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Abstract: We consider a finite horizon multi-model linear-quadratic optimal control problem. For
this problem, we treat the case where the problem’s functional does not contain a control function.
The latter means that the problem under consideration is a singular optimal control problem. To
solve this problem, we associate it with a new optimal control problem for the same multi-model
system. The functional in this new problem is the sum of the original functional and an integral
of the square of the Euclidean norm of the vector-valued control with a small positive weighting
coefficient. Thus, the new problem is regular. Moreover, it is a multi-model cheap control problem.
Using the solvability conditions (Robust Maximum Principle), the solution of this cheap control
problem is reduced to the solution of the following three problems: (i) a terminal-value problem for an
extended matrix Riccati type differential equation; (ii) an initial-value problem for an extended vector
linear differential equation; (iii) a nonlinear optimization (mathematical programming) problem. We
analyze an asymptotic behavior of these problems. Using this asymptotic analysis, we design the
minimizing sequence of state-feedback controls for the original multi-model singular optimal control
problem, and obtain the infimum of the functional of this problem. We illustrate the theoretical results
with an academic example.

Keywords: multi-model optimal control problem; singular optimal control problem; regularization;
cheap control problem; optimization (mathematical programming) problem; minimizing state-feedback
control sequence

MSC: 49K35; 49N10; 49N35; 93B52; 93C70

1. Introduction

Multi-model systems represent the class of uncertain systems depending on an un-
known numerical parameter, which belongs to some given set. This set can be either finite
or infinite and compact. Thus, a multi-model system represents a set of single-model sys-
tems, each of which is associated with one of the aforementioned parameters. The optimal
control problem of a multi-model system is a Min-Max type optimization problem. In such
an optimal control problem, the functional is maximized with respect to the parameter
and minimized with respect to the control. For multi-model optimal control problems,
the first-order optimality condition (Robust Maximum Principle) was recently developed in
the book [1] (see also the book [2]). Among other topics, where other (as in [1,2]) versions
of multi-model systems and their analysis are considered, we can mention, for instance,
the following: robust optimization in spline regression for multi-model regulatory net-
works (see, e.g., [3] and references therein), multi-regimes stochastic differential games
with jumps (see, e.g., [4] and references therein), games with fuzzy uncertainty (see, e.g., [5]
and references therein), and robust portfolio optimization under parallelepiped uncertainty
(see, e.g., [6] and references therein).

The singular optimal control problem is such that the first-order optimality conditions
Maximum Principle ([7]), Robust Maximum Principle ([1]), and Hamilton–Jacobi-Bellman
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Equation ([8]) are not applicable for obtaining its solution. Single-model singular optimal
control problems are extensively studied in the literature. Several approaches to the analysis
and solution of such problems are widely used. Thus, higher order necessary/sufficient
control optimality conditions can be useful in solving the singular optimal control problems
(see, e.g., [9–13] and references therein). However, the higher order optimality conditions
fail to yield a candidate optimal control/optimal control for the problem, which does
not have an optimal control in the class of regular (non-generalized) functions, even
if the problem’s functional has a finite infimum/supremum in this class of functions.
The second approach is based on the design of a singular optimal control as a minimizing
sequence of regular open-loop controls. This minimizing sequence is a sequence of regular
control functions of time, along which the functional tends to its infimum/supremum (see,
e.g., [12,14,15] and references therein). A generalization of this approach is the extension
approach (see [16–18]). The third approach combines geometric and analytic methods.
Namely, this approach is based on a decomposition of the state space into the “singular” and
“regular” subspaces, and a design of an optimal open loop control as a sum of impulsive (in
the singular subspace) and regular (in the regular subspace) functions (see, e.g., [19–22]
and references therein). The fourth approach proposes to look for a solution to a singular
optimal control problem in a properly defined class of generalized functions (see, e.g., [23]).
Finally, the fifth approach is based on regularization of the original singular problem by
a “small” correction of its “singular” functional (see e.g., [24–26] and references therein).
Such a regularization is a kind of Tikhonov’s regularization of ill-posed problems [27]. This
approach yields the solution to the original problem in the form of a minimizing sequence
of state feedback controls.

However, to the best of our knowledge, multi-model singular optimal control prob-
lems were not considered in the literature. In this paper, we consider the finite horizon
multi-model singular linear-quadratic optimal control problem. We solve this problem by
application of the regularization approach, which yields a new regular optimal control
problem. The latter problem is a multi-model cheap control problem. To the best of our
knowledge, multi-model cheap control problems also were not considered in the literature.
Asymptotic analysis of the multi-model cheap control problem, obtained in this paper,
is carried out. Based on this analysis, a minimizing sequence of state-feedback controls
in the original multi-model singular control problem is designed and the infimum of the
functional of this problem is derived.

It should be noted that the present paper is rather theoretical. Its motivation is to extend the
regularization approach to analysis and solution of multi-model singular optimal control problems.
Since the Robust Maximum Principle, applied to multi-model optimal control problems, differs
considerably from the Maximum Principle, applied to single-model optimal control problems,
the aforementioned extension is not trivial. It requires obtaining significantly new results in the
asymptotic analysis of singularly perturbed problems, as well as significantly new results in the
asymptotic analysis of optimization (mathematical programming) problems.

We organize the paper as follows. In the next section (Section 2), we present the
rigorous formulation of the considered problem. Also, we present the main definitions.
In Section 3, we regularize the original singular problem. This regularization yields a
new problem—the multi-model cheap control problem. Using the Robust Maximum
Principle, we present the solvability conditions of this new problem. In Section 4, we
analyze asymptotically, these solvability conditions. Based on this analysis, in Section 5,
we design the minimizing sequence of state-feedback controls for the original multi-model
singular optimal control problem and obtain the infimum of the functional of this problem.
In Section 6, we present, an illustrative academic example. We devote Section 7 to the
concluding remarks and outlook.

The following main notations are applied in the paper.

1. En denotes the n-dimensional real Euclidean space.
2. ‖ · ‖ denotes the Euclidean norm either of a vector or of a matrix.
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3. The superscript “T” denotes the transposition of a matrix A (AT), or of a vector
x, (xT).

4. L[a, b; En] denotes the linear space of n-dimensional vector-valued real functions,
square-integrable in the finite interval [a, b].

5. On1×n2 is used for the zero matrix of the dimension n1 × n2, except in the cases where
the dimension of the zero matrix is obvious. In such cases, the notation 0 is used for
the zero matrix.

6. In is the n-dimensional identity matrix.
7. col(x, y), where x ∈ En, y ∈ Em, denotes the column block-vector of the dimension

n + m with the upper block x and the lower block y.
8. The inequality A ≤ B, where A and B are quadratic symmetric matrices of the same

dimensions, means that the matrix B− A is positive semi-definite.

2. Problem Formulation and Main Definitions

Consider the following multi-model system:

dwk(t)
dt

= Ak(t)wk(t) + Bk(t)u(t), wk(0) = w̃0, t ∈ [0, t f ], k ∈ {1, 2, . . . , K}, K > 1, (1)

where wk(t), (k ∈ {1, 2, . . . , K}) is a state in the multi-model system and wk(t) ∈ En,
(k = 1, 2, . . . , K); u(t) is a control in the multi-model system and u(t) ∈ Er, (r ≤ n); t f > 0
is a given time instant; Ak(t) and Bk(t), t ∈ [0, t f ], (k = 1, 2, . . . , K) are given matrix-valued
continuous functions of corresponding dimensions; w̃0 ∈ En is a given vector.

Let us consider the following functional:

F (u, k)
4
= wT

k (t f )H̃wk(t f ) +
∫ t f

0
wT

k (t)D̃(t)wk(t)dt, k ∈ {1, 2, . . . , K}, (2)

where H̃ is a constant symmetric positive semi-definite n× n-matrix; for any t ∈ [0, t f ],
D̃(t) is a symmetric positive semi-definite n× n-matrix.

Based on the functional F (u, k), we construct the performance index evaluating the
control process of the multi-model system (1)

J (u)
4
= max

k∈{1,2,...,K}
F (u, k)→ inf

u
. (3)

Remark 1. Since the control u(·) is not present explicitly in the functional F (u, k) (and, therefore,
in the functional J (u)), the first-order optimality conditions (see [1]) fail to yield an optimal control
to the problem (1), (3). Thus, this problem is a singular optimal control problem.

Let us introduce the vectors

w
4
= col(w1, w2, . . . , wK) ∈ EKn w0 4= col(w̃0, w̃0, . . . , w̃0) ∈ EKn (4)

and the set U of all functions u = u(w, t) : EKn × [0, t f ]→ Er, which are measurable with
respect to t ∈ [0, t f ] for any fixed w ∈ EKn and satisfy the local Lipschitz condition with
respect to w ∈ EKn uniformly in t ∈ [0, t f ].

Definition 1. By U, we denote the subset of the set U , such that the following conditions are valid:

(i) for any u(w, t) ∈ U and any w0 ∈ EKn of the form in (4), the initial-value problem (1)
with k = 1, 2, . . . , K and u(t) = u(w, t) has the unique absolutely continuous solution

wu(t; w0)
4
= col

(
w1,u(t; w0), w2,u(t; w0), . . . , wK,u(t; w0)

)
in the entire interval [0, t f ];

(ii) u
(
wu(t; w0), t

)
∈ L2[0, t f ; Er].

Such a defined set U is called the set of all admissible state-feedback controls in the problem (1) and (3).
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Remark 2. Since for any k ∈ {1, 2, . . . , K}, any u(w, t) ∈ U and any w0 ∈ EKn of the form
in (4), the value of the functional F (u, k) with u(t) = u(w, t) is non-negative, then for any
aforementioned w0 ∈ EKn, there exists a finite infimum J ∗(w0) of the functional J (u) with
respect to u(t) = u(w, t) ∈ U in the problem (1) and (3).

Consider a sequence of the functions u∗q(w, t) ∈ U, (q = 1, 2, . . .).

Definition 2. The sequence
{

u∗q(w, t)
}+∞

q=1 is called a minimizing robust control sequence (or

briefly, a minimizing sequence) of the optimal control problem (1) and (3) if for any w0 ∈ EKn of the
form in (4):

(a) there exist limq→+∞ J
(
u∗q(w, t)

)
;

(b) the following equality is valid:

lim
q→+∞

J
(
u∗q(w, t)

)
= J ∗(w0).

In this case, the value J ∗(w0) is called an optimal value of the functional in the problem (1) and (3).

The objective of the paper is to design the minimizing sequence of the optimal control
problem (1) and (3) and to derive the expression for the optimal value of the functional in
this problem.

3. Regularization of the Optimal Control Problem (1) and (3)
3.1. Multi-Model Cheap Control Problem

To design the minimizing sequence of the problem (1) and (3), first, we are going to
regularize it. Namely, we replace (approximately) the singular problem (1) and (3) with a
parameter-dependent regular optimal control problem. This new problem has the same
multi-model dynamics (1) as the original singular problem has. However, the functional
in the new problem, having the regular form, differs from the original functional J (u).
Namely, the functional in the new problem has the form

Jε(u) = max
k∈{1,2,...,K}

Fε(u, k), (5)

where

Fε(u, k)
4
= wT

k (t f )H̃wk(t f ) +
∫ t f

0

[
wT

k (t)D̃(t)wk(t) + ε2uT(t)u(t)]dt, k ∈ {1, 2, . . . , K}, (6)

ε > 0 is a small parameter.

Remark 3. Like in the original optimal control problem (1) and (3) the objective of the control
u in the new problem (1), (5) and (6) is the minimization of its functional by a proper choice of
u = u(w, t) ∈ U.

Remark 4. Since the parameter ε > 0 is small, the problem (1), (5) and (6) is a cheap control
problem, i.e., an optimal control problem with a control cost much smaller than a state cost in the
functional. Single-model cheap control problems have been studied extensively in the literature (see
e.g., [24–26,28–46] and references therein). However, to the best of our knowledge, multi-model
cheap control problems have not yet been studied in the literature. It is important to note that, due
to the smallness of the control cost, a cheap control problem can be transformed to an optimal control
problem for a singularly perturbed system. Various results in the topic of optimal control problems
for singularly perturbed single-model systems can be found, for instance, in [36,39,40,47–61] and
references therein. However, to the best of our knowledge, optimal control problems for singularly
perturbed multi-model systems have not yet been studied in the literature.
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3.2. Solvability Conditions of the Optimal Control Problem (1), (5) and (6)

Based on the results of the book [1] (Section 9.4), let us introduce for consideration the
following block-diagonal Kn× Kn-matrices:

A(t) 4=


A1(t) On×n . . . On×n
On×n A2(t) . . . On×n
......... ......... . . . .........
On×n On×n . . . AK(t)

, H 4=


H̃ On×n . . . On×n

On×n H̃ . . . On×n
......... ......... . . . .........
On×n On×n . . . H̃

,

D(t) 4=


D̃(t) On×n . . . On×n

On×n D̃(t) . . . On×n
......... ......... . . . .........
On×n On×n . . . D̃(t)

, Λ
4
=


λ1 In On×n . . . On×n
On×n λ2 In . . . On×n
......... ......... . . . .........
On×n On×n . . . λK In

, (7)

where λk, (k = 1, 2, . . . , K) are scalar nonnegative parameters satisfying the condition

∑K
k=1 λk = 1, i.e., the vector λ

4
= col(λ1, λ2, . . . , λK) belongs to the set

Ωλ
4
=

{
λ = col(λ1, λ2, . . . , λK) ∈ EK : λ1 ≥ 0, λ2 ≥ 0, . . . , λK ≥ 0,

K

∑
k=1

λk = 1

}
.

Along with the above-introduced block-diagonal matrices, let us introduce for consid-
eration the following block-form matrix:

B(t) 4=


B1(t)
B2(t)

. . .
BK(t)

. (8)

Based on the matrices in (7) and (8), we consider the following terminal-value problem
for the matrix Riccati differential equation:

dP(t)
dt

= −P(t)A(t)−AT(t)P(t) + P(t)S(t, ε)P(t)−ΛD(t), t ∈ [0, t f ], P(t f ) = ΛH, (9)

where

S(t, ε) =
1
ε2B(t)B

T(t). (10)

Remark 5. For any λ ∈ Ωλ and any ε > 0, the terminal-value problem (9) has the unique solution
P(t) = P(t, λ, ε) in the entire interval [0, t f ], and PT(t, λ, ε) = P(t, λ, ε).

Let us introduce the vector κ ∈ EK, the set

Ωκ
4
=

{
κ = col(κ1, κ2, . . . , κK) ∈ EK : κ1 ≥ 0, κ2 ≥ 0, . . . , κK ≥ 0,

K

∑
k=1

κk = 1

}
, (11)

and the matrices

Hκ
4
=


κ1H̃ On×n . . . On×n

On×n κ2H̃ . . . On×n
......... ......... . . . .........
On×n On×n . . . κKH̃

, Dκ(t)
4
=


κ1D̃(t) On×n . . . On×n

On×n κ2D̃(t) . . . On×n
......... ......... . . . .........
On×n On×n . . . κKD̃(t)

. (12)
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Proposition 1. For a given ε > 0, the robust optimal state-feedback control u = u∗ε (w, t, λ∗) of
the multi-model cheap control problem (1), (5) and (6) has the form

u∗ε (w, t, λ∗) = − 1
ε2B

T(t)P(t, λ∗, ε)w, w ∈ EKn, t ∈ [0, t f ], (13)

where

λ∗ = λ∗(ε) = argminλ∈Ωλ
I(λ, ε), (14)

I(λ, ε) = (w0)TP(0, λ, ε)w0 − wT(t f )ΛHw(t f )−
∫ t f

0
wT(t)ΛD(t)w(t)dt

+ max
κ∈Ωκ

[ ∫ t f

0
wT(t)Dκ(t)w(t)dt + wT(t f )Hκw(t f )

]
; (15)

the vector w0 ∈ EKn is of the form in (4) and w(t) = w(t, λ, ε) is the solution of the initial-value
problem

dw(t)
dt

=
[
A(t)− S(t, ε)P(t, λ, ε)

]
w(t), w(0) = w0, t ∈ [0, t f ]. (16)

The optimal value I∗ε of the functional in the problem (1), (5) and (6) is

I∗ε = I
(
λ∗(ε), ε

)
.

Proof. The statements of the proposition are direct consequences of the results of [1]
(Section 9.4).

4. Asymptotic Analysis of the Solvability Conditions to the Problem (1), (5) and (6)
4.1. Transformation of the Terminal-Value Problem (9), the Initial-Value Problem (16) and the
Optimization Problem (14) and (15)

In what follows, we assume that:

AI. For any k ∈ {1, 2, . . . , K} and any t ∈ [0, t f ], the matrix Bk(t) has the column rank r.

AII. For any k ∈ {1, 2, . . . , K} and any t ∈ [0, t f ], det
(
BT

k (t)D̃(t)Bk(t)
)
6= 0.

AIII. For any k ∈ {1, 2, . . . , K}, H̃Bk(t f ) = 0.
AIV. The matrix-valued functions Ak(t), (k = 1, 2, . . . , K) are continuously differentiable

in the interval [0, t f ].
AV. The matrix-valued functions Bk(t), (k = 1, 2, . . . , K) and D̃(t) are twice continuously

differentiable in the interval [0, t f ].

Let, for any t ∈ [0, t f ], Bc(t) be a complement matrix to the matrix B(t) defined
in (8). Thus, the dimension of the matrix Bc(t) is Kn× (Kn− r), and the block-form matrix(
Bc(t),B(t)

)
is invertible for all t ∈ [0, t f ]. Due to the definition of the matrix-valued

function B(t), as well as the assumption AV and the results of the book [62] (Section 3.3),
the matrix-valued function Bc(t) can be chosen twice continuously differentiable in the
interval [0, t f ].

Lemma 1. Let the assumptions AII and AV be satisfied. Then, there exist numbers 0 < νmin ≤
νmax such that, for all t ∈ [0, t f ] and all λ ∈ Ωλ, the following relation is valid:

νmin Ir ≤ BT(t)ΛD(t)B(t) ≤ νmax Ir. (17)

Thus, for all t ∈ [0, t f ] and all λ ∈ Ωλ, the matrix BT(t)ΛD(t)B(t) is invertible and

1
νmax

Ir ≤
(
BT(t)ΛD(t)B(t)

)−1 ≤ 1
νmin

Ir. (18)
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Proof. Using the definitions of the matrices D(t), Λ and B(t) in Equations (7) and (8), we
directly obtain

BT(t)ΛD(t)B(t) =
K

∑
k=1

λkBT
k (t)D̃(t)Bk(t), t ∈ [0, t f ], λ = col(λ1, λ2, . . . , λK) ∈ Ωλ. (19)

Since the matrix D̃(t) is symmetric and positive semi-definite for each t ∈ [0, t f ], then
the matrices BT

k (t)D̃(t)Bk(t), (k = 1, 2, . . . , K) are symmetric and positive definite for each
t ∈ [0, t f ]. Therefore, all the eigenvalues of each of these matrices are real and positive num-
bers for each t ∈ [0, t f ]. Moreover, due to the assumption AV and the results of [63], these
eigenvalues are continuous functions of t ∈ [0, t f ]. Let µk,i(t), (k = 1, 2, . . . K; i = 1, . . . , r),
t ∈ [0, t f ] be all the eigenvalues (including equal ones) of the matrix BT

k (t)D̃(t)Bk(t). Then,
we have

0 < µk,min
4
= min

t∈[0,t f ]
min

i∈{1,...,r}
µk,i(t) ≤ max

t∈[0,t f ]
max

i∈{1,...,r}
µk,i(t)

4
= µk,max, k = 1, 2, . . . , K. (20)

Note that µk,max, (k = 1, 2, . . . , K) are finite values.
Using Equations (19) and (20), we obtain(

K

∑
k=1

λkµk,min

)
Ir ≤ BT(t)ΛD(t)B(t) ≤

(
K

∑
k=1

λkµk,max

)
Ir. (21)

Let us choose the numbers νmin and νmax as:

νmin = min
k∈{1,2,...,K}

µk,min, νmax = max
k∈{1,2,...,K}

µk,max.

