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Abstract: In this article, we present a numerical iterative scheme for solving a non-local singular
initial-boundary value problem by combining two well known efficient methods. Namely, the
homotopy analysis method and the double Laplace transform method. The resulting scheme is tested
on a set of test examples to illustrate its efficiency, it generates the exact analytical solution for each
one of these examples. The convergence of the resulting numerical solutions of these examples is
tested both graphically and numerically.
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1. Introduction

Many applications in engineering and natural sciences involve mathematical models
with nonclassical conditions. Usually these models involve initial-boundary value problems
accompanied with constraints of integral type. These models appear in various applications
such as thermoelasticity, transmission theory, chemical diffusion, control theory, nuclear
reactor dynamics, etc. See for example Muravei and Philinovskii [1], Nakhushev [2], Pulk-
ina [3,4], Samarskii [5], Shi and Shillor [6], Cannon [7], Ionkin and Moiseev [8], Kacur and
Keer [9].

Unfortunately, theoretical analytical solutions of this type of problems mostly can not
be determined, especially for nonlinear problems. Thus, in the literature various numerical
techniques have been developed by several researchers to determine approximate solu-
tions for these problems. In [10], finite difference methods have been used to address a
one-dimensional parabolic partial differential equation with initial and nonlocal bound-
ary conditions that involve nonlocal integral terms. Meanwhile, a combination of finite
difference and orthogonal function approximation techniques has been utilized to solve a
one-dimensional parabolic equation featuring two integral conditions, as demonstrated
in [11]. Furthermore, a hybrid approach integrating finite difference and spectral methods
has been proposed for solving a one-dimensional wave equation accompanied with an
integral condition, as presented in [12]. Moreover, the Chebyshev spectral method is used
to solve a class of local and nonlocal elliptic boundary value problems in [13]. Also, the
finite element method is employed to solve a nonlocal problem of Kirchhoff type in [14].

On the other hand, several computational techniques that do not require discretization
have been developed in the last decades. For example the differential transform method
is applied in [15,16]. The Adomian decomposition method given in [17–19], which is
developed to treat nonlinearity in partial differential equations. In addition to that Laplace
decomposition method is given in [20,21]. One more analytical method is the variational
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iteration method given in [22,23]. Another method is the homotopy perturbation presented
in [24–26]. A powerful analytical technique which is widely used by many researchers is
the homotopy analysis method introduced by Liao [27–31].

In this work, we combined two well known techniques, the homotopy analysis method
and the double Laplace transform method, to develop a numerical scheme, named as
homotopy analysis double Laplace transform method (HADLTM), to solve a singular one-
dimensional parabolic equation subject to Dirichlet conditions and a non-local condition of
integral type. To our knowledge it is the first time in the literature where such combination
between these two methods is applied.

Here we will consider the following problem:
Lη(x, t) = G (x, t), (x, t) ∈ Ω = (0, 1)× [0, T],
`η(x, t) := η(x, 0) = w(x), x ∈ (0, 1),∫ 1

0 x η(x, t) dx = 0, η(1, t) = 0, t ∈ (0, T),
(1)

where L is the operator ∂
∂t −

1
x

∂
∂x

(
x ∂

∂x

)
, and G and w(x) are known functions.

Problem (1) can be written in an operator form as:

Kη = (L, `)η =: ℱ ,

in which K is an unbounded operator that satisfies K : A → H, with domain all functions
of η in the set:

D((Ω) = {η : η, ηt, ηx, and ηxx ∈ L2
x(Ω)}

which satisfy the given boundary conditions, and A is a Banach space of functions η
equipped with a finite norm as [32]:

‖η‖2
A = ‖∂η

∂t
‖2

L2
x(Ω)

+ ‖ ∂

∂x
(xηx)‖2

L2
x(Ω)

+ sup
0≤τ≤T

(
‖η(x, τ)‖2

W1
x (Ω)

)
,

with values in the Hilbert space H consisting of the functions ℱ = (G , w) ∈ L2
x(Ω) ×

W1
x (Ω) equipped with the norm [32]:

‖ℱ ‖2
H = ‖G ‖2

L2
x(Ω)

+ ‖w‖2
W1

x (Ω)
.

