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Abstract: The present work extends a previous paper where an agent-based and two-dimensional
partial differential diffusion model was introduced for describing immune cell dynamics (leukocytes)
in cancer-on-chip experiments. In the present work, new features are introduced for the dynamics
of leukocytes and for their interactions with tumor cells, improving the adherence of the model
to what is observed in laboratory experiments. Each system’s solution realization is a family of
biased random walk trajectories, affected by the chemotactic gradients and in turn affecting them.
A sensitivity analysis with respect to the model parameters is performed in order to assess the effect
of their variation on both tumor cells and on leukocyte dynamics.
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1. Introduction

In recent years, mathematical modeling has become an increasingly important tool
for studying biological systems. Previous works in this field have employed various
modeling techniques, including agent-based ODE models [1–3], cellular automata [4,5],
partial differential models (PDE models) describing cell density or chemical gradient
variations [6–8], or hybrid models [9] mixing PDEs (partial differential equations) and
ODEs (ordinary differential equations), in order to investigate the behavior of cells and
of other agents and the diffusion of molecules. These models combine discrete-based
methods for cell migration with continuum-based methods for solute transport. Cellular
automata, in particular, were first shown to be effective for modeling migrating tissue cells
by Zygourakis and colleagues in the early 1990s [10–12]. This approach was later extended
in order to develop hybrid models for other applications, such as modeling heterogeneous
biofilms, biofilms in microfluidic chips, and proliferating tumors [13–15].

In vitro experiments are often used to mimic in vivo phenomena with representations
of reduced complexity, which allow experimentalists to isolate and analyze the underly-
ing mechanisms.

In the context of cancer-on-chip (COC) experiments, several publications [16–20]
have provided a biological framework for the representation in vitro of different in vivo
scenarios, as in, for example, the work of Paul et al. [21], which provides a concise overview
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of the usefulness of microfluidic experiments for the migration of tumor cells in engineered
confined spaces.

In recent publications of some of the authors, the macroscopic modeling of COC exper-
iments and related estimation techniques for model parameters have been proposed [22,23].
Moreover, a discrete-in-continuous hybrid approach was formulated as a PDE reaction–
diffusion partial model for the evolution of chemicals, coupled with an ODE particle model
for cell motion [24]. Some of the present authors proposed a rather general agent-based
cellular automata model for the representation of leukocyte dynamics in COC experi-
ments [25], and a first validation of the model was carried out by visually calibrating the
model parameters against aggregated real data (using the time of transition from the right
to left compartment and a fraction of leukocytes in the chip’s compartments as indicators).

Motivation and Original Contribution of the Present Work

In the framework of in silico models for COC experiments, our current study aims to
extend the previous version of the model we already developed [25]. Since our approach
is based on relatively simple computational algorithms (cellular automata and agents), it
makes it easier to reproduce the chip geometry with respect to other possible approaches
like those mentioned above. However, the main obstacle of this approach in its original im-
plementation was represented by the extremely high computational cost of the simulations,
making its general applications impractical. One of the main improvements introduced
here consists in developing efficient computational tools to allow fast simulations, also
with a view to integrate them in a formally correct procedure for parameter estimation
from observational data.

Summarizing, the main motivations inspiring the present work are (i) adding features
to the model [25] in order to make it more adherent to experimentally observed dynamics;
(ii) gaining insights on the effect of some model parameters on the model outputs; and
(iii) setting up computationally efficient simulation tools.

In particular, the changes made with respect to the previous model are the following:

• Besides chemotactic migration, leukocytes also randomly explore the environment;
• Both leukocytes and tumor cells have an upper bound for their lifetimes (i.e., they

have a limited number of iterations in the simulation in which they are considered to
be active);

• The interaction between tumor cell agents and leukocyte agents leads to a reduction
in the lifetime of the former (immune-mediated toxicity to the tumor cells);

• The width of the microchannels is marginally reduced to deny leukocyte movement
along the y axis (in accordance with empirical observations);

• Even in the absence of annexin, leukocytes randomly explore the environment
around them;

• The code is optimized, translated in Julia v1.8.3, and parallelized in order to vastly
improve the performance of the algorithm and drastically reduce simulation time.

