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1. Introduction

We use the usual topological notation and terminology as in [1]. Throughout the paper,
unless otherwise stated, no separation axioms are assumed. The set of natural numbers
is denoted by N, and the first uncountable ordinal is denoted by ω1. If F is a family of
subsets of a space X, A ⊂ X, x ∈ X, then

St(A,F ) = ∪{F ∈ F : F ∩ A 6= ∅}

is the star of A with respect to F ; St({x},F ) is denoted by St(x,F ).
The use of the star operator in topology has a long history. For more details, see [2]

and [3]. Kočinac applied this operator in the field of selection principles and introduced and
studied a number of selection principles using this operator [4–6]. The natural examples for
star selection principles are selection principles in uniform spaces [6–8] and in topological
(and more generally, topologized) groups [9,10]. The survey papers [6,7,11] contain a
detailed exposition on star selection principles theory, an important subfield of selection
principles theory. The number of researchers working in star selection principles theory
is increasing. Several Ph.D. theses on topics in this field have been written in recent
years ([12–19]), and many papers appeared in the literature (see, for example, [20–44]).

In this chapter, which can be viewed as a complement to the survey papers [7,11], we
review up-to-date recent results in this field and present a few new results.

The basic idea in selection principles theory, one of the most dynamic areas of research
in topology in the last 25–30 years (see, for instance, [45]), is:

There are two families of sets, say A and B. For each sequence A1, A2, ... of elements
of A, one selects, by a prescribed procedure, B1 ⊂ A1, B2 ⊂ A2, ... so that from the chosen
B1, B2, ..., by an operation, we obtain an element of B. In this way one can assign a property-
selective P to (almost) each topological property P .

Two classical (star) selection principles, which will be discussed here, are the Menger-
type principle S f in(A,B), where Bns are finite, and the Rothberger-type principle S1(A,B),
where |Bn| = 1 for each n.

We use the following notations for collections of open covers of a space X:
1. O is the collection of open covers of X.
2. Ω (respectively,K) is the collection of ω-covers (respectively, k-covers) of X. An open

cover U of X is said to be an ω-cover (respectively, a k-cover [46] if each finite (respectively,
compact) subset of X is contained in a member of U .
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3. Γ (respectively, Γk) is the collection of γ-covers (respectively, γk-covers) of X. An
open cover of X is called a γ-cover (respectively, a γk-cover [47] if each finite (respectively,
compact) subset of X belongs to all but finitely many elements of the cover.

S f in(O,O) is the Menger property M.
S1(O,O) is the Rothberger property R.
Recall the following definitions of classical star covering selection properties from [4]

(see also [5,7]).
A space X is said to be:
1. Star Menger SM (respectively, star Rothberger SR) if, for each sequence (Un)n∈N of

open covers of X, there is a sequence (Vn)n∈N (respectively, a sequence (Un)n∈N) such that
Vn is a finite subset of Un (respectively, Un ∈ Un) for each n ∈ N, and X =

⋃
n∈N St(

⋃ Vn,Un)
(respectively, X =

⋃
n∈N St(Un,Un)).

2. Strongly star Menger SSM (respectively, strongly star Rothberger SSR) if, for each
sequence (Un)n∈N of open overs of X, there is a sequence (Fn)n∈N of finite subsets of
X (respectively, a sequence (xn)n∈N of elements of X) such that X =

⋃
n∈N St(Fn,Un)

(respectively, X =
⋃

n∈N St(xn,Un)).

3. Star Hurewicz SH (respectively, strongly star Hurewicz SSH) if, for each sequence
(Un)n∈N of open covers of X, there is a sequence (Vn)n∈N (respectively, a sequence (Fn)n∈N)
such that Vn is a finite subset of Un (respectively, Fn is a finite subset of X) for each n ∈ N,
and each x ∈ A belongs to all but finitely many sets St(

⋃ Vn,Un) (respectively, to all but
finitely many sets St(Fn,Un)).

Quite recently, Caruvana and J. Holshouser [48] proposed a new approach to star
selection principles which allows to consider star selection principles as standard classical
selection principles. For this, they introduced two new operators Cons(tellation) (which is
a collection of stars) and Gal(axy) (which is a collection of constellations).

In what follows, we will consider various generalizations and modifications of these
properties. The paper is organized as follows. Section 2 is devoted to recent results on
star selection principles in hyperspaces with various topologies. In Section 3, we discuss
selective versions of covering properties (a) and acc, which can be viewed at the same time
as generalizations of classical star selection principles. In Section 4, we present results on
so-called set star selection properties. The paper ends by proposing lines of possible further
study in the field of star selection principles. The list of references contains up-to-date
works and gives coordinates about the papers, which can be useful to the interested reader.

2. Star Selection Principles and Hyperspaces

Let X be a space. By 2X, we denote the family of closed subsets of X, and by CL(X),
we denote the family of closed nonempty subsets of X. If A is a subset of X and A a family
of subsets of X, then we use the notation

Ac = X \ A and Ac = {Ac : A ∈ A},
A− = {F ∈ CL(X) : F ∩ A 6= ∅}, and A− = {A− : A ∈ A},

A+ = {F ∈ CL(X) : F ⊂ A} and A+ = {A+ : A ∈ A}.

The most known and popular among topologies on 2X and CL(X) is the Vietoris
topology V = V− ∨ V+, where the lower Vietoris topology V− is generated by all sets A−,
A ⊂ X open, and the upper Vietoris topology V+ is generated by sets B+, B open in X
(see [49]).