The double Laplace transform of a function f (x, t) is given as [33–35]:

ℒxℒt
{

f (x, t)
}
=
∫ ∞

0
e−rx

∫ ∞

0
e−st f (x, t) dt dx =: F (r, s),

where x and t are positive real variables, and r and s are complex variables. On the other
hand, the double Laplace transform of its time-partial derivative; ∂ f

∂t (x, t), is given by:

ℒxℒt
{∂ f (x, t)

∂t
}
= sF (r, s)−F (r, 0), (2)

where F is the double Laplace transform of f .
The rest of the article is organized as follows: In Section 2, we recall some existence

results of the solution of problem (1). In Section 3, we present the development of the
numerical scheme for solving problem (1) based on the HADLTM. In Section 4, we provide
several examples to test the applicability and efficiency of the developed scheme. Finally,
we present some comments and conclusions in Section 5.

2. Existence and Uniqueness of the Solution

Here, we present some existence and uniqueness results of the solution of problem (1).
First, we recall the two sided a prior estimates:
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Theorem 1 ([32,36]). For every function η ∈ D(K), we have:

‖Kη‖2
H ≤ 2‖η‖A,

Theorem 2 ([32,36]). For every function η ∈ D(K), the following energy inequality holds true:

‖η‖A ≤ C‖Kη‖H ,

for some positive constant C independent of η.

As pointed in it [32], in view of Theorem 1, it follows that the operator K : A → H
is continuous. Thus, Theorem 2 implies that the set R(K) ⊂ H; the range of K, is closed.
Hence, the inverse operator K−1 exists and is continuous. To verify the existence of the
solution of (1), we need to verify that the set Im(K); the image of K, coincides with the
whole Hilbert space H.

Theorem 3 ([32,36]). For any two functions G ∈ L2
x(Ω) and w ∈W1

x (Ω), there exists a unique
solution η = K−1Ψ of problem (1) that satisfies the inequality

‖η‖A ≤ C‖Kη‖H ,

where Ψ = (G , w), and C is a positive constant which does not depend on η.

3. Method Development

Consider a general partial differential equation as:

∂θ

∂t
+ R̃ θ(x, t) + Ñθ(x, t) = f (x, t), (3)

where θ is an unknown function in x and t, R̃ is a linear differential operator, Ñ represents
a nonlinear differential operator, and f is a given function. Applying double Laplace
transform on both sides of (3), implies:

s Θ(r, s)−Θ(r, 0) +ℒxℒt
{

R̃θ(x, t) + Ñθ(x, t)
}
= ℒxℒt

{
f (x, t)

}
,

or equivalently,

Θ(r, s)− 1
s

Θ(r, 0) +
1
s
ℒxℒt

{
R̃θ(x, t) + Ñθ(x, t)− f (x, t)

}
= 0,

where Θ(r, s) is the double Laplace transform of θ(x, t). According to the homotopy
analysis method [27], we define the operator:

N [φ(x, t; p)] = ℒxℒt
{

φ(x, t; p)
}
− 1

s
Θ(r, 0) +

1
s
ℒxℒt

{
R̃φ(x, t; p) + Ñφ(x, t; p)− f (x, t)

}
,

where p ∈ [0, 1], and φ is a real valued function of x, t and p. Thus, the zeroth-order
deformation equation will be on the form:

(1− p)ℒxℒt
{

φ(x, t; p)− θ0(x, t)
}
= ph̄N [φ(x, t; p)], (4)

where h̄ 6= 0 is an auxiliary parameter, p ∈ [0, 1] is an embedding parameter, θ0(x, t) is an
initial guess to start with to get the solution θ(x, t), and φ(x, t; p) is an unknown function.

In view of Equation (4), it is clear that for p = 0 and p = 1 we obtain:

φ(x, t; 0) = θ0(x, t) and φ(x, t; 1) = θ(x, t).
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Thus, as p increases from 0 to 1, the function φ(x, t; p) deforms from θ0(x, t) to the
exact solution θ(x, t).

Then, using the Taylor series expansion of φ(x, t; p) with respect to p gives:

φ(x, t; p) = θ0(x, t) +
∞

∑
k=1

θk(x, t)pk, (5)

where

θk(x, t) =
1
k!