It is worth noting that in the present version of the model, the dynamics (annexin
diffusion and leukocytes behavior) are bidirectionally “coupled”, since the evolution of
the concentration of annexin produced by cancer cells may vary depending on the killing
rate of these cells caused by the leukocytes. This implies that it is no longer possible to
numerically simulate the diffusion of annexin once and for all, and then, in one or more
separate instances, the movement of leukocytes is based on the annexin gradient in the
microchip. While the computational cost of a single simulation increases substantially, the
resulting model behavior is clearly more general.

This paper is structured as follows. In Section 2, we provide an overview of the
biological framework that serves as the inspiration for our study. Section 3.1 introduces the
mathematical formulation of the COC agent-based model, and the innovations introduced
in this new version of the model are highlighted. In Section 4, we present numerical
simulations, along with the results of our calibration of the model parameters and sensitivity
analysis. Finally, Section 5 provides a discussion of the results and concluding remarks.
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2. Biological Experiment

The monitored area in the COC experiment [16,26,27] consists of three main culture
chambers: one for plating adherent tumor cells, one for microchannels, and one where
floating leukocytes are introduced.

Microchannels allow for chemical and physical contacts between chambers. This type of
configuration is able to quite realistically reproduce the physiochemical environment and the
mechanical stresses acting on the living cells within a tissue hosting a tumor colony. Here, we
focus on the laboratory experiments provided in [17], and, among the experimental settings
proposed there, we focus on the case where cancer cells are dying (they are subjected to
chemotherapy) and immune cells are wild-type. The immune population under examination
consists of different cell species: monocytes, dendritic cells, and T and B lymphocytes. Figure 1
shows a screenshot of the experiment extracted from video footage reported in the open
repository provided by the original authors as Supplementary Material in [17]. The whole
experiment lasts 48–72 h, and the timeframe of the video recordings is 2 min.

Figure 1. Screenshot of Movie 13 (Supplementary Material in [17]), showing the situation at a fixed
time of the experiment described in Section 2.

3. The Mathematical Model
3.1. Hybrid Agent-Based Cellular Automata Model

Cellular automata are computational tools that have been extensively used for mod-
eling complex systems in different fields, including physics, chemistry, biology, and en-
gineering. One of the significant advantages of cellular automata is their ability to study
phenomena that display emergent behavior, including pattern formation, self-organization,
and phase transitions [4]. These automata consist of a grid of cells that undergo evolution
over time, subject to simple rules based on the states of their neighboring cells. Over such a
cellular automaton, it is possible to have moving agents, which interact among themselves
and with the underlying cells through proximity effects.

The present computer model formalizes the behavior of leukocytes and tumor cells
as they respond to chemical gradients, i.e., annexin, and allows for the analysis of the
resulting interaction dynamics between these cells: as such, it improves and extends the
previous agent-based model formulation reported in [25] in order to make the model more
adherent to experimental evidence and allow us to extrapolate more realistic scenarios.
The present improved model is able to numerically reproduce the random exploration of
the environment as well as the migration of leukocytes towards cancer cells in a physical
microchip as well as the time evolution of the chemoattractant field given by annexin,
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where the production, diffusion, and elimination of this substance cause a gradient of its
concentration to be progressively established over the chip environment.

We simulate the movement of cells and their interactions with each other as determined
via this annexin gradient, making it possible to replicate the directed migration of leukocytes
towards cancer cells, based upon local biological assumptions.

The model depends on a set of parameters (see Table 1), such as time step, cell sizes,
chip dimensions and geometry, the number of tumor and leukocyte cells and their rate of
accrual, and the properties of the annexin gradient. As described in Table 1, some model
parameters are taken from the literature or depend on experimental settings, while other
parameters are obtained from the calibration of the model performed in [25] in order to
reproduce the dynamics in the video footage of the experiment in [17].