Let ∆ be a subset of CL(X). We consider only such ∆ which is closed for finite unions
and contains all singletons. Then the upper ∆-topology [50], denoted by ∆+, is the topology
whose subbase is the collection

{(Dc)+ : D ∈ ∆} ∪ {CL(X)}.
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The ∆-topology τ∆ has as a base the family{(
m⋂

i=1

V−i

)
∩ (Bc)+ : B ∈ ∆ and Vi ∈ τ for i ≤ m

}
.

Two important special cases are: 1. ∆ is the family F(X) of all finite subsets of X, and
2. ∆ is the collection K(X) of compact subsets of X. The corresponding ∆+-topologies
(∆-topologies) will be denoted by Z+ (Z) [51] and F+ (F). The F-topology is known as the
Fell topology (or the co-compact topology) [52], and the Z-topology is known as the co-finite
topology.

The first study of selection principles in hyperspaces was carried out by P. Daniels for
Pixley–Roy spaces PR(X) over X [53].

Recall that PR(X) is the space F(X) with the topology whose base is the family

{[A, U] : A ∈ PR(X), U open in X},

where [A, U] = {B ∈ PR(X) : A ⊂ B ⊂ U}.
A similar study was carried out in the papers [54–61].
In 2005, Kočinac started the study of selection properties of hyperspaces with the upper

∆ topology, in particular, with the upper co-compact topology F+ and upper co-finite Z+

topologies. Di Maio, Kočinac and E. Meccariello [62,63] investigated S1 and S f in-covering
properties in 2X and CL(X) under Z+, F+, V+ and V− topologies by using k-covers, ω-
covers and π-networks. In [64], some closure and convergence-selective properties were
investigated.

Motivated by [62,63], Z. Li in his paper [65] introduced kF-covers and cV-covers
(which are different from k-covers and ω-covers) to establish selection principles in CL(X)
endowed with the Fell topology and the Vietoris topology. To explore selection principles in
CL(X) under τF and τV , he introduced the following definitions of hit-and-miss type covers.

Definition 1 ([65]). An open cover U of X (X 6∈ U ) is called a kF-cover of X if, for any compact
subset K of X and any finite collection V1, V2, . . . , Vm of open sets in X with Vi ∩ Kc 6= ∅
(1 ≤ i ≤ m), there exist U ∈ U and a finite set F ⊂ X with F ∩Vi 6= ∅ (1 ≤ i ≤ m) such that
K ⊂ U and F ∩U = ∅.

We denote by KF(X) the collection of all kF-covers of X.

Definition 2 ([65]). Let Y be a subset of X with Y 6= X. An open cover U of Y (Y 6∈ U ) is called
a kF-cover of Y if, for any compact subset K ⊂ Y and any finite family V1, V2, . . . , Vm of open
sets in X with Vi \ Y 6= ∅ (1 ≤ i ≤ m), there exist U ∈ U and a finite set F with F ∩ Vi 6= ∅
(1 ≤ i ≤ m) such that K ⊂ U and F ∩U = ∅.

The collection of all kF -covers of Y with Y 6= X is denoted by KF(Y, X).

Definition 3 ([65]). An open cover U of X (X 6∈ U ) is called a cV-cover of X if, for any finite
family V1, V2, . . . , Vm of open sets in X, there exist U ∈ U and a finite set F with F ∩ Vi 6= ∅
(1 ≤ i ≤ m) such that

⋂m
i=1 Vc

i ⊂ U and F ∩U = ∅.

The collection of all cV-covers of X is denoted by CV(X).

Definition 4 ([65]). Let Y be a subset of X with Y 6= X. An open cover U of Y (Y 6∈ U ) is
called a cV-cover of Y if, for any family V1, V2, . . . , Vm of open sets in X with

⋂m
i=1 Vc

i ⊂ Y and
Vi \Y 6= ∅ (1 ≤ i ≤ m), there exist U ∈ U and a finite set F with F ∩Vi 6= ∅ (1 ≤ i ≤ m) such
that

⋂m
i=1 Vc

i ⊂ U and F ∩U = ∅.

The collection of all cV-covers of Y with Y 6= X is denoted by CV(Y, X).

Li also defined πF-networks and πV-networks of a space X.
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Definition 5 ([65]). (1) A family ξ = {(K; V1, V2, . . . Vm) : K a compact subset of
X, V1, V2, . . . Vm open subsets of X with Vi ∩ Kc 6= ∅, i ≤ m, m ∈ N} is called a πF-network of
X if, for each open set U ⊂ X with U 6= X, there exist a (K; V1, V2, . . . Vm) ∈ ξ and a finite set
F ⊂ X with F ∩Vi 6= ∅, i ≤ m, such that K ⊂ U and F ∩U = ∅.

ΠF denotes the collection of πF networks of X.

(2) A family ζ = {(V1, V2, . . . Vk) : V1, V2, . . . Vm open subsets of X, m ∈ N} is called a
πV-network of X if, for each open set U ⊂ X with U 6= X, there exist a (V1, V2, . . . , Vm) ∈ ζ and
a finite set F ⊂ X with F ∩Vi 6= ∅, i ≤ m, such that

⋂
i≤m Vc

i ⊂ U and F ∩U = ∅.
ΠV denotes the collection of πV-networks of X.