∂kφ(x, t; p)
∂pk

∣∣∣∣∣
p=0

.

As Liao mentioned in [30] if the auxiliary parameter h̄, the inverted operator L, and
the initial guess θ0(x, t) are chosen properly, then the power series (5) will converge at
p = 1 to one of the solutions of the original equation, and this solution is given in a series
form as:

θ(x, t) = θ0(x, t) +
∞

∑
k=1

θk(x, t),

as pointed out by Liao in [28], the parameter h̄ helps one in controlling and adjusting the
convergence region of the series solution. The values of this parameter can be determined
through the h̄−curve.

Now, differentiating Equation (4) k-times with respect to p, dividing by k!, then setting
p = 0, produces the kth order deformation equations as:

ℒxℒt
{

θk(x, t)− χkθk−1(x, t)
}
= h̄R(~θk−1), (6)

where
~θk(x, t) = [θ0(x, t), θ1(x, t), ..., θk(x, t)],

and

R(~θk−1) =
1

(k− 1)!

{
∂k−1

∂pk−1N [φ(x, t; p)]

}∣∣∣∣∣
p=0

.

Then, applying the inverse double Laplace transform to both sides of (6), the compo-
nents θk(x, t) of the HADLTM can be determined recursively through the formula:

θk(x, t) = χk θk−1(x, t) + h̄ℒ−1
r ℒ−1

s

[
R(~θk−1)

]
,

where

χk =

{
0, k ≤ 1,
1, k > 1.

4. Application of the Method

The presence of the integral condition in problem (1) complicates the computations.
Therefore, to avoid this difficulty in exploring the applicability and efficiency of the
HADLTM for solving this problem, we consider the forthcoming equivalent problem (9), in
which the integral condition is replaced by classical conditions.

Thus, suppose that
∫ 1

0 x θ(x, t) dx = 0 and
∫ 1

0 x f (x, t)dx = 0. Then, multiplying
the equation:

∂

∂t
θ(x, t)− 1

x
∂

∂x
θ(x, t)− ∂2

∂x2 θ(x, t) = f (x, t), (7)

by x, and integrating the resulting equation with respect to x on the interval [0, 1], gives:

∂t

∫ 1

0
x θ(x, t) dx−

∫ 1

0
θx(x, t) dx−

∫ 1

0
x θxx(x, t) dx =

∫ 1

0
x f (x, t)dx,
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or

∂t

∫ 1

0
x θ(x, t) dx−

∫ 1

0
θx(x, t) dx−

[
xθx(x, t)|10 −

∫ 1

0
θx(x, t)

]
=
∫ 1

0
x f (x, t)dx, (8)

which implies θx(1, t) = 0.
Conversely, suppose that θx(1, t) = 0, and

∫ 1
0 x f (x, t)dx = 0. Now, multiplying

Equation (7) by x, and integrating the resulting equation with respect to x on [0, 1], then
using (8), we get ∂t

∫ 1
0 x θ(x, t) dx = 0, which implies

∫ 1
0 x θ(x, t) dx = c, ∀t ∈ [0, 1], where c

is a constant.
In particular

∫ 1
0 x θ(x, 0) dx = c = 0, as the initial condition θ(x, 0) = η(x) satisfies the

compatibility condition, which implies
∫ 1

0 x θ(x, t) dx = 0.

Therefore the condition
∫ 1

0 x θ(x, t) dx = 0 in problem (1) is equivalent to the conditions

θx(1, t) = 0 and
∫ 1

0 x f (x, t)dx = 0. Thus, problem (1) is equivalent to:
∂θ(x,t)

∂t − 1
x

∂
∂x

(
x ∂θ(x,t)

∂x

)
= f (x, t), 0 < x < 1, 0 < t < T,

θ(x, 0) = η(x), 0 < x < 1,
θ(1, t) = ϕ(t), θx(1, t) = 0, t ∈ (0, T),

(9)

provided that
∫ 1

0 x f (x, t)dx = 0, where f , η and ϕ are given functions.
Now, in view of (2), taking double Laplace transform for both sides of (9), we obtain:

Θ(r, s)− 1
s

Θ(r, 0)− 1
s
ℒxℒt

[
1
x

∂

∂x

(
x

∂θ(x, t)
∂x

)
+ f (x, t)

]
= 0.

