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Abstract: In recent years, there has been increasing attention on the development of non-destructive
evaluation (NDE) methods using guided waves for long-length materials such as thin plates and
pipes. The guided waves are capable of long-distance propagation in thin plates and pipes, and
they exhibit properties such as multimodality and dispersion. These characteristics of the guided
waves make inspection using guided waves challenging. In this study, we apply a 2-D elastodynamic
time-reversal method to detect surface breaking cracks of a thin plate where guided waves are
present. The finite element method (FEM) is used to calculate the scattered waves from surface
breaking cracks and their corresponding time-reversal waves. We also employ topological sensitivity
as an assessment index for detecting surface breaking cracks using the time-reversal method. As
numerical examples, we demonstrate guided wave propagation, scattering, and the time-reversal
wave propagation obtained by using the FEM. Finally, we present the results of surface breaking
crack detection in a thin plate and discuss the validity and effectiveness of the proposed method.

Keywords: inverse problem; FEM; topological sensitivity; time-reversal method; guided waves;
2-D elastodynamics

1. Introduction

In recent years, there has been increasing attention on the development of non-
destructive evaluation (NDE) methods using guided waves [1] for long-length materials
such as thin plates and pipes. The guided waves are capable of long-distance propa-
gation in thin plates and pipes, and they exhibit properties such as multimodality and
dispersion [2,3]. These characteristics contribute to the complexity of the guided wave
propagation, making it challenging to estimate the position of defects in thin plates and
pipes. Numerical simulations, including the finite difference method (FDM) [4], finite
element method (FEM) [5], and boundary element method (BEM) [6], play a crucial role
in understanding complex ultrasonic guided wave propagation phenomena. In fact, nu-
merous simulations of guided waves using such numerical analysis methods have been
conducted [7–14].

On the other hand, the objective of ultrasonic NDE is to detect defects in the material
being inspected and to estimate their size, position, and other characteristics. Therefore,
several studies have been conducted to reconstruct defects in the material being inspected
using guided waves. Gunawan et al. developed a method called the mode exciting
method [15] and have determined the relationship between reflection and transmission
coefficients, and defects for each guided wave mode. Saitoh et al. [16] have been working
on estimating a defect in lap joints using a fast boundary element method called the
fast multipole boundary element method (FMM) [17]. Cho et al. [18] investigated the
interactions of elastic guided waves with various defects to explore defect characterization
possibilities. They employed a hybrid boundary element method (BEM) combined with the
elastodynamic boundary integral equation and the Lamb wave normal mode expansion
technique. Liu et al. [19] have proposed a two-stage reconstruction algorithm using PWL
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(Lamb wave tomography), aiming for rapid inspection. In addition, Wang et al. [20]
attempted to detect defects within plates using the SH wave by applying the inverse
scattering technique based on the Born approximation [21,22]. Additionally, Han et al. [23]
used neural networks to estimate defects within plates.

Thus, though many studies have been conducted on inverse analysis using guided
waves, the recent proposal of NDE4.0 [24] has drawn attention to NDE utilizing data science
and information technology. The time-reversal method can be pointed out as an inverse
analysis technique that is relatively close to the concept of NDE4.0. The time-reversal
method was first developed by Fink [25]. The time-reversal method is an inverse analysis
technique that fully exploits the reversibility and reciprocity of wave propagation. The scat-
tered waves from a defect observed at the measurement points are time-reversed and then
virtually re-introduced into the test material [26–28]. During this process, the propagation
of the time-reversed waves is replicated using numerical simulations such as FEM and BEM.
These operations are similar to the concept of digital twins, making them well-matched
with the NDE4.0 concept. In general, the time-reversal method determines the position of
defects as the convergence point of the time-reversed wave. However, when applying this
time-reversal method to defect detection in thin plates, the estimation of the convergence
position of the time-reversed waves becomes extremely challenging due to their repeated
reflections by the top and bottom surfaces of the plate. This problem has been addressed
using topological sensitivity, which is widely used in the field of structural optimization
and topology optimization [29,30]. In fact, successful inverse analysis of surface cracks in a
thin plate using SH waves has been achieved [31].