By using kF-covers, cV-covers, πF-networks, and πV-networks, he investigated and
characterized the Menger, Rothberger (and Hurewicz and some other properties) properties
of CL(X) with the topologies V and F.

The notions of kF-covers, cV-covers, πF-networks, and πV-networks have been gener-
alized in [29,66,67] in terms of subsets of CL(X).

In [67], the authors generalized kF-covers and cV-covers and defined the covers that
they called ∆F-covers, ∆ ⊂ CL(X), which reduce to kF-covers and cV-covers for special ∆.
The notion of ∆F-covers is obtained by replacing in Definition 1 "K compact" with "K ∈ ∆".
By using this generalization, two important properties in selection principles theory, the
Reznichenko and Pytkeev properties, have been characterized in hyperspaces equipped
with the τ∆ topology. We do not present these characterizations because they are not related
to the theory of star selection principles.

In [66], the authors introduced the notion of a πF(∆)-network, ∆ ⊂ CL(X), by re-
placing in Definition 5(1) of a πF-network "U is open" by "U ∈ ∆c", and using it, they
characterized the SR and SSR properties in hyperspaces endowed with the Fell topology.
For this, they introduced two selection principles, as follows.

Definition 6. (1) FELL(ΠF(∆), ΠF(∆)): For each sequence (Jn : n ∈ N) of elements of ΠF(∆),
there is a sequence (Un : n ∈ N) of elements of ∆c such that J =

⋃
n∈N{(Kn

s ; Vn
1,s, . . . , Vn

ms ,s) ∈
Jn : Kn

s ⊂ Un, Vn
i,s * Un, i ≤ ms} belongs to ΠF(∆).

(2) FELL∗(ΠF(∆), ΠF(∆)): For each sequence (Jn = {(Kn
s ; Vn

1,s, . . . , Vn
ms ,s) : s ∈ Sn} : n ∈

N) of elements of ΠF(∆), for each n there is sn ∈ Sn such that J =
⋃

n∈N{(Kn
s ; Vn

1,s, . . . ,
Vn

ms ,s) : there is U ∈ ∆c, such that (Kn
s ∪ Kn

sn) ⊂ U, Vn
i,s * U, i ≤ ms and Vn

j,sn
* U, j ≤ msn}

belongs to ΠF(∆).

Then, they proved the following two theorems.

Theorem 1 ([66], Theorem 2.4). The following are equivalent:

(1) The hyperspace (∆,F) is SR;
(2) X satisfies the selection principle FELL∗(ΠF(∆), ΠF(∆)).

Theorem 2 ([66], Theorem 2.2). The following are equivalent:

(1) The hyperspace (∆,F) is SSR;
(2) X satisfies the selection principle FELL(ΠF(∆), ΠF(∆)).

Important consequences of these two results are the following two corollaries.

Corollary 1. For a space X, the following hold:

(1) (CL(X),F) is SR if and only if X satisfies FELL∗(ΠF, ΠF);
(2) (K(X),F) is SR if and only if X satisfies FELL∗(ΠF(K(X), ΠF(K(X))));
(3) (F(X),F) is SR if and only if X satisfies FELL∗(ΠF(F(X), ΠF(F(X)))).

Corollary 2. For a space X, the following hold:
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(1) (CL(X),F) is SSR if and only if X satisfies FELL(ΠF, ΠF);
(2) (K(X),F) is SSR if and only if X satisfies FELL(ΠF(K(X), ΠF(K(X))));
(3) (F(X),F) is SSR if and only if X satisfies FELL(ΠF(F(X), ΠF(F(X)))).

A similar scenario was applied in [68] for characterizations of the properties SM and
SSM. For this, the authors first introduced the following selection principles.

Definition 7. (1) FELLM(ΠF(∆), ΠF(∆)): For each sequence (Jn : n ∈ N) of elements of
ΠF(∆), there is a sequence (Un : n ∈ N) of finite subsets of ∆c with Un 6= ∅, n ∈ N, such that
J =

⋃
n∈N{(Kn

s ; Vn
1,s, . . . , Vn

ms ,s) ∈ Jn : there is U ∈ Un such that Kn
s ⊂ U, Vn

i,s * U, i ≤ ms}
belongs to ΠF(∆).

(2) FELL∗M(ΠF(∆), ΠF(∆)): For each sequence (Jn = {(Kn
s ; Vn

1,s, . . . , Vn
ms ,s) : s ∈ Sn} :

n ∈ N) of elements of ΠF(∆) for each n there are finite Tn ⊂ Sn, n ∈ N, such that J =⋃
n∈N{(Kn

s ; Vn
1,s, . . . , Vn

ms ,s) ∈ Jn : there are U ∈ ∆c and sn ∈ Tn such that (Kn
s ∪ Kn

sn) ⊂
U, Vn

i,s * U, i ≤ ms and Vn
j,sn

* U, j ≤ msn} belongs to ΠF(∆).

The characterizations of SM and SSM in hyperspaces with the Fell topology are given
in the next two theorems.

Theorem 3 ([68]). The following are equivalent:

(1) The hyperspace (∆,F) is SM;
(2) X satisfies the selection principle FELL∗M(ΠF(∆), ΠF(∆)).

Theorem 4 ([68], Theorem 2.2). The following are equivalent:

(1) The hyperspace (∆,F) is SSM;
(2) X satisfies the selection principle FELLM(ΠF(∆), ΠF(∆)).

