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Abstract: In this paper, we expose the ideas of point-wise statistical convergence, equi-statistical
convergence and uniform statistical convergence in the sense of the deferred power-series method.
We then propose a relation connecting them, which is followed by several illustrative examples.
Moreover, as an application viewpoint, we establish an approximation theorem based upon our
proposed method for equi-statistical convergence of sequences of positive linear operators. Finally,
we estimate the equi-statistical rates of convergence for the effectiveness of the results presented in
our study.
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1. Introduction, Preliminaries and Motivation

The principal edition monograph of Zygmund [1], printed in the year 1935, served
as the foundation for the statistical convergence concept. Subsequently, in the year 1951,
Fast [2] investigated and studied such concepts in a new direction over sequence space and
presented a note on that basis. Later on, Schoenberg [3] independently developed the same
concepts on sequence space with some specific fundamental limit concepts. In recent trends
of sequence space, the rudimentary idea of statistical convergence has been expanded to a
wider class and has becoming a very active research area in the study of various spheres of
mathematical analysis, such as theory of approximation, Banach spaces, measure theory,
locally convex spaces, summability theory and Fourier analysis, etc.

The concept of statistical convergence is used more frequently today than that of point-
wise convergence. The credit of such development goes to two eminent mathematicians,
Fast [2] and Steinhaus [3], and this concept makes the convergence analysis much wider.
Nowadays, this potential idea has been applied in many disciplines of applied and pure
mathematics and analytical statistics as well. In particular, it is very much useful in the
study of machine learning, soft computing, number theory, measure theory and probability
theory, etc. For some latest works, the interested learners may to refer [4,5].

Suppose E ⊆ N, and setting

Em := |{m : m 5 n and m ∈ E}|, (1)
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the asymptotic (natural) density δ(E) of E is defined by

δ(E) = lim
m→∞

1
m
|{m : m 5 n and m ∈ E}| = a (a exists and is finite), (2)

where |Em| symbolizes the cardinal number (cardinality) of the set Em.

Definition 1. A given sequence (xm) is statistically convergent to ` if, for all ε > 0,

Eε = |{m ∈ N and |xm − `| = ε}|

ensures the natural (asymptotic) density zero (see [2,3]). Hence, for every ε > 0,

δ
(
Eε

)
=
|Eε|
m

= 0 (m→ ∞),

and let us write it as

stat lim xm = ` (m→ ∞).

We now recall the deferred Cesàro technique for sequences of real numbers as follows.
Let (am) and (bm) ∈ Z0+ such that

am < bm and lim
m→∞

bm = ∞.

The deferred Cesàro D(am, bm)-mean subjected to the regularity condition (see Agnew [6])
is given by

D(am, bm) =
xam+1 + xam+2 + xam+3 + · · ·+ xbm

bm − am

=
bm

∑
k=am+1

xk.

Definition 2. Let (am) and (bm) ∈ Z0+. A sequence (xm) is deferred statistically (or statD)
convergent to ` if, for every ε > 0,

Eε = |{am < m 5 bm and |xm − `| = ε}|

ensures the natural (asymptotic) density zero (see [7]). Hence, for every ε > 0,

δ
(
Eε

)
= lim

|Eε|
m

= 0 (m→ ∞).

We write

statD lim
m→∞

xm = `.

We now introduce the elementary notion of convergence under the deferred power-
series technique.

Let (qm) ∈ R+ with q0 > 0, and suppose that the corresponding deferred power-series,
given by

q(s) =
bn

∑
m=an+1

qmsm,

has the radius of convergence R− such that 0 < R− 5 ∞.
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Definition 3. A given sequence (xm) is convergent under the deferred power-series technique if

lim
0<s→R−

1
q(s)

bn

∑
m=an+1

qmsmxm = a,

where a is real and finite.

We recall that the deferred power-series technique is said to be regular (see [8]) if and
only if

lim
0<s→R−

qmsm

q(s)
= 0 (∀ m ∈ N).

We next present the statistical convergence of real sequences for the deferred power-
series method.

