functors is commutative:

B ∨ F (C; V)

S∨F (C;V)

��

SF // C

A ∨ F (C; V)
iA,V

// C

SC

OO

The above commutative diagram implies that for each object z ∈ G(SF ), λSF (z) = λSC (z).

We claim that there exists a strict symmetric monoidal functor P : C → G(SF ) such
that the following diagram, in Perm, is co-Cartesian:

A

G
��

iA // C

P
��

B
Γ
// G(SF )

(7)

where Γ = ΓSF ◦ ιB. The object function of the functor P is the monoid homomorphism

Ob(G) ∨V : Ob(A) ∨V → Ob(B) ∨V.

For any pair of objects c1, c2 ∈ Ob(C), we observe the following equality:

G(SF )(P(c1), P(c2)) = C(SC(c1), SC(c2)).

Now, we define the morphism function of P as follows:

P( f ) := SC( f ),

where f is a morphism in C. The functoriality of P follows from that of SC.
The object function of P is a monoid homomorphism; therefore, P(c1 ⊗

C
c2) = P(c1)�

P(c2) for each pair of objects c1, c2 ∈ Ob(C). The following commutative diagram shows
that P( f1 ⊗

C
f2) = P( f1)� P( f2) for each pair of maps ( f1, f2) ∈ C(c1, c2)× C(c3, c4):
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c1 ⊗
C

c2

f1⊗
C

f2
//

δ ∼=
��

c3 ⊗
C

c4

δ∼=
��

SC(c1 ⊗
C

c2) P( f1⊗
C

f2)
// SC(c3 ⊗

C
c4)

SF (P(c1)� P(c2)) P( f1)�P( f2)
//

λSF
��

SF (P(c3)� P(c4))

λSF
��

SF (P(c1))⊗
C

SF (P(c2)) P( f1)⊗
C

P( f2)
// SF (P(c3))⊗

C
SF (P(c4))

Thus, we have defined a strict symmetric monoidal functor P which is fully faithful.
Further, each object of G(SF ) is isomorphic to one in the image of P. Thus, P is an
equivalence of categories.

Proposition 2. The commutative square (7) is co-Cartesian.

Proof. In order to show that (7) is co-Cartesian, it is sufficient to show that the following
commutative square is co-Cartesian in light of factorization (4) and Remark 5:

A ∨ F (C; V)

G∨F (C;V)

��

iA,V
// C

P
��

B ∨ F (C; V)
ΓSF

// G(SF )

We will show that whenever we have the following (outer) commutative diagram,
there exists a unique dotted arrow L which makes the whole diagram commutative in Perm:

A ∨ F (C; V)

G∨F (C;V)

��

iA,V
// C

P
�� R

��

B ∨ F (C; V)
ΓSF

//

T //

G(SF )
L

""
X

Since Ob(ΓSF ) is the identity, the object homomorphism Ob(L) has to be the same
as Ob(T). In order to make the diagram commutative, we define Ob(L) = Ob(T). The
morphism function of L is defined as follows:

Lz1,z2 := RSF (z1),SF (z2)
: G(SF )(z1, z2) = C(SF (z1), SF (z2))→ X(L(z1), L(z2))

for each pair of objects z1, z2 ∈ Ob(G(SF )). This defines a functor L which makes the
diagram above commutative (in Cat). In order to verify that L is a strict symmetric monoidal
functor, it is sufficient to show that for each pair of maps f1 : z1 → z2, f2 : z3 → z4 in G(SF ),

L( f1 � f2) = L( f1)⊗
X

L( f2) = R( f1)⊗
X

R( f2). (8)
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We recall that the map f1 � f2 is defined by the following commutative diagram:

SF (z1)⊗
C

SF (z3)
f1⊗

C
f2
// SF (z2)⊗

C
SF (z4)

SF (z1 ⊗
B

z2) f1� f2

//

λSF
OO

SF (z3 ⊗
B

z4)

λSF
OO

Since R is a strict symmetric monoidal functor, R( f1 ⊗
C

f2) = R( f1)⊗
X

R( f2). Now, it

sufficient to show that RλSF = id in order to establish the equalities in (8). We observe
that λSF = iA,V(λ

S∨F (C;V)). Since G ∨ F (C, V) is an acyclic fibration, it follows from
Remark 4 that G ∨ F (C, V)λS∨F (C;V) = id. Since T ◦ G ∨ F (C, V) = R ◦ iA,V , it follows
that R(λSF ) = id. The uniqueness of the object functor of L is obvious. The uniqueness of
the morphism homomorphism of L can be easily checked.

The main objective of this section is to show that the natural model category Perm is
left proper. The next lemma serves as a first step in proving the main result. The lemma
follows from the above discussion:

Lemma 2. In the natural model category Perm, a pushout of a weak-equivalence along a free
cofibration is a weak-equivalence.

Proof. In light of the facts that each weak equivalence in a model category can be factored
as an acyclic cofibration followed by an acyclic fibration and acyclic cofibrations are closed
under cobase change, it is sufficient to see that the cobase change of an acyclic fibration is a
weak-equivalence. This follows from the discussion above.

Now, we state and prove the main result of this paper:

Theorem 1. The natural model category of permutative categories Perm is a left proper model
category.

Proof. We will show that a pushout P(F; q) of a weak equivalence F : A → D in Perm
along a cofibration q : A→ B in Perm is a weak-equivalence. We consider the following
commutative diagram:

C

P(F;l)

��

��

A
q
//

F
��

r
//

B

l
??