Corollaries of these two results are:

Corollary 3. For a space X, the following hold:

(1) (CL(X),F) is SM if and only if X satisfies FELL∗M(ΠF, ΠF);
(2) (K(X),F) is SM if and only if X satisfies FELL∗M(ΠF(K(X), ΠF(K(X))));
(3) (F(X),F) is SM if and only if X satisfies FELL∗M(ΠF(F(X), ΠF(F(X)))).

Corollary 4. For a space X, the following hold:

(1) (CL(X),F) is SSM if and only if X satisfies FELLM(ΠF, ΠF);
(2) (K(X),F) is SSM if and only if X satisfies FELLM(ΠF(K(X), ΠF(K(X))));
(3) (F(X),F) is SSM if and only if X satisfies FELLM(ΠF(F(X), ΠF(F(X)))).

The following is an interesting result on the coincidence of SSM and SSR properties on
hyperspaces.

Theorem 5 ([68]). Let X be a space and ∆ ⊂ CL(X). The following are equivalent:

(1) (∆,V−) is SSM;
(2) (∆,V−) is SSR.

In [4], the following general form of a star selection principle was introduced. Let A
and B be collections of some kind of open covers of space X andM be a family of subsets
of X. Then the symbol SS∗M(A,B) denotes the selection principle that for each sequence
(Un : n ∈ N) of elements of A, there is a sequence (Mn : n ∈ N) of elements ofM such that
{St(Mn,Un) : n ∈ N} ∈ B. IfM is the collection of compact subsets of X, then the spaces
satisfying SS∗M(O,O) are called star-K-Menger in [69].

In ([66], Theorem 3.4), the following was proved.
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Theorem 6. For a space X and ∆ ⊂ CL(X), the following statements are equivalent:

(1) (∆,V−) is SSR;
(2) X satisfies SS∗∆(O,O).

For ∆ ∈ {K(X),F(X)}, the following corollaries of Theorem 6 are obtained.

Corollary 5. For a space X, the following are true:

(1) (K(X),V−) is SSR if and only if X is star-K-Menger;
(2) (F(X),V−) is SSR if and only if X is SSM.

From here, together with Theorem 5 and its corollaries, one obtains the following
results.

Corollary 6. For a space X, the following hold:

(1) (K(X),V−) is SSM;
(1) (K(X),V−) is SSR;
(3) X is star-K-Menger.

Corollary 7. For a space X, the following hold:

(1) (F(X),V−) is SSM;
(1) (F(X),V−) is SSR;
(3) X is SSM.

In [70], the authors generalized the notion of a πV-network and introduced the notion
of a πV(∆)-network as follows. Let ∆ ⊂ CL(X) and ξ = {(U1, U2, . . . , Um) : Ui open , m ∈
N}. Then, ξ is said to be a πV(∆)-network for X if, for each U ∈ ∆c, there exist a (V1, ..., Vm) ∈
ξ and a finite F ⊂ X intersecting each Vi, i ≤ m, such that

⋂m
i=1 Vc

i ⊂ U and F ∩U = ∅.
ΠV(∆) denotes the collection of πV(∆)-networks of X.
The authors also introduced two technical selection principles.

Definition 8. (1) SΠV (ΠV(∆), ΠV(∆)): For each sequence (Jn : n ∈ N) of elements of ΠV(∆),
there is a sequence (Un : n ∈ N) of elements of ∆c such that J =

⋃
n∈N{(Vn

1,s, . . . , Vn
ms ,s) ∈ Jn :⋂

i≤ms(V
n
i,s)

c ⊂ Un, Vn
i,s * Un, i ≤ ms} belongs to ΠV(∆).

(2) S∗ΠV
(ΠV(∆), ΠV(∆)): For each sequence (Jn = {(Vn

1,s, . . . , Vn
ms ,s) : s ∈ Sn} : n ∈ N) of

elements of ΠV(∆), for each n, there are sn ∈ Sn, n ∈ N, such that J =
⋃

n∈N{(Vn
1,s, . . . , Vn

ms ,s) ∈
Jn : there is U ∈ ∆c such that (

⋂
i≤ms(V

n
i,s)

c) ∪ (
⋂

i≤msn
(Vn

i,sn
)c) ⊂ U, Vn

i,s * U, i ≤ ms, Vn
j,sn

*
U, j ≤ msn} belongs to ΠF(∆).

Theorem 7 ([70], Theorem 2.11). Given a topological space X, the following conditions are
equivalent:

(1) (∆,V) is SR;
(2) X satisfies S∗ΠV

(ΠV(∆), ΠV(∆)).

Corollary 8 ([70], Corollary 2.12). Let X be a topological space, and let ∆ be one of the following hy-
perspaces: CL(X), K(X), F(X). Then, (∆,V) is SR if and only if X satisfies SΠV (ΠV(∆), ΠV(∆)).

Theorem 8 ([70], Theorem 2.8). Given a topological space X, the following conditions are equiva-
lent:

(1) (∆,V) is SSR;
(2) X satisfies SΠV (ΠV(∆), ΠV(∆)).
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Corollary 9 ([70], Corollary 2.9). Let X be a topological space, and let ∆ be one of the following
hyperspaces: CL(X), K(X), F(X) or CS(X) (the family of all convergent sequences in X). Then,
(∆,V) is SSR if and only if X satisfies SΠV (ΠV(∆), ΠV(∆)).