Such a choice of νmin and νmax, along with Equation (20), the relation (21) and the inclusion
col(λ1, λ2, . . . , λK) ∈ Ωλ, directly yields the relation (17). The relation (18) is an immediate
consequence of the relation (17). This completes the proof of the lemma.

Consider the following matrix-valued functions of (t, λ) ∈ [0, t f ]×Ωλ:

L(t, λ) = Bc(t)−B(t)
(
BT(t)ΛD(t)B(t)

)−1BT(t)ΛD(t)Bc(t), R(t, λ) =
(
L(t, λ),B(t)

)
. (22)

Remark 6. Due to Lemma 1 and the results of [62] (Section 3.3), the matrixR(t, λ) is invertible
and

∥∥R(t, λ)
∥∥,
∥∥R−1(t, λ)

∥∥ are bounded for all (t, λ) ∈ [0, t f ] ×Ωλ. Moreover, the matrix-
valued functionR(t, λ) is twice continuously differentiable with respect to t ∈ [0, t f ] uniformly in
λ ∈ Ωλ, and this function is continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ].

Using the aforementioned matrix-valued functionR(t, λ) and its properties, we trans-
form the unknown P(t) in the terminal-value problem (9) as follows:

P(t) =
(
RT(t, λ)

)−1P(t)R−1(t, λ), t ∈ [0, t f ], λ ∈ Ωλ, (23)

where P(t) is a new unknown matrix-valued function.
By virtue of the results of [62] (Section 3.3), as well as Equation (10), Lemma 1 and

Remark 6, we directly have the following assertion.

Proposition 2. Let the assumptions AI-AV be valid. Then, for any ε > 0 and any λ ∈ Ωλ,
the transformation (23) converts the terminal-value problem (9) to the new terminal-value problem

dP(t)
dt

= −A(t, λ)P(t)− P(t)AT(t, λ) + P(t)S(ε)P(t)− D(t, λ), t ∈ [0, t f ],

P(t f ) = H(λ), (24)
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where
A(t, λ) = R−1(t, λ)

[
A(t)R(t, λ)− dR(t, λ)/dt

]
, (25)

B(t) = R−1(t, λ)B(t) =
(

O(Kn−r)×r
Ir

)
4
= B, (26)

S(ε) =
1
ε2 BBT =

(
O(Kn−r)×(Kn−r) O(Kn−r)×r
Or×(Kn−r) (1/ε2)Ir

)
, (27)

D(t, λ) = RT(t, λ)ΛD(t)R(t, λ) =

(
D1(t, λ) O(Kn−r)×r
Or×(Kn−r) D2(t, λ)

)
, (28)

H(λ) = RT(t f , λ)ΛHR(t f , λ) =

(
H1(λ) O(Kn−r)×r
Or×(Kn−r) Or×r

)
, (29)

D1(t, λ) = LT(t, λ)ΛD(t)L(t, λ), D2(t, λ) = BT(t)ΛD(t)B(t), (30)

H1(λ) = LT(t f , λ)ΛHL(t f , λ). (31)

For all t ∈ [0, t f ] and λ ∈ Ωλ, the matrix D1(t, λ) is positive semi-definite, while the matrix
D2(t, λ) is positive definite. For all λ ∈ Ωλ, the matrix H1(λ) is positive semi-definite, and the
matrix-valued function H1(λ) is continuous. The matrix-valued functions A(t, λ), D(t, λ) are
continuously differentiable with respect to t ∈ [0, t f ] uniformly in λ ∈ Ωλ, and these functions are
continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ].

Remark 7. For any λ ∈ Ωλ and any ε > 0, the terminal-value problem (24) has the unique
solution P(t) = P(t, λ, ε) in the entire interval [0, t f ], and PT(t, λ, ε) = P(t, λ, ε).

Now, let us make the following transformation of the unknown w(t) in the initial-value
problem (16):

w(t) = R(t, λ)z(t), t ∈ [0, t f ], λ ∈ Ωλ, (32)

where z(t) is a new unknown vector-valued function.
As a direct consequence of Proposition 2 and Remark 6, we have the following assertion.

Corollary 1. Let the assumptions AI-AV be valid. Then, for any ε > 0 and any λ ∈ Ωλ,
the transformation (32), along with the transformation (23), converts the initial-value problem (16)
to the new initial-value problem

dz(t)
dt

=
[
A(t, λ)− S(ε)P(t)

]
z(t), z(0) = z0(λ), t ∈ [0, t f ], (33)

where
z0(λ) = R−1(0, λ)w0, (34)

and the vector-valued function z0(λ) is continuous for λ ∈ Ωλ.

Corollary 2. Let the assumptions AI-AV be valid. Then, for any ε > 0, the transformations (23)
and (32) convert the optimization problem (14) and (15) to the equivalent optimization problem

λ∗ = λ∗(ε) = argminλ∈Ωλ
J(λ, ε), (35)
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J(λ, ε) =
(
z0(λ)

)T P(0, λ, ε)z0(λ)−
(
z(t f , λ, ε)

)T H(λ)z(t f , λ, ε)

−
∫ t f

0

(
z(t, λ, ε)

)T D(t, λ)z(t, λ, ε)dt

+ max
κ∈Ωκ

[ ∫ t f

0

(
z(t, λ, ε)

)TRT(t, λ)Dκ(t)R(t, λ)z(t, λ, ε)dt

+
(
z(t f , λ, ε)

)TRT(t f , λ)HκR(t f , λ)z(t f , λ, ε)

]
, (36)

where the vector z0(λ) is given by (34); z(t, λ, ε) is the solution of the initial-value problem (33);
P(t, λ, ε) is the solution of the terminal-value problem (24); the matrices D(t, λ) and H(λ) are
given by (28) and (29), respectively; the set Ωκ is given by (11); the matrices Hκ and Dκ(t) are
given in (12).

Moreover,

J
(
λ∗(ε), ε

)
= I

(
λ∗(ε), ε

)
, ε ≥ 0.

Proof. The statements of the corollary follow immediately from Propositions 1, 2 and
Corollary 2.

4.2. Asymptotic Solution of the Terminal-Value Problem (24)

First of all let us note that, due to the block form of the matrix S(ε) (see the
Equation (27)), the right-hand side of the differential Equation in (24) has a singular-
ity with respect to ε at ε = 0. In order to remove this singularity, we look for the solution
P(t) = P(t, λ, ε) of the problem (24) in the form of the block matrix

P(t, λ, ε) =

 P1(t, λ, ε) εP2(t, λ, ε)

εPT
2 (t, λ, ε) εP3(t, λ, ε)

, (37)

where the matrices P1(t, λ, ε), P2(t, λ, ε) and P3(t, λ, ε) are of the dimensions (Kn− r)×
(Kn− r), (Kn− r)× r and r× r, respectively; PT

1 (t, λ, ε) = P1(t, λ, ε), PT
3 (t, λ, ε) = P3(t, λ, ε).

As with the partitioning the matrix P(t, λ, ε), let us also partition the matrix A(t, λ)
into blocks as follows:

A(t, λ) =

(
A1(t, λ) A2(t, λ)
A3(t, λ) A4(t, λ)

)
, (38)

where the matrices A1(t, λ), A2(t, λ), A3(t, λ) and A4(t, λ) are of the dimensions (Kn−
r)× (Kn− r), (Kn− r)× r, r× (Kn− r) and r× r, respectively.

Now, substituting the block forms of the matrices S(ε), D(t, λ), H(λ), P(t, λ, ε),
A(t, λ, ε) (see Equations (27)–(29), (37) and (38)) into the problem (24), we obtain after
a routine matrix algebra the following equivalent terminal-value problem in the time
interval [0, t f ]:

dP1(t, λ, ε)

dt
= −P1(t, λ, ε)A1(t, λ)− εP2(t, λ, ε)A3(t, λ)− AT

1 (t, λ)P1(t, λ, ε)−

εAT
3 (t, λ)PT

2 (t, λ, ε) + P2(t, λ, ε)PT
2 (t, λ, ε)− D1(t, λ), P1(t f , λ, ε) = H1(λ), (39)

ε
dP2(t, λ, ε)

dt
= −P1(t, λ, ε)A2(t, λ)− εP2(t, λ, ε)A4(t, λ)− εAT

1 (t, λ)P2(t, λ, ε)

−εAT
3 (t, λ)P3(t, λ, ε) + P2(t, λ, ε)P3(t, λ, ε), P2(t f , λ, ε) = 0, (40)
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ε
dP3(t, λ, ε)

dt
= −εPT

2 (t, λ, ε)A2(t, λ)− εP3(t, λ, ε)A4(t, λ)− εAT
2 (t, λ)P2(t, λ, ε)

−εAT
4 (t, λ)P3(t, λ, ε) +

(
P3(t, λ, ε)

)2
− D2(t, λ), P3(t f , λ, ε) = 0. (41)

Remark 8. Since the terminal-value problem (39)–(41) is equivalent to the problem (24), then
(due to Remark 7), for any λ ∈ Ωλ and any ε > 0, the problem (39)–(41) has the unique solution{

P1(t, λ, ε), P2(t, λ, ε), P1(t, λ, ε)
}

in the entire interval [0, t f ]. Also, it should be noted that,
for any λ ∈ Ωλ, the terminal-value problem (39)–(41) is a singularly perturbed one for a set of
Riccati-type matrix differential equations. In what follows of this subsection, based on the Boundary
Function Method (see, e.g., [64]), we construct and justify the zero-order asymptotic solution of this
problem. Namely, we seek this asymptotic solution in the form

Pj0(t, λ, ε) = Po
j0(t, λ) + Pb

j0(τ, λ), j = 1, 2, 3, τ = (t− t f )/ε, (42)

where the terms with the upper index "o” constitute the so-called outer solution, while the terms
with the upper index “b” are the boundary correction terms in a left-hand neighborhood of t = t f ;
τ ≤ 0 is a new independent variable, called the stretched time. For any t ∈ [0, t f ), τ → −∞ as
ε → +0. Equations and conditions for obtaining the outer solution and the boundary correction
terms are derived by substituting the representation (42) into the terminal-value problem (39)–(41)
instead of Pj(t, λ, ε), (j = 1, 2, 3), and equating the coefficients for the same power of ε on both sides
of the resulting equations, separately the coefficients depending on t and on τ.

4.2.1. Obtaining the Boundary Layer Correction Pb
1 0(τ)

For this boundary layer correction, we have the equation

dPb
10(τ, λ)

dτ
= 0, τ ≤ 0, λ ∈ Ωλ. (43)

Like in the Boundary Function Method, we require that the boundary layer correction
terms tend to zero for τ tending to −∞. Thus, we require that

lim
τ→−∞

Pb
10(τ, λ) = 0. (44)

Moreover, we require that the limit (44) is uniform with respect to λ ∈ Ωλ.
From Equation (43), we obtain

Pb
10(τ, λ) = C(λ) ∀τ ≤ 0, (45)

where C(λ) is an arbitrary matrix-valued function of λ ∈ Ωλ.
Equation (45), along with the requirement of the fulfillment of the limit relation (44)

uniformly in λ ∈ Ωλ, yields

Pb
10(τ, λ) ≡ 0, τ ≤ 0, λ ∈ Ωλ. (46)

4.2.2. Obtaining the Outer Solution Terms

The equations and conditions for these terms are the following for all t ∈ [0, t f ] and
λ ∈ Ωλ:

dPo
10(t, λ)

dt
= −Po

10(t, λ)A1(t, λ)− AT
1 (t, λ)Po

10(t, λ)

+Po
20(t, λ)

(
Po

20(t, λ)
)T − D1(t, λ), Po

10(t f , λ) = H1(λ), (47)

−Po
10(t, λ)A2(t, λ) + Po

20(t, λ)Po
30(t, λ) = 0, (48)
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(
Po

30(t, λ)
)2 − D2(t, λ) = 0, (49)

Remark 9. It is important to note that in the system (47)–(49), the unknown matrix-valued
functions Po

20(t, λ) and Po
30(t, λ) are not subject to any terminal conditions. This occurs because

in (47)–(49) these unknowns are subject to the algebraic (but not differential) equations.

Solving the algebraic Equation (49) and taking into account the positive definiteness
of the matrix D2(t, λ), we obtain

Po
30(t, λ) =

(
D2(t, λ)

)1/2, t ∈ [0, t f ], λ ∈ Ωλ, (50)

where the superscript “1/2” denotes the unique positive definite square root of the corre-
sponding positive definite matrix.

Remark 10. Due to Proposition 2,
∥∥Po

30(t, λ)
∥∥ is bounded for all (t, λ) ∈ [0, t f ]×Ωλ. Moreover,

due to Proposition 2 and the Implicit Function Theorem [65], the matrix-valued function Po
30(t, λ)

is continuously differentiable with respect to t ∈ [0, t f ] uniformly in λ ∈ Ωλ, and
∥∥dPo

30(t, λ)/dt
∥∥

is bounded for all (t, λ) ∈ [0, t f ]×Ωλ. In addition, since D2(t, λ) is continuous with respect
to λ ∈ Ωλ uniformly in t ∈ [0, t f ], then Po

30(t, λ) also is continuous with respect to λ ∈ Ωλ

uniformly in t ∈ [0, t f ].

Solving Equation (48) with respect to Po
20(t) and using (50), we have

Po
20(t, λ) = Po

10(t, λ)A2(t, λ)
(

D2(t, λ)
)−1/2, t ∈ [0, t f ], λ ∈ Ωλ, (51)

where the superscript “−1/2” denotes the inverse matrix for the unique positive definite
square root of corresponding positive definite matrix.

The substitution of (51) into (47) yields the following terminal-value problem with
respect to Po

10(t, λ) for all λ ∈ Ωλ:

dPo
10(t, λ)

dt
= −Po

10(t, λ)A1(t, λ)− AT
1 (t, λ)Po

10(t, λ)

+Po
10(t, λ)So

1(t, λ)Po
10(t, λ)− D1(t, λ), t ∈ [0, t f ], Po

10(t f , λ) = H1(λ), (52)

where
So

1(t, λ) = A2(t, λ)D−1
2 (t, λ)AT

2 (t, λ). (53)

Remark 11. Since, for all t ∈ [0, t f ] and all λ ∈ Ωλ, the matrices D1(t, λ), H1(λ) are pos-
itive semi-definite and the matrix D2(t, λ) is positive definite (see Proposition 2), then for all
λ ∈ Ωλ, the terminal-value problem (52) has the unique solution Po

10(t, λ) in the entire inter-
val [0, t f ]. Moreover, due to Proposition 2,

∥∥Po
10(t, λ)

∥∥ and
∥∥dPo

10(t, λ)/dt
∥∥ are bounded for all

(t, λ) ∈ [0, t f ]×Ωλ. Therefore, due to Remark 10 and Equations (50) and (51),
∥∥Po

20(t, λ)
∥∥ and∥∥dPo

20(t, λ)/dt
∥∥ are bounded for all (t, λ) ∈ [0, t f ]×Ωλ. In addition, since A1(t, λ), So

1(t, λ),
D1(t, λ) are continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ] and H1(λ) is continuous
with respect to λ ∈ Ωλ then, by virtue of the results of [66] (Chapter 5), Po

10(t, λ) also is contin-
uous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ]. Therefore, due to Equations (50) and (51),
Remark 10 and the continuity of A2(t, λ) with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ], Po

20(t, λ)
also is continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ].
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4.2.3. Control-Theoretic Interpretation of the Terminal-Value Problem (52)

For any given λ ∈ Ωλ, let us consider the optimal control problem with the dynamics
described by the system

dxo(t)
dt

= A1(t, λ)xo(t) + A2(t, λ)uo(t), xo(0) = w0
up, t ∈ [0, t f ], (54)

where xo(t) ∈ EKn−r is a state vector, uo(t) ∈ Er is a control; w0
up ∈ EKn−r is the upper

block of the vector w0 defined in (4).
The functional, to be minimized by uo(t), has the form

Jo(uo) =
(
xo(t f )

)T H1(λ)xo(t f ) +
∫ t f

0

[(
xo(t)

)T D1(t, λ)xo(t) +
(
uo(t)

)T D2(t, λ)uo(t)
]
dt. (55)

Let us introduce into the consideration the set U o of all functions uo = uo(xo, t, λ) :
EKn−r × [0, t f ]×Ωλ → Er, which are measurable with respect to t ∈ [0, t f ] for any fixed
(xo, λ) ∈ EKn−r ×Ωλ and satisfy the local Lipschitz condition with respect to xo ∈ EKn−r

uniformly in (t, λ) ∈ [0, t f ]×Ωλ.

Definition 3. By Uo, we denote the subset of the set U o, such that the following conditions
are valid:

(i) for any λ ∈ Ωλ, any uo(xo, t, λ) ∈ Uo and any w0
up ∈ EKn−r, the initial-value problem (54)

with uo(t) = uo(xo, t, λ) has the unique absolutely continuous solution xo
u(t; x0, λ) in the

entire interval [0, t f ];
(ii) uo(xo

u(t; x0, λ), t, λ
)
∈ L2[0, t f ; Er].

Such a defined set Uo is called the set of all admissible state-feedback controls in the
problem (54) and (55).

Based on the results of [67] (Section 5) and [1] (Section 4.3), we have immediately the
following assertion.

Proposition 3. Let the assumptions AI-AV be satisfied. Then, for any λ ∈ Ωλ, the optimal
state-feedback control uo = uo∗(xo, t, λ) of the problem (54) and (55) is

uo∗(xo, t, λ) = −D−1
2 (t, λ)AT

2 (t, λ)Po
10(t, λ)xo ∈ Uo.

The optimal value of the functional in the problem (54) and (55) has the form

Jo∗(x0, λ)
4
= Jo(uo∗(xo, t, λ)

)
= (w0

up)
T Po

10(0, λ)w0
up.