P(F;q)
��

B

P(F;q)

��

D //

//

//

P

��

Ps

��

P

Since F is a cofibration, by Proposition 1 there exists a free cofibration r : A→ C such
that F is a retract of r by a map that fixes A. The top left commutative square in the above
diagram is co-Cartesian. The map P(F; l) is a pushout of F along the free cofibration r and
therefore a weak-equivalence by Lemma 2. Now, the result follows from the observation
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that the diagonal composite P→ Ps → P in the above diagram is the identity map and the
commutativity of the above diagram.

4. Conclusions

In this paper, we identify a class of cofibrations between permutative categories
which we call free cofibrations and show that every cofibration of permutative categories
is a retract of a free cofibration. We go on to show that the natural model category of
permutative categories is a left proper model category.
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Abbreviations
The following abbreviations are used in this manuscript:

Cat The category of (small) categories and functors
Perm The category of (small) permutative (or strict symmetric monoidal) categories and

strict symmetric monoidal functors.
Mon The category of monoids and monoid homomorphisms.
Set The category of sets and functions
SMCat The category of symmetric monoidal categories and symmetric monoidal functors.

Appendix A. Gabriel Factorization of Symmetric Monoidal Functors

In this appendix, we construct a Gabriel Factorization of a unital symmetric monoidal
functor between permutative categories. Our construction factors a unital symmetric
monoidal functor into an essentially surjective strict symmetric monoidal functor followed
by a fully faithful unital symmetric monoidal functor.

Lemma A1. Each unital symmetric monoidal functor F : C → D between permutative categories
can be factored as follows:

C F //

ΓF !!

D

G(F)
∆F

==

where ΓF is a strict symmetric monoidal functor which is identity on objects, and ∆ is fully faithful.

Proof. We begin by defining the permutative category G(F). The object monoid of G(F) is
the same as Ob(C). For a pair of objects c1, c2 ∈ Ob(C), we define

G(F)(c1, c2) := C(F(c1), F(c2)).

The Gabriel factorization of the underlying functor of F gives us the following factor-
ization in Cat:

C F //

ΓF !!

D

G(F)
∆F

==

We will show that the functor ΓF is strict symmetric monoidal, and ∆F is unital
symmetric monoidal. We define a symmetric monoidal structure on G(F) which we denote
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by (G(F),�, γ). For any pair of objects c1, c2 ∈ Ob(G(F)), we define c1 � c2 := c1 ⊗
C

c2. For

a pair of maps f1 : c1 → c3 and f2 : c2 → c4, we define f1 � f2 to be the following arrow:

F(c1 ⊗
C

c2)

λF ∼=
��

f1� f2
// F(c3 ⊗

C
c4)

λF∼=
��

F(c1)⊗
D

F(c2) f1⊗
D

f2

// F(c3)⊗
D

F(c4)

It is easy to establish that −�− is a bifunctor. Let f3 : c3 → c5 and f4 : c4 → c6 be
another pair of arrows in G(F). Now, we consider the following commutative diagram:

F(c1 ⊗
C

c2)

λF ∼=
��

f1� f2
// F(c3 ⊗

C
c4)

λF∼=
��

f3� f4
// F(c5 ⊗

C
c6)

λF∼=
��

F(c1)⊗
D

F(c2) f1⊗
D

f2

// F(c3)⊗
D

F(c4) f3⊗
D

f4

// F(c5)⊗
D

F(c6)

The above diagram tells us that:

( f3 � f4) ◦ ( f1 � f2) = ( f3 ◦ f1)� ( f4 ◦ f2)

because the composite map in the bottom row of the above diagram, namely ( f3 ⊗
D

f4) ◦
( f1 ⊗

D
f2) is the same as ( f3 ◦ f1)⊗

D
( f4 ◦ f2). The tensor product −�− on G(F) is strictly

associative because the object set of G(F) is a monoid, and the tensor product of morphisms
is associative because the tensor product of morphisms in G(F) is inherited from that in D
which is strictly associative. The symmetry natural transformation γ is defined on objects
as follows:

γc1,c2 := F(γC
c1,c2

).

Let f1 : c1 → c3 and f2 : c2 → c4 be a pair of maps in G(F). The following commutative
diagram shows us that γ is a natural isomorphism:

F(c1 ⊗
C

c2)

γc1,c2

,,

λF

//

f1� f2

��

F(c1)⊗
D

F(c2)
γD

F(c1),F(c2)

//

f1⊗
D

f2

��

F(c3)⊗
D

F(c4)

f2⊗
D

f1

��

λF

// F(c2 ⊗
C

c1)

f2� f1

��

F(c3 ⊗
C

c4)

γc3,c4

22

λF // F(c3)⊗
D

F(c4)
γD

F(c3),F(c4) // F(c4)⊗
D

F(c3)
λF // F(c4 ⊗

C
c3)

which shows that γ is a natural transformation. The following equalities verify the symme-
try condition:

γc1,c2 ◦ γc2,c1 = F(γC
c1,c2

) ◦ F(γC
c2,c1

) = F(γC
c1,c2
◦ γC

c2,c1
) = id.

This defines a permutative category structure on the category G(F). Using the definition of
the symmetric monoidal structure on G(F), one can easily check that ΓF is a strict symmetric
monoidal functor.
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