LetM⊂ N. Additionally, let

Mε = {an < m 5 bn and m ∈ M}. (3)

If the following limit:

δDP(Mε) = lim
0<s→R−

1
q(s) ∑

m∈Mε

qmsm

exists, then

δDP(Mε)

is called the DP-density ofM.

Definition 4. A sequence (xm) is statistically convergent to ` under the deferred power-series
technique if, for each ε > 0,

lim
0<s→R−

1
q(s) ∑

m∈Mε

qmsm = 0,

where

Mε = {an < m 5 bn and |xm − `| = ε},

that is,

δDP(Mε) = 0 (∀ ε > 0).

We write

statDP lim xm = `.

The following example illustrates that the statistical convergence and the statistically
deferred power-series (or statDP) convergence are not comparable.

Example 1. Let

qm =

 1 (m = n2; n ∈ N)

0 (otherwise)



Axioms 2023, 12, 964 4 of 19

and

xm =


0, (m = n2; n ∈ N)

m, (otherwise).

It is apparently true that, (xm) does not converse statistically to 0, but in view of Definition 4, we
have

lim
0<s→R−

1
q(s) ∑

m∈{an<m5bn :|xm |=ε}
qmsm = 0,

where an = 2n and bn = 4n. Consequently, (xm) converges statistically to 0 in the sense of the
deferred power-series technique.

Again, let

xm =


1
m (m = n2; n ∈ N)

0 (otherwise),

where an = 2n and bn = 4n.
It is actually true that (xm) converges statistically to 0, but we have

lim
0<s→R−

1
q(s) ∑

m∈{an<m5bn :|xm |≥ε}
qmsm 6= 0.

Thus, clearly, the sequence (xm) is not statistically convergent under the deferred power-series
(statDP) technique.

In the second half of the nineteenth century, many works about statistical convergence
were discussed by a few researchers, such as in the year 1980, Šalát [9] investigated the
theory of statistically convergent real number sequences and studied the boundedness prop-
erties of such sequences. After that, Fridy [2] discussed the concrete definition of Cauchy
criterions of statistical convergence and accordingly established some rudimentary results
based on summability means. Subsequently, in the year 1988, Maddox [10] considered
the locally convex space for the extensive study of statistical convergence and accordingly
established certain relevant results. Gradually, in view of more advanced studies in this
direction, Fridy and Orhan [11] presented the lacunary statistical summability means for a
sequence of real numbers and obtained some prominent results.

The notion of the fundamental limit concept on statistical Cesàro summability and
its applications was first introduced by the eminent mathematician Móricz [12]. Again,
Mohiuddine et al. [13] obtained a nice outcome on the statistical Cesàro summability
mean with an illustrative example and further proved some associated Korovkin-type
theorems. Afterwards, Karakaya and Chishti [14] popularized the elementary idea of
statistical convergence via the weighted summability mean, and later in the year 2018,
Mursaleen et al. [15] clearly modified this concept and established some fundamental limit
theorems. Recently, Baliarsingh et al. [16] introduced and deliberated the notion of an
advance version of uncertain sequences via statistical deferred A-convergence and proved
some inclusion theorems. Again, in that year, Saini et al. [17] also studied the results
on equi-statistical convergence via the deferred Cesàro and deferred Euler summability
product means with associated Korovkin-type theorems. Additionally, Saini et al. [18]
again studied deferred Riesz statistical convergence of a complex uncertain sequence with
its applications; also in that year, Sharma et al. [19] demonstrated the implementations of
statistical deferred Cesàro convergence of fuzzy number valued sequences of order (ξ, ω).
In the year 2018, Srivastava et al. [20] studied and investigated the idea of sequences that
converge equi-statistically based on the deferred Nörlund mean. Subsequently, Parida
et al. [21] proposed some results for sequences that converge equi-statistically via the
deferred Cesàro mean and accordingly demonstrated the Korovkin-type theorems. More
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recently, Demirci et al. [22,23] investigated the perception of sequences that converge equi-
statistically under the power-series technique and proved some approximation results.

In view of the above-mentioned literature and study, we recall the deferred point-wise
statistical convergence, the deferred equi-statistical convergence and the deferred uniform
statistical convergence of sequences of functions (see [20,21]).