Thus, in this paper, the previous work [31] by the author using the SH wave is extended
to a 2-D elastic wave problem considering in-plane wave propagation. In the following,
we first describe the problem to be solved. However, instead of using scattered waves
obtained from actual measurement experiments, we use scattered waves calculated by
the FEM. Consequently, the problem to be addressed involves FEM simulations for both
scattered waves and time-reversal waves. Next, we briefly explain the FEM formulation
for 2-D elastodynamics and the concept of topological sensitivity. Then, we will present
the results of estimating the position of defects using the time-reversal method with the
topological sensitivity. By comparing and examining these results with the actual positions
of defects, we can evaluate the applicability and performance of the proposed method.

2. Problem Statement

In this section, we discuss the analysis model, conditions, and the FEM for Lamb wave
propagation and scattering in the plate.

2.1. Analysis Model and Conditions

Let us consider 2-D guided wave propagation and scattering by surface breaking
cracks in an infinite and homogeneous plate with a thickness of h, as illustrated in Figure 1.
Incident waves are excited from source points and propagate in the infinite plate, guided
waves are excited, and some of them are scattered by surface braking cracks and the rest
are transmitted in a thin plate. Source points correspond to ultrasonic transducers in
experiments and the incident waves are represented by providing an appropriate function
to the displacement at source points. The scattered waves from surface breaking cracks are
received at an observation area located to the left of the surface breaking cracks, as shown
in Figure 1. The problem is determining the position and length of surface breaking cracks
using scattered waves obtained at observation points and their time-reversed waves. How-
ever, surface breaking cracks are assumed to be straight and perpendicular to the surface of
the plate.

As mentioned in the previous section, for the analysis model of an infinitely long plate,
as shown in Figure 1, we perform FEM calculations for wave propagation inside the plate,
scattering due to surface breaking cracks, and the computation of time-reversal waves with
the final goal of defect detection.
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source points observation area

x1

x2
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surface breaking crack

scattered wave transmitted wave

Figure 1. Guided wave propagation, scattering by surface breaking cracks, and transmission in an
infinite plate.

2.2. FEM Formulation for Lamb Wave Propagation and Scattering

In this section, we briefly discuss the FEM used for calculating the waves propagating
inside the plate. However, there are many references available regarding the formula-
tion of the FEM. Therefore, in this section, we will only describe the essential aspects of
the formulation.

2.2.1. Governing Equation and Selection of Numerical Method

We modelize the infinite plate as an isotropic homogeneous elastic solid with Lamé
constants λ and µ, and the mass density ρ. The in-plane displacement, ui(x, t)(i = 1, 2),
in a thin plate, Ω, satisfies the equation of motion at time t and the position x as follows:

ρüi = µui,jj + (λ + µ)uj,ij (x ∈ Ω, 0 < t) (1)

ui(x, 0) = u̇i(x, 0) = 0 (x ∈ Ω) (2)

ti(x, t) = 0 (x ∈ ∂Ω, 0 < t) (3)

where ˙( ) is the partial derivative with respect to time t and ti(x, t) is the traction compo-
nent that corresponds to the displacement ui(x, t). In addition, ( ),i indicates the partial
derivative with respect to the xi, ∂/∂xi, and ∂Ω shows the boundary of the domain Ω.
Equation (3) represents the traction-free condition on the top and bottom surfaces of the
thin plate.

The objective of this research is to numerically reconstruct surface breaking cracks
using the received scattered waves usc

i (x, t) at observation points. In general, the FEM
and the BEM are often used for performing time-domain wave analysis. The classical
time-domain BEM can be time-consuming and may present numerical instability for small
time increments [6]. As a method to improve the numerical stability of the classical time-
domain BEM, the convolution quadrature time-domain BEM [32,33] has been developed.
However, it requires the implementation of somewhat complex techniques such as the
FMM [17] for the acceleration [34,35]. Therefore, in this study, the time-domain FEM is
utilized to simulate the wave propagation and scattering by surface breaking cracks and the
time-reversal wave propagation. In particular, the pixel-based modeling is used for the
space discretization of the FEM. This calculation step for obtaining scattered waves at
observation points is called “forward analysis” in this paper.