Table 1. Parameters of the model.

Parameter Description Units Value Ref.

∆t discretization time step min 4 design
dx discretization along the x axis µm 10 design
dy discretization along the y axis µm 10 design
D diffusivity of chemoattractant µm2/min 1.5× 104 [28]
kA production rate of chemicals M min−1 40 calibration

kXA consumption rate of chemicals min−1 5× 10−3 calibration
γ threshold value for migration - 2 ×105 calibration
λ parameter enforcing migration towards high concentration - 2 calibration
Lc length of the channels µm 500 datum
Lx horizontal size of the box µm 1704 datum
Ly vertical size of the box µm 1560 datum
NC number of microchannels in the video footage - 31 datum
δ width of each microchannel µm 8 datum
ω width of obstacles µm 32 datum
Tf observation time min 48 × 60 datum
RL radius of leukocytes µm 4 [29]
RT radius of tumor cells µm 10 [30]
NT number of tumor cells µm 31 datum
kL normalized rate of new leukocyte accrual min−1 0.15 calibration
N f number of frames in the laboratory experiment - 1440 datum
kTL tumor cells life reducing by leukocytes min 1600 calibration
LT tumor cells lifetime min 1000 × 60 calibration
LL maximum leukocytes lifetime min 144 × 60 [31]

Design: defined a priori. Calibration: calibrated in order to reproduce leukocyte dynamics similar to that reported
in [17]. Datum: measures taken from [17].

The simulation results can be synthesized, obtaining statistical information about
the time-course of the simulated experiments, such as aggregated cell positions or cell
death rates.

The movement of the lth leukocyte is described by the time/space discrete equation
between time t and time t + ∆t in the case of the presence of annexin concentration:

pl(t + ∆t) =

{
pln(t), with probability PM(p,t) · P(pn, t), n = 1, . . . , Np(t),
p(t), with probability P(p, t),

(1)

with Mpl = {pn centered at (in, jn)|
√
(xn − xl)2 + (yn − yl)2 ≤ RL} the set of Np Moore

neighbors of the pixel pl , where the lth leukocyte center is located, and RL is the radius
of leukocytes (assumed all of the same size in the present version of the model). The
movement of leukocytes is tracked at the pixel occupied in the grid (p = (i, j)), and we
define pl = (il , jl) as the pixel occupied by the center of the leukocyte, with P(pn) the
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probability of movement towards pn (the generic neighboring pixel in the Np-sized Moore
neighborhood of p), at time t:

P(pn, t) =
A(pn, t)λ

TA(λ, t)
, n = 1, . . . , Np(t),

with A(pn, t) the concentration of annexin at pixel pn and TA(λ, t) = ∑
Np(t)
n=1 A(pn, t)λ +

A(p, t)λ the λ-corrected total concentration of annexin in the area (including the central
pixel), varying in time and depending on parameter λ ∈ R+. In more detail, λ is an
amplification parameter expressing the tendency of leukocytes to migrate towards higher
annexin concentrations; γ > 0 is a threshold parameter regulating leukocytes migration
(the lower the value of γ, the higher the neighboring annexin concentrations needed for
the leukocyte to move); NL(t) is the total number of leukocytes at time t and P(p, t) the
probability of remaining in place:

P(p, t) = 1− PM(p,t)
∑

Np(t)
n A(pn, t)λ

TA(λ, t)
,

while the probability of moving at all is as PM(p,t) = exp(−γTA(λ, t)); p corresponds to the
(central) pixel where the leukocyte stays at time t.

In the absence of annexin, the leukocytes move randomly among one of their neighbors,
following the equation below:

pl(t + ∆t) =

pln(t), with probability 1− 1
Np(t)+1 ,

p(t), with probability 1
Np(t)+1 .