4.2.4. Obtaining the Boundary Layer Correction Terms Pb
2 0(τ, λ) and Pb

30(τ, λ)

These terms are obtained as the solution of the terminal-value problem

dPb
20(τ, λ)

dτ
= Po

20(t f , λ)Pb
30(τ, λ) + Pb

20(τ, λ)Po
30(t f , λ) + Pb

20(τ, λ)Pb
30(τ, λ),

dPb
30(τ, λ)

dτ
= Po

30(t f , λ)Pb
30(τ, λ) + Pb

30(τ, λ)Po
30(t f , λ) +

(
Pb

30(τ, λ))2,

Pb
20(0, λ) = −Po

20(t f , λ), Pb
30(0, λ) = −Po

30(t f , λ), (56)

where τ ≤ 0, λ ∈ Ωλ.
Substituting the expressions for Po

30(t, λ) and Po
20(t, λ) (see Equations (50) and (51))

into the terminal-value problem (56) and taking into account the terminal condition for
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Po
10(t, λ) (see Equation (52)), we transform the aforementioned terminal-value problem

as follows:

dPb
20(τ, λ)

dτ
= Pb

20(τ, λ)
[(

D2(t f , λ)
)1/2

+ Pb
30(τ, λ)

]
+H1(λ)A2(t f , λ)

(
D2(t f , λ)

)−1/2Pb
30(τ, λ),

Pb
20(0, λ) = −H1(λ)A2(t f , λ)

(
D2(t f , λ)

)−1/2, τ ≤ 0, λ ∈ Ωλ, (57)

dPb
30(τ, λ)

dτ
=
(

D2(t f , λ)
)1/2Pb

30(τ, λ) + Pb
30(τ, λ)

(
D2(t f , λ)

)1/2
+
(

Pb
30(τ, λ)

)2,

Pb
30(0, λ) = −

(
D2(t f , λ)

)1/2, τ ≤ 0, λ ∈ Ωλ. (58)

Based on the results of [62] (Section 4.5), we obtain the solution of the terminal-value
problem (57) and (58) in the form

Pb
20(τ, λ) = −2H1(λ)A2(t f , λ)

(
D2(t f , λ)

)−1/2 exp
(

2
(

D2(t f , λ)
)1/2

τ
)[

Ir

+ exp
(

2
(

D2(t f , λ)
)1/2

τ
)]−1

, τ ≤ 0, λ ∈ Ωλ, (59)

Pb
30(τ, λ) = −2

(
D2(t f , λ)

)1/2 exp
(

2
(

D2(t f , λ)
)1/2

τ
)[

Ir

+ exp
(

2
(

D2(t f , λ)
)1/2

τ
)]−1

, τ ≤ 0, λ ∈ Ωλ. (60)

Due to Lemma 1 (see the inequalities in (17)) and Proposition 2 (see the expression
for D2(t, λ) in (30)), the matrix-valued functions Pb

20(τ, λ) and Pb
30(τ, λ) are exponentially

decaying for τ → −∞ uniformly with respect to λ ∈ Ωλ, i.e., there exist scalar constants
a > 0 and β > 0 independent of λ ∈ Ωλ such that Pb

20(τ, λ) and Pb
30(τ, λ) satisfy the

inequalities∥∥Pb
20(τ, λ)

∥∥ ≤ a exp(βτ),
∥∥Pb

30(τ, λ)
∥∥ ≤ a exp(βτ), τ ≤ 0, λ ∈ Ωλ. (61)

4.2.5. Justification of the Asymptotic Solution to the Terminal-Value Problem (39)–(41)

Theorem 1. Let the assumptions AI-AV be fulfilled. Then, there exists a number ε0 > 0 inde-
pendent of λ ∈ Ωλ such that, for all ε ∈ (0, ε0], the entries of the solution to the terminal-value
problem (39)–(41)

{
P1(t, λ, ε), P2(t, λ, ε), P3(t, λ, ε)

}
satisfy the inequalities∥∥P1(t, λ, ε)− Po

10(t, λ)
∥∥ ≤ cε,

∥∥Pj(t, λ, ε)− Pj0(t, λ, ε)
∥∥ ≤ cε,

j = 2, 3, t ∈ [0, t f ], λ ∈ Ωλ, (62)

where Pj0(t, λ, ε), (j = 2, 3) are given in (42); c > 0 is some constant independent of ε and λ ∈ Ωλ.

Proof. In the proof of the theorem, we are based on the results of [62] (Section 4.5,
Lemma 4.2 and its proof) and make proper changes associated with the dependence of the
solution to the problem (39)–(41) not only on the parameter ε but also on the vector-valued
parameter λ. These changes allow us to prove the uniformity of the inequalities in (62)
with respect to λ ∈ Ωλ.

Let us make the transformation of the variables in the problem (39)–(41)

P1(t, λ, ε) = Po
10(t, λ) + ∆1(t, λ, ε), Pj(t, λ, ε) = Pj0(t, λ, ε) + ∆j(t, λ, ε), j = 2, 3, (63)

where ∆j(t, λ, ε), (j = 1, 2, 3) are new unknown matrix-valued functions; ∆T
1 (t, λ, ε) =

∆1(t, λ, ε), ∆T
3 (t, λ, ε) = ∆3(t, λ, ε).
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Using the above introduced new unknown matrix-valued functions, let us construct
the following block-form matrix-valued function:

∆(t, λ, ε)
4
=

(
∆1(t, λ, ε) ε∆2(t, λ, ε)
ε∆T

2 (t, λ, ε) ε∆3(t, λ, ε)

)
. (64)

Now, let us substitute the representation (63) into the problem (39)–(41). Due to this
substitution and the use of Equations (46)–(49) and (56), as well as the block representations of
the matrices S(ε), D(t, λ), H(λ), P(t, λ, ε), A(t, λ) (see the Equations (27)–(29), (37) and (38)),
we obtain after a routine matrix algebra the terminal-value problem for ∆(t, λ, ε)

d∆(t, λ, ε)

dt
= −∆(t, λ, ε)Θ(t, λ, ε)−ΘT(t, λ, ε)∆(t, λ, ε)

+∆(t, λ, ε)S(ε)∆(t, λ, ε)− Γ(t, λ, ε), t ∈ [0, t f ], ∆(t f , λ, ε) = 0, (65)

where λ ∈ Ωλ;
Θ(t, λ, ε) = A(t, λ)− S(ε)P0(t, λ, ε); (66)

P0(t, λ, ε) =

(
P10(t, λ, ε) εP20(t, λ, ε)
εPT

20(t, λ, ε) εP30(t, λ, ε)

)
;

the matrix-valued function Γ(t, λ, ε) has the block form

Γ(t, λ, ε) =

(
Γ1(t, λ, ε) Γ2(t, λ, ε)
ΓT

2 (t, λ, ε) Γ3(t, λ, ε)

)
, (67)

and

Γ1(t, λ, ε) = −ε
(

Po
20(t, λ) + Pb

20(τ, λ)
)

A3(t, λ)− εAT
3 (t, λ)

(
Po

20(t, λ) + Pb
20(τ, λ)

)T

+Po
20(t, λ)

(
Pb

20(τ, λ)
)T

+ Pb
20(τ, λ)

(
Po

20(t, λ)
)T

+ Pb
20(τ, λ)

(
Pb

20(τ, λ)
)T ,

Γ2(t, λ, ε) = −ε
dPo

20(t, λ)

dt
− ε
(

Po
20(t, λ) + Pb

20(τ, λ)
)

A4(t, λ)

−εAT
1 (t, λ)

(
Po

20(t, λ) + Pb
20(τ, λ)

)
− εAT

3 (t, λ)
(

Po
30(t, λ) + Pb

30(τ, λ)
)

+
(

Po
20(t, λ)− Po

20(t f , λ)
)

Pb
30(τ, λ) + Pb

20(τ, λ)
(

Po
30(t, λ)− Po

30(t f , λ)
)
,

Γ3(t, λ, ε) = −ε
dPo

30(t, λ)

dt
− ε
(

Po
20(t, λ) + Pb

20(τ, λ)
)T A2(t, λ)

−ε
(

Po
30(t, λ) + Pb

30(τ, λ)
)

A4(t, λ)− εAT
2 (t, λ)

(
Po

20(t, λ) + Pb
20(τ, λ)

)
−εAT

4 (t, λ)
(

Po
30(t, λ) + Pb

30(τ, λ)
)
+
(

Po
30(t, λ)− Po

30(t f , λ)
)

Pb
30(τ, λ)

+Pb
30(τ, λ)

(
Po

30(t, λ)− Po
30(t f , λ)

)
. (68)

Remark 12. Since the terminal-value problem (9) (and, therefore, each of the terminal-value
problems (24) and (39)–(41)) has the unique solution in the entire interval [0, t f ] for any λ ∈ Ωλ

and any ε > 0, then the terminal-value problem (65) also has the unique solution in the entire
interval [0, t f ] for any λ ∈ Ωλ and any ε > 0.

Let us estimate the matrix-valued functions Γj(t, λ, ε), (j = 1, 2, 3). To accomplish
this, first, we are going to estimate the two last addends in the expressions for Γ2(t, λ, ε)
and Γ3(t, λ, ε). Let us start with the addend

(
Po

20(t, λ) − Po
20(t f , λ)

)
Pb

30(τ, λ). Using the
Lagrange’s formula ([68]) and the expression for the variable τ in Equation (42), we can
rewrite this addend as
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(
Po

20(t, λ)− Po
20(t f , λ)

)
Pb

30(τ, λ) =
dPo

20(t̃, λ)

dt
(t− t f )Pb

30(τ, λ)

= ε
dPo

20(t̃, λ)

dt
τPb

30(τ, λ), t ∈ [0, t f ], λ ∈ Ωλ, (69)

where t̃ ∈ (t, t f ), τ = (t− t f )/ε, ε > 0.
Due to the inequality for Pb

30(τ, λ) in (61), we directly obtain the existence of scalar
constants 0 < a1 < a and 0 < β1 < β independent of λ ∈ Ωλ such that∥∥τPb

30(τ, λ)
∥∥ ≤ a1 exp(β1τ), τ ≤ 0, λ ∈ Ωλ. (70)

Equation (69), along with the boundedness of dPo
20(t, λ)/dt (see Remark 11) and the in-

equality (70), yield immediately the inequality∥∥(Po
20(t, λ)− Po

20(t f , λ)
)

Pb
30(τ, λ)

∥∥ ≤ α1ε exp(β1τ), t ∈ [0, t f ], λ ∈ Ωλ, (71)

where τ = (t− t f )/ε, ε > 0, α1 > 0 is some constant independent of ε and λ ∈ Ωλ.
Using the boundedness of dPo

30(t, λ)/dt (see Remark 10) and the inequalities in (61),
we obtain (quite similarly to the inequality (71)) the following inequalities:∥∥Pb

20(τ, λ)
(

Po
30(t, λ)− Po

30(t f , λ)
)∥∥ ≤ α2ε exp(β1τ), t ∈ [0, t f ], λ ∈ Ωλ,∥∥(Po

30(t, λ)− Po
30(t f , λ)

)
Pb

30(τ, λ)
∥∥ ≤ α2ε exp(β1τ), t ∈ [0, t f ], λ ∈ Ωλ,∥∥Pb

30(τ, λ)
(

Po
30(t, λ)− Po

30(t f , λ)
)∥∥ ≤ α2ε exp(β1τ), t ∈ [0, t f ], λ ∈ Ωλ,

where τ = (t− t f )/ε, ε > 0, α2 > 0 is some constant independent of ε and λ ∈ Ωλ.
Now, using Equation (68), the inequalities in (61), and Remarks 10, 11, we directly

obtain the following inequalities:∥∥Γ1(t, λ, ε)
∥∥ ≤ b1[ε + exp(βτ)],

∥∥Γl(t, λ, ε)
∥∥ ≤ b1ε

(
1 + exp(β1τ)

)
, l = 2, 3,

τ = (t− t f )/ε, t ∈ [0, t f ], ε > 0, λ ∈ Ωλ, (72)

where b1 > 0 is some constant independent of ε and λ ∈ Ωλ; β is the positive number
introduced in (61); β1 is the positive number introduced in (70).

By virtue of the results of [69], the problem (65) can be rewritten in the equivalent
integral form

∆(t, λ, ε) =
∫ t

t f

ΦT(σ, t, λ, ε)
[
∆(σ, λ, ε)S(ε)∆(σ, λ, ε)

−Γ(σ, λ, ε)
]
Φ(σ, t, λ, ε)dσ, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0, (73)

where, for any given t ∈ [0, t f ], λ ∈ Ωλ and ε > 0 , the Kn× Kn-matrix-valued function
Φ(σ, t, λ, ε) is the unique solution of the problem

dΦ(σ, t, λ, ε)

dσ
= Θ(σ, λ, ε)Φ(σ, t, λ, ε), Φ(t, t, λ, ε) = IKn, σ ∈ [t, t f ].

By Φ1(σ, t, λ, ε), Φ2(σ, t, λ, ε), Φ3(σ, t, λ, ε) and Φ4(σ, t, λ, ε), we denote the upper
left-hand, upper right-hand, lower left-hand and lower right-hand blocks of the matrix
Φ(σ, t, λ, ε) of the dimensions (Kn − r)× (Kn − r), (Kn − r)× r, r × (Kn − r) and r × r,
respectively, i.e.,

Φ(σ, t, λ, ε) =

(
Φ1(σ, t, λ, ε) Φ2(σ, t, λ, ε)
Φ3(σ, t, λ, ε) Φ4(σ, t, λ, ε)

)
. (74)
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Based on the results of [30] (Lemma 4.2) and taking into account Proposition 2,
the Equation (50), the inequalities in (61) and Remarks 10 and 11, we immediately have the
following estimates of these blocks for all 0 ≤ t ≤ σ ≤ t f and all λ ∈ Ωλ:∥∥Φl(σ, t, λ, ε)

∥∥ ≤ b2, l = 1, 3,
∥∥Φ2(σ, t, λ, ε)

∥∥ ≤ b2ε,∥∥Φ4(σ, t, λ, ε)
∥∥ ≤ b2

[
ε + exp

(
− 0.5β(σ− t)/ε

)]
, ε ∈ (0, ε1], (75)

where ε1 > 0 is some sufficiently small number; b2 > 0 is some constant independent of ε
and λ ∈ Ωλ.

Now, we are going to apply the method of successive approximations to the Equation (73).
For this purpose, we consider the sequence of the matrix-valued functions

{
∆i(t, λ, ε)

}+∞
i=0

given as:

∆i+1(t, λ, ε) =
∫ t

t f

ΦT(σ, t, λ, ε)
[
∆i(σ, λ, ε)S(ε)∆i(σ, λ, ε)

−Γ(σ, λ, ε)
]
Φ(σ, t, λ, ε)dσ, i = 0, 1, . . . , t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε1], (76)

where the initial guess ∆0(t, λ, ε) = 0, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε1].
Since the matrices S(ε), Γ(t, λ, ε) and ∆0(t, λ, ε) are symmetric, then the matrices

∆i(σ, λ, ε), (i = 1, 2, . . .) also are symmetric. Let us represent these matrices in the following
block form:

∆i(σ, λ, ε) =

(
∆i,1(t, λ, ε) ε∆i,2(t, λ, ε)
ε∆T

i,2(t, λ, ε) ε∆i,3(t, λ, ε)

)
, i = 1, 2, . . . , (77)

where the dimensions of the blocks in each of these matrices are the same as the dimensions
of the corresponding blocks in (64).

Using the block representations of the matrices S(ε), Γ(t, λ, ε), Φ(σ, t, λ, ε) and ∆i(t, λ, ε)
(see Equations (27), (67), (74) and (77)), as well as using the inequalities (72) and (75), we
obtain the existence of a positive number ε0 ≤ ε1 such that, for any ε ∈ (0, ε0] and any
λ ∈ Ωλ, the sequence

{
∆i(t, λ, ε)

}+∞
i=0 converges in the linear space of all Kn× Kn-matrix-

valued functions continuous in the interval [0, t f ]. Since the inequalities (72) and (75) are
uniform with respect to λ ∈ Ωλ and ε ∈ (0, ε0], then this convergence also is uniform with
respect to λ ∈ Ωλ and ε ∈ (0, ε0]. Moreover, the following inequalities are fulfilled:

‖∆i,j(t, λ, ε)‖ ≤ cε, i = 1, 2, . . . j = 1, 2, 3, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0],

where c > 0 is some constant independent of λ, ε, i and j.
Let

∆∗(t, λ, ε)
4
= lim

i→+∞
∆i(t, λ, ε), t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0].

Comparison of (73) and (76) directly yields that ∆∗(t, λ, ε) is the solution of the integral
Equation (73) and, therefore, of the terminal-value problem (65) in the entire interval [0, t f ].
Moreover, this solution has a block form similar to (64) and satisfies the inequalities∥∥∆∗j (t, λ, ε)

∥∥ ≤ cε, j = 1, 2, 3, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0]. (78)

Taking into account the uniqueness of the solution to the problem (65) (see Remark 12),
we have that

∆j(t, λ, ε) = ∆∗j (t, λ, ε), j = 1, 2, 3, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0].

Using this equation, as well as Equation (63) and the inequalities in (78), we directly obtain
the inequalities in (62). This completes the proof of the theorem.
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4.3. Asymptotic Solution of the Initial-Value Problem (33)

First of all, let us note that the matrix P(t), appearing in the right-hand side of the
differential Equation in (33), is the unique solution of the terminal-value problem (24).
Thus, P(t) = P(t, λ, ε), which has the block form (37). Hence, calculating the product
S(ε)P(t) appearing in the right-hand side of the differential Equation in (33), and using
Equation (27), we obtain for t ∈ [0, t f ], λ ∈ Ωλ, ε > 0

S(ε)P(t) = S(ε)P(t, λ, ε) =

(
O(Kn−r)×(Kn−r) O(Kn−r)×r
(1/ε)PT

2 (t, λ, ε) (1/ε)P3(t, λ, ε)

)
. (79)

Due to Equation (79), the right-hand side of the differential Equation in (33) has a
singularity with respect to ε at ε = 0 meaning that the initial-value problem (33) is singularly
perturbed. However, this problem is not in an explicit singular perturbation form. In order
to transform the problem (33) to the explicit singular perturbation form, we look for its
solution z(t) = z(t, λ, ε) in the form of the block vector

z(t, λ, ε) = col
(
x(t, λ, ε), y(t, λ, ε)

)
, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0, (80)

where x(t, λ, ε) ∈ EKn−r, y(t, λ, ε) ∈ Er.
Also, let us partition the vector z0(λ) as follows:

z0(λ) = col
(
x0(λ), y0(λ)

)
, λ ∈ Ωλ, (81)

where x0(λ) ∈ EKn−r, y0(λ) ∈ Er.
Now, substituting the block forms of the matrices A(t, λ, ε), S(ε)P(t, λ, ε) and the block

forms of the vectors z(t, λ, ε), z0(λ) (see Equations (38), (79)–(81)) into the problem (33), we
obtain after a routine matrix-vector algebra the following equivalent initial-value problem
in the time interval [0, t f ]:

dx(t, λ, ε)

dt
= A1(t, λ)x(t, λ, ε) + A2(t, λ)y(t, λ, ε),

ε
dy(t, λ, ε)

dt
=
(
εA3(t, λ)− PT

2 (t, λ, ε)
)
x(t, λ, ε) +

(
εA4(t, λ)− P3(t, λ, ε)

)
y(t, λ, ε),

x(0, λ, ε) = x0(λ), y(0, λ, ε) = y0(λ), (82)

where λ ∈ Ωλ, ε > 0.
In what follows of this subsection, based on the Boundary Function Method (see,

e.g., [64]), we are going to construct and justify the zero-order asymptotic solution of
the singularly perturbed initial-value problem (82). Taking into account the zero-order
asymptotic solution to the terminal-value problem (39)–(41) (see Equation (42)), we look
for the zero-order asymptotic solution of the problem (82) in the form

x0(t, λ, ε) = xo
0(t, λ) + xb,1

0 (θ, λ) + xb,2
0 (τ, λ),

y0(t, λ, ε) = yo
0(t, λ) + yb,1

0 (θ, λ) + yb,2
0 (τ, λ),

θ = t/ε, τ = (t− t f )/ε, (83)

where the terms with the upper index “o” constitute the outer solution; the terms with
the upper index “b, 1” are the boundary correction terms in a right-hand neighbourhood
of t = 0; the terms with the upper index “b, 2” are the boundary correction terms in a
left-hand neighbourhood of t = t f ; θ ≥ 0 and τ ≤ 0 are new independent variables.
For any t ∈ (0, t f ], θ → +∞ as ε→ +0. For any t ∈ [0, t f ), τ → −∞ as ε→ +0. Equations
and conditions for obtaining the outer solution and the boundary correction terms of
each type are derived by substituting the expressions for x0(t, λ, ε), y0(t, λ, ε), P20(t, λ, ε)
and P30(t, λ, ε) (see Equations (42) and (83)) into the initial-value problem (82) instead of
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x(t, λ, ε), y(t, λ, ε), P2(t, λ, ε) and P3(t, λ, ε), respectively, and equating the coefficients for
the same power of ε on both sides of the resulting equations, separately the coefficients
depending on t, on θ and on τ.