2.2.2. Space and Time Discretization Using Pixel-Based Modeling

The pixel-based FEM [36] in 2-D elastodynamics is utilized to obtain the wave field
data inside the plate and the scattered wave data at the observation area, as shown in
Figure 1. Typically, FEM meshing tools such as Gmsh [37] are used for finite element
modeling. However, if image data for the analysis model can be prepared, considering
that images typically consist of a large number of pixels, it is possible to easily create a
finite element model corresponding to the analysis model by associating one pixel with
one finite element. This method, known as pixel-based modeling, is employed to simplify
the creation of FEM models for analysis.

The Galerkin method is applied to the spatial discretization of Equation (1). By mul-
tiplying the shape function, Nα (α = 1, . . . , 4) [5], as the weight function by Equation (1),
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and integrating the resulting equation over the analysis domain Ω to be solved, we can
obtain the following equation:

m

∑
e=1

∫
ve

Nα(µui,jj + (λ + µ)uj,ij − ρüi)dve = 0 (4)

where m is the number of finite elements and ve (e = 1, . . . , m) is each finite element region.
The shape function, Nα, is given by Nα = 1/4(1− ξ1)(1− ξ2) with the local coordinate
system of ξ1 and ξ2 for the case of considering the use of pixel elements in this study [5].
Here, Green’s theorem is written as follows:∫

ve
Nαui,jjdve =

∫
Se

Nαui,jnjdSe −
∫

ve
Nα,jui,jdve (5)∫

ve
Nαuj,ijdve =

∫
Se

Nαuj,jnidSe −
∫

ve
Nα,iuj,jdve (6)

where nk is the xk direction component of the outward unit normal vector n on a boundary
of a finite element. In addition, Se represents the boundary of the finite element domain ve.
By substituting Equations (5) and (6) into Equation (4), we have:

m

∑
e=1

4

∑
α,β=1

[
µ
∫

ve
Nα,jNβ,jdveue

iβ + λ
∫

ve
Nα,i Nβ,jdveue

jβ + µ
∫

ve
Nα,jNβ,idveue

jβ

]

+
m

∑
e=1

4

∑
β=1

[
ρ
∫

ve
NαNβdveüe

iβ

]
−

m

∑
e=1

4

∑
β=1

[∫
Se

NαNβdSete
iβ

]
= 0 (7)

where ue
iβ denotes the displacement ui(x, t) at the β-th node of the finite element ve. The

material constants, ρ, λ, and µ, are assumed to be constant within each finite element.
Therefore, these material constants have been taken outside of the integral. Generally,
in the FEM, the first term of Equation (7) represents the stiffness matrix, the second term
represents the mass matrix, and the third term shows the traction vector components.
Therefore, Equation (7) can be reduced to the following well known matrix representation
of the finite element equation:

[K]{ui}+ [M]{üi} − {Ti} = 0 (8)

where [K] is the global stiffness matrix, {ui} is the node displacement vector, [M] is the
global mass matrix, and {Ti} is the traction vector. The second term in Equation (8) has the
partial derivative with respect to time t. In this research, this term with respect to time t is
discretized by the central difference scheme as follows:

{üi} '
{ui}n+1 − 2{ui}n + {ui}n−1

(∆t)2 (9)

where ∆t is the time increment. Assuming the matrix [M] is a diagonal matrix, Equation (8)
is explicitly approximated using the following equation:

{ui}n+1 = −
[
(∆t)2[M]−1[K] + 2[E]

]
{ui}n − {ui}n−1 + (∆t)2[M]−1{Ti} (10)

where [E] is the identity matrix. Equation (10) at the (n + 1)-th time step can be solved
explicitly with the solutions at the previous n and (n− 1)-th time steps. Thus, Equation (10)
can be solved step-by-step starting from the initial and boundary conditions on the plate
surface at n = 0. The computational order is O(mn).

By using the FEM described in this section, it is possible to determine the displacement
field ui(x, t) inside the plate, as shown in Figure 1, as well as the scattered wave usc

i (x, t) by
surface breaking cracks in the observation area.
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As previously mentioned, in this study, pixel elements are used as finite elements.
However, in general, it is difficult to represent precise cracks using pixel elements. There-
fore, in this study, surface breaking cracks are treated as slits with a finite thickness.