Further generalizations have been made in the papers [29,71,72], where the authors
consider two subsets Γ and ∆ of CL(X) and define c∆(Γ)-covers and π∆(Γ)-networks to
investigate the hyperspaces (Λ, τ∆). As in the results above, they introduce a few technical
selection principles for a space X and then obtain a number of interesting results on the star
selection principles of Rothberger- and Menger-type (and other properties) in hyperspaces
in terms of the mentioned selection principles. Some of these results generalize the results
presented above, while some are completely new.

At the end of this section, we notice that the papers [73,74] contain a series of nice re-
sults on selective two-person infinitely long games in hyperspaces, naturally corresponding
to selection principles.

Additionally, we would like to mention that the paper [75] gives interesting connec-
tions between classical selection principles and star selection principles.

3. Selective Version of the acc and (a) Properties

The following subclass of the class of countably compact spaces was defined and
studied by Matveev in [76]. A space X is said to be an absolutely countably compact space
(shortly acc-space) if, for each open cover U of X and each dense subset D of X, there exists
a finite set K ⊂ D such that St(K,U ) = X. Matveev [77] also introduced a property which
is a a generalization of countable compactness: a space X is said to be an (a)-space if, for
any open cover U of X and any dense subset D of X, there is a closed discrete (in X) set
K ⊂ D such that St(K,U ) = X.

There are three natural ways to define selective versions of these properties.
1. For each sequence (Un : n ∈ N) of open covers of X and each dense subset D of

X, there is a sequence (Kn : n ∈ N) of finite (resp., closed discrete) subsets of D such that⋃
n∈N St(Kn,Un) = X.

2. For each sequence (Un : n ∈ N) of open covers of X and each sequence (Dn : n ∈ N)
of dense subsets of X, there is a sequence (Kn : n ∈ N) of finite (resp. closed discrete)
subsets of Dn, n ∈ N, such that

⋃
n∈N St(Kn,Un) = X.

3. For each open cover U of X and each sequence (Dn : n ∈ N) of dense subsets of X,
there is a sequence (Kn : n ∈ N) of finite (resp., closed discrete) subsets of Dn, n ∈ N such
that

⋃
n∈N St(Kn,Un) = X.

The first approach was applied in [78], and the second one was applied in several
papers that appeared recently (see [79–85]). The third approach was applied in [86] under
the name selectively star-Lindelöf spaces: a space X is selectively star-Lindelöf if, for any
open cover U of X and any sequence (Dn : n ∈ N) of dense subsets of X, there are finite
sets Fn ⊂ Dn, n ∈ N, such that St(

⋃
n∈N Fn,U ) = X. Then, these spaces have been studied

in more detail in [79,87] (where the authors use the name selectively absolutely star-Lindelöf
spaces). Quite recently, in [83], the authors studied Hurewicz-type spaces that they call
H-star-Lindelöf.

In this paper, we define selective versions of the properties (a) and acc following a
general idea in the star selection principles theory [4,7].

First, we give the following general selective version of the notions of acc-spaces and
(a)-spaces following the terminology and notation in [84,85].

Definition 9. Let X be a space. Denote by A and B collections of some open covers of X, and by C
a collection of subsets of X. Then, X is said to be a strictly selectively (A,B)-(a)C -space, denoted
by X ∈ StrSel(A,B)-(a)C , if, for each sequence (Un : n ∈ N) of elements of A and each sequence
(Dn : n ∈ N) of dense subsets of X, there is a sequence (Kn : n ∈ N) of elements of C such that
each Kn is a subset of Dn and {St(Kn,Un) : n ∈ N} ∈ B.
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In this way, we obtain several classes of spaces. The spaces satisfying
(1) StrSel(O,O)-(a)finite we call Menger acc-spaces (shortly, M-acc-spaces);
(2) StrSel(O, Γ)-(a)finite we call Hurewicz acc-spaces (shortly H-acc-spaces);
(3) StrSel(O,O)-(a)singleton we call Rothberger acc-spaces (shortly, R-acc-spaces);
(4) StrSel(O, Ω)-(a)finite are called ω-Menger acc-spaces (shortly, ω-M-acc-spaces);
(5) StrSel(O, Ω)-(a)singleton are called ω-Rothberger acc-spaces (shortly, ω-R-acc-spaces);
(6) StrSel(O, Γk)-(a)finite are called k-Hurewicz acc-spaces (shortly, k-H-acc-spaces);
(7) StrSel(O,O)-(a)closeddiscrete will be called strictly selectively (a)-spaces.
Observe that M-acc spaces have already been studied in [79] using the name selectively

strongly star-Menger spaces. The relations of this class of spaces with absolutely strongly
star Menger spaces (shortly, aSSM-spaces [78] and the class of selectively absolutely star-
Lindeloöf spaces [3] are given in the following diagram:

M⇒ M-acc⇒ aSSM⇒ SSM⇒ SM.

Notice that in the class of Hausdorff paracompact spaces, all these classes are equiva-
lent.

Additionally, let us mention that recently (and independently), the classes of H-acc
and R-acc spaces have been considered under different names in [82].

In particular, the paper [82] contains interesting results on cardinality restrictions of
the form |X|, being at most small combinatorial cardinals d, b, and cov(M).