4.3.1. Obtaining the Boundary Layer Corrections xb,1
0 (θ, λ) and xb,2

0 (τ, λ)

For this boundary layer corrections, we have the equations

dxb,1
0 (θ, λ)

dθ
= 0, θ ≥ 0, λ ∈ Ωλ, (84)

dxb,2
0 (τ, λ)

dτ
= 0, τ ≤ 0, λ ∈ Ωλ. (85)

Due to the Boundary Function Method, we require that the boundary layer correction
terms in a right-hand neighborhood of t = 0 tend to zero for θ tending to +∞, while the
boundary layer correction terms in a left-hand neighborhood of t = t f tend to zero for τ
tending to −∞. Thus, we require that

lim
θ→+∞

xb,1
0 (θ, λ) = 0, lim

τ→−∞
xb,2

0 (τ, λ) = 0. (86)

Moreover, we require that these limits are uniform with respect to λ ∈ Ωλ.
From Equations (84)–(86) we obtain (quite similarly to Equation (46) in Section 4.2.1)

xb,1
0 (θ, λ) ≡ 0, θ ≥ 0, λ ∈ Ωλ, (87)

xb,2
0 (τ, λ) ≡ 0, τ ≤ 0, λ ∈ Ωλ. (88)

4.3.2. Obtaining the Outer Solution Terms

The equations and conditions for these terms have the following form for all t ∈ [0, t f ]
and λ ∈ Ωλ:

dxo
0(t, λ)

dt
= A1(t, λ)xo

0(t, λ) + A2(t, λ)yo
0(t, λ), xo

0(0, λ) = x0(λ),(
Po

20(t, λ)
)Txo

0(t, λ) + Po
30(t, λ)yo

0(t, λ) = 0. (89)

Remark 13. As with Remark 9, let us note that in the system (89), the unknown vector-valued
function yo

0(t, λ) is not subject to any initial condition. This occurs because in (89) this unknown is
subject to the algebraic (but not differential) equation.

Solving the algebraic equation of the system (89) with respect to yo
0(t, λ) and using

Equations (50) and (51), we obtain

yo
0(t, λ) = −D−1

2 (t, λ)AT
2 (t, λ)Po

10(t, λ)xo
0(t, λ), t ∈ [0, t f ], λ ∈ Ωλ. (90)

Substituting (90) into the differential equation of the system (89) and using the
Equation (53) yield the following initial-value problem with respect to xo

0(t, λ) for all
λ ∈ Ωλ:

dxo
0(t, λ)

dt
=
(

A1(t, λ)− So
1(t, λ)Po

10(t, λ)
)
xo

0(t, λ), xo
0(0, λ) = x0(λ), t ∈ [0, t f ]. (91)

Remark 14. Due to Proposition 2 and Remark 11,
∥∥xo

0(t, λ)
∥∥ and

∥∥dxo
0(t, λ)/dt

∥∥ are bounded
for all (t, λ) ∈ [0, t f ]×Ωλ. Therefore, due to Equation (90),

∥∥yo
0(t, λ)

∥∥ and
∥∥dyo

0(t, λ)/dt
∥∥ are

bounded for all (t, λ) ∈ [0, t f ]×Ωλ. In addition, since A1(t, λ), So
1(t, λ), Po

10(t, λ) are continuous
with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ] then, by virtue of the results of [66] (Chapter 5),
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xo
0(t, λ) also is continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ]. Therefore, due to

Equation (90), Remark 10 and the continuity of A2(t, λ) with respect to λ ∈ Ωλ uniformly in
t ∈ [0, t f ], yo

0(t, λ) is also continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ].

4.3.3. Obtaining the Boundary Layer Correction Term yb,1
0 (θ, λ)

This term is obtained as the solution of the initial-value problem

dyb,1
0 (θ, λ)

dθ
= −Po

30(0, λ)yb,1
0 (θ, λ), θ ≥ 0, λ ∈ Ωλ,

yb,1
0 (0) = y0(λ)− yo

0(0, λ) = y0(λ) + D−1
2 (0, λ)AT

2 (0, λ)Po
10(0, λ)x0(λ), λ ∈ Ωλ, (92)

where, due to Equation (50), Po
30(0, λ) =

(
D2(0, λ)

)1/2.
Solving the problem (92), we directly have

yb,1
0 (θ, λ) =

(
y0(λ) + D−1

2 (0, λ)AT
2 (0, λ)Po

10(0, λ)x0(λ)
)

exp
(
−
(

D2(0, λ)
)1/2

θ
)

,

θ ≥ 0, λ ∈ Ωλ. (93)

Since all the matrices and vectors, appearing in the right-hand side of Equation (93) are
bounded for all λ ∈ Ωλ, and the matrix

(
D2(0, λ)

)1/2 is positive definite and continu-
ous for all λ ∈ Ωλ (see Remark 10), then the vector-valued function yb,1

0 (θ, λ), given by
Equation (93), satisfies the inequality∥∥yb,1

0 (θ, λ)
∥∥ ≤ a2 exp(−β2θ), θ ≥ 0, λ ∈ Ωλ, (94)

where a2 > 0 and β2 > 0 are some constants independent of λ.

4.3.4. Obtaining the Boundary Layer Correction Term yb,2
0 (τ, λ)

For this term, we have the equation

dyb,2
0 (τ, λ)

dτ
= −

(
Po

30(t f , λ) + Pb
30(τ, λ)

)
yb,2

0 (τ, λ)

−
(

Pb
20(τ, λ)

)Txo
0(t f , λ)− Pb

30(τ, λ)yo
0(t f , λ), τ ≤ 0, λ ∈ Ωλ, (95)

where, due to Equation (50), Po
30(t f , λ) =

(
D2(t f , λ)

)1/2; Pb
20(τ, λ) and Pb

30(τ, λ) are given
by Equations (59) and (60), respectively; xo

0(t, λ) is the unique solution of the initial-value
problem (91), while yo

0(t, λ) is given by Equation (90).
By virtue of the results of [24], the fundamental matrix of the homogeneous equation,

corresponding to Equation (95), is the following:

Yb,2
0 (τ, σ, λ) = Ψ(τ, λ)Ψ−1(σ, λ), −∞ < τ ≤ σ ≤ 0, λ ∈ Ωλ, (96)

where

Ψ(τ, λ) = exp
(
−
(

D2(t f , λ)
)1/2

τ
)
+ exp

((
D2(t f , λ)

)1/2
τ
)

, τ ≤ 0, λ ∈ Ωλ. (97)

Since, for all λ ∈ Ωλ, the matrix
(

D2(t f , λ)
)1/2 is positive definite and the matrix-valued

function
(

D2(t f , λ)
)1/2 is continuous, then

lim
τ→−∞

∥∥Ψ(τ, λ)
∥∥ = +∞, lim

τ→−∞

∥∥Ψ−1(τ, λ)
∥∥ = 0, (98)

and both limits are uniform with respect to λ ∈ Ωλ.
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Solving Equation (95) with a given initial value yb,2
0 (0, λ) of yb,2

0 (τ, λ) and using the
form (96) and (97) of the corresponding fundamental matrix, we directly have

yb,2
0 (τ, λ) = Ψ(τ, λ)

[
1
2

yb,2
0 (0, λ)−

∫ τ

0
Ψ−1(σ, λ)

(
Pb

20(σ, λ)
)Tdσxo

0(t f , λ)

−
∫ τ

0
Ψ−1(σ, λ)Pb

30(σ, λ)dσyo
0(t f , λ)

]
, τ ≤ 0, λ ∈ Ωλ. (99)

This equation can be rewritten as:

Ψ−1(τ, λ)yb,2
0 (τ, λ) =

1
2

yb,2
0 (0, λ)−

∫ τ

0
Ψ−1(σ, λ)

(
Pb

20(σ, λ)
)Tdσxo

0(t f , λ)

−
∫ τ

0
Ψ−1(σ, λ)Pb

30(σ, λ)dσyo
0(t f , λ), τ ≤ 0, λ ∈ Ωλ. (100)

Applying to Equation (100) the second limit relation in Equation (98), as well as
the aforementioned requirement that the boundary layer correction terms in a left-hand
neighborhood of t = t f that tend to zero for τ → −∞, we immediately have

yb,2
0 (0, λ) = 2

[ ∫ −∞

0
Ψ−1(σ, λ)

(
Pb

20(σ, λ)
)Tdσxo

0(t f , λ)

+
∫ −∞

0
Ψ−1(σ, λ)Pb

30(σ, λ)dσyo
0(t f , λ)

]
, λ ∈ Ωλ. (101)

Due to the inequalities in (61) and the second limit relation in (98), each of the integrals in
the right-hand side of the equality in (101) converges and this convergence is uniform with
respect to λ ∈ Ωλ.

Substitution of (101) into Equation (99) yields after a routine rearrangement

yb,2
0 (τ, λ) =

∫ −∞

τ
Ψ(τ, λ)Ψ−1(σ, λ)

(
Pb

20(σ, λ)
)Tdσxo

0(t f , λ)

+
∫ −∞

τ
Ψ(τ, λ)Ψ−1(σ, λ)Pb

30(σ, λ)dσyo
0(t f , λ), τ ≤ 0, λ ∈ Ωλ. (102)

Let us estimate yb,2
0 (τ, λ). To accomplish this, first, let us estimate the product Ψ(τ, λ)Ψ−1(σ, λ)

for −∞ < σ ≤ τ ≤ 0 and λ ∈ Ωλ. Such an estimation directly follows from Equation (97),
as well as from the positive definiteness and boundedness of

(
D2(t f , λ)

)1/2 uniform with
respect to λ ∈ Ωλ. Thus, we have∥∥Ψ(τ, λ)Ψ−1(σ, λ)

∥∥ ≤ a3 exp
(

β3(σ− τ)
)
, −∞ < σ ≤ τ ≤ 0, λ ∈ Ωλ, (103)

where a3 > 0 and β3 > 0 are some constants independent of λ ∈ Ωλ.
Now, using the inequalities in (61), the inequality (103) and Remark 14, we directly

obtain the following estimate of yb,2
0 (τ, λ) given by (102):∥∥yb,2

0 (τ, λ)
∥∥ ≤ a4 exp(β4τ), τ ≤ 0, λ ∈ Ωλ, (104)

where a4 > 0 and β4 > 0 are some constants independent of λ ∈ Ωλ.

4.3.5. Justification of the Asymptotic Solution to the Initial-Value Problem (82)

Theorem 2. Let the assumptions AI-AV be fulfilled. Then, there exists a number ε̃0 ∈ (0, ε0]
independent of λ ∈ Ωλ such that, for all ε ∈ (0, ε̃0], the entries of the solution to the initial-value
problem (82)

{
x(t, λ, ε), y(t, λ, ε)

}
satisfy the inequalities
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∥∥x(t, λ, ε)− xo
0(t, λ)

∥∥ ≤ c̃1ε, t ∈ [0, t f ], λ ∈ Ωλ,∥∥y(t, λ, ε)− y0(t, λ, ε)
∥∥ ≤ c̃1ε, t ∈ [0, t f ], λ ∈ Ωλ, (105)

where y0(t, λ, ε) is given in (83); c̃1 > 0 is some constant independent of ε and λ ∈ Ωλ; ε0 > 0 is
the number introduced in Theorem 1.

Proof. Let us make the transformation of the variables in the problem (82)

x(t, λ, ε) = xo
0(t, λ) + δx(t, λ, ε), y(t, λ, ε) = y0(t, λ, ε) + δy(t, λ, ε), (106)

where δx(t, λ, ε) and δy(t, λ, ε) are new unknown vector-valued functions.
Substitution of (106) into the problem (82), and use of the Equations (87)–(89), (92), (95)

and (102) and Equations (42) and (63) yield after a routine algebra the following initial-value
problem for the unknowns δx(t, λ, ε) and δy(t, λ, ε) in the time interval [0, t f ]:

dδx(t, λ, ε)

dt
= A1(t, λ)δx(t, λ, ε) + A2(t, λ)δy(t, λ, ε) + γx(t, λ, ε), δx(0, λ, ε) = 0,

ε
dδy(t, λ, ε)

dt
=
(
εA3(t, λ)− PT

2 (t, λ, ε)
)
δx(t, λ, ε) +

(
εA4(t, λ)− P3(t, λ, ε)

)
δy(t, λ, ε)

+γy(t, λ, ε), δy(0, λ, ε) = ϕy(λ, ε), (107)

where λ ∈ Ωλ,

γx(t, λ, ε) = A2(t, λ)
(
yb,1

0 (θ, λ) + yb,2
0 (τ, λ)

)
,

γy(t, λ, ε) = −
(

Pb
20(τ, λ)

)T(xo
0(t, λ)− xo

0(t f , λ)
)
− Pb

30(τ, λ)
(
yo

0(t, λ)− yo
0(t f , λ)

)
−Pb

30(τ, λ)yb,1
0 (θ, λ)−

(
Po

30(t, λ)− Po
30(0, λ)

)
yb,1

0 (θ, λ) + εA3(t, λ)xo
0(t, λ)

+εA4(t, λ)
(
yo

0(t, λ) + yb,1
0 (θ, λ) + yb,2

0 (τ, λ)
)
−
(
∆2(t, λ, ε)

)Txo
0(t, λ)

−∆3(t, λ, ε)
(
yo

0(t, λ) + yb,1
0 (θ, λ) + yb,2

0 (τ, λ)
)
,

ϕy(λ, ε) = −yb,2
0 (τ0, λ) =

∫ τ0

−∞
Ψ(τ0, λ)Ψ−1(σ, λ)

(
Pb

20(σ, λ)
)Tdσxo

0(t f , λ)

+
∫ τ0

−∞
Ψ(τ0, λ)Ψ−1(σ, λ)Pb

30(σ, λ)dσyo
0(t f , λ), τ0 = −t f /ε. (108)

Let us estimate the vector-valued functions γx(t, λ, ε), γy(t, λ, ε) and ϕy(λ, ε). Using
the boundedness of the matrix-valued function A2(t, λ) for all (t, λ) ∈ [0, t f ]×Ωλ (see
Proposition 2), as well as the inequalities (94) and (104), we directly have

‖γx(t, λ, ε)‖ ≤ bx
(

exp(−β2θ) + exp(β4τ)
)
, θ = t/ε, τ = (t− t f )/ε, t ∈ [0, t f ], ε > 0, λ ∈ Ωλ, (109)

where bx > 0 is some constant independent of ε and λ ∈ Ωλ; β2 and β4 are positive
constants introduced in (94) and (104), respectively.

To estimate the vector-valued function γy(t, λ, ε), we should estimate each of its
addends. Using the boundedness of dPo

30(t, λ)/dt, dxo
0(t, λ)/dt, dyo

0(t, λ)/dt for all (t, λ) ∈
[0, t f ]×Ωλ (see Remarks 10, 14) and the inequalities (61) and (94), we obtain (quite similarly
to the inequality (71)) the following inequalities:∥∥(Pb

20(τ, λ)
)T(xo

0(t, λ)− xo
0(t f , λ)

)∥∥ ≤ by,1ε exp(β1τ), t ∈ [0, t f ], λ ∈ Ωλ,∥∥Pb
30(τ, λ)

(
yo

0(t, λ)− yo
0(t f , λ)

)∥∥ ≤ by,1ε exp(β1τ), t ∈ [0, t f ], λ ∈ Ωλ,∥∥(Po
30(t, λ)− Po

30(0, λ)
)
yb,1

0 (θ, λ)
∥∥ ≤ by,1ε exp(−βy,1θ), t ∈ [0, t f ], λ ∈ Ωλ, (110)

where τ = (t − t f )/ε, θ = t/ε, ε > 0; by,1 > 0 is some constant independent of ε and
λ ∈ Ωλ; β1 > 0 is the constant introduced in the inequality (70); 0 < βy,1 < β2 is some
constant independent of ε and λ ∈ Ωλ; β2 > 0 is the constant introduced in (94).
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Furthermore, using the second inequality in (61) and the inequality (94), we have∥∥Pb
30(τ, λ)yb,1

0 (θ, λ)
∥∥ ≤ by,2 exp(−βy,2t f /ε),

where by,2 = aa2, βy,2 = min{β, β2}, ε > 0.
Finally, using the boundedness of the matrix-valued functions A3(t, λ) and A4(t, λ) for

all (t, λ) ∈ [0, t f ]×Ωλ (see Proposition 2), the boundedness of the vector-valued functions
xo

0(t, λ) and yo
0(t, λ) for all (t, λ) ∈ [0, t f ]×Ωλ (see Remark 14), inequalities (94) and (104),

as well as using Theorem 1 and Equation (63), yield the inequalities∥∥εA3(t, λ)xo
0(t, λ)

∥∥ ≤ by,3ε, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0,∥∥εA4(t, λ)
(
yo

0(t, λ) + yb,1
0 (θ, λ) + yb,2

0 (τ, λ)
)∥∥ ≤ by,3ε, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0, (111)

∥∥(∆2(t, λ, ε)
)Txo

0(t, λ)
∥∥ ≤ by,3ε, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0,∥∥∆3(t, λ, ε)

(
yo

0(t, λ) + yb,1
0 (θ, λ) + yb,2

0 (τ, λ)
)∥∥ ≤ by,3ε, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0, (112)

where by,3 > 0 is some constant independent of ε and λ ∈ Ωλ.
The inequalities (110)–(112) directly yield the estimate of γy(t, λ, ε)

‖γy(t, λ, ε)‖ ≤ byε, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0, (113)

where by > 0 is some constant independent of ε and λ ∈ Ωλ.
Proceed to the estimate of ϕy(λ, ε). Using the inequalities (61) and (103), we obtain the

following chain of inequalities and equality:

‖ϕy(λ, ε)‖ ≤
∥∥∥∥∫ τ0

−∞
Ψ(τ0, λ)Ψ−1(σ, λ)

(
Pb

20(σ, λ)
)Tdσ

∥∥∥∥∥∥xo
0(t f , λ)

∥∥
+

∥∥∥∥∫ τ0

−∞
Ψ(τ0, λ)Ψ−1(σ, λ)Pb

30(σ, λ)dσ

∥∥∥∥∥∥yo
0(t f , λ)

∥∥
≤
∫ τ0

−∞

∥∥Ψ(τ0, λ)Ψ−1(σ, λ)
∥∥∥∥(Pb

20(σ, λ)
)T∥∥dσ

∥∥xo
0(t f , λ)

∥∥
+
∫ τ0

−∞

∥∥Ψ(τ0, λ)Ψ−1(σ, λ)
∥∥∥∥Pb

30(σ, λ)
∥∥dσ

∥∥yo
0(t f , λ)

∥∥
≤ aa3

(∥∥xo
0(t f , λ)

∥∥+ ∥∥yo
0(t f , λ)

∥∥) ∫ τ0

−∞
exp(βσ)dσ

=
aa3

β

(∥∥xo
0(t f , λ)

∥∥+ ∥∥yo
0(t f , λ)

∥∥) exp(βτ0), λ ∈ Ωλ, ε > 0.