3. Time-Reversal and Topological Sensitivity

In this section, the time-reversal method and the topological sensitivity for 2-D elasto-
dynamics are briefly described for the surface breaking crack detection in a plate.

3.1. Time-Reversal Method

We consider detecting the surface breaking cracks in the domain Ω using the time-
reversal method described in this section. The waves scattered by surface breaking cracks,
observed at the receiver points in the observation area, as illustrated in Figure 1, are time-
reversed. These time-reversed waves are then sent back into the inside of the plate Ω as
incident waves from the receiver points and propagate to both the left and right sides of
the plate. The propagation of this time-reversed wave is analyzed using the FEM in the
same manner as the forward analysis discussed in Section 2.2.

The boundary value problem for the time-reversal wave fields, corresponding to the
forward analysis defined in Equations (1)–(3), is formulated as follows:

ρütr
i = µutr

i,jj + (λ + µ)utr
j,ij (x ∈ Ω, 0 < t < T) (11)

utr
i (x, 0) = u̇tr

i (x, 0) = 0 (x ∈ Ω) (12)

utr
i (xm, t) = usc

i (xm, T − t) (0 < t < T) (13)

ttr
i (x, t) = 0 (x\xm ∈ ∂Ω, 0 < t) (14)

where utr
i (x, t) is the time-reversal wave field and ttr

i (x, t) represents the traction fields corre-
sponding to utr

i (x, t). In addition, T is the measurement time for the forward FEM analysis,
and xm (m = 1, . . . , M) represents the observation points. M denotes the total number
of observation points. The boundary condition, given in Equation (13), is derived from
the time-reversal of the scattered wave usc

i (xm, t) at the receiver points xm (m = 1, . . . , M),
which can be obtained by solving the forward analysis discussed in Section 2.2. utr

i (xm, t)
in Equation (13) plays the role of the incident wave for this time-reversal analysis. This
time-reversal problem defined in Equations (11)–(14) is also solved by the FEM described
in Section 2.2. The time-reversal waves transmitted from the receiver points, xm, travel
inside the plate, as shown in Figure 2, by repeating the reflection on the upper and lower
surface of the plate. Thus, the time-reversal wave analysis can be simplified to the problem
described by Equations (11)–(14).

x1

x2

h

observation points

scattered waves at time reversed waves

retransmitted as incident waves

time reversal wave propagation

Figure 2. Scattered waves obtained at observation points xm (m = 1, . . . , M), the time-reversed
waves, and their propagation in the thin plate.

If the wave propagation model is an infinite space instead of a thin plate, we would
be able to visually recognize the time-reversed waves converging back to the original
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scattering sources, which are the surface breaking cracks. At that time, the convergence
location of the time-reversed waves can be considered as the position of the surface breaking
cracks. However, unfortunately, in this problem involving guided waves, the convergence
location cannot be visually determined because the time-reversed waves propagate as
guided waves and their multiple modes are excited, resulting in complex wave fields in
the time domain. To address this challenge, topological sensitivity is utilized to find the
focusing location of the time-reversed waves.

3.2. Topological Sensitivity

We will now provide a brief overview of topological sensitivity. The topological
sensitivity, denoted as T (x), is a metric employed in topology optimization [30] to measure
design sensitivity. The topological sensitivity T (x) is defined in the context of two scenarios.
We firstly consider a defect-free domain Ω0, as depicted in Figure 3a. The introduction of
an infinitesimally small circular void with radius ε at a point x in this domain Ω0 results in
a variation in the objective function. This newly introduced circular void is illustrated in
Figure 3b, where Γε represents its boundary. Indeed, when an infinitesimal circular void is
introduced, we can define the region as Ωε, and the corresponding objective function as
J(Ωε). Given this scenario, the topological sensitivity T (x) can be expressed by normalizing
with the voids area, given by πε2, as follows:

T (x) = lim
ε→0

J(Ωε)− J(Ω0)