(2)

At the moment, no interactions among leukocytes are considered in the model, such
as alignment, crowd effects, or the production of chemotactic factors.

The evolution of the chemoattractant, i.e., annexin, is modeled by the parabolic discrete
equation describing its production, diffusion, and elimination similarly to the Keller–Segel
model [6]:

∂A(x, y, t)
∂t

= kA + D4A(x, y, t)− kXA A(x, y, t), (3)

including the production, diffusion, and elimination of the chemical substance for (x, y, t) ∈
Ω× [0, Tf ]. The final observation time is Tf , which for the current experiment is 48 h. The
initial condition at time t = 0 for the chemical concentration is A(x, y, 0) = 0, and we
assume no inflow/outflow at the outer boundaries of the computational domain.

Since the leukocytes are immersed in an aqueous phase and the number of tumor cells
is small, the effect of the extracellular matrix (ECM) secreted by the cancer cells [32] was
not considered. Furthermore, annexin is considered independent of the direct action of
leukocytes, since the production of annexin only depends on the presence of tumor cells.

3.2. Innovation: Leukocyte and Tumor Cell Death

Every agent in the present model has its own finite life span L, calculated as a random
value between 0 and LL = 144 h for the leukocytes (they may have entered the chip at
some unknown moment during their natural lifetime) and fixed to LT = 1000 h for tumor
cells. We also define an age for each agent; the biological hypothesis is that a tumor cell
lives (if not killed) much longer than the 48 h of simulation, while leukocytes tend to live a
maximum of 144 h if they are not eliminated sooner by some process [31]. The age of each
agent (variable Age) is increased at each time step: when its value becomes greater than or
equal to its programmed lifetime, the agent is declared dead.
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When a leukocyte moves to the location of a tumor cell (i.e., adheres to the tumor
cell), the effect of its toxic action is modeled as an increase in the tumor cell’s age, thus
accelerating its progression to death. The age increment is expressed as

Age = Age + kTL

(
Age
LT

+ 1
)

, (4)

with kTL a parameter representing the interaction between leukocytes and tumor cells.
In this way, the intensity of the interaction increases with the age of the tumor cell, thus
making older tumor cells (i.e., the cells that have interacted more with leukocytes) die first.

Note that, since at the moment we do not have quantitative estimates of this value
from real experiments, we calibrated kTL in such a way as to have an average value of 18%
of dead tumor cells during the 48 h of the experiment, consistent with observations.

3.3. Innovation: Numerical Algorithm

The movement of the cells is considered, as before, to happen at a single-microchip
depth, allowing for discretization on a bidimensional computational domain Ω, including
the two chambers and the intervening channels. The whole chip is represented by a matrix
M of square computational cells: considering a space mesh size of ∆x = ∆y = 10 µm over
a rectangle of size Lx × Ly µm (Lx = 1704 µm and Ly = 1560 µm), when simulating the
entire chip (including the NC = 31 horizontal microchannels), we deal with a pixel matrix
of size Nr × Nc, with Nr = 159 rows and Nc = 171 columns.

The radius of each tumor cell is assumed to be RT = 10 µm, while the radius of
leukocytes is fixed at RL = 4 µm. We used a time discretization step ∆t = 4 µm, with

Nt = [(ceil)
Tf
∆t ] + 1, so that we compute concentrations and positions at the discrete times

tm, m = 0, 1, . . . , Nt − 1.
While the original model was implemented in a Matlab environment on an 8-core

CPU, the current implementation of the simulation environment is Julia v1.8.3 on a 48-core
CPU (2x AMD EPYC 74F3 24-core CPU @ 3.19 GHz): this change, together with some code
optimization, has determined a huge increment in simulation speed (one complete 48 h
simulation taking approximately 3 s instead of about 1 month). Code parallelization is
used for sensitivity analysis.