This chain of the inequalities and the equality, along with the expression for τ0 (see
Equation (108)) and the boundedness of the vector-valued functions xo

0(t, λ), yo
0(t, λ) for

all (t, λ) ∈ [0, t f ]×Ωλ (see Remark 14), implies immediately the estimate of ϕy(λ, ε)

‖ϕy(λ, ε)‖ ≤ bϕε, λ ∈ Ωλ, ε > 0, (114)

where bϕ > 0 is some constant independent of ε and λ ∈ Ωλ.
Let us introduce the following vectors of the dimension Kn:

δ(t, λ, ε) =

(
δx(t, λ, ε)

δy(t, λ, ε)

)
, γ(t, λ, ε) =

(
γx(t, λ, ε)

γy(t, λ, ε)

)
, t ∈ [0, t f ], λ ∈ Ωλ, ε > 0,

ϕ(λ, ε) =

(
0

ϕy(λ, ε)

)
, λ ∈ Ωλ, ε > 0. (115)
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Also, let us introduce into the consideration the following matrix:

∆̃(t, λ, ε) =

(
O(Kn−r)×(Kn−r) O(Kn−r)×r

(1/ε)
(
∆2(t, λ, ε)

)T
(1/ε)∆3(t, λ, ε)

)
, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0], (116)

where ∆2(t, λ, ε) and ∆3(t, λ, ε) are defined in Equation (63); ε0 is introduced in Theorem 1.
Due to Theorem 1 (see the inequalities in (62)) and Equation (63), we immediately have∥∥(1/ε)

(
∆2(t, λ, ε)

)T∥∥ ≤ c,
∥∥(1/ε)∆3(t, λ, ε)

∥∥ ≤ c, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0]. (117)

Using the vectors δ(t, λ, ε), γ(t, λ, ε), ϕ(λ, ε) and the matrix ∆̃(t, λ, ε) as well as the
matrix Θ(t, λ, ε) (see Equation (66)), we can rewrite the initial-value problem (107) in
the form

dδ(t, λ, ε)

dt
= Θ(t, λ, ε)δ(t, λ, ε)− ∆̃(t, λ, ε)δ(t, λ, ε) + γ(t, λ, ε), δ(0, λ, ε) = ϕ(λ, ε),

t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0]. (118)

Let Kn × Kn-matrix-valued function Υ(t, χ, λ, ε), 0 ≤ χ ≤ t ≤ t f be the unique
solution to the following initial-value problem:

dΥ(t, χ, λ, ε)

dt
= Θ(t, λ, ε)Υ(t, χ, λ, ε), Υ(χ, χ, λ, ε) = IKn, t ∈ [χ, t f ].

By Υ1(t, χ, λ, ε), Υ2(t, χ, λ, ε), Υ3(t, χ, λ, ε) and Υ4(t, χ, λ, ε), we denote the upper
left-hand, upper right-hand, lower left-hand and lower right-hand blocks of the matrix
Υ(t, χ, λ, ε) of the dimensions (Kn − r) × (Kn − r), (Kn − r) × r, r × (Kn − r) and r × r,
respectively, i.e.,

Υ(t, χ, λ, ε) =

(
Υ1(t, χ, λ, ε) Υ2(t, χ, λ, ε)
Υ3(t, χ, λ, ε) Υ4(t, χ, λ, ε)

)
. (119)

Similarly to the inequalities in (75), we have the following estimates of these blocks for all
0 ≤ χ ≤ t ≤ t f and all λ ∈ Ωλ:∥∥Υl(t, χ, λ, ε)

∥∥ ≤ b2, l = 1, 3,
∥∥Υ2(t, χ, λ, ε)

∥∥ ≤ b2ε,∥∥Υ4(t, χ, λ, ε)
∥∥ ≤ b2

[
ε + exp

(
− 0.5β(t− χ)/ε

)]
, ε ∈ (0, ε1], (120)

where the constant β > 0 is introduced in (61); the constants ε1 > 0 and b2 > 0 are
introduced in (75).

Using the matrix-valued function Υ(t, χ, λ, ε), let us rewrite the initial-value problem (118)
in the equivalent integral form

δ(t, λ, ε) = Υ(t, 0, λ, ε)ϕ(λ, ε)−
∫ t

0
Υ(t, χ, λ, ε)

[
∆̃(χ, λ, ε)δ(χ, λ, ε)− γ(χ, λ, ε)

]
dχ,

t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0]. (121)

Now (similarly to the proof of Theorem 1), we are going to apply the method of
successive approximations to Equation (121). For this purpose, we consider the sequence
of the vector-valued functions

{
δi(t, λ, ε)

}+∞
i=0 given as:

δi+1(t, λ, ε) = Υ(t, 0, λ, ε)ϕ(λ, ε)−
∫ t

0
Υ(t, χ, λ, ε)

[
∆̃(χ, λ, ε)δi(χ, λ, ε)− γ(χ, λ, ε)

]
dχ,

i = 0, 1, . . . , t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0], (122)

where the initial guess δ0(t, λ, ε) = 0, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0].
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Let us represent the vector-valued functions δi(t, λ, ε), (i = 1, 2, . . .) in the block form
as follows:

δi(t, λ, ε) =

(
δi,x(t, λ, ε)
δi,y(t, λ, ε)

)
, i = 1, 2, . . . , (123)

where the dimension of the upper block is Kn− r, while the dimension of the lower block is
r, i.e., the dimensions of these blocks are the same as the dimensions of the corresponding
blocks in the vector-valued function δ(t, λ, ε) (see Equation (115)).

Using the block representations of the matrices ∆̃(t, λ, ε), Υ(t, χ, λ, ε) (see the
Equations (116) and (119)) and the block representations of the vectors γ(t, λ, ε), ϕ(λ, ε),
δi(t, λ, ε) (see Equations (115) and (123)), as well as using the inequalities (109), (113), (114),
(117) and (120), we obtain the existence of a positive number ε̃0 ≤ ε0 such that, for any
ε ∈ (0, ε̃0] and any λ ∈ Ωλ, the sequence

{
δi(t, λ, ε)

}+∞
i=0 converges in the linear space of

all Kn-vector-valued functions continuous in the interval [0, t f ]. Since the aforementioned
inequalities are uniform with respect to λ ∈ Ωλ and ε ∈ (0, ε̃0], then this convergence also
is uniform with respect to λ ∈ Ωλ and ε ∈ (0, ε̃0]. Moreover, the following inequalities
are fulfilled:

‖δi,x(t, λ, ε)‖ ≤ c̃1ε, ‖δi,y(t, λ, ε)‖ ≤ c̃1ε, i = 1, 2, . . . , t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε̃0],

where c̃1 > 0 is some constant independent of λ, ε and i.
Let us denote

δ∗(t, λ, ε)
4
= lim

i→+∞
δi(t, λ, ε), t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε0].

Equations (121) and (122) immediately imply that δ∗(t, λ, ε) is the solution of the
integral Equation (121) and, therefore, of the initial-value problem (118) in the entire
interval [0, t f ]. Moreover, this solution has the block form similar to the block form of the
vector δ(t, λ, ε) (see Equation (115)) and satisfies the inequalities∥∥δ∗x(t, λ, ε)

∥∥ ≤ c̃ε,
∥∥δ∗y (t, λ, ε)

∥∥ ≤ c̃ε, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε̃0]. (124)

Since the initial-value problem (118) has the unique solution, then

δ(t, λ, ε) = δ∗(t, λ, ε), t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε̃0].

This equation, along with Equation (106) and the inequalities in (124), directly yields the
inequalities in (105). Thus, the theorem is proven.

Let us introduce the following vector-valued functions of the dimension Kn:

zo
0(t, λ)

4
= col

(
xo

0(t, λ), yo
0(t, λ)

)
, zb,1

0 (θ, λ)
4
= col

(
0, yb,1

0 (θ, λ)
)
,

zb,2
0 (τ, λ)

4
= col

(
0, yb,2

0 (τ, λ)
)
, z0(t, λ, ε)

4
= zo

0(t, λ) + zb,1
0 (θ, λ) + zb,2

0 (τ, λ),

t ∈ [0, t f ], θ = t/ε, τ = (t− t f )/ε, λ ∈ Ωλ, ε ∈ (0, ε̃0]. (125)

Thus, by virtue of Theorem 2, we have∥∥z(t, λ, ε)− z0(t, λ, ε)
∥∥ ≤ 2c̃1ε, t ∈ [0, t f ], λ ∈ Ωλ, ε ∈ (0, ε̃0].

4.4. Transformation of the Optimal Control in the Problem (1), (5) and (6)

To transform the expression (13) of the optimal control in the problem (1), (5) and (6), first,
we observe the following. Since P(t, λ, ε), t ∈ [0, t f ] is the unique solution of the terminal-
value problem (24) for any λ ∈ Ωλ and ε > 0, then P

(
t, λ∗(ε), ε

)
, t ∈ [0, t f ] is the unique

solution of the problem (24) with λ = λ∗(ε) and any ε > 0. Remember that λ = λ∗(ε), ε > 0
is the solution of the optimization problem (14) and (15) and, due to Corollary 2, of the
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optimization problem (35) and (36). Taking into account the aforementioned observation,
as well as Equation (23) and Proposition 2, we directly have that

P
(
t, λ∗(ε), ε

)
=
(
RT(t, λ∗(ε)

))−1
P
(
t, λ∗(ε), ε

)
R−1(t, λ∗(ε)

)
, t ∈ [0, t f ], ε > 0 (126)

is the unique solution of the terminal-value problem (9) with λ = λ∗(ε).
Substituting (126) into Equation (13) and using Equations (26) and (37), we obtain after

a routine rearrangement the following expression for the optimal control of the problem (1),
(5) and (6):

u∗ε
(
w, t, λ∗(ε)

)
= −1

ε

(
PT

2
(
t, λ∗(ε), ε

)
, P3

(
t, λ∗(ε), ε

))
R−1(t, λ∗(ε)

)
w,

w ∈ EKn, t ∈ [0, t f ], ε > 0. (127)

Finally, substituting the solution w
(
t, λ∗(ε), ε

)
of the initial-value problem (16) with

λ = λ∗(ε) into (127) and using Corollary 1, we obtain the time realization u∗
(
t, λ∗(ε), ε

)
of

the state-feedback optimal control in the problem (1), (5) and (6) along w = w
(
t, λ∗(ε), ε

)
(the open-loop optimal control in this problem)

u∗
(
t, λ∗(ε), ε

) 4
= u∗ε

(
w
(
t, λ∗(ε), ε

)
, t, λ∗(ε)

)
= −1

ε

(
PT

2
(
t, λ∗(ε), ε

)
, P3

(
t, λ∗(ε), ε

))
R−1(t, λ∗(ε)

)
w
(
t, λ∗(ε), ε

)
= −1

ε

(
PT

2
(
t, λ∗(ε), ε

)
, P3

(
t, λ∗(ε), ε

))
z
(
t, λ∗(ε), ε

)
,

t ∈ [0, t f ], ε > 0. (128)

Since u∗ε
(
w, t, λ∗(ε)

)
is the state-feedback optimal control in the problem (1), (5) and (6)

and u∗
(
t, λ∗(ε), ε

)
is the open-loop optimal control in this problem, then using Proposition 1

and Corollary 2, we obtain

J
(
λ∗(ε), ε

)
= I

(
λ∗(ε), ε

)
= Jε

(
u∗ε
(
w, t, λ∗(ε)

))
= Jε

(
u∗
(
t, λ∗(ε), ε

))
, ε > 0. (129)

4.5. Asymptotic Behaviour of the Solution to the Optimization Problem (35) and (36)

Along with the optimization problem (35) and (36), let us consider the following
optimization problem:

λ∗0 = argminλ∈Ωλ
J0(λ), (130)

J0(λ) =
(

x0(λ)
)T Po

10(0, λ)x0(λ)−
(

xo
0(t f , λ)

)T H1(λ)xo
0(t f , λ)

−
∫ t f

0

[(
xo

0(t, λ)
)T D1(t, λ)xo

0(t, λ) +
(
yo

0(t, λ)
)T D2(t, λ)yo

0(t, λ)
]
dt

+ max
κ∈Ωκ

[ ∫ t f

0

(
zo

0(t, λ)
)TRT(t, λ)Dκ(t)R(t, λ)zo

0(t, λ)dt

+
(
xo

0(t f , λ)
)TLT(t f , λ)HκL(t f , λ)xo

0(t f , λ)

]
, (131)

where the matrices D1(t, λ) and D2(t, λ) are defined in (28); the matrix H1(λ) is defined
in (29); the set Ωκ is given by (11); the matricesHκ andDκ(t) are given in (12); the Kn-vector
zo

0(t, λ) is given in (125).
In contrast with the optimization problem (35) and (36), the optimization problem (130)

and (131) is independent of ε.



Axioms 2023, 12, 955 26 of 42

Lemma 2. Let the assumptions AI-AV be fulfilled. Then, the function J0(λ) is continuous with
respect to λ ∈ Ωλ. Moreover, the following limit equality is valid:

lim
ε→+0

J(λ, ε) = J0(λ) uniformly in λ ∈ Ωλ. (132)

Proof. We start with the proof of the first statement of the lemma. Let us observe that
the functions D1(t, λ), D2(t, λ), H1(λ),R(t, λ), Po

10(t, λ), xo
0(t, λ), yo

0(t, λ) are bounded for
(t, λ) ∈ [0, t f ]×Ωλ and they are continuous with respect to λ ∈ Ωλ uniformly in t ∈ [0, t f ]
(see Proposition 2, Remarks 6, 11, 14). Also, let us observe that the functionHκ is continuous
with respect to κ ∈ Ωκ , while the function Dκ(t) is continuous with respect to κ ∈ Ωκ

uniformly in t ∈ [0, t f ]. These observations, as well as the theorem on continuity of an
integral with respect to a parameter [65,68] and the Maximum Theorem [70], directly yield
the continuity of the function J0(λ) with respect to λ ∈ Ωλ. Thus, the first statement of the
lemma is proven.

Proceed to the proof of the limit equality (132). To prove this equality, first, we are
going to transform the expression

(
z(t f , λ, ε)

)TRT(t f , λ)HκR(t f , λ)z(t f , λ, ε) appearing in
the function J(λ, ε) (see Equation (36)). Namely, using the assumption AIII, the symmetry
of the matrix H̃ and Equations (8), (12), (22) and (80), we have(

z(t f , λ, ε)
)TRT(t f , λ)HκR(t f , λ)z(t f , λ, ε) =(

xT(t f , λ, ε
)
, yT(t f , λ, ε)

)( LT(t f , λ)

BT(t f )

)(
HκL(t f , λ),HκB(t f )

)( x(t f , λ, ε)
y(t f , λ, ε)

)
=(

xT(t f , λ, ε)LT(t f , λ) + yT(t f , λ, ε)BT(t f )
)
HκL(t f , λ)x(t f , λ, ε) =

xT(t f , λ, ε)LT(t f , λ)HκL(t f , λ)x(t f , λ, ε
)
+ yT(t f , λ, ε

)
BT(t f )HκL(t f , λ)x(t f , λ, ε) =

xT(t f , λ, ε)LT(t f , λ)HκL(t f , λ)x(t f , λ, ε), λ ∈ Ωλ, κ ∈ Ωκ , ε > 0. (133)

Now, using Equations (28), (29), (36), (37), (80), (131), and (133), as well as Theorems 1
and 2, and the inequalities (61), (94) and (104), we obtain the limit equality (132). This
completes the proof of the lemma.

In what follows, we assume the following:

AVI. The optimization problem (130) and (131) has the unique solution λ∗0 .

Theorem 3. Let the assumptions AI-AVI be fulfilled. Then the solution λ∗(ε), ε ∈ (0, ε̃0] of the
optimization problem (35) and (36) tends to the solution λ∗0 of the optimization problem (130) and (131)
for ε→ +0, i.e.,

lim
ε→+0

λ∗(ε) = λ∗0 .

Proof. (by contradiction). Let us assume that the statement of the theorem is wrong. This
means the existence of sequences {εi}+∞

i=1 , {λi}+∞
i=1 and a number η > 0 which satisfy

the following conditions: (a) εi ∈ (0, ε̃0], (i = 1, 2, . . .) and limi→+∞ εi = 0; (b) λi ∈ Ωλ,
(i = 1, 2, . . .); (c) for any i ∈ {1, 2, . . .}, λi = argminλ∈Ωλ

J(λ, εi), i.e., this vector minimizes
the function (36) with ε = εi; (d) for any i ∈ {1, 2, . . .}, ‖λi − λ∗0‖ ≥ η.

From the conditions (b) and (c), we directly have

J(λi, εi) ≤ J(λ, εi) ∀ i ∈ {1, 2, . . .}, λ ∈ Ωλ. (134)

Since the set Ωλ is bounded and closed, then the condition (b) implies the existence
of a convergent in this set subsequence of the sequence {λi}+∞

i=1 . For the sake of simplicity
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(but without loss of generality), we assume that {λi}+∞
i=1 itself is such a subsequence. Thus,

there exists
lim

i→+∞
λi
4
= λ̄ ∈ Ωλ. (135)

Moreover, by virtue of the aforementioned condition (d),

‖λ̄− λ∗0‖ ≥ η > 0. (136)

Now, using the aforementioned condition (a) on the sequence {εi}+∞
i=1 , as well as

Equation (135) and Lemma 2, we obtain the limit equality

lim
i→+∞

J(λi, εi) = J0(λ̄), (137)

The inequality (134), along with the equalities (132) and (137), yields immediately the
following inequality:

J0(λ̄) ≤ J0(λ) ∀ λ ∈ Ωλ,

meaning that the vector λ̄ ∈ Ωλ minimizes the function J0(λ) in the set Ωλ. Hence, due to
the assumption AVI, λ̄ = λ∗0 . However, this equality contradicts the inequality (136). This
contradiction implies the correctness of the statement of the theorem, which completes its
proof.

As a direct consequence of Lemma 2 and Theorem 3, we have the following assertion.

Corollary 3. Let the assumptions AI-AVI be fulfilled. Then, for the solution λ∗(ε), ε ∈ (0, ε̃0] of
the optimization problem (35) and (36), there exists a function g∗(ε) > 0, ε ∈ (0, ε̃0], such that
limε→+0 g∗(ε) = 0 and∣∣J(λ∗(ε), ε

)
− J0

(
λ∗0
)∣∣ ≤ g∗(ε), ε ∈ (0, ε̃0].

4.6. Asymptotically Suboptimal Control of the Problem (1), (5) and (6)
4.6.1. Formal Construction of the Suboptimal Control

Replacing in the right-hand side of (127) λ∗(ε) with λ∗0 , as well as P2
(
t, λ∗(ε), ε

)
with

Po
20(t, λ∗0) and P3

(
t, λ∗(ε), ε

)
with Po

30(t, λ∗0), we obtain the following state-feedback control:

ûε(w, t, λ∗0)
4
= −1

ε

((
Po

20(t, λ∗0)
)T , Po

30(t, λ∗0)
)
R−1(t, λ∗0)w,

w ∈ EKn, t ∈ [0, t f ], ε > 0. (138)

It is clear that, for all ε > 0, ûε(w, t, λ∗0) ∈ U, i.e., this control is admissible in the
problem (1), (5) and (6). In what follows of this subsection, we are going to show that
ûε(w, t, λ∗0) is asymptotically suboptimal in this problem. The latter means that this control
provides the value of the functional in the problem (1), (5) and (6), which are arbitrarily
close to the optimal value of this functional for all sufficiently small ε > 0.