Thus, we define the operator N [φ(x, t; q)] as:

N [φ(x, t; p)] = ℒxℒt
{

φ(x, t; p)
}
− 1

s
Θ(r, 0)− 1

s
ℒxℒt

[ 1
x

∂

∂x

(
x

∂φ(x, t; p)
∂x

)
+ f (x, t)

]
.

Hence, the kth order deformation equation is given by:

ℒxℒt[θk(x, t)− χkθk−1(x, t)] = h̄R(~θk−1),

where

R(~θk−1) = ℒxℒt
{

θk−1(x, t)
}
−
(
1− χk

)1
s

Θ(r, 0)− 1
s
ℒxℒt

[ 1
x

∂

∂x

(
x

∂θk−1(x, t)
∂x

)
+
(
1− χk

)
f (x, t)

]
.

Hence, the series solution is given as:

θ(x, t) = θ0(x, t) +
∞

∑
k=1

θk(x, t).

where
θk(x, t) = χkθk−1(x, t) + h̄ℒ−1

r ℒ−1
s

[
R(~θk−1)

]
. (10)

To test the efficiency of the scheme (10) in handling the numerical solutions of problems
of the type (9), it is applied to the forthcoming set of test examples.

Example 1. Consider the homogeneous PDE:

∂θ(x, t)
∂t

− 1
x

∂θ(x, t)
∂x

− ∂2θ(x, t)
∂x2 = 0, 0 < x < 1, 0 < t < T,
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satisfying the following initial and boundary conditions:

θ(x, 0) = x2

4 −
ln(x)

2 , 0 < x < 1,

θ(1, t) = t + 1
4 , θx(1, t) = 0, 0 < t < T.


Solution.
Let θ0(x, t) = θ(x, 0) = x2

4 −
ln(x)

2 + 1
2 . In view of (10) we obtain:

θ1(x, t) = χ1θ0(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ0(x, t)} − (1− χ1)

1
s Θ(r, 0)− 1

s ℒxℒt{ 1
x (θ0(x, t))x + (θ0(x, t))xx}

]
= h̄ℒ−1

r ℒ−1
s

[
ℒxℒt{θ0(x, t)} − (1− χ1)

1
s Θ(r, 0)− 1

s ℒxℒt{−1}
]

= −h̄ t.

θ2(x, t) = χ2θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ1(x, t)}

]
= (1 + h̄) θ1(x, t).

θ3(x, t) = χ3θ2(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ2)]

= θ2(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ2)]

= θ2(x, t) + h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ2(x, t)}

]
= (1 + h̄) θ2(x, t)
= (1 + h̄)2 θ1(x, t)

In general we obtain:

θj(x, t) = (1 + h̄)j−1 θ1(x, t), j ≥ 1,

hence, we have:
θ(x, t) = θ0(x, t) + ∑∞

j=1 θj(x, t)

= θ0(x, t)−
∞

∑
j=1

(1 + h̄)j−1 h̄ t. (11)

Now, if we choose the parameter h̄ within the range −2 < h̄ < 0, then the series (11)
converges to the exact solution given by:

θ(x, t) = θ0(x, t) + t =
x2

4
− ln(x)

2
+ t.

Figure 1 displays the h-curve corresponding to the 15th order truncated series solution
at x = 0.75, from which it appears that the values of the parameter h̄ required for the
convergence of the series solution are located in the interval −1.8 < h̄ < −0.2.

Figure 2 shows the plots of the truncated series solution using different number of
terms together with the corresponding exact solution of Example 1 at x = 0.7 and h̄ = −0.6.
It shows that the truncated series solution of order j = 5 is very close to the exact solution,
which shows the rapid convergence of the proposed method.
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Figure 1. The h̄-curve corresponding to the 15th order series solution at t = 0.
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j=5

j=4

j=3

j=2

j=1

Θ

Figure 2. Approximate solution θ[j](x, t) with various values of j together with the exact solution
θ(x, t) of Example 1.

Table 1 shows the absolute error Er[j] = |θ(x, t) − θ[j](x, t)| due to the difference
between the exact solution and the approximate solution of distinct orders of Example 1 at
different values of x and t. It illustrates the rapid convergence of the approximate solution
obtained by using this method.