3.4. Computational Steps

After defining the rules for annexin creation, diffusion, and loss, as well as for agent
movement and death (Sections 3.1–3.3), the numerical solutions of the model are computed
as shown in Figure 2.

The first step is the definition of model parameters, as reported in Table 1, and the
discretization of the domain Ω described in Section 3.3. Cancer cells are then randomly
placed in the left compartment and the simulation is started with their producing annexin,
which diffuses and is lost according to Equation (3). The annexin concentration in the chip
is represented as a bidimensional matrix A having size given by the number of rows and
columns of the grid Nr × Nc. At the initial time t = 0, the matrix A assumes the value zero
over the whole domain.

The numerical solution is then computed up to t = Tf . Each computational step
includes the following:

• Solving Equation (3) in the discretized domain. If A(pn, t) is the concentration of
annexin at pixel p at each time step, we compute

A(p, t + ∆t) = A(p, t) + kA∆t− kXA A(p, t)∆t + DAdi f f (p),

with Adi f f (p, t + ∆t) = A(p, t)−∑
Np
n=1 A(pn, t)/dn being the concentration of annexin

obtained after the sharing among the Np neighbors of pixel p, with dn = |p − pn|
being the Euclidean distance among the pixel p and its neighbors. Then, neighboring
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pixels pn receive the amount of annexin shared by pixel p: A(pn, t + ∆t) = A(pn, t) +

∑
Np
n=1 A(pn, t)/dn.

Note that the production in the grid cells not occupied by the tumor is zero, while
the elimination and diffusion of annexin in the environment occurs in each cell of the
computational domain;

• Aging the agents to increase the age of both tumor cells and leukocytes;
• Randomly generating new leukocytes appearing in the right chamber;
• Determining the new leukocyte positions based on the calculated annexin concentra-

tion (as described in Section 3.1). In this step, it is also considered that if a leukocyte
moves to the same location as a tumor cell, the age of that cancer cell increases, as
shown in Equation (4).

By considering the annexin concentration and the agent positions in each computa-
tional step and remembering that the model is in a no-flow condition (nothing enters or
leaves the domain), it is possible to track the behavior of the variables over time.

Time ≤ 𝑇𝑓

Set-up 
Parameters

Definition of the
Domain Ω

Cancer cell
placement

Annexin Computation

Agent Aging

Update Position of 
Leukocytes

Leukocyte generation

Figure 2. Graphical representation of the computational algorithm.

3.5. Sensitivity Analysis

In order to assess the effect of each model parameter on the numerical results, we set
up a procedure for sensitivity analysis [33,34]. We selected 8 model parameters that we
consider crucial for the behavior of the dynamical system, as deduced from the observation
of model outcomes when they vary. In particular, for sensitivity analysis, we consider the
following parameters:

• kL, the normalized rate of new leukocyte accrual;
• kA, the production rate of annexin;
• kXA, the consumption rate of annexin;
• λ, the parameter enforcing migration towards high concentration;
• γ, the threshold value for migration;
• kTL, the interaction coefficient between leukocytes and tumor cells;
• LT , the tumor cells lifetime;
• LL, the maximum leukocytes lifetime.
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Sensitivity analysis was performed by increasing/decreasing the values of the 8 pa-
rameters, one at a time, by ±20% of their starting values (reported in Table 1).

Note that appreciably different trajectories are expected to be produced by the sim-
ulation algorithm with fixed parameters, due to the intrinsic stochasticity of our model.
For this reason, we realized 10,000 simulations for each perturbed parameter value. As
an indicative statistic of model outcomes, we computed the percentage of leukocytes in
the left chamber and the percentage of dead tumor cells at each run for a single parameter
value, and these statistics were then averaged. In addition, for control, 10,000 realizations
of the model were carried out without varying the starting parameter values to obtain the
reference simulation values.

Obtained results are displayed using tornado diagrams with bars reporting the de-
viation of model parameters from the reference simulation and the related values of the
indicators (see Figure 3a,b).