Substituting the control (138) into the initial-value problem (1) with k = 1, 2, . . . , K and
using Equations (4), (7) and (8), we obtain the corresponding closed-loop system with the
trajectory denoted as ŵ(t, ε)

dŵ(t, ε)

dt
=

[
A(t)− 1

ε
B(t)

((
Po

20(t, λ∗0)
)T , Po

30(t, λ∗0)
)
R−1(t, λ∗0)

]
ŵ(t, ε), ŵ(0, ε) = w0,

t ∈ [0, t f ], ε > 0. (139)

Below, we analyze an asymptotic (with respect to ε) behaviour of ŵ(t, ε).
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4.6.2. Asymptotic Behaviour of the Solution to the Initial-Value Problem (139)

To analyze the asymptotic behaviour of ŵ(t, ε), we make the following transformation
of variables in (139):

ŵ(t, ε) = R(t, λ∗0)ẑ(t, ε), t ∈ [0, t f ], ε > 0, (140)

where ẑ(t, ε) is a new unknown vector-valued function.
The transformation (140), along with Equations (25), (26), (34), and (38), converts the

initial-value problem (139) to the new initial-value problem with respect to ẑ(t, ε)

dẑ(t, ε)

dt
=

(
A1(t, λ∗0) A2(t, λ∗0)

A3(t, λ∗0)− 1
ε

(
Po

20(t, λ∗0)
)T A4(t, λ∗0)− 1

ε Po
30(t, λ∗0)

)
ẑ(t, ε),

ẑ(0, ε) = z0(λ∗0), t ∈ [0, t f ], ε > 0. (141)

As with the results of Section 4.3 (see Equation (80)), we represent the solution ẑ(t, ε)
of the initial-value problem (141) in the block form

ẑ(t, ε) = col
(

x̂(t, ε), ŷ(t, ε)
)
, t ∈ [0, t f ], ε > 0, (142)

where x̂(t, ε) ∈ EKn−r, ŷ(t, ε) ∈ Er.
Due to the representation (142) and Equation (81), the initial-value problem (141) is

transformed to the following equivalent initial-value problem in the time interval [0, t f ]:

dx̂(t, ε)

dt
= A1(t, λ∗0)x̂(t, ε) + A2(t, λ∗0)ŷ(t, ε),

ε
dŷ(t, ε)

dt
=
[
εA3(t, λ∗0)−

(
Po

20(t, λ∗0)
)T]x̂(t, ε) +

[
εA4(t, λ∗0)− Po

30(t, λ∗0)
]
ŷ(t, ε),

x̂(0, ε) = x0(λ∗0), ŷ(0, ε) = y0(λ∗0), (143)

where ε > 0.
Quite similarly to the results of Section 4.3 (see Equation (83)), we construct the

zero-order asymptotic solution of the problem (143) in the form

x̂0(t, ε) = x̂o
0(t) + x̂b,1

0 (θ) + x̂b,2
0 (τ),

ŷ0(t, ε) = ŷo
0(t) + ŷb,1

0 (θ) + ŷb,2
0 (τ),

θ = t/ε, τ = (t− t f )/ε, (144)

where, similarly to (91) and (90), x̂o
0(t) and ŷo

0(t) are obtained from the system

dx̂o
0(t)
dt

=
(

A1(t, λ∗0)− So
1(t, λ∗0)Po

10(t, λ∗0)
)

x̂o
0(t), x̂o

0(0) = x0(λ∗0), t ∈ [0, t f ],

ŷo
0(t) = −D−1

2 (t, λ∗0)AT
2 (t, λ∗0)Po

10(t, λ∗0)x̂o
0(t), t ∈ [0, t f ]; (145)

similarly to (84)–(88), we have

x̂b,1
0 (θ) ≡ 0, θ ≥ 0, x̂b,2

0 (τ) ≡ 0, τ ≤ 0; (146)

similarly to (92)–(94) we obtain

ŷb,1
0 (θ) =

(
y0(λ∗0) + D−1

2 (0, λ∗0)AT
2 (0, λ∗0)Po

10(0, λ∗0)x0(λ∗0)
)

exp
(
−
(

D2(0, λ∗0)
)1/2

θ
)

,

θ ≥ 0, (147)

yielding ∥∥ŷb,1
0 (θ)

∥∥ ≤ â exp(−β̂θ), θ ≥ 0, (148)
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â > 0 and β̂ > 0 are some constants.
The vector-valued function ŷb,2

0 (τ) is obtained a bit differently than the vector-valued
function yb,2

0 (τ) (see Section 4.3.4), because in the initial-value problem (143) only Po
20(·)

and Po
30(·) (but not P2(·) and P3(·) like in (82)) are present. Namely, in contrast with the

Equation (95), the vector-valued function ŷb,2
0 (τ) satisfies the following differential equation:

dŷb,2
0 (τ)

dτ
= −Po

30(t f , λ∗0)ŷ
b,2
0 (τ), τ ≤ 0, (149)

where, due to Equation (50), Po
30(t f , λ) =

(
D2(t f , λ)

)1/2.

Solving Equation (149) with the initial value ŷb,2
0 (0) of ŷb,2

0 (τ) yields

ŷb,2
0 (τ) = exp

(
−
(

D2(t f , λ)
)1/2

τ
)

ŷb,2
0 (0), τ ≤ 0. (150)

Taking into account the positive definiteness of the matrix
(

D2(t f , λ)
)1/2 , we directly

obtain that a single initial value ŷb,2
0 (0), for which ŷb,2

0 (τ) from (150) satisfies the Boundary
Function Method requirement (limτ→−∞ ŷb,2

0 (τ) = 0), is ŷb,2
0 (0) = 0. The latter, along

with (150), implies
ŷb,2

0 (τ) ≡ 0, τ ≤ 0. (151)

Now, based on Equations (144)–(148) and (151), we obtain (quite similarly to Theorem 2)
the following assertion.

Lemma 3. Let the assumptions of AI-AV be fulfilled. Then, there exists a number ε̂0 > 0 such
that, for all ε ∈ (0, ε̂0], the entries of the solution to the initial-value problem (143)

{
x̂(t, ε), ŷ(t, ε)

}
satisfy the inequalities ∥∥x̂(t, ε)− x̂o

0(t)
∥∥ ≤ ĉ1ε, t ∈ [0, t f ],∥∥ŷ(t, ε)− ŷo

0(t)− ŷb,1
0 (θ)

∥∥ ≤ ĉ1ε, t ∈ [0, t f ], θ = t/ε, (152)

where ĉ1 > 0 is some constant independent of ε.

Let us introduce the following vector-valued functions of the dimension Kn:

ẑo
0(t)

4
= col

(
x̂o

0(t), ŷo
0(t)

)
, ẑb,1

0 (θ)
4
= col

(
0, ŷb,1

0 (θ)
)
, ẑ0(t, ε)

4
= ẑo

0(t) + ẑb,1
0 (θ),

t ∈ [0, t f ], θ = t/ε, ε ∈ (0, ε̂0]. (153)

Thus, by virtue of Lemma 3, we have∥∥ẑ(t, ε)− ẑ0(t, ε)
∥∥ ≤ 2ĉ1ε, t ∈ [0, t f ], ε ∈ (0, ε̂].

4.6.3. Time Realization of the Control (138) in the Problem (1), (5) and (6)

The time realization of the control (138) along w = ŵ(t, ε), which is an open-loop
control in the problem (1), (5) and (6), has the form

û(t, λ∗0 , ε)
4
= ûε

(
ŵ(t, ε), t, λ∗0) = −

1
ε

((
Po

20(t, λ∗0)
)T , Po

30(t, λ∗0)
)
R−1(t, λ∗0)ŵ(t, ε),

= −1
ε

((
Po

20(t, λ∗0)
)T , Po

30(t, λ∗0)
)

ẑ(t, ε),

t ∈ [0, t f ], ε > 0. (154)
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Since û(t, λ∗0 , ε) is the open-loop control in the problem (1), (5) and (6), corresponding
to the state-feedback control ûε(w, t, λ∗0) in this problem, then

Jε

(
ûε(w, t, λ∗0)

)
= Jε

(
û(t, λ∗0 , ε)

)
, ε > 0. (155)

Below, we are going to establish a closeness between Jε

(
u∗
(
t, λ∗(ε), ε

))
(or I∗ε ) and

Jε

(
û(t, λ∗0 , ε)

)
for all sufficiently small ε > 0. Remember, that Jε

(
u∗
(
t, λ∗(ε), ε

))
is the

value of the functional in the problem (1), (5) and (6) corresponding to the open-loop
optimal control (128), i.e., it is the optimal value of the functional in this problem.

4.6.4. Closeness of the Values Jε

(
u∗
(
t, λ∗(ε), ε

))
and Jε

(
û(t, λ∗0 , ε)

)
First of all, we will treat each of the values Jε

(
u∗
(
t, λ∗(ε), ε

))
and Jε

(
û(t, λ∗0 , ε)

)
separately. We start with the value Jε

(
u∗
(
t, λ∗(ε), ε

))
.

Let us partition the Kn× Kn-matrix-valued functionR(t, λ) into K blocks as follows:

R(t, λ) =


R1(t, λ)
R2(t, λ)

. . .
RK(t, λ)

, t ∈ [0, t f ], λ ∈ Ωλ, (156)

where each of the blocks is of the dimension n× Kn.
Based on Equations (4) and (156), let us introduce into the consideration the following

n-dimensional vector-valued functions:

wk
(
t, λ∗(ε), ε

) 4
= Rk

(
t, λ∗(ε)

)
z
(
t, λ∗(ε), ε

)
, k = 1, 2, . . . , K, t ∈ [0, t f ], ε ∈ (0, ε̃0], (157)

where λ = λ∗(ε) is the solution of the optimization problem (14) and (15) and, due
to Corollary 2, of the optimization problem (35) and (36); z

(
t, λ∗(ε), ε

)
is the solution of

the initial-value problem (33) with λ = λ∗(ε); the positive number ε̃0 is introduced in
Theorem 2.

Due to Corollary 1 and Equations (156) and (157), we directly have

w
(
t, λ∗(ε), ε

)
= col

(
w1
(
t, λ∗(ε), ε

)
, w2

(
t, λ∗(ε), ε

)
, . . . , wK

(
t, λ∗(ε), ε

))
,

t ∈ [0, t f ], ε ∈ (0, ε̃0], (158)

where w
(
t, λ∗(ε), ε

)
is the solution of the initial-value problem (16) with λ = λ∗(ε).

Thus, taking into account that u∗
(
t, λ∗(ε), ε

)
is independent of k ∈ {1, 2, . . . , K}, we can

represent the optimal valueJε

(
u∗
(
t, λ∗(ε), ε

))
of the functional in the problem (1), (5) and (6)

as follows:

Jε

(
u∗
(
t, λ∗(ε), ε

))
= Jε1

(
u∗
(
t, λ∗(ε), ε

))
+ Jε2

(
u∗
(
t, λ∗(ε), ε

))
,

Jε1

(
u∗
(
t, λ∗(ε), ε

)) 4
= max

k∈{1,2,...,K}

[
wT

k
(
t f , λ∗(ε), ε

)
H̃wk

(
t f , λ∗(ε), ε

)
+
∫ t f

0
wT

k
(
t, λ∗(ε), ε

)
D̃wk

(
t, λ∗(ε), ε

)
dt
]

,

Jε2

(
u∗
(
t, λ∗(ε), ε

)) 4
=
∫ t f

0
ε2
(

u∗
(
t, λ∗(ε), ε

))T
u∗
(
t, λ∗(ε), ε

)
dt, (159)

where ε ∈ (0, ε̃0].
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Let us analyze separately the addends Jε1

(
u∗
(
t, λ∗(ε), ε

))
and Jε2

(
u∗
(
t, λ∗(ε), ε

))
of the value Jε

(
u∗
(
t, λ∗(ε), ε

))
. We start with the first addend. This addend depends

on wk
(
t f , λ∗(ε), ε

)
, (k = 1, 2, . . . , K), given by (157). In this equation, the matrix-valued

functionRk
(
t, λ∗(ε)

)
of the dimension n×Kn appears. Using Equations (8), (22), and (156),

we can representRk
(
t, λ∗(ε)

)
in the form

Rk
(
t, λ∗(ε)

)
=
(
Lk
(
t, λ∗(ε)

)
,Bk(t)

)
, k = 1, 2, . . . , K, t ∈ [0, t f ], ε ∈ (0, ε̃0], (160)

where Lk
(
t, λ∗(ε)

)
is the k-th block from the above of the dimension n× (Kn− r) in the

matrix L
(
t, λ∗(ε)

)
, i.e., this block is obtained from the following block-form representation

of the matrix L(t, λ):

L(t, λ) =


L1(t, λ)
L2(t, λ)

. . .
LK(t, λ)

, t ∈ [0, t f ], λ ∈ Ωλ, (161)

and each of the blocks is of the dimension n× (Kn− r).
Now, using the assumption AIII, the symmetry of the matrix H̃ and the

Equations (80), (157) and (160), we have

wT
k
(
t f , λ∗(ε), ε

)
H̃wk

(
t f , λ∗(ε), ε

)
=

zT(t f , λ∗(ε), ε
)
RT

k
(
t f , λ∗(ε)

)
H̃Rk

(
t f , λ∗(ε)

)
z
(
t f , λ∗(ε), ε

)
=(

xT(t f , λ∗(ε), ε
)
, yT(t f , λ∗(ε), ε

))( LT
k
(
t f , λ∗(ε)

)
BT

k (t f )

)(
H̃Lk

(
t f , λ∗(ε)

)
, H̃Bk(t f )

)
·(

x
(
t f , λ∗(ε), ε

)
y
(
t f , λ∗(ε), ε

) ) =(
xT(t f , λ∗(ε), ε

)
LT

k
(
t f , λ∗(ε)

)
+ yT(t f , λ∗(ε), ε

)
BT

k (t f )
)
H̃Lk

(
t f , λ∗(ε)

)
x
(
t f , λ∗(ε), ε

)
=

xT(t f , λ∗(ε), ε
)
LT

k
(
t f , λ∗(ε)

)
H̃Lk

(
t f , λ∗(ε)

)
x
(
t f , λ∗(ε), ε

)
+

yT(t f , λ∗(ε), ε
)
BT

k (t f )H̃Lk
(
t f , λ∗(ε)

)
x
(
t f , λ∗(ε), ε

)
=

xT(t f , λ∗(ε), ε
)
LT

k
(
t f , λ∗(ε)

)
H̃Lk

(
t f , λ∗(ε)

)
x
(
t f , λ∗(ε), ε

)
,

k = 1, 2, . . . , K, ε ∈ (0, ε̃0]. (162)

Thus, by virtue of Equations (157) and (162), the value Jε1

(
u∗
(
t, λ∗(ε), ε

))
(see

Equation (159)) can be rewritten as follows:

Jε1

(
u∗
(
t, λ∗(ε), ε

))
=

max
k∈{1,2,...,K}

[
xT(t f , λ∗(ε), ε

)
LT

k
(
t f , λ∗(ε)

)
H̃Lk

(
t f , λ∗(ε)

)
x
(
t f , λ∗(ε), ε

)
+

∫ t f

0
zT(t, λ∗(ε), ε

)
RT

k
(
t, λ∗(ε)

)
D̃Rk

(
t, λ∗(ε)

)
z
(
t, λ∗(ε), ε

)
dt
]

, ε ∈ (0, ε̃0]. (163)

Now, we are going to analyze the value Jε2

(
u∗
(
t, λ∗(ε), ε

))
. Substitution of (128)

into the expression for Jε2

(
u∗
(
t, λ∗(ε), ε

))
in Equation (159) yields after a routine algebra

of matrices
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Jε2

(
u∗
(
t, λ∗(ε), ε

))
=
∫ t f

0
zT(t, λ∗(ε), ε

)
QP
(
t, λ∗(ε), ε

)
z
(
t, λ∗(ε), ε

)
dt,

QP
(
t, λ∗(ε), ε

) 4
=

(
P2
(
t, λ∗(ε), ε

)
PT

2
(
t, λ∗(ε), ε

)
P2
(
t, λ∗(ε), ε

)
P3
(
t, λ∗(ε), ε

)
P3
(
t, λ∗(ε), ε

)
PT

2
(
t, λ∗(ε), ε

) (
P3
(
t, λ∗(ε), ε

))2

)
,

ε ∈ (0, ε̃0]. (164)

Proceed to the analyses of the value Jε

(
û(t, λ∗0 , ε)

)
. As with Equations (157)–(159), we

can represent this value in the form

Jε

(
û(t, λ∗0 , ε)

)
= Jε1

(
û(t, λ∗0 , ε)

)
+ Jε2

(
û(t, λ∗0 , ε)

)
,

Jε1
(
û(t, λ∗0 , ε)

) 4
= max

k∈{1,2,...,K}

[
ŵT

k (t f , ε)H̃ŵk(t f , ε) +
∫ t f

0
ŵT

k (t, ε)D̃ŵk(t, ε)dt
]

,

Jε2
(
û(t, λ∗0 , ε)

) 4
=
∫ t f

0
ε2ûT(t, λ∗0 , ε)û(t, λ∗0 , ε))dt, (165)

where ε ∈ (0, ε̂0];

ŵk(t, ε) = Rk(t, λ∗0)ẑ(t, ε), k = 1, 2, . . . , K, t ∈ [0, t f ]; (166)

ẑ(t, ε) is the solution of the initial-value problem (141); and ŵk(t, ε), (k = 1, 2, . . . , K) are
the corresponding blocks of the vector-valued solution ŵ(t, ε), t ∈ [0, t f ] to the initial-value
problem (139), i.e., ŵ(t, ε) = col

(
ŵ1(t, ε), ŵ2(t, ε), . . . , ŵK(t, ε)

)
.