Table 1. Absolute error at h̄ = −0.9 and different values of j, x, and t.

t

0.1 0.5 1 5

x j Er[j] Er[j] Er[j] Er[j]

0.1 2 0.001 0.005 0.01 0.05
5 1 × 10−6 5 × 10−6 0.00001 0.00005

10 1 × 10−11 5.00002× 10−11 1.00001× 10−10 5.00003× 10−10

14 1.33227× 10−15 5.55112× 10−15 1.15463× 10−14 5.59552× 10−14



Axioms 2023, 12, 933 8 of 16

Table 1. Cont.

t

0.1 0.5 1 5

x j Er[j] Er[j] Er[j] Er[j]

0.5 2 0.001 0.005 0.01 0.05
5 1 × 10−6 5 × 10−6 0.00001 0.00005

10 1.00001× 10−11 5.00004× 10−11 1.00001× 10−10 5.00003× 10−10

14 1.22125× 10−15 5.66214× 10−15 1.13243× 10−14 5.59552× 10−14

0.7 2 0.001 0.005 0.01 0.05
5 1 × 10−6 5 × 10−6 0.00001 0.00005

10 1.00001× 10−11 5.00003× 10−11 1.00001× 10−10 5.00002× 10−10

14 1.11022× 10−15 5.55112× 10−15 1.13243× 10−14 5.50671× 10−14

0.9 2 0.001 0.005 0.01 0.05
5 1 × 10−6 5 × 10−6 0.00001 0.00005

10 1.00001× 10−11 5.00004× 10−11 1.00001× 10−10 5.00002× 10−10

14 1.11022× 10−15 5.66214× 10−15 1.13243× 10−14 5.50671× 10−14

Example 2. Consider the nonhomogeneous PDE:

∂θ(x, t)
∂t

− 1
x

∂θ(x, t)
∂x

− ∂2θ(x, t)
∂x2 = 2t + 4x2, 0 < x < 1, 0 < t < T,

subject to the conditions:

θ(x, 0) = ln(x)− x4

4 , 0 < x < 1,

θ(1, t) = t2 − 1
4 , θx(1, t) = 0, 0 < t < T.


Solution.
Let θ0(x, t) = θ(x, 0) = 1 + x4

4 − ln(x). Then, in view of (10) we get:

θ1(x, t) = χ1θ0(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ0(x, t)} − (1− χ1)

1
s Θ(r, 0)− 1

s ℒxℒt{ 1
x (θ0(x, t))x + (θ0(x, t))xx}

]
= h̄ℒ−1

r ℒ−1
s

[
ℒxℒt{θ0(x, t)} − (1− χ1)

1
s Θ(r, 0)− 1

s ℒxℒt{−4x2}
]

= −h̄ t2.

θ2(x, t) = χ2θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ1(x, t)}

]
= (1 + h̄) θ1(x, t).

θ3(x, t) = χ3θ2(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ2)]

= θ2(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ2)]

= θ2(x, t) + h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ2(x, t)}

]
= (1 + h̄) θ2(x, t)
= (1 + h̄)2 θ1(x, t)

Proceeding on this manner we obtain:

θj(x, t) = (1 + h̄)j−1 θ1(x, t), j ≥ 1,
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hence, we have:
θ(x, t) = θ0(x, t) + ∑∞

j=1 θj(x, t).

= θ0(x, t)−
∞

∑
j=1

(1 + h̄)j−1 h̄ t2. (12)

Hence, if the parameter h̄ satisfies −2 < h̄ < 0, then the series (12) converges to the
exact solution given by:

θ(x, t) = θ0(x, t) + t2 = ln(x)− x4

4
+ t2.

Figure 3 shows the h-curve corresponding to the 16th order truncated series solution
at x = 0.75, it appears that the valid values of the parameter h̄ that lead to a convergent
series solution are located in the interval −1.8 < h̄ < −0.2.

-2.0 -1.5 -1.0 -0.5
h

-4

-3

-2

-1

1

2

Θtt
@ j D

Figure 3. The h̄-curve corresponding to the 16th order approximate solution at t = 0.