πε2 (15)

where Ω0 and Ωε show the reference domain without any defects and with an infinitesimal
circular void, respectively. Here, the objective function is defined as the difference between
two received wave data at observation point xm (m = 1, . . . , M) on the observation area
Sobs. The first received wave data, u0

i (xm, t), correspond to the scenario without surface
breaking cracks, whereas the other wave data, uobs

i (xm, t), reflect the presence of surface
breaking cracks at the actual location. The latter case corresponds to the actual measured
waveform data in NDE measurements. Thus, the objective function can be expressed by
the following equation:

J(Ω0) =
∫ T

0

∫
Sobs

ϕ(u0
i (xm, t), xm, t)dSxdt (16)

ϕ(u0
i (xm, t), xm, t) =

1
2
| u0

i (xm, t)− uobs
i (xm, t)| (17)

To evaluate the objective function J(Ωε), the solution uε
i (x, t) for the case in which the

domain Ω has an infinitesimal circular void with radius ε is solved by the following initial
boundary value problems:

ρüε
i (x, t) = µuε

i,jj(x, t) + (λ + µ)uε
j,ji(x, t) (x ∈ Ωε, 0 < t) (18)

uε
i (x, 0) = u̇ε

i (x, 0) = 0 (x ∈ Ωε) (19)

tε
i (x, t) = 0 (x ∈ Γε, 0 < t) (20)

where tε
i (x, t) is the traction component corresponds to the displacement uε

i (x, t). Solution
uε

i (x, t) for the initial boundary value problems defined in Equations (18)–(20) can be
divided into u0

i (x, t) and the other solutions, ũε
i (x, t), as follows:

uε
i (x, t) = u0

i (x, t) + ũε
i (x, t) (21)
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Note that the physical meaning of u0
i (x, t) is that u0

i (x, t) is the free field without any surface
breaking cracks, as mentioned in below Equation (15). The integrand ϕ of Equation (16)
can be expanded as follows:

ϕ(uε
i (x, t), x, t) = ϕ(u0

i (x, t), x, t) +
∂ϕ

∂u0
i
(u0

i (x, t), x, t)ũε
i (x, t) + o(|ũε

i |) (22)

By taking the integration with respect to time t and observation area Sobs, Equation (22)
can be written as follows:

J(Ωε) = J(Ω0) +
∫ T

0

∫
Sobs

∂ϕ

∂u0
i
(u0

i (x, t), x, t)ũε
i (x, t)dSxdt (23)

By substituting Equation (23) into Equation (15), the topological sensitivity, T (x), at point
x is derived as:

T (x) = lim
ε→0

1
πε2

∫ T

0

∫
Sobs

∂ϕ

∂u0
i
(u0

i (x, t), x, t)ũε
i (x, t)dSxdt (24)

Considering the time-reversal analysis defined in Equations (11)–(14), the reciprocity theo-
rem, and Gauss’s divergence theorem, the topological sensitivity, T (x), can be obtained as
follows [38]:

T (x) =
(

σ̂0
ij ∗ (Aijklσ

0
kl) + ρu̇0

i ∗ ˙̂u0
i

)
(x, T) (25)

Aijkl =
1− ν

µ

[
(δikδjl + δilδjk)−

1
2(1 + ν)

δijδkl

]
(26)

where δik is the Kronecker delta and σ0
ij is the stress field corresponding to the wave field

u0
i . Moreover, ν is the Poisson’s ratio and ∗ represents the convolution integral.

defect

(a)

(b)

Figure 3. Topological sensitivity analysis: (a) analysis model without defects, (b) model with a
infinitesimal circular void.

In Equation (25), the displacement, u0
i , and its corresponding particle velocity, u̇0

i ,
can be evaluated by the forward FEM analysis for the domain Ω0 without any surface
breaking cracks. However, the displacement û0

i , its corresponding particle velocity ˙̂u0
i ,

and the stress field σ̂0
ij can be calculated using the time-reversal analysis introduced in

Section 4.1. The displacement field û0
i is the solution to the adjoint problem defined for

the forward analysis described in Section 2.2. Hence, the topological sensitivity, T (x),
in domain Ω can be determined by executing both forward and time-reversal analyses, as
defined by Equations (1)–(3) and Equations (11)–(14), respectively. Topological sensitivity
T (x), defined in Equation (15), can be considered as an index that shows how much the
received waveform is affected when a small defect exists at a certain place inside the area.
In practical application to the ultrasonic NDE, an actual surface breaking crack can be
considered as a superposition of the small infinitesimal voids defined in Figure 3. The
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topological sensitivity T (x) has a large negative value at the defect position, as shown in
Equation (15).