For the convenience of the reader, we give definitions of small combinatorial cardinals.
Let NN be the countable Tychonoff power of the discrete space D(ω). A natural pre-order
≺∗ on NN is defined by f ≺∗ g if and only if f (n) ≤ g(n) for all but finitely many n. A
subset F of NN is said to be dominating if, for each g ∈ NN, there is a function f ∈ F such
that g ≺∗ f . A subset F of NN is called bounded if there is an g ∈ NN such that f ≺∗ g for
each f ∈ F. The symbol b (resp. d) denotes the least cardinality of an unbounded (resp.
dominating) subset of NN. Another uncountable small cardinal is the cardinal cov(M), the
covering number of the ideal of meager subsets of R characterized in terms of subsets of NN

cov(M) = min{|F| : F ⊂ NN such that ∀g ∈ NN ∃ f ∈ F with f (n) 6= g(n)∀n ∈ N}.

We also need the following: a space X is said to be absolutely strongly star Lindelöf aSSL
if, for each open cover U of X and each dense subset D of X, there is a countable set C ⊂ D
such that St(C,U ) = X [3].

Theorem 9 ([82]). The following assertions hold:

(1) If a space X of cardinality less than d is aSSL, then it is M-acc;
(2) If a space X of cardinality less than b is aSSL, then it is H-acc;
(3) If a space X of cardinality less than cov(M) is aSSL, then it is R-acc-space.

Recall that e(X) is the extent of a space X, the supremum of cardinalities of closed
discrete subsets of X.

Theorem 10 ([82]). Let X be a space of countable extent. Then, the following hold:

(1) If |X| < d, then X is selectively (a) if and only if X is M-acc;
(2) If |X| < b, then X is selectively (a) if and only if X is H-acc;
(3) If |X| < cov(M), then X is selectively (a) if and only if X R-acc.

We are going now to present a few properties of the classes M-acc and R-acc.
The following topological construction is well-known. Let (X, τ) be a topological

space. The Alexandroff duplicate of X (see [1]) is the set AD(X) := X× {0, 1} equipped with
the following topology:

(i) All points (x, 1), x ∈ X, are isolated;
(ii) Points (x, 0) have a local base of the form (U × {0, 1}) \ {(x, 1)}, where U is open

in X and x ∈ U.
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For many topological properties P , the space AD(X) has P if X has P . Such covering
properties are, for example, compactness, Lindelöfness, and (hereditary) paracompactness.

We investigate similar questions for the classes defined above.
In the sequel, we denote by IX the set of isolated points of a space X.
The following fact is used in the sequel.

Lemma 1. Each dense subset of AD(X) contains the set (IX × {0}) ∪ (X× {1}).

Theorem 11 ([84,85]). If the product X × Y of a space X and a compact space Y is strictly
selectively (a), then X is strictly selectively (O,O)-(a)closed.

Problem 1. Is the product of a strictly selectively (a)-space X and a metrizable compact space Y
strictly selectively (a)?

Theorem 12 ([84,85]). If X ∈ StrSel(O,O)-(a)discrete and e(AD(X)) < ω1, then AD(X) is also
in StrSel(O,O)-(a)discrete.

Notice that a result similar to Theorem 12 was obtained in ([78], Theorem 2.9).

Theorem 13 ([84,85]). If a space X is M-acc and e(AD(X)) < ω1, then AD(X) is also M-acc.

For p ∈ N, denote by Mp−acc the class of M-acc spaces such that finite sets An ⊂ Dn
in the definition of M-acc spaces have, at most, p elements.

The reader can find the proof of the following theorem in [85].

Theorem 14 ([84,85]). If a space X is R-acc and e(AD(X)) < ω1, then AD(X) is M3−acc.

The following two theorems have been announced without proofs in [85].

Theorem 15. If the Alexandroff duplicate AD(X) of a space X is strictly selectively (O,O) −
(a)countable, then e(X) < ω1.

Proof. Suppose to the contrary that there is a closed discrete subset B of X having car-
dinality ≥ ω1. The set B × {1} is closed and open in AD(X). For each n ∈ N let
An = (B×{1}) \ (Cn×{1}), where each Cn is a countable subset of B. Every An is a closed
(discrete) subset of AD(X). For each n, define Un = (AD(X) \An)×{{(x, 1)} : (x, 1) ∈ An}.
We claim that the sequence (Un : n ∈ N) of open covers of AD(X) and the dense set
D = (IX ×{0})∪ (X×{1}) ⊂ AD(X) witness that AD(X) is not strictly selectively (O,O)-
(a)countable. Indeed, if (Fn : n ∈ N) is a sequence of countable sets with Fn ⊂ Dn, then there
is a point b ∈ B such that (b, 1) /∈ ⋃n∈N Fn. Since (b, 1) is an isolated point in AD(X), the
set {(b, 1)} is the only element of every Un that contains (b, 1), and (b, 1) /∈ St(Fn,Un) for
each n ∈ N. This contradicts the assumption on AD(X).

Theorem 16. Let A and B be subspaces of a space X such that A ∩ B = ∅ and Z = (A ×
{1}) ∪ (B× {0}). If e(Z) < ω1 and B is strictly selectively (O,O)-(a)discrete, then Z is strictly
selectively (O,O)-(a)discrete.