Figure 4 shows plots of the truncated series solution using different number of terms
together with the corresponding exact solution of Example 2 at x = 0.8 and h̄ = −0.7.
It shows that the truncated series solution of order j = 5 almost coincide with the exact
solution, which shows the rapid convergence of the proposed method.
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Figure 4. Approximate solution θ[j](x, t) with various values of j together with the exact solution
θ(x, t) of Example 2.
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Table 2 shows the absolute error Er[j] = |θ(x, t) − θ[j](x, t)| due to the difference
between the exact solution and the approximate solution of distinct orders of Example 2 at
different values of x and t. It illustrates the rapid convergence of the approximate solutions
generated by this method.

Table 2. Absolute error at h̄ = −0.9 and different values of j, x, and t.

t

0.1 0.5 1 5

x j Er[j] Er[j] Er[j] Er[j]

0.1 2 0.0001 0.0025 0.01 0.25
5 1 × 10−7 2.5× 10−6 0.00001 0.00025

10 1.00009× 10−12 2.50004× 10−11 1.00001× 10−10 2.50003× 10−9

14 8.88178× 10−16 2.4869× 10−14 9.9698× 10−14 2.51887× 10−12

0.5 2 0.0001 0.0025 0.01 0.25
5 1 × 10−7 2.5× 10−6 0.00001 0.00025

10 9.99978× 10−13 2.50002× 10−11 1.00001× 10−10 2.50003× 10−9

14 1.11022× 10−16 2.83107× 10−15 1.12133× 10−14 2.4869× 10−13

0.7 2 0.0001 0.0025 0.01 0.25
5 1 × 10−7 2.5× 10−6 0.00001 0.00025

10 9.99978× 10−13 2.50002× 10−11 1.00001× 10−10 2.50003× 10−9

14 1.11022× 10−16 2.77556× 10−15 1.12133× 10−14 2.4869× 10−13

0.9 2 0.0001 0.0025 0.01 0.25
5 1 × 10−7 2.5× 10−6 0.00001 0.00025
10 9.99978× 10−13 2.50002× 10−11 1.00001× 10−10 2.50003× 10−9

14 1.11022× 10−16 2.77556× 10−15 1.11022× 10−14 2.4869× 10−13

Example 3. Consider the nonhomogeneous PDE:

∂θ(x, t)
∂t

− 1
x

∂θ(x, t)
∂x

− ∂2θ(x, t)
∂x2 = 2e−2t − 1, 0 < x < 1, 0 < t < T,

subject to the constraints:

θ(x, 0) = x2

4 −
ln(x)

2 − 1, 0 < x < 1,

θ(1, t) = 1
4 − e−2t, ux(1, t) = 0, 0 < t < T,


Solution.
Starting with θ0(x, t) = θ(x, 0) = x2

4 −
ln(x)

2 − 1, in view of (10), we obtain:

θ1(x, t) = χ1θ0(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ0(x, t)} − (1− χ1)

1
s Θ(r, 0)− 1

s ℒxℒt{ 1
x (θ0(x, t))x + (θ0(x, t))xx}

]
= h̄ℒ−1

r ℒ−1
s

[
ℒxℒt{θ0(x, t)} − (1− χ1)

1
s Θ(r, 0)− 1

s ℒxℒt{−1}
]

= h̄ (e−2t − 1).

θ2(x, t) = χ2θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ1(x, t)}

]
= −(1 + h̄) θ1(x, t).
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θ3(x, t) = χ3θ2(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ2)]

= θ2(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ2)]

= θ2(x, t) + h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ2(x, t)}

]
= (1 + h̄) θ2(x, t)
= −(1 + h̄)2 θ1(x, t).

In general we get:

θj(x, t) = −(1 + h̄)j−1 θ1(x, t), j ≥ 1,

hence, the series solution takes the form:

θ(x, t) = θ0(x, t) + ∑∞
j=1 θj(x, t).

= θ0(x, t) +
∞

∑
j=1

(1 + h̄)j−1 h̄ (e−2t − 1). (13)

Thus, if the parameter h̄ satisfies −2 < h̄ < 0, then the series (12) converges to the
exact solution:

θ(x, t) = θ0(x, t) + 1− e−2t =
x2

4
− ln(x)

2
− e−2t.