Thus, if the topological sensitivity, T (x), inside the inspection area of a thin plate
can be obtained, there is a possibility that the position and shape of the defect can be
reconstructed.

4. Numerical Example

In this section, some numerical examples are presented. The thickness of the plate is
h = 4 [mm]. Furthermore, the horizontal analysis region of the plate is 160 [mm], and be-
yond that, absorption boundaries are set on both sides to assume the infinite plate. The time
increment ∆t and the finite element width ∆x for the FEM analysis are set as ∆t = 10.0 [ns]
and ∆x = 0.1 [mm], respectively. The density ρ of the plate is ρ = 2700 [kg/m3]. The
velocities of the longitudinal wave (P-wave) cL and transverse wave (S-wave) cT are given
by cL = 6350 [m/s] and cT = 3130 [m/s], respectively. The incident wave is excited by
applying the following Ricker wave at each incident point xi (i = 1, . . . , Min):

uin
1 (xi, t) =

√
π

2
(α− 0.5) exp(−α) (27)

α =

(
π(t− ts)

tp

)2

(28)

In the following numerical examples, the incident wave period tp and the time param-
eter ts for adjusting the peak of the incident wave are given by tp = 2.0× 10−6 [s] and
ts = 2.0× 10−6 [s], respectively. As with the BEM, the FEM cannot accurately represent
cracks with zero thickness. Therefore, in this study, each crack is modeled as a 2-[mm]-long
slit. In addition, the boundary condition of the plate surface is considered as the traction
free, ti(x, t) = 0.

4.1. Reconstruction of Single Surface Breaking Crack from Upper Side of a Plate

As the initial numerical example, the reconstitution of a single surface breaking crack
on the top of the plate is conducted as shown in Figure 4. The incident points where the
Ricker wave in Equation (27) is applied are set at 7 points (Min = 7) with a 1.0 [mm] interval,
as shown in Figure 4. On the other hand, the observation points where the scattered waves
are received are set at 41 points (M = 41) with a 1.0 [mm] interval. The surface breaking
crack is located at x1 = 130 [mm], as shown in Figure 4.

incident points observation area
crack (2.5mm depth)

visualization area unit[mm]

x1

x2 6.0
5.0

40.0

0 3 9 16013012040 80 1400 3 9 16013012040 80 140

Figure 4. Reconstruction model for a single surface breaking crack.

4.1.1. Forward Analysis for Single Surface Breaking Crack

First, the scattering analysis of the incident wave due to a single surface crack, as
shown in Figure 4, is conducted using the FEM. Figure 5 shows the results for elastic wave
scattering by a single surface breaking crack in Figure 4 obtained by the FEM analysis at
several time-steps. In each of Figure 5, the actual single surface breaking crack is indicated
by a white line.

The elastic waves excited at the incident points xi (i = 1, . . . , 7) propagate by un-
dergoing reflections on the top and bottom surfaces. Due to this fact, the symmetric and
antisymmetric plate waves are generated, as shown in Figure 5a. The first wave of symmet-
ric mode arrives at the surface breaking crack in Figure 5b. Moreover, due to the surface
breaking crack on the top surface of the plate, it can be observed that some of the excited
waves are transmitted, whereas others are scattered, and propagate within the interior of
the plate, as shown in Figure 5c,d. The scattered waves generated by the surface breaking
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crack are received at 41 observation points, as shown in Figure 4, and they are utilized for
time-reversal analysis discussed in the next section.

(a)

(b)

(d)

(  )c

Figure 5. Results for elastic wave field |u| by a single surface breaking crack in Figure 4 obtained by
the FEM analysis at (a) 2150 time-step, (b) 2525 time-step, (c) 2900 time-step, and (d) 3275 time-step.