Let I j R, and let f ∈ C(I), so fm ∈ C(I) as well, where C(I) is the class of real-valued
continuous functions over I. Additionally, let ‖ f ‖C(I) be the supremum norm.

(a) If, for each ε > 0 and for every x ∈ I,

lim
Km(x, ε)

m
= 0 (m→ ∞),

where

Km(x, ε) := |{m ∈ (anbn] and | fm(x)− f (x)| = ε}|,

then ( fm) is deferred statistically point-wise convergent to f on I. We write

fm → f (stat− pointwise).

(b) If, for each ε > 0,

lim
m→∞

Km(x, ε)

m
= 0 uniformly with regards to x ∈ I,

then ( fm) is equi-statistically convergent to f on I. We write

fm =⇒ f (equi− stat).

(c) If, for each ε > 0,

lim
m→∞

Dm(ε)

m
= 0,

where

Dm(ε) = |{m ∈ (anbn] and ‖ fm − f ‖C(I)= ε}|,

then ( fm) is statistically uniformly convergent to f on I. We write

fm ⇒ f (stat− unifomly).

Now, in order to have some advanced study in line with the uniform convergence of
the power-series method, we wish to introduce the deferred power-series technique for
sequences of real numbers in the following sense.

It is well known that nearly all of the transformation techniques used in the summabil-
ity theory have many undesirable characteristics. In particular, the power-series technique
of any given positive order having usual bounds and oscillations usually does not always
preserve continuous convergence or convergence in the uniform sense. However, the pro-
posed modified power-series transformation technique (that is, the deferred power-series
technique) has very useful properties with regard to uniform convergence of the sequence
of functions. In particular, the proposed technique is well-behaved in the sense of uniform
convergence, which, in fact, are shown diagrammatically in Section 3.

Motivated essentially by the above-mentioned discussions and results, we present
our investigations as follows. In Section 1, we discuss the notion of the deferred power-
series technique based on statistical convergence. Subsequently, based on the proposed
method, we define the point-wise statistical convergence, equi-statistical convergence and
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uniform statistical convergence of sequences of functions and establish an inclusion relation
connecting them. In Section 2, we prove the Korovkin-type theorem, which is based upon
our proposed method of equi-statistical convergence of sequences of functions. In Section 3,
we present the the geometrical view of equi-statistical convergence of sequences of functions
under a suitable example via positive linear operators. In Section 4, we discuss the rates
of equi-statistical convergence under the proposed deferred power-series technique for the
positive linear operator sequences with respect to the modulus of continuity. In Section 5,
based on our main result, we present some concluding remarks and observations and
indicate some prospective future scopes in different sequence spaces.

We now suggest the following definitions for the proposed study.

Definition 5. For all ε > 0 and x ∈ I, if

δDP(Km(x, ε)) = lim
0<s→R−

1
q(s) ∑

m∈Km(x,ε)
qmsm = 0,

then ( fm) is point-wise statistically convergent to f on I under the deferred power-series technique.
We write

fm → f (stat− pointDP).

Definition 6. For all ε > 0, if

δDP(Km(x, ε)) = lim
0<s→R−

1
q(s) ∑

m∈Km(x,ε)
qmsm = 0 (uniformly in x),

then ( fm) is equi-statistically convergent to f on I under deferred power-series technique. We write

fm → f (equi− statDP).

Definition 7. For all ε > 0, if

δDP(Dm(ε)) = lim
0<s→R−

1
q(s) ∑

m∈Dm(ε)

qmsm = 0,

then ( fm) is uniformly statistically convergent to f on I under the deferred power-series technique.
We write

fm ⇒ f (stat− uniDP).

In view of Definitions 5–7, we now propose an inclusion relation, which is supported
by several illustrative examples as follows.

Lemma 1. The implications as mentioned below are true:

fm ⇒ f (stat− uniDP) =⇒ fm → f (equi− statDP)

=⇒ fm → f (stat− pointDP). (4)

The implications in (4) are strict, i.e., the opposite implications in (4) are not generally true.