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
Deviation from reference simulation

kA

LL

kXA

kTL

kL

LT

Pa
ra

m
et

er

Relative difference dead NT at the end of simulation

PLUS
MINUS

(a)

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Deviation from reference simulation

LT

kTL

kL

kA

LL

kXA

Pa
ra

m
et

er

Relative difference NL in the left room at the end of simulation 

PLUS
MINUS

(b)

Figure 3. Tornado diagrams: PLUS (MINUS) indicates an increase (decrease) in the corresponding
parameter by ±20% compared with the reference value reported in Table 1. (a) Relative difference
of dead tumor cells at the end of the simulation: perturbed parameter values compared with the
reference values. (b) Relative difference of leukocytes remaining in the left chamber at the end of the
simulation: perturbed parameter values compared with the reference values.
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3.6. Preferred Direction

A single simulation with the parameter values reported in Table 1 was performed
to assess the preferential direction of the leukocytes with respect to the annexin concen-
tration gradient over time. The preferred direction is expressed as the angular difference
between the annexin concentration gradient at time t and the direction of movement of
the leukocyte between times t and t + ∆t. Angular differences are normalized to lie in the
(−180◦, 180◦] interval.

In the case of the absence of annexin, hence in the case when an annexin concentration
gradient cannot be detected (as for the initial simulation period over most of the domain),
its direction was taken at random.

The results are then displayed as a polar histogram of the angular differences of the
leukocyte preferred movement direction with respect to the annexin gradient.

In order to obtain the polar histogram, the following procedure was conducted:

1. The simulation of the migration of the leukocytes within the microfluidic chip environment.
2. The identification of the leukocyte positions at different time intervals throughout

the simulation.
3. The computation of the “difference angle”, the angle between the displacement vector

of each leukocyte and the local annexin gradient (this last identified as the direction of
the neighboring cell with the highest annexin concentration; in cases where multiple
neighboring cells contained the same amount of annexin, one of these cells was
selected at random).

4. The grouping of difference angles into different time intervals.
5. The plotting of polar histograms to visualize the distribution of the difference angles

for each time interval.

By following this procedure, we were able to analyze the directional preferences of
leukocyte movement in relation to the annexin gradient across various time intervals.

4. Results

Using fixed parameter values reported in Table 1, leukocytes’ dynamics in the mi-
crochip subdomain is illustrated by ten movies obtained with ten realizations of the numer-
ical algorithm and they are provided as Supplementary Material.

For the numerical simulations, at time t = 0, we assume the initial condition:

A(x, y, 0) = 0, and NL(0) = 0.

A continuous inflow of leukocytes is considered, randomly placed in the right chamber.
The probability of adding a new leukocyte is proportional to the time step used ∆t:

PL = kL∆t.

The movies show stationary tumor cells in the left chamber (green diamonds) and
leukocytes in the right chamber (orange circles with purple tails, representing previously
occupied positions) migrating to regions of high annexin concentration (field colored from
blue, absence of annexin, to yellow, maximum concentration). A representation of the
dynamics observed in the movies obtained via the numerical algorithm is provided in
Figure 4, where four screenshots of the movie in the supporting movie files are depicted.

In order to analyze the sensitivity of each of the parameters in the simulation algorithm,
we conducted multiple experiments in which the parameters were changed by ±20% with
respect to the reference simulation parameters reported in Table 1. The results are depicted
in the next Figure 3a,b, with error bars evaluated as the

√
σ√
N

, where σ = ∑N
i (µ− xi)

2/N is
the sample variance and N is the number of simulations. Figure 3a shows the fraction of
dead tumor cells at final time, while Figure 3b shows the relative difference of the leukocytes
lying in the left chamber at final time. In both cases, the most sensitive parameter is γ, with
more than 10% of variability of the index.
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(a) (b)

(c) (d)
Figure 4. Four screenshots of a single simulation with the parameters reported in Table 1, taken at
times (a) 0 h, (b) 24 h, (c) 36 h, and (d) 48 h. Tumor cells: green diamonds; leukocytes: red circles (the
pink tails indicate previous positions, to show trajectories); background: annexin concentration (with
reference color scale on the right).