4.1.2. Time-Reversal Analysis for Single Surface Breaking Crack

Time-reversal analysis is performed using the results obtained by the forward analysis
in the previous section. The received waves at the observation points xm (m = 1, . . . , 41)
are time-reversed and sent back into the plate again. In the case of time-reversal analysis,
note that the crack existence is not considered. Therefore, we solely focus on propagating
the time-reversal wave within the interior of the plate.

Figure 6 shows the results for the time-reversal FEM analysis at several time-steps. For
reference, the approximate location of the actual crack is also shown in Figure 6. As shown
in Figure 6, we can observe the propagation of the time-reversal wave within the interior
of the plate. However, in the calculation of the time-reversal wave, it is difficult to clearly
distinguish between the symmetric and antisymmetric modes and confirm the convergence
point of time-reversal waves. The scattered waves are propagated in the reverse direction,
making it difficult to distinguish between each mode. In general, if the time-reversal
method is applied to a defect in an infinite domain, it is easy to visually confirm that the
time-reversed waves converge to the scattering source (defect). Therefore, in this study, we
attempt the surface breaking crack reconstruction by conducting topological sensitivity
calculations for the scenario involving plate waves that undergo repeated reflections on the
upper and lower surfaces.

(a)

(b)

(d)

(  )c

Figure 6. Results for the time-reversal wave field |u| at (a) 3750 time-step, (b) 5000 time-step,
(c) 6250 time-step, and (d) 7500 time-step for the single surface breaking crack.

4.1.3. Reconstruction of Single Surface Breaking Crack

Using the results from the previous forward analysis and time-reversal analysis, we
perform topological sensitivity calculations to reconstruct the single surface breaking crack
from the top surface of the plate.

Figure 7 shows the obtained topological sensitivity, T (x), using the forward and time-
reversal analysis results, as derived from Equation (25). The visualization range for the
topological sensitivity T (x) is within the visualization area of Figure 4 (i.e., x1 = 120 [mm]
to x1 = 140 [mm]). The actual single surface breaking crack is indicated by the blue line in
Figure 7.

From Figure 7, we can see that the topological sensitivity T (x) exhibits significant
negative values near the position of the surface breaking crack. Indeed, it can be observed
that the topological sensitivity values are higher on the incident side than at the actual
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position of the crack. The reconstruction result shows that the single surface breaking
crack is well reconstructed, though it is slightly shorter in length compared to the actual
crack length.

Figure 7. The topological sensitivity T (x) in the visualization area of Figure 4.

4.2. Reconstruction of Two Surface Breaking Cracks from Upper and Lower Side of a Plate

Next, the reconstruction of two surface breaking cracks from the upper and lower sur-
face of the plate are considered. Two surface breaking cracks are located at x1 = 110 [mm]
(lower surface) and x1 = 130 [mm] (upper surface), as shown in Figure 8. The positions
of the source points and observation points remain the same as those in the Section 4.1.
Under these conditions, the following forward analysis, time-reversal analysis, and the
topological sensitivity analysis are conducted.

observation area
crack (2.0mm depth)

visualization area unit[mm]

x1

x2 6.0 40.0

1101000 3 9 16013040 80 1400 3 9 16013040 80 140110100

incident points

Figure 8. Reconstruction model for two surface breaking cracks.

4.2.1. Forward Analysis for Two Surface Breaking Cracks

Figure 9 shows the guided wave propagation and the scattering by two surface
breaking cracks in Figure 8. As seen in Figure 9a, the guided waves of the symmetric
and antisymmetric modes can be confirmed. As shown in Figure 9b, the excited guided
waves are first scattered by the surface breaking crack from the bottom surface, and the
displacement indicates large values just before the crack plane. Then, scattered waves
are generated by the interaction between the incident waves and two surface breaking
cracks, as shown in Figure 9c. After that, the scattered waves generated by two crack planes
propagate towards the left side of the plate, as shown in Figure 9d. Similar to Section 4.1.1
for the single surface breaking crack, these scattered waves are received at 41 observation
points in Figure 8.

crack

crack

crack

crack

crack

crack

crack

crack

0.10

0.05

0.0

(a)

(b)

(d)

(  )c

2075step

2425step

2775step

3125step

Figure 9. Results for elastic wave field |u| by two surface breaking cracks in Figure 8 obtained by the
FEM analysis at (a) 2075 time-step, (b) 2425 time-step, (c) 2775 time-step, and (d) 3125 time-step.