We provide below the numerical examples to support that the implications are strict
as claimed under Lemma 1.
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Example 2. Let an = 2n and bn = 4n, and let

fm(x) =



−2m(x− 1
2m−1 ) (m = n2, n ∈ N; x ∈ A)

2m(x− 1
2m ) (m = n2, n ∈ N; x ∈ B)

0 (m = n2, n ∈ N; x /∈ A ∪ B)

m (otherwise),

(5)

where

A =
[
2−(m−1) − 2−m, 2−(m−1)

]
and B =

[
2−m, 2−(m−1) − 2−m

]
.

Suppose also that

qm =


1 (m = n2, n ∈ N)

0 (otherwise).

Clearly, from Definition 4, we have

δDP({m : m ∈ (an, bn] and | fm − f | = ε}) = 0.

Therefore, for any x ∈ I,

lim
0<s→R−

1
q(s) ∑

{an<m5bn and | fm− f |=ε}
qmsm 5 lim

0<s→R−

1
q(s)

qm0 sm0 = 0.

We thus obtain

fm → f (equi− statDP) on I.

However, since

‖ fm − f ‖C(I) 6= 0,

( fm) neither converges statistically nor uniformly statistically to 0 under the deferred power-series
technique.

Example 3. Let I = [0, 1] and let

fm(x) =


0 (m = n2; n ∈ N)

xm (otherwise),

and

lim
m→∞

fm(x) = f (x) (x ∈ I),

where

f (x) =


0 x ∈ [0, 1)

1 (x = 1).
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Let

qm =


0 (m = n2; n ∈ N)

1 (otherwise).

Then,

fm → f (stat− pointDP).

Moreover, if we take ε = 1
2 , then, for every x ∈

(
m
√

1
2 , 1
)

,

| fm(x)| = |xm| >
∣∣∣∣∣
(

m

√
1
2

)m∣∣∣∣∣ = 1
2

.

Hence, we see that the following statement:

fm → f (equi− statDP)

does not ultimately hold true.

2. A Korovkin-Type Approximation Theorem

In the year 1960, Korovkin [24] proved the traditional Korovkin-type theorem by
demonstrating that a sequence (Lm) of (positive) linear operators uniformly converges
to the function that is to be approximated (see [25]). Following this finding, a number of
mathematicians have set out to expand Korovkin’s results in a variety of ways and to a
variety of contexts, including function spaces, Banach spaces and so on. These advances led
to the creation of a theory that are now known as Korovkin-type theorems. This hypothesis
has beautiful applications in advance analysis, Fourier series and summability theory.
However, the Korovkin-type hypothesis is still in its early stages of research, particularly in
the areas where it deals with limit operators other than the identity operator.

Recently, Korovkin-type results have been investigated and studied under various no-
tions of statistical convergence techniques (see [4,26–32]). Furthermore, Balcerzak et al. [33]
proposed a stronger result via equi-statistical convergence over the uniform statistical con-
vergence. On the other hand, based upon equi-statistical convergence, different results with
various settings have been established by many researchers (see, for example, [20,21,34–38]).
In view of some advanced study in this direction, here, we consider the proposed deferred
power-series method in establishing a Korovkin-type theorem, which is based upon the
prospective concept of equi-statistically convergence of sequences of functions.

Let L be a linear operator mapping on C(I), and then, L is said to be a positive linear
operator if

f (x) = 0 =⇒ L( f ; x) = 0.

Recalling certain approximation theorems, in this section, we wish to prove a new
Korovkin-type theorem by using our proposed deferred power-series means under equi-
statistically convergence of positive linear operator sequences. For establishing the desired
theorem, we have considered the test functions (algebraic) 1, x and x2, that is,

fi(x) = xi (i = 0, 1, 2).

Before introducing the main result, we recall here the traditional Korovkin-type theorem
(see [24]), followed by some statistical Korovkin-type theorems in line of the power-series
approaches (see [22,23]) as follows:
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Theorem 1 (see [24]). Let (Lm) be the sequences of (positive) linear operators on C(I), and then,
for each f ∈ C(I),

lim
m→∞

‖ Lm( f )− f ‖C(I)= 0

if and only if

lim
m→∞

‖ Lm( fi; x)− fi ‖C(I)= 0 (i = 0, 1, 2).

Theorem 2