The directional preference of the leukocytes with respect to the annexin gradient
during different simulation time intervals is shown in Figure 5. Initially, from 0 to 25 percent
of the simulation time, leukocytes exhibit random movement patterns relative to the
annexin maximum and the corresponding polar histogram is essentially uniform over
2π. This result is expected since, at this stage, the chemical has not reached the left
chamber, where the leukocytes are located, in sufficient amounts to generate a strong
annexin gradient.

In the time span from 25 to 50 percent, a significant amount of annexin reaches the
right chamber, leading leukocytes to preferentially move towards regions with higher
annexin concentrations. This trend persists until the end of the simulation, making the
histogram slice corresponding to 0◦ progressively larger.

It is worth noting that an additional preferred direction, albeit much less important
than that at 0◦, is observed at 180◦. This is likely due to the confinement of the leuko-
cytes within the channels, where the annexin gradient is essentially aligned with the
microchannel and where the channel diameter restricts leukocyte movement to be either
towards the left chamber (0◦ difference with respect to the annexin gradient) or, randomly,
with smaller probability, towards the right chamber (180◦ difference with respect to the
annexin gradient).

Looking at the obtained results in Figure 5, at times between 24 and 48 h (when
the chemoattractant field is well established in the microenvironment), we can see that
they match perfectly with the results reported in Figure 4 of the work by Biselli et al. [18].
Indeed, from the left picture of Figure 4 in [18], it is evident that the movement of wild-type
leukocytes (CC) shows a focused trajectory (preferred direction) pointing straight to its
target, as can also be observed in panels (c) and (d) of Figure 5.
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Figure 5. Polar histograms depicting the angular displacements of the leukocyte agent with respect
to the maximum value of annexin in the adjacent cells, segmented into four distinct time intervals.
(a) Time interval: 0–25% (0–12 h). (b) Time interval: 25–50% (12–24 h). (c) Time interval: 50–75%
(24–36 h). (d) Time interval: 75–100% (36–48 h).

5. Discussion

The previous model of leukocyte migration [25] was improved by adding features,
making it more closely adapted to representing the actual experiments, and reimplementing
it numerically in the vastly more powerful and efficient programming language Julia v1.8.3.
This new version of the model includes new features for the dynamics of leukocytes and the
interaction of leukocytes with tumor cells, limiting the life span of all cells and considering
immune-induced toxicity.

The results obtained numerically, reported in Figure 4, as well as the movies in the
Supplementary Material, show the directed migration of leukocytes from the right to the
left chamber where tumor cells are located, as observed experimentally. The migration
is biased by chemical stimuli: higher annexin concentrations increase the probability
of movement in the corresponding direction (as suggested in [35,36]). As in the COC
laboratory experiment, the numerical simulation shows that in the early hours leukocytes
only occupy the right-hand chamber and they move randomly, according to an isotropic,
two-dimensional Brownian motion hypothesized in the absence of sufficiently high driving
concentrations of annexin. Migration begins approximately at time 24 h, when the diffused
chemical flows through the microchannels. At the end of the simulation, a few leukocytes
reach the left chamber and some of them kill tumor cells: consequently, a reduction in the
concentration of annexin is observed.
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Figure 3a,b show the difference between two observable statistics (respectively, the
percentage of dead tumor cells and the percentage of leukocytes in the left chamber) as the
simulation parameters shown on the y axis are perturbed. The statistics in both tornado
diagrams indicate that the model is most sensitive to parameter γ. More in detail, as
the threshold value for migration γ increases, we observe an increment in the number of
leukocytes that migrate towards the left chamber of the simulated chip. This results in a
higher number of interactions between leukocytes and tumor cells, allowing for a greater
effect in eliminating the latter.