Proof. Let (Un : n ∈ N) be a sequence of open covers of Z and let (Dn : n ∈ N) be a
sequence of dense subsets of Z. One may suppose that Dn = (En × {0}) ∪ (A × {1}),
where En is a dense subset of B \ A because every dense subset of Z contains the set Dn.
Thus, En is dense in B. It remains to repeat the proof of Theorem 12 (or of the proof of
Theorem 2.9 in [78]) with small appropriate changes.
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4. Set Star Selection Properties

Let X be a topological space, A be a subset of X, and C be a collection of subsets of
X. It is understood that properties of A or of members of the collection C depend on their
location in X. Thus, we can speak about relative properties of A or of elements of C in X.
In other words, we have the following:

A.V. Arhangel’skii initiated this kind of investigation in [88,89].
A similar line of investigation was recently proposed in the theory of (star) selection

principles (see, [90–94]).
The set star selection properties (in a very general form) were first presented in .

Definition 10 ([93]). Let C be a family of nonempty subsets of a space X. We say that X is:

(1) C-star Menger (respectively, weakly C-star Menger, almost C-star Menger, faintly C-
star Menger) if for each A ∈ C and each sequence (Un)n∈N of covers of A by sets open in
X, there is a sequence (Vn)n∈N such that Vn is a finite subset of Un for each n ∈ N, and
A ⊂ ⋃

n∈N St(
⋃ Vn,Un) (respectively, A ⊂ ⋃

n∈N St(
⋃ Vn,Un), A ⊂ ⋃

n∈N St(
⋃ Vn,Un),

A ⊂ ⋃n∈N St(
⋃ Vn,Un));

(2) C-strongly star Menger (respectively, weakly C-strongly star Menger, almost C-strongly
star Menger) if, for each A ∈ C and each sequence (Un)n∈N of covers of A by sets open in X,
there is a sequence (Fn)n∈N of finite subsets of A such that A ⊂ ⋃n∈N St(Fn,Un) (respectively,
A ⊂ ⋃n∈N St(Fn,Un), A ⊂ ⋃n∈N St(Fn,Un)).

(3) C-star Rothberger (respectively, weakly C-star Rothberger, almost C-star Rothberger,
faintly C-star Rothberger) if, for each A ∈ C and each sequence (Un)n∈N of collections of sets
open in X such that A ⊂ ⋃Un, there is a sequence (Un)n∈N such that Un ∈ Un for each n ∈ N
and A ⊂ ⋃

n∈N St(Un,Un) (respectively, A ⊂ ⋃
n∈N St(Un,Un), A ⊂ ⋃

n∈N St(Un,Un) ,
A ⊂ ⋃n∈N St(Un,Un));

(4) C-strongly star Rothberger (respectively, weakly C-strongly star Rothberger, almost
C-strongly star Rothberger) if, for each A ∈ C and each sequence (Un)n∈N of collections of
sets open in X such that A ⊂ ⋃Un, there is a sequence (xn)n∈N of elements of A such that
A ⊂ ⋃n∈N St(xn,Un) (respectively, A ⊂ ⋃n∈N St(xn,Un), A ⊂ ⋃n∈N St(xn,Un));

(5) C-star Hurewicz (respectively, almost C-star Hurewicz, faintly C-star Hurewicz) if, for
each A ∈ C and each sequence (Un)n∈N of collections of sets open in X such that A ⊂ ⋃Un,
there is a sequence (Vn)n∈N such that Vn is a finite subset of Un for each n ∈ N and each
x ∈ A belongs to all but finitely many sets St(

⋃ Vn,Un) (respectively, to all but finitely many
sets St(

⋃ Vn,Un) to all but finitely many St(
⋃ Vn,Un));

(6) C-strongly star Hurewicz (respectively, almost C-strongly star Hurewicz) if, for each
A ∈ C and each sequence (Un)n∈N of collections of sets open in X such that A ⊂ ⋃Un, there
is a sequence (Fn)n∈N of finite subsets of A such that each x ∈ A belongs to all but finitely
many sets St(Fn,Un) (respectively, to all but finitely many sets St(Fn,Un)).

When C is the family of all nonempty subsets of X, then we say that X is set star
Menger (set-SM) (set star Rothberger (set-SR), set star Hurewicz (set-SH)), and similarly for
other classes defined in the above definition.

Evidently, if a space X belongs to C and X is C-set (strongly) star Menger, then X is
(strongly) star Menger.

Let set-SC and set SSC be abbreviations for set starcompact and set strongly starcom-
pact spaces (for starcompact and strongly starcompact spaces, see [2,3]). Then, we have the
following diagram for the Menger-type properties (see [91]).
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set−SSC→ set−SC

↓ ↓

Menger→ set−SSM → set−SM

↓ ↓

SSM → SM

Diagram 1

We have the diagram for Hurewicz-type properties similar to Diagram 1 [95].

set−SSC→ set−SC

↓ ↓

Hurewicz→ set−SSH → set−SH

↓ ↓

SSH → SH

Diagram 2

Observe that there are examples showing that none of the implications in Diagrams 1
and 2 are reversible [92,95].

For example, the ordinal space [0, ω1) with the order topology is a set strongly star
Menger space (hence set star Menger) which is not Menger because it is not Lindelöf [1].

We give one more example.

Example 1 ([92], Example 5). There exists a T1 set star-Menger space which is not set strongly
star-Menger.

Let X = A ∪ B, where A = {aα : α < c} is any set with |A| = c and B is any countable
set such that any element of B is not in A. Topologize X as follows:

(i) For each aα ∈ A and each finite subset F ⊂ B, {aα} ∪ (B \ F) is a basic open
neighborhood of aα;

(ii) Each element of B is isolated.