Using Equations (142), (154) and (166), we can rewrite the values Jε1
(
û(t, λ∗0 , ε)

)
and

Jε2
(
û(t, λ∗0 , ε)

)
(similarly to Equations (163) and (164)) as follows:

Jε1
(
û(t, λ∗0 , ε)

)
=

max
k∈{1,2,...,K}

[
x̂T(t f , ε)LT

k
(
t f , λ∗0

)
H̃Lk

(
t f , λ∗0

)
x̂(t f , ε) +

∫ t f

0
ẑT(t, ε)RT

k (t, λ∗0)D̃Rk(t, λ∗0)ẑ(t, ε)dt
]

, ε ∈ (0, ε̂0], (167)

Jε2
(
û(t, λ∗0 , ε)

)
=
∫ t f

0
ẑT(t, ε)QP0(t, λ∗0)ẑ(t, ε)dt,

QP0(t, λ∗0)
4
=

(
Po

20(t, λ∗0)
(

P20(t, λ∗0)
)T Po

20(t, λ∗0)Po
30(t, λ∗0)

Po
30(t, λ∗0)

(
P20(t, λ∗0)

)T (
Po

30(t, λ∗0)
)2

)
,

ε ∈ (0, ε̃0]. (168)

Theorem 4. Let the assumptions AI-AVI be fulfilled. Then, the following limit equality is valid:

lim
ε→+0

Jε

(
u∗
(
t, λ∗(ε), ε

))
= lim

ε→+0
Jε

(
û(t, λ∗0 , ε)

)
. (169)

Proof. We start with the calculation of limε→+0 Jε

(
u∗
(
t, λ∗(ε), ε

))
. From Equation (159),

we have the following. If each of the limits limε→+0 Jε1

(
u∗
(
t, λ∗(ε), ε

))
and

limε→+0 Jε2

(
u∗
(
t, λ∗(ε), ε

))
exists and is finite, then

lim
ε→+0

Jε

(
u∗
(
t, λ∗(ε), ε

))
= lim

ε→+0
Jε1

(
u∗
(
t, λ∗(ε), ε

))
+ lim

ε→+0
Jε2

(
u∗
(
t, λ∗(ε), ε

))
. (170)
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Using Equations (80), (83), (125), (156), (161) and (163), the inequalities (94) and (104),
as well as Remarks 6 and 14, and Theorems 2 and 3, we obtain

lim
ε→+0

Jε1

(
u∗
(
t, λ∗(ε), ε

))
=

max
k∈{1,2,...,K}

[
lim

ε→+0
xT(t f , λ∗(ε), ε

)
LT

k
(
t f , λ∗(ε)

)
H̃Lk

(
t f , λ∗(ε)

)
x
(
t f , λ∗(ε), ε

)
+

∫ t f

0

(
lim

ε→+0
zT(t, λ∗(ε), ε

)
RT

k
(
t, λ∗(ε)

)
D̃Rk

(
t, λ∗(ε)

)
z
(
t, λ∗(ε), ε

))
dt
]
=

max
k∈{1,2,...,K}

[(
xo

0(t f , λ∗0)
)TLT

k (t f , λ∗0)H̃Lk(t f , λ∗0)x0(t f , λ∗0) +∫ t f

0

(
zo

0(t, λ∗0)
)TRT

k (t, λ∗0)D̃Rk(t, λ∗0)z
o
0(t, λ∗0)

)
dt
]

. (171)

Furthermore, using Equations (80), (83), (125) and (164), the inequalities (61), (94),
and (104), as well as Remarks 10, 11 and 14, and Theorems 1, 2 and 3, we have

lim
ε→+0

Jε2

(
u∗
(
t, λ∗(ε), ε

))
=
∫ t f

0
lim

ε→+0

(
zT(t, λ∗(ε), ε

)
QP
(
t, λ∗(ε), ε

)
z
(
t, λ∗(ε), ε

))
dt

=
∫ t f

0

(
zo

0(t, λ∗0)
)TQP0(t, λ∗0)z

o
0(t, λ∗0)

)
dt, (172)

where QP0(t, λ∗0) is defined in (168).
Proceed to the calculation of limε→+0 Jε

(
û(t, λ∗0 , ε)

)
. Subject to the assumption that

each of the limits limε→+0 Jε1
(
û(t, λ∗0 , ε)

)
and limε→+0 Jε2

(
û(t, λ∗0 , ε)

)
exists and is finite,

we have

lim
ε→+0

Jε

(
û(t, λ∗0 , ε)

)
= lim

ε→+0
Jε1
(
û(t, λ∗0 , ε)

)
+ lim

ε→+0
Jε2
(
û(t, λ∗0 , ε)

)
, (173)

where Jε1
(
û(t, λ∗0 , ε)

)
and Jε2

(
û(t, λ∗0 , ε)

)
are given in (165) and then rewritten in (167)

and (168).
Using Equations (142), (144), (153), (167) and (168) and the inequality (148), as well as

Lemma 3, we obtain

lim
ε→+0

Jε1
(
û(t, λ∗0 , ε)

)
= max

k∈{1,2,...,K}

[(
x̂o

0(t f )
)TLT

k (t f , λ∗0)H̃Lk(t f , λ∗0)x̂o
0(t f )

+
∫ t f

0

(
ẑo

0(t)
)TRT

k (t, λ∗0)D̃Rk(t, λ∗0)ẑ
o
0(t)dt

]
, (174)

lim
ε→+0

Jε1
(
û(t, λ∗0 , ε)

)
=
∫ t f

0

(
ẑo

0(t)
)TQP0(t, λ∗0)ẑ

o
0(t)dt. (175)

Let us compare the right-hand side of Equation (171) with the right-hand side of
Equation (174), as well as the right-hand side of Equation (172) with the right-hand side of
Equation (175). Comparing Equations (90) and (91) with Equation (145), we directly have

xo
0(t, λ∗0) = x̂o

0(t), yo
0(t, λ∗0) = ŷo

0(t), t ∈ [0, t f ], (176)

yielding, due to Equations (125) and (153)

zo
0(t, λ∗0) = ẑo

0(t), t ∈ [0, t f ]. (177)
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Equations (176) and (177), along with Equations (171), (172), (174) and (175), yield
immediately

lim
ε→+0

Jε1

(
u∗
(
t, λ∗(ε), ε

))
= lim

ε→+0
Jε1
(
û(t, λ∗0 , ε)

)
,

lim
ε→+0

Jε2

(
u∗
(
t, λ∗(ε), ε

))
= lim

ε→+0
Jε2
(
û(t, λ∗0 , ε)

)
.

These two equalities, along with Equations (170) and (173), directly imply the validity
of the equality (169). This completes the proof of the theorem.

Along with wk
(
t, λ∗(ε), ε

)
, (k = 1, 2, . . . , K), let us introduce into the consideration the

following n-dimensional vector-valued functions:

wk0
(
t, λ∗(ε), ε

) 4
= Rk

(
t, λ∗(ε)

)
z0
(
t, λ∗(ε), ε

)
, k = 1, 2, . . . , K, t ∈ [0, t f ], ε ∈ (0, ε̃0], (178)

where z0
(
t, λ, ε

)
is given in (125).

Using Equations (156), (80), (125), (157) and (178), as well as Corollary 1, Theorem 2,
and the smoothness of the matrix-valued function R(t, λ) with respect to t ∈ [0, t f ] uni-
formly in λ ∈ Ωλ (see Remark 6), we obtain the inequalities∥∥wk

(
t, λ∗(ε), ε

)
− wk0

(
t, λ∗(ε), ε)

∥∥ ≤ c̃2ε, k = 1, 2, . . . , K, t ∈ [0, t f ], ε ∈ (0, ε̃0],

where c̃2 > 0 is some constant independent of ε.

5. Minimizing Sequence of Optimal Control Problem (1) and (3)

Theorem 5. Let the assumptions AI-AVI be fulfilled. Then, the following equality is valid:

J ∗(w0) = J0
(
λ∗0
)
, (179)

where J ∗(w0) is the infimum of the functional J (u) with respect to u(t) = u(w, t) ∈ U in the
problem (1), (3) (see Remark 2); the function J0(λ) is defined in Equation (131); the vector λ∗0 is
defined by Equation (130).

Proof. (by contradiction). To prove the theorem, we assume that its statement (the
equality (179)) is wrong, i.e., we assume that J ∗(w0) 6= J0

(
λ∗0
)
. Let us show that this

assumption implies the inequality

J ∗(w0) < J0
(
λ∗0
)
. (180)

Indeed, using Equations (2), (3), (5) and (6), as well as Remark 2, Proposition 1,
Corollary 2, and that the control u∗ε (·) given by (13) is the optimal one in the
problem (1), (5) and (6), we directly obtain the following chain of the inequalities and
the equalities:

J ∗(w0) ≤ J
(
u∗ε (·)

)
≤ Jε

(
u∗ε (·)

)
= I

(
λ∗(ε), ε

)
= J
(
λ∗(ε), ε

)
, ε ≥ 0. (181)

Also, from Corollary 3, we have the double-side inequality

J0
(
λ∗0
)
− g∗(ε) ≤ J

(
λ∗(ε), ε

)
≤ J0

(
λ∗0
)
+ g∗(ε), ε ∈ (0, ε̃0]. (182)

The chain (181) and the double-side inequality (182) immediately imply the inequality

J ∗(w0) ≤ J0
(
λ∗0
)
+ g∗(ε), ε ∈ (0, ε̃0],

meaning, along with the above assumed inequality J ∗(w0) 6= J0
(
λ∗0
)
, the fulfillment

of (180).
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Since (180) is valid and J ∗(w0) is the infimum of the functional J (u) with respect to
u(t) = u(w, t) ∈ U in the problem (1), (3), then there exists a control ũ(·) ∈ U such that

J ∗(w0) < J
(
ũ(·)

)
< J0

(
λ∗0
)
. (183)

Taking into account that u∗ε (·) given by (13) is the optimal control in the problem (1), (5)
and (6), we directly have

J
(
λ∗(ε), ε

)
= I

(
λ∗(ε), ε

)
= Jε

(
u∗ε (·)

)
≤ Jε

(
ũ(·)

)
= J

(
ũ(·)

)
+ ãε2, ε ≥ 0, (184)

where

0 ≤ ã =
∫ t f

0
ũT(w̃(t), t

)
ũ
(
w̃(t), t

)
dt < +∞,

w̃(t)
4
= col

(
w̃1(t), w̃2(t), . . . , w̃K(t)

)
, t ∈ [0, t f ] is the unique absolutely continuous solution

of the initial-value problem (1) with k = 1, 2, . . . , K and u(t) = ũ(w, t), (w, t) ∈ EKn × [0, t f ].
Thus, due to (184),

J
(
λ∗(ε), ε

)
≤ J

(
ũ(·)

)
+ ãε2, ε ≥ 0.

This inequality, along with the left-hand side inequality in (182), yields

J0
(
λ∗0
)
≤ J

(
ũ(·)

)
+ ãε2 + g∗(ε), ε ∈ (0, ε̃0]. (185)

Taking into account that g∗(ε) > 0, ε ∈ (0, ε̃0] and limε→+0 g∗(ε) = 0, we immediately
obtain from (185) the following inequality: J0

(
λ∗0
)
≤ J

(
ũ(·)

)
, which contradicts the right-

hand side inequality in (183). This contradiction means that the above assumed inequality
J ∗(w0) 6= J0

(
λ∗0
)

is wrong. Therefore, the equality (179) is correct. Thus, the theorem
is proven.

Consider the sequence of numbers {εq}+∞
q=1 satisfying the conditions

0 < εq ≤ min{ε̃0, ε̂0}, q = 1, 2, . . . ; lim
q→+∞

εq = 0. (186)

Using this sequence, consider the sequence of state-feedback controls in the optimal control
problem (1) and (3)

{ûq(w, t)}+∞
q=1

4
=
{

ûεq(w, t, λ∗0)
}+∞

q=1, (187)

where ûε(w, t, λ∗0) is defined in (138).

Theorem 6. Let the assumptions AI-AVI be fulfilled. Then, the sequence {ûq(w, t)}+∞
q=1 is a

minimizing sequence in the optimal control problem (1) and (3), i.e.,

lim
q→+∞

J
(
ûq(w, t)

)
= J ∗(w0). (188)

Proof. Due to Remark 2 and Equations (2), (3), (5) and (6), we have the following chain of
inequalities:

J ∗(w0) ≤ J
(
ûq(w, t)

)
≤ Jεq

(
ûq(w, t)

)
. (189)

Using Equations (129) and (155), as well as Corollary 3, and Theorems 4 and 5, we
obtain the following:

J ∗(w0) = J0
(
λ∗0
)
= lim

ε→+0
J
(
λ∗(ε), ε

)
= lim

ε→+0
Jε

(
u∗ε
(
w, t, λ∗(ε)

))
= lim

ε→+0
Jε

(
ûε(w, t, λ∗0)

)
,



Axioms 2023, 12, 955 36 of 42

meaning, along with (187), that

lim
q→+∞

Jεq

(
ûq(w, t)

)
= J ∗(w0).

The latter, along with (189) yields immediately the equality (188). Thus, the theorem is
proven.

6. Illustrative Example

Consider the following two-model system:

dw1,k(t)
dt

= ρkw2,k(t), w1,k(0) = 1, t ∈ [0, 4], k ∈ {1, 2},

dw2,k(t)
dt

= u(t), w2,k(0) = 2, t ∈ [0, 4], k ∈ {1, 2}, (190)

where w1,k(t), w2,k(t), u(t) are scalar functions; ρ1 = 2, ρ2 = 1.
Comparing the system (190) with the system (1), one can conclude that (190) is a

particular case of (1) where n = 2, r = 1, t f = 4, K = 2,

A1 =

(
0 2
0 0

)
, A2 =

(
0 1
0 0

)
, B1 = B2 =

(
0
1

)
, w̃0 =

(
1
2

)
. (191)

In this example, we choose the functional F (u, k) as:

F (u, k) = w2
1,k(4) +

∫ 4

0
w2

2,k(t)dt, k ∈ {1, 2}. (192)

Comparison of the functional (192) and the functional (2) yields that (192) is a particular
case of (2) where

H̃ =

(
1 0
0 0

)
, D̃ =

(
0 0
0 1

)
. (193)

Based on the functional (192), we construct the performance index evaluating the
control process of the two-model system (190)

J (u)
4
= max

k∈{1,2}
F (u, k)→ inf

u
. (194)

Remark 15. The two-model singular optimal control problem (190) and (194) is a particu-
lar case of the multi-model singular optimal control problem (1) and (3). The solution of the
problem (190) and (194) will allow us to clearly illustrate the theoretical results of the previous
sections, while avoiding too complicated analytical/numerical calculations. Such an illustration
allows us not to overload the paper and, therefore, to maintain its readability.

Proceed to the construction of the minimizing sequence in the optimal control
problem (190) and (194). Due to Theorem 6, first, we should check the fulfillment of
the assumptions AI-AVI in this problem. Based on Equations (191) and (193), we directly
obtain the fulfillment of the assumptions AI-AV. The fulfillment of the assumption AVI will
be verified in the sequel of this section. Based on Theorem 6 and Equations (138) and (187),
one can conclude the following. To construct the minimizing sequence, the matrix-valued
functions R(t, λ), Po

20(t, λ), Po
30(t, λ) should be obtained. We start by obtaining R(t, λ).

Due to Equations (8), (22) and (191), this matrix depends on the complement matrix Bc to
the matrix B = col(0, 1, 0, 1). We choose the matrix Bc in the form
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Bc =


1 0 0
0 1 0
0 0 1
0 0 0

.

Using Equations (7), (8) and (22), the data of the example (191) and (193) and the
pre-chosen matrix Bc, we obtain the following matrices:

L(t, λ) ≡ L(λ) =


1 0 0
0 λ2 0
0 0 1
0 − λ1 0

, R(t, λ) ≡ R(λ) =


1 0 0 0
0 λ2 0 1
0 0 1 0
0 − λ1 0 1

, (195)

where
λ = col(λ1, λ2), λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1. (196)

Due to the results of Section 4.2.2, to obtain the matrices Po
20(t, λ), Po

30(t, λ), first,
we should obtain the matrices A1(t, λ), A2(t, λ), D1(t, λ), D2(t, λ), H1(λ), So

1(λ). Using
Equations (7), (25), (30), (31), (38) and (53), as well as the data of the example (191) and (193)
and the above calculated matrices L(t, λ),R(t, λ), we have after a routine matrix algebra

A1(t, λ) ≡ A1(λ) =

 0 2λ2 0
0 0 0
0 − λ1 0

, A2(t, λ) ≡ A2(λ) =

 2
0
1

,

D1(t, λ) ≡ D1(λ) =

 0 0 0
0 λ1λ2 0
0 0 0

, D2(t, λ) ≡ D2 = 1,

H1(λ) =

 λ1 0 0
0 0 0
0 0 λ2

, So
1(λ) ≡ So

1 =

 4 0 2
0 0 0
2 0 1

. (197)

Using Equations (50), (51) and (197), as well as the symmetry of the matrix Po
10(t, λ),

we immediately have

Po
30(t, λ) ≡ Po

30 = 1,

Po
20(t, λ) =

 2Po
10,11(t, λ) + Po

10,13(t, λ)

2Po
10,12(t, λ) + Po

10,23(t, λ)

2Po
10,13(t, λ) + Po

10,33(t, λ)

, (198)

where Po
10,ij(t, λ), (i = 1, 2, 3; j = 1, 2, 3) is the entry of the matrix Po

10(t, λ) placed in its i-th
row and j-th column.

Solving the terminal value problem (52) with t f = 4 and the data from (197), we obtain

2Po
10,11(t, λ) + Po

10,13(t, λ) =
2λ1

(4λ1 + λ2)(4− t) + 1
,

2Po
10,12(t, λ) + Po

10,23(t, λ) =
3λ1λ2(4− t)

(4λ1 + λ2)(4− t) + 1
,

2Po
10,13(t, λ) + Po

10,33(t, λ) =
λ2

(4λ1 + λ2)(4− t) + 1
. (199)



Axioms 2023, 12, 955 38 of 42

Also, for the sake of further calculations, we obtain the entries Po
10,11(t, λ), Po

10,13(t, λ),
Po

10,33(t, λ)

Po
10,11(t, λ) =

λ1λ2(4− t) + λ1

(4λ1 + λ2)(4− t) + 1
,

Po
10,13(t, λ) = − 2λ1λ2(4− t)

(4λ1 + λ2)(4− t) + 1
,

Po
10,33(t, λ) =

4λ1λ2(4− t) + λ2

(4λ1 + λ2)(4− t) + 1
. (200)

Now, we should obtain the solution λ∗0 of the optimization problem (130) and (131).
The minimized function J0(λ) of this problem depends on the vector x0(λ) and on the
functions xo

0(t, λ), yo
0(t, λ). From Equations (4), (34) and (81), as well as the data of the

example (191) and Equation (195), we obtain the vector x0(λ)

x0(λ) ≡ x0 = col(1, 0, 1). (201)

Solving the initial value problem (91) and taking into account (197), (199) and (201),
we obtain

xo
0,1(t, λ) = 2

(4λ1 + λ2)(4− t) + 2λ1t + 1
4(4λ1 + λ2) + 1

− 1, xo
0,2(t, λ) ≡ 0, t ∈ [0, 4],

xo
0,3(t, λ) =

(4λ1 + λ2)(4− t) + 2λ1t + 1
4(4λ1 + λ2) + 1

, t ∈ [0, 4] (202)

where xo
0,i(t, λ), (i = 1, 2, 3) are the corresponding entries of the vector xo

0(t, λ).
Using Equations (90), (197), (199) and (202), we have

yo
0(t, λ) = − 2λ1

(4λ1 + λ2)(4− t) + 1

[
2
(4λ1 + λ2)(4− t) + 2λ1t + 1

4(4λ1 + λ2) + 1
− 1
]

− λ2

(4λ1 + λ2)(4− t) + 1
(4λ1 + λ2)(4− t) + 2λ1t + 1

4(4λ1 + λ2) + 1

= − 4λ1 + λ2

(4λ1 + λ2)(4− t) + 1
(4λ1 + λ2)(4− t) + 2λ1t + 1

4(4λ1 + λ2) + 1

+
2λ1

(4λ1 + λ2)(4− t) + 1
≡ − 2λ1 + λ2

4(4λ1 + λ2) + 1
, t ∈ [0, 4]. (203)

Based on Equation (131) and using Equations (11), (12), (195)–(197) and (200)–(203), we
obtain (after a routine calculations) the function J0(λ) in the form

J0(λ) =
4λ1λ2 + 1

4(4λ1 + λ2) + 1
− λ1

(
2(8λ1 + 1)

4(4λ1 + λ2) + 1
− 1
)2

+ λ1

(
8λ1 + 1

4(4λ1 + λ2) + 1

)2
,

where the vector λ is given in (196).
This function has a unique minimum point subject to the conditions (196). This

minimum point is λ∗0 = col(λ∗0,1, λ∗0,2) = (0, 1). The corresponding minimal value of
the function J0(λ

∗
0) is 1/5. By virtue of Definition 2 and Theorem 5, the optimal value

of the functional in the two-model singular optimal control problem (190) and (194) is
J ∗(w0) = 1/5.

Using Theorem 6, as well as Equations (138), (187) and (198) and the vector λ∗0 = col(0, 1),
we obtain the minimizing sequence in the two-model singular optimal control problem (190)
and (194)

{ûq(w, t)}+∞
q=1 =

{
− 1

εq

(
1

5− t
w1 + w2

)}+∞

q=1
, (204)
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where the sequence of numbers {εq}+∞
q=1 is given by (186).