Considering the results reported in Figure 3b, another sensitive parameter is kXA.
We noticed that as the parameter kXA—the apparent linear rate of annexin elimination—
increases, the percentage of leukocytes in the left chamber and the percentage of dead cells
decreases. This phenomenon can be explained as follows: when kXA increases, annexin
is eliminated faster and its concentration in the chip decreases, thus leading to fewer
leukocytes following the chemical gradient and moving towards the tumor cell chamber
on the left. Conversely, when the kXA parameter decreases, a greater number of leukocytes
move towards the left chamber, but they actually kill a smaller number of tumor cells (as it
is possible to see in Figure 3a). This paradoxical effect can be explained by the fact that, as
observed numerically, the concentration of annexin is initially higher around cancer cells,
thus favoring the migration of leukocytes towards them. However, as the concentration
of annexin near tumor cells becomes very high, it tends to be equally distributed over the
(local) domain, and this excess of signal determines an essentially isotropic random walk
of the leukocytes, which have less opportunity to damage cancer cells.

The simulation results also appear to be significantly affected by the parameter LT
(the lifetime of tumor cells), as shown in Figure 3a. This is due to the fact that the longer
tumor cells survive, the more annexin they produce, attracting more leukocytes towards
the left chamber.

6. Conclusions

New features were added to the model, making it more realistic, such as the random
movement of leukocytes for the exploration of the environment and the death of tumor
cells caused by the interaction with leukocytes, as observed experimentally. Moreover, the
improvements applied to the computational model and to its implementation made it more
efficient and generally applicable, also in view of integrating it in a calibration procedure
for tuning model parameters against laboratory data.

The sensitivity analysis carried out in the present work shows the effect of some
model parameters on the overall results and indicates that our model apparently captures
the important role of the cancer microenvironment for the migration and effectiveness of
the leukocytes. The establishment of the chemical gradient, here represented by annexin,
is evidently crucial in attracting leukocytes towards the tumor cells and causing their
elimination. However, in order to develop a dependable in silico model of the biological
experiment, fine tuning of the model parameters against available experimental data is still
needed: this will require collecting and studying a large number of data extracted from
laboratory experiments, such as leukocyte positions and trajectories from sequential images
of ad hoc COC preparation using efficient tracking algorithms, as well as using appropriate
statistical methods to derive accurate model parameter estimates. This could be the object
of future research.

We believe that, with the necessary fine tuning of the model parameters, the mathe-
matical/computational model here presented could serve as a support tool for biologists
and clinicians, to explain and predict phenomena occurring in COC laboratory experiments.
Moreover, such a tool could be used to quantify critical biomedical variables which are still
difficult to be estimated via in vivo/in vitro techniques only (such as chemical gradients).
This aspect is crucial in experimental drug testing in oncology. Although animal models
are undoubtedly still necessary for the preclinical evaluation of drugs before first-in-human
studies, highly predictive in vitro human cancer experiments (such as can be performed
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with COCs preparations), together with the application of appropriate theoretical methods,
can play a very significant role in rationally prioritizing the drug candidates identified via
large-size in vitro screenings.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/axioms12100930/s1, Movie S1: Time evolution of leukocytes’
dynamics (realization 1). Video S2: Time evolution of leukocytes’ dynamics (realization 2). Movie S3:
Time evolution of leukocytes’ dynamics (realization 3). Movie S4: Time evolution of leukocytes’
dynamics (realization 4). Movie S5: Time evolution of leukocytes’ dynamics (realization 5). Movie S6:
Time evolution of leukocytes’ dynamics (realization 6). Movie S7: Time evolution of leukocytes’
dynamics (realization 7). Movie S8: Time evolution of leukocytes’ dynamics (realization 8). Movie S9:
Time evolution of leukocytes’ dynamics (realization 9). Movie S10: Time evolution of leukocytes’
dynamics (realization 10).
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