Example 2 ([95], Example 2.4). There exists a Hausdorff star Hurewicz space, which is not set
star Hurewicz.

In some classes of spaces, certain properties from Diagram 1 coincide.

Theorem 17. If X is a paracompact Hausdorff space, then the following are equivalent:

(1) X is Menger;
(2) X is set strongly star-Menger;
(3) X is strongly star-Menger;
(4) X is set star-Menger;
(5) X is star-Menger.

The subspace Y = {α + 1 : α is a limit ordinal} of [0, ω1) that is not set star Menger
(hence not set strongly star Menger). Therefore, the properties set-SM and set-SSM are not
hereditary. However, set star-Mengerness and set strongly star-Mengerness are preserved
by clopen subspaces. They are also preserved by continuous mappings.
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What about preimages? We give a result on preimages of set strongly star-Mengerness.
For this we need a new concept defined as follows. We call a space X nearly set stongly
star-Menger if, for each A ⊂ X and each sequence (Un : n ∈ N) of open covers of X, there is
a sequence (Fn : n ∈ N) of finite subsets of X such that A ⊂ ⋃n∈N St(Fn,Un).

Theorem 18 ([92], Theorem 3.5). Let f : X → Y be an open and closed, finite-to-one continuous
mapping from a space X onto a set strongly star-Menger space Y. Then, X is nearly set strongly
star-Menger.

The product of two set star-Menger spaces need not be set star-Menger. In fact, there
exist two countably compact spaces X and Y such that X×Y is not set star-Menger.

Moreover, there exist a set star-Menger space X and a Lindelöf space Y such that X×Y
is not set star-Menger.

There exist a countably compact (hence, set star-Menger) space X and a Lindelöf space
Y such that X×Y is not set star-Menger.

Indeed, let X = [0, ω1) be equipped with the order topology, and let Y = [0, ω1] with
the following topology. Each point α < ω1 is isolated, and a set U containing ω1 is open if
and only if Y \U is countable. Then, X is countably compact (hence, set star-Menger) and
Y is Lindelöf. However, X×Y is not set star-Menger.

For more results on set star selection principles, we refer to the papers [31,96–98] and
the very recent article [81].

5. Directions of Further Investigation

We end this chapter by proposing some lines of the future research in the field of star
selection properties. We suggest the investigation of the properties defined below.

5.1. Related to the Classical Star Selection Principles

Definition 11. Let p be a given natural number, and let A and B be collections of some kind of
open covers of a space X. X is said to satisfy:

(1) S∗p(A,B) (respectively, SS∗p(A,B)) if, for each sequence (Un : n ∈ N) of elements of
A, there is a sequence (Vn : n ∈ N) (respectively, a sequence (Fn : n ∈ N)) such that for each
n, Vn ∈ [U ]≤p (respectively, Fn ∈ [X]≤p) and {St(

⋃ Vn,Un) : n ∈ N} ∈ B (respectively,
{St(Fn,Un) : n ∈ N} ∈ B).

• S∗p(O,O) is called p-star-Menger SMp;
• SS∗p(O,O) is called p-strongly star Menger SSMp;
• S∗p(O, Ω) is called p-ω-star-Menger ωSMp;
• SS∗p(O, Ω) is called p-ω-strongly star Menger ωSSMp;
• S∗p(O, Γ) is called p-star-Hurewicz SHp;
• SS∗p(O, Γ) is called p-strongly star Hurewicz SSHp.

Notice that for p = 1, we have the classical star Rothberger-type properties.
It would be interesting to also study spaces which are S∗p(A,B) and SS∗p(A,B) for

some p ∈ N.
Additionally, the situation when in the above definition for each n, |Vn| ≤ n or |Fn| ≤ n

is worthwhile to investigate.

5.2. Related to Section 3

Definition 12 ([85]). A topological space X is said to be:

• Weakly M-acc (shortly, wM-acc) (respectively, almost M-acc (shortly, aM-acc)) if, for each
sequence (Un : n ∈ N) of open covers of X and each sequence (Dn : n ∈ N) of dense subsets
of X, there are finite sets Fn ⊂ Dn, n ∈ N, such that

⋃
n∈N St(Fn,Un) = X (respectively,⋃

n∈N St(Fn,Un) = X).
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• Weakly R-acc (shortly, wR-acc) (respectively, almost R-acc (shortly, aR-acc)) if, for each
sequence (Un : n ∈ N) of open covers of X and each sequence (Dn : n ∈ N) of dense
subsets of X, there are an ∈ Dn, n ∈ N such that

⋃
n∈N St(an,Un) = X (respectively,⋃

n∈N St(an,Un) = X).
• almost H-acc (shortly, aH-acc) if, for each sequence (Un : n ∈ N) of open covers of X and

each sequence (Dn : n ∈ N) of dense subsets of X, there are finite sets Fn ⊂ Dn, n ∈ N such
that each x ∈ X belongs to St(Fn,Un) for all but finitely many n.

Parallel to the study of properties of classes of spaces defined in the previous definition,
it may be interesting to find examples distinguishing these properties from the properties
M-acc, R-acc, and H-acc.
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46. Di Maio, G.; Kočinac, L.D.R.; Meccariello, E. Applications of k-covers. Acta Math. Sin. Ser. 2006, 22, 1151–1160. [CrossRef]
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84. Kočinac, L.D.R.; Özçağ, S. Selective versions of acc and (a) spaces. 2021, preprint.
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