Thus, the above obtained value J ∗(w0) = 1/5 is the infimum of the functional J (u)
in the two-model singular optimal control problem (190) and (194), i.e.,

inf
u

max
k∈{1,2}

F (u, k) =
1
5

. (205)

Let us show that in this example,

inf
u

max
k∈{1,2}

F (u, k) = max
k∈{1,2}

inf
u
F (u, k). (206)

Taking into account that each single-model optimal control problem of the
problem (190), (194) is its particular case and using Theorems 5 and 6, we obtain that

inf
u
F (u, 1) =

1
17

, inf
u
F (u, 2) =

1
5

,

which, along with (205), yields (206).
Moreover, the minimizing sequence in the single-model singular optimal control

problem for k = 2 coincides with (204). Thus, in the set
{(

k,
{

u∗q(w, t)
}+∞

q=1

)
: k ∈

{1, 2}, u∗q(w, t) ∈ U, q = 1, 2, . . .
}

, the point
(
2, {ûq(w, t)}+∞

q=1
)

is the saddle point of
the functional (192) subject to the two-model system (190).

7. Concluding Remarks and Outlook

CRI. In this paper, we consider a finite horizon multi-model linear-quadratic optimal
control problem. The functional of this problem does not contain the control function. Due
to this feature of the functional, the considered optimal control problem is singular.

CRII. We solve the original control problem by the regularization approach, i.e., by its
approximate transformation to an auxiliary regular optimal control problem. The latter
has the same multi-model system of dynamics and a similar cost functional augmented by
a finite horizon integral of the square of the Euclidean norm of the vector-valued control
with a small positive weight (a small parameter). Hence, the auxiliary problem is a finite
horizon multi-model linear-quadratic optimal control problem with a cheap control.

CRIII. Using the Robust Maximum Principle, we reduce the solution of this multi-
model cheap control problem to the consecutive solution of the following three problems.
The first problem is the terminal-value problem for the extended matrix Riccati differential
equation. This problem depends not only on the aforementioned small parameter, but also
on an auxiliary vector-valued parameter. The dimension of the latter equals the number of
the models in the multi-model system, and this vector-valued parameter belongs to the
proper bounded and closed set in the corresponding Euclidean space. The second problem
is the initial-value problem for the extended vector linear differential equation. Like the first
problem, the second problem also depends on the aforementioned small scalar parameter
and vector-valued parameter. The third problem is the nonlinear optimization problem.
The cost function of this problem depends on the small parameter, and this cost function is
minimized with respect to the vector-valued parameter.

CRIV. An asymptotic analysis of each of the aforementioned three problems is carried
out. Namely, for the first and the second problems, zero-order asymptotic solutions are
formally constructed and justified. It is shown that these asymptotic solutions are valid
uniformly with respect to the vector-valued parameter. For the third problem, the continuity
of its solution with respect to the small parameter as the latter tends to zero is shown.

CRV. Based on this asymptotic analysis, the explicit expression of the infimum of the
functional in the original singular optimal control problem is derived. The minimizing
state-feedback control sequence in the original problem was also designed.
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CRVI. The following issues of the topic of multi-model singular control problems are
subject to future investigation: (a) multi-model singular infinite horizon linear-quadratic op-
timal control problem; (b) multi-model singular finite and infinite horizon stochastic linear-
quadratic optimal control problems; (c) multi-model singular zero-sum linear-quadratic
differential games; (d) multi-model singular linear-quadratic Nash equilibrium differential
games; (e) singular optimal control problem of pursuit of a multi-model non-maneuvering
evader; (f) singular zero-sum differential game of pursuit of a multi-model maneuvering
evader; (g) singular optimal control problem of pursuit of a multi-model hybrid dynamics
(regime-switching) non-maneuvering evader; (h) singular zero-sum differential game of
pursuit of a multi-model hybrid dynamics (regime-switching) maneuvering evader.

It should be noted that multi-model systems other than the one of the present paper
can be of considerable interest for investigation in the frame of the cheap/singular control.
For instance, these problems are (i) multi-regimes cheap control stochastic differential games
with jumps; (ii) multi-regimes singular stochastic differential games with jumps; (iii) cheap
control games with fuzzy uncertainties; (iv) singular games with fuzzy uncertainties.
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6. Kara, G.; Özmen, A.; Weber, G.-W. Stability advances in robust portfolio optimization under parallelepiped uncertainty. Cent. Eur.

J. Oper. 2019, 27, 241–261. [CrossRef]
7. Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Gordon &

Breach Science Publishers: New York, NY, USA, 1986.
8. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
9. Bell, D.J.; Jacobson, D.H. Singular Optimal Control Problems; Academic Press: New York, NY, USA, 1975.
10. Gabasov, R.; Kirillova, F.M. High order necessary conditions for optimality. SIAM J. Control 1972, 10, 127–168. [CrossRef]
11. Kelly, H.J. A second variation test for singular extremals. AIAA J. 1964, 2, 26–29. [CrossRef]
12. Krotov, V.F. Global Methods in Optimal Control Theory; Marsel Dekker: New York, NY, USA, 1996.
13. McDanell, J.P.; Powers, W.F. Necessary conditions for joining optimal singular and nonsingular subarcs. SIAM J. Control 1971, 9,

161–173. [CrossRef]
14. Gurman, V.I. Optimal processes of singular control. Autom. Remote Control 1965, 26, 783–792.
15. Gurman, V.I.; Dykhta, V.A. Singular problems of optimal control and the method of multiple maxima. Autom. Remote Control

1977, 38, 343–350.
16. Gurman, V.I.; Kang, N.M. Degenerate problems of optimal control. I. Autom. Remote Control 2011, 72, 497–511. [CrossRef]
17. Gurman, V.I.; Kang, N.M. Degenerate problems of optimal control. II. Autom. Remote Control 2011, 72, 727–739. [CrossRef]
18. Gurman, V.I.; Kang, N.M. Degenerate problems of optimal control. III. Autom. Remote Control 2011, 72, 929–943. [CrossRef]
19. Hautus, M.L.J.; Silverman, L.M. System structure and singular control. Linear Algebra Appl. 1983, 50, 369–402. [CrossRef]
20. Willems, J.C.; Kitapci, A.; Silverman, L.M. Singular optimal oontrol: A geometric approach. SIAM J. Control Optim. 1986, 24,

323–337. [CrossRef]
21. Geerts, T. All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimial

cost. Linear AlgebraAppl. 1989, 116, 135–181. [CrossRef]
22. Geerts, T. Linear-quadratic control with and without stability subject to general implicit continuous-time systems: Coordinate-free

interpretations of the optimal costs in terms of dissipation inequality and linear matrix inequality; existence and uniqueness of
optimal controls and state trajectories. Linear Algebra Appl. 1994, 203–204, 607–658.

23. Zavalishchin, S.T.; Sesekin, A.N. Dynamic Impulse Systems: Theory and Applications; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 1997.

http://doi.org/10.1080/02331934.2016.1209672
http://dx.doi.org/10.3390/math11143043
https://www.doi.org/10.3934/jimo.2023084
http://dx.doi.org/10.1007/s10100-017-0508-5
http://dx.doi.org/10.1137/0310012
http://dx.doi.org/10.2514/3.2562
http://dx.doi.org/10.1137/0309014
http://dx.doi.org/10.1134/S0005117911030039
http://dx.doi.org/10.1134/S0005117911040059
http://dx.doi.org/10.1134/S0005117911050031
http://dx.doi.org/10.1016/0024-3795(83)90062-9
http://dx.doi.org/10.1137/0324018
http://dx.doi.org/10.1016/0024-3795(89)90403-5


Axioms 2023, 12, 955 41 of 42

24. Glizer, V.Y. Solution of a singular optimal control problem with state delays: A cheap control approach. In Optimization Theory and
Related Topics, Contemporary Mathematics Series; Reich, S., Zaslavski, A.J., Eds.; American Mathematical Society: Providence, RI,
USA, 2012; Volume 568, pp. 77–107.

25. Glizer, V.Y. Stochastic singular optimal control problem with state delays: regularization, singular perturbation, and minimizing
sequence. SIAM J.Control Optim. 2012, 50, 2862–2888. [CrossRef]

26. Glizer, V.Y. Singular solution of an infinite horizon linear-quadratic optimal control problem with state delays. In Variational and
Optimal Control Problems on Unbounded Domains, Contemporary Mathematics Series; Wolansky, G., Zaslavski, A.J., Eds.; American
Mathematical Society: Providence, RI, USA, 2014; Volume 619, pp. 59–98.

27. Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; Halsted Press: New York, NY, USA, 1977.
28. Bikdash, M.U.; Nayfeh, A.H.; Cliff, E.M. Singular perturbation of the time-optimal soft-constrained cheap-control problem. IEEE

Trans. Automat. Control 1993, 38, 466–469. [CrossRef]
29. Dragan, V.; Halanay, A. Singular perturbations and linear feedback control. Proceedings of the Czechoslovak Conference on

Differential Equations and Their Applications (Equadiff IV). In Lecture Notes in Mathematics; Springer: Berlin, Germany, 1979;
Volume 703, pp. 86–92.

30. Glizer, V.Y. Asymptotic solution of a cheap control problem with state delay. Dynam. Control 1999, 9, 339–357. [CrossRef]
31. Glizer, V.Y. Suboptimal solution of a cheap control problem for linear systems with multiple state delays. J. Dyn. Control Syst.

2005, 11, 527–574. [CrossRef]
32. Glizer, V.Y.; Fridman, L.M.; Turetsky, V. Cheap suboptimal control of an integral sliding mode for uncertain systems with state

delays. IEEE Trans. Automat. Contr. 2007, 52, 1892–1898. [CrossRef]
33. Glizer, V.Y. Infinite horizon cheap control problem for a class of systems with state delays. J. Nonlinear Convex Anal. 2009, 10,

199–233.
34. Glizer, V.Y.; Kelis, O. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known

disturbances. Numer. Algebra Control Optim. 2018, 8, 211–235. [CrossRef]
35. Jameson, A.; O’Malley, R.E. Cheap control of the time-invariant regulator. Appl. Math. Optim. 1975, 1, 337–354. [CrossRef]
36. Kokotovic, P.V.; Khalil, H.K.; O’Reilly, J. Singular Perturbation Methods in Control: Analysis and Design; Academic Press: London,

UK, 1986.
37. Kwakernaak, H.; Sivan, R. The maximally achievable accuracy of linear optimal regulators and linear optimal filters. IEEE Trans.

Automat. Control 1972, 17, 79–86. [CrossRef]
38. Mahadevan, R.; Muthukumar, T. Homogenization of some cheap control problems. SIAM J. Math. Anal. 2011, 43, 2211–2229.

[CrossRef]
39. Naidu, D.S. Singular perturbations and time scales in control theory and applications: An overview. Dyn. Contin. Discrete Impuls.

Syst. Ser. B Appl. Algorithms 2002, 9, 233–278.
40. Naidu, D.S.; Calise, A.J. Singular perturbations and time scales in guidance and control of aerospace systems: A survey. J. Guid.

Control Dyn. 2002, 24, 1057–1078. [CrossRef]
41. O’Malley, R.E.; Jameson, A. Singular perturbations and singular arcs, I. IEEE Trans. Automat. Control 1975, 20, 218–226. [CrossRef]
42. O’Malley, R.E.; Jameson, A. Singular perturbations and singular arcs, II. IEEE Trans. Automat. Control 1977, 22, 328–337. [CrossRef]
43. O’Reilly, J. Partial cheap control of the time-invariant regulator. Internat. J. Control 1983, 37, 909–927. [CrossRef]
44. Saberi, A.; Sannuti, P. Cheap and singular controls for linear quadratic regulators. IEEE Trans. Automat. Control 1987, 32, 208–219.

[CrossRef]
45. Seron, M.M.; Braslavsky, J.H.; Kokotovic, P.V.; Mayne, D.Q. Feedback limitations in nonlinear systems: From Bode integrals to

cheap control. IEEE Trans. Automat. Control 1999, 44, 829–833. [CrossRef]
46. Smetannikova, E.N.; Sobolev, V.A. Regularization of cheap periodic control problems. Automat. Remote Control 2005, 66, 903–916.

[CrossRef]
47. Artstein, Z.; Gaitsgory, V. The value function of singularly perturbed control systems. Appl. Math. Optim. 2000, 41, 425–445.

[CrossRef]
48. Dontchev, A.L. Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems; Springer: Berlin, Germany, 1983.
49. Dragan, V. On the linear quadratic optimal control for systems described by singularly perturbed Ito differential equations with

two fast time scales. Axioms 2019, 8, 30. [CrossRef]
50. Dragan, V.; Mukaidani, H.; Shi, P. The linear quadratic regulator problem for a class of controlled systems modeled by singularly

perturbed Ito differential equations. SIAM J. Control Optim. 2012, 50, 448–470. [CrossRef]
51. Fridman, E. Decomposition of linear optimal singularly-perturbed systems with aftereffect. Automat. Remote Control 1990, 51,

1518–1527.
52. Gajic, Z.; Lim, M.-T. Optimal Control of Singularly Perturbed Linear Systems and Applications. High Accuracy Techniques; Marsel

Dekker Inc.: New York, NY, USA, 2001.
53. Glizer, V.Y. Correctness of a constrained control Mayer’s problem for a class of singularly perturbed functional-differential

systems. Control Cybernet. 2008, 37, 329–351.
54. Kokotovic, P.; Yackel, R. Singular perturbation of linear regulators: Basic theorems. IEEE Trans. Automat. Control 1972, 17, 29–37.

[CrossRef]
55. Kuehn, C. Multiple Time Scale Dynamics; Springer: New York, NY, USA, 2015.

http://dx.doi.org/10.1137/110852784
http://dx.doi.org/10.1109/9.210147
http://dx.doi.org/10.1023/A:1026484201241
http://dx.doi.org/10.1007/s10883-005-8818-7
http://dx.doi.org/10.1109/TAC.2007.906201
http://dx.doi.org/10.3934/naco.2018013
http://dx.doi.org/10.1007/BF01447957
http://dx.doi.org/10.1109/TAC.1972.1099865
http://dx.doi.org/10.1137/100811581
http://dx.doi.org/10.2514/2.4830
http://dx.doi.org/10.1109/TAC.1975.1100915
http://dx.doi.org/10.1109/TAC.1977.1101535
http://dx.doi.org/10.1080/00207178308933019
http://dx.doi.org/10.1109/TAC.1987.1104574
http://dx.doi.org/10.1109/9.754828
http://dx.doi.org/10.1007/s10513-005-0134-x
http://dx.doi.org/10.1007/s002459911022
http://dx.doi.org/10.3390/axioms8010030
http://dx.doi.org/10.1137/100798661
http://dx.doi.org/10.1109/TAC.1972.1099851


Axioms 2023, 12, 955 42 of 42

56. Lange, C.G.; Miura, R.M. Singular perturbation analysis of boundary-value problems for differential-difference equations. Part V:
Small shifts with layer behavior. SIAM J. Appl. Math. 1994, 54, 249–272. [CrossRef]

57. Mukaidani, H.; Dragan, V. Control of deterministic and stochastic systems with several small parameters—A survey. Ann. Acad.
Rom. Sci. Ser. Math. Its Appl. 2009, 1, 112–158.

58. Naidu, D.S. Singular Perturbation Methodology in Control Systems; The Institution of Engineering and Technology: Edison, NJ, USA, 1988.
59. Pena, M.L. Asymptotic expansion for the initial value problem of the sunflower equation. J.Math. Anal. Appl. 1989, 143, 471–479.

[CrossRef]
60. Reddy, P.; Sannuti, P. Optimal control of a coupled-core nuclear reactor by a singular perturbation method. IEEE Trans. Automat.

Control 1975, 20, 766–769. [CrossRef]
61. Yackel, R.; Kokotovic, P. A boundary layer method for the matrix Riccati equation. IEEE Trans. Automat. Control 1973, 18, 17–24.

[CrossRef]
62. Glizer, V.Y.; Kelis, O. Singular Linear-Quadratic Zero-Sum Differential Games and H∞ Control Problems: Regularization Approach;

Birkhauser: Basel, Switzerland, 2022.
63. Sibuya, Y. Some global properties of matrices of functions of one variable. Math. Ann. 1965, 161, 67–77. [CrossRef]
64. Vasil’eva A.B.; Butuzov V.F.; Kalachev L.V. The Boundary Function Method for Singular Perturbation Problems; SIAM Books:

Philadelphia, PA, USA, 1995.
65. Schwartz, L. Analyse Mathematique: Cours; Hermann: Paris, France, 1967.
66. Hartman, P. Ordinary Differential Equations; John Willey & Sons: New York, NY, USA, 1964.
67. Bryson, A.E.; Ho, Y.C. Applied Optimal Control; Hemisphere: New York, NY, USA, 1975.
68. Fichtenholz, G.M. The Fundamentals of Mathematical Analysis; Pergamon: Oxford, UK, 1965; Volume 1.
69. Abou-Kandil, H.; Freiling, G.; Ionescu, V.; Jank, G. Matrix Riccati Equations in Control and Systems Theory; Birkhauser: Basel,

Switzerland, 2003.
70. Beavis, B.; Dobbs, I. Optimization and Stability Theory for Economic Analysis; Cambridge University Press: New York, NY, USA, 1990.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/S0036139992228120
http://dx.doi.org/10.1016/0022-247X(89)90053-X
http://dx.doi.org/10.1109/TAC.1975.1101096
http://dx.doi.org/10.1109/TAC.1973.1100226
http://dx.doi.org/10.1007/BF01363248

	Introduction
	Problem Formulation and Main Definitions
	Regularization of the Optimal Control Problem (1) and (3)
	Multi-Model Cheap Control Problem
	Solvability Conditions of the Optimal Control Problem (1), (5) and (6)

	Asymptotic Analysis of the Solvability Conditions to the Problem (1), (5) and (6)
	Transformation of the Terminal-Value Problem (9), the Initial-Value Problem (16) and the Optimization Problem (?? and (15)
	Asymptotic Solution of the Terminal-Value Problem (24)
	Obtaining the Boundary Layer Correction P1 0b()
	Obtaining the Outer Solution Terms
	Control-Theoretic Interpretation of the Terminal-Value Problem (52)
	Obtaining the Boundary Layer Correction Terms P2 0b(,) and P3 0b(,)
	Justification of the Asymptotic Solution to the Terminal-Value Problem (39)–(41)

	Asymptotic Solution of the Initial-Value Problem (33)
	Obtaining the Boundary Layer Corrections x0b,1(,) and x0b,2(,)
	Obtaining the Outer Solution Terms
	Obtaining the Boundary Layer Correction Term y0b,1(,)
	Obtaining the Boundary Layer Correction Term y0b,2(,)
	Justification of the Asymptotic Solution to the Initial-Value Problem (82)

	Transformation of the Optimal Control in the Problem (1), (5) and (6)
	Asymptotic Behaviour of the Solution to the Optimization Problem (?? and (36)
	Asymptotically Suboptimal Control of the Problem (1), (5) and (6)
	Formal Construction of the Suboptimal Control
	Asymptotic Behaviour of the Solution to the Initial-Value Problem (139)
	Time Realization of the Control (138) in the Problem (1), (5) and (6)
	Closeness of the Values  J(to1.5.u*(to.t,*(),)to.)to1.5. and J(to.u"0362u(t,*0,))to.


	Minimizing Sequence of Optimal Control Problem (1) and (3)
	Illustrative Example
	Concluding Remarks and Outlook
	References