4.2.2. Time-Reversal Analysis for Two Surface Breaking Cracks

Next, the time-reversal analysis corresponding to the forward analysis presented in
Section 4.1.2 is carried out. Figure 10 shows the results for the time-reversal analysis in
which no two surface breaking cracks are considered at several time-steps. As seen in
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Figure 10, the time-reversal wave propagates through the infinite plate as time progresses.
However, as mentioned in the previous time-reversal results shown in Figure 6, the conver-
gence points of the time-reversal waves cannot be determined because of the complicated
wave fields inside the thin plate.

(a)

(b)

(d)

(  )c

crack

crack

crack

crack

crack

crack

crack

crack

Figure 10. Results for the time-reversal wave field |u| at (a) 125 time-step, (b) 625 time-step,
(c) 1125 time-step, and (d) 1625 time-step for the two surface breaking cracks.

4.2.3. Reconstruction of Two Surface Breaking Cracks

Here, the reconstruction result for two surface breaking cracks on the top and bottom
surfaces are shown. Figure 11 shows the topological sensitivity T (x), calculated using
Equation (25), around both surface breaking cracks. The topological sensitivity T (x) is
plotted for 100 [mm] ≤ x1 ≤ 140 [mm] in Figure 8. The actual two surface breaking cracks
are indicated by the blue line in Figure 11.

As well as the results in Figure 7, the reconstruction in this case also shows that the
incident side with respect to the crack plane can be successfully reconstructed, as shown in
Figure 11. Furthermore, it can be observed that the upper surface breaking crack, which is
located on the same plane as the incident and observation points, shows a more accurate
indication of the defect size (crack depth) due to the influence of surface waves compared
to the lower surface crack.

Thus, we demonstrated that our proposed method has a potential to effectively detect
surface breaking cracks even when considering guided wave propagation.

Figure 11. The topological sensitivity T (x) in the visualization area of Figure 8.

5. Discussion

A comprehensive discussion on the proposed method is provided in this section based
on the reconstruction results of surface breaking cracks shown in Figures 7 and 11. In the
proposed method, as mentioned in Section 3, a time-reversal analysis must be conducted
to detect defects. The time-reversal analysis is generally performed using numerical
techniques such as FEM or BEM. Therefore, the computational time for defect detection
depends on their respective computational order. From this point of view, the proposed
method typically takes more time to complete the inverse analysis compared to other
inverse analysis methods often used in NDE, such as SAFT (synthetic aperture focusing
technique) [39] and inverse scattering techniques [40]. However, the time-reversal analysis,
as indicated by Equations (11)–(14), takes into account the boundary conditions of the
area under inspection. Therefore, if an analysis model can be prepared, it is believed that
defects inside a domain with complex boundaries can be detected with high precision. This
method can be applied not only to plates, but also to various complex shapes, such as the
curved sections of pipes and layered objects. The computational time of direct calculations,
such as FEM and BEM, is expected to decrease with the advancement of computers in the
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future. Therefore, it is believed that the benefit of being able to handle complex problems
will be greater than the computational time concerns.

6. Conclusions

We performed defect detection of surface breaking cracks in a thin plate using the
FEM. By employing topological sensitivity as a defect detection index in the framework
of the 2D elastodynamics time-reversal method, we confirmed the capability of defect
detection for surface breaking cracks in a thin plate. The numerical results demonstrated
the effectiveness of the proposed method in cases with up to two surface breaking cracks.
In the future, we plan to further improve the defect detection accuracy, which means
determining the length of surface breaking cracks and pinpointing their positions, and to
investigate the applicability of this method to anisotropic materials such as CFRP (carbon
fiber reinforced plastics). Furthermore, we will extend this approach for 2-D to 3-D cases.
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