Figure 5 shows the h-curve corresponding to the 15th order truncated series solution
at x = 0.7, from which it appears that the valid values of the parameter h̄ that lead to a
convergent series solution are located in the interval −1.8 < h̄ < −0.2.

-2.5 -2.0 -1.5 -1.0 -0.5
h
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Figure 5. The h̄-curve corresponding to the 15th order series solution at t = 0.

Figure 6 shows the plots of the truncated series solution using different number of
terms together with the corresponding exact solution of Example 3 at x = 0.3 and h̄ = −0.7.
It shows that the truncated series solution of order j = 5 is very close to the exact solution,
which demonstrates the rapid convergence of the proposed method.

Table 3 presents the absolute error Er[j] = |θ(x, t)− θ[j](x, t)| due to the difference
between the exact solution and the approximate solution of distinct orders of Example 3 at
different values of x and t. It illustrates the rapid convergence of the approximate solutions
generated by this method.
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Figure 6. Approximate solution θ[j](x, t) with various values of j together with the exact solution
θ(x, t) of Example 3.

Table 3. Absolute error at h̄ = −1.1 and different values of j, x, and t.

t

0.1 0.5 1 5

x j Er[j] Er[j] Er[j] Er[j]

0.1 2 0.00181269 0.00632121 0.00864665 0.00999955
5 1.81269× 10−6 6.32121× 10−6 8.64665× 10−6 9.99955× 10−6

10 1.81267× 10−11 6.32119× 10−11 8.64666× 10−11 9.99953× 10−11

14 1.77636× 10−15 6.43929× 10−15 8.88178× 10−15 1.02141× 10−14

0.5 2 0.00181269 0.00632121 0.00864665 0.00999955
5 1.81269× 10−6 6.32121× 10−6 8.64665× 10−6 9.99955× 10−6

10 1.81268× 10−11 6.32121× 10−11 8.64664× 10−11 9.99955× 10−11

14 1.77636× 10−15 6.32827× 10−15 8.71525× 10−15 1.00475× 10−14

0.7 2 0.00181269 0.00632121 0.00864665 0.00999955
5 1.81269× 10−6 6.32121× 10−6 8.64665× 10−6 9.99955× 10−6

10 1.81268× 10−11 6.32121× 10−11 8.64665× 10−11 9.99955× 10−11

14 1.77636× 10−15 6.32827× 10−15 8.6875× 10−15 1.00475× 10−14

0.9 2 0.00181269 0.00632121 0.00864665 0.00999955
5 1.81269× 10−6 6.32121× 10−6 8.64665× 10−6 9.99955× 10−6

10 1.81268× 10−11 6.32121× 10−11 8.64665× 10−11 9.99955× 10−11

14 1.77636× 10−15 6.30052× 10−15 8.65974× 10−15 1.00475× 10−14

Example 4. Consider the nonhomogeneous PDE:

∂θ(x, t)
∂t

− 1
x

∂θ(x, t)
∂x

− ∂2θ(x, t)
∂x2 = cos(t)− 2, 0 < x < 1, 0 < t < T,

subject to the constraints:

θ(x, 0) = x2

2 − ln(x), 0 < x < 1,

θ(1, t) = sin(t) + 1
2 , ux(1, t) = 0, 0 < t < T.


Solution.
Choosing θ0(x, t) = θ(x, 0) = x2

2 − ln(x), in view of (10), we have:
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θ1(x, t) = χ1θ0(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s [R(~θ0)]

= h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ0(x, t)} − 1

s Θ(r, 0)− 1
s ℒxℒt{ 1

x (θ0(x, t))x + (θ0(x, t))xx

+ (1− χ1)(cos(t)− 2)}
]

= h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ0(x, t)} − 1

s Θ(r, 0)− 1
s ℒxℒt{cos(t)}

]
= h̄ℒ−1

r ℒ−1
s

[
ℒxℒt{θ0(x, t)} − 1

s Θ(r, 0)− 1
r(s2+1)

]
= −h̄ sin(t).

θ2(x, t) = χ2θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s [R(~θ1)]

= θ1(x, t) + h̄ℒ−1
r ℒ−1

s

[
ℒxℒt{θ1(x, t)}

]
= (1 + h̄)θ1(x, t).

Proceeding on this manner we get:

θj(x, t) = (1 + h̄)j−1 θ1(x, t),

hence, the series solution is given as:

θ(x, t) = θ0(x, t) + ∑∞
j=1 θj(x, t)

= θ0(x, t)−
∞

∑
j=1

(1 + h̄)j−1 h̄ sin(t). (14)

It follows that if the parameter h̄ lies in the range −2 < h̄ < 0, then the series (14)
converges to the analytical solution:

θ(x, t) = θ0(x, t) + sin(t) = sin(t) +
x2

2
− ln(x),

Figure 7 shows the h-curve corresponding to the 15th order truncated series solution
at x = 0.7, it appears that the valid values of the parameter h̄ that lead to a convergent
series solution are located in the interval −1.8 < h̄ < −0.2.
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Figure 7. The h̄-curve for the 15th order series solution at t = 0.
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Figure 8 shows the plots of the truncated series solution using different number of
terms together with the corresponding analytical exact solution of Example 4 at x = 0.7
and h̄ = −0.7. It shows that the truncated series solution of order j = 5 is very close to the
exact solution, which indicates the rapid convergence of the proposed method.
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Figure 8. Approximate solution θ[j](x, t) with various values of j together with the exact solution
θ(x, t) of Example 3.

Table 4 presents the absolute error Er[j] = |θ(x, t)− θ[j](x, t)| due to the difference
between the exact solution and the approximate solution of various orders of Example 4 at
different values of x and t. It illustrates the rapid convergence of the approximate solution
obtained by using this method.

Table 4. Absolute error at h̄ = −1.1 and different values of j, x, and t.

t

0.1 0.5 1 5

x j Er[j] Er[j] Er[j] Er[j]

0.1 2 0.000998334 0.00479426 0.00841471 0.00958924
5 9.98334× 10−7 4.79426× 10−6 8.41471× 10−6 9.58924× 10−6

10 9.98357× 10−12 4.79425× 10−11 8.41469× 10−11 9.58926× 10−11

14 8.88178× 10−16 4.88498× 10−15 7.99361× 10−15 9.76996× 10−15

0.5 2 0.000998334 0.00479426 0.00841471 0.00958924
5 9.98334× 10−7 4.79426× 10−6 8.41471× 10−6 9.58924× 10−6

10 9.98324× 10−12 4.79425× 10−11 8.41469× 10−11 9.58925× 10−11

14 8.88178× 10−16 4.88498× 10−15 7.99361× 10−15 9.63118× 10−15

0.7 2 0.000998334 0.00479426 0.00841471 0.00958924
5 9.98334× 10−7 4.79426× 10−6 8.41471× 10−6 9.58924× 10−6

10 9.98324× 10−12 4.79425× 10−11 8.41469× 10−11 9.58925× 10−11

14 8.88178× 10−16 4.88498× 10−15 7.99361× 10−15 9.65894× 10−15

0.9 2 0.000998334 0.00479426 0.00841471 0.00958924
5 9.98334× 10−7 4.79426× 10−6 8.41471× 10−6 9.58924× 10−6

10 9.98335× 10−12 4.79425× 10−11 8.41469× 10−11 9.58925× 10−11

14 9.99201× 10−16 4.77396× 10−15 8.21565× 10−15 9.65894× 10−15

5. Conclusions

In this article, a numerical scheme is developed to solve a mathematical model subject
to a non-local condition of integral type by combining two well known methods; the double
Laplace transform and the homotopy analysis method. The derived scheme is applied on a
set of test examples to demonstrate it’s reliability and efficiency. This scheme generates the
exact solution for each one of these example. The convergence of the obtained approximate
solutions is tested graphically as shown in Figures 2, 4, 6, and 8. These figures show rapid
convergence of the numerical solutions towards the exact solution just after few iterations.
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The error in these approximate solutions is computed for several values of the independent
variables x and t, and it is presented in Tables 1–4. These tables reflect the efficiency and
accuracy of the proposed method using few terms of the truncated series solutions. These
results show that the HADLTM is an efficient technique for solving this problem, and any
other similar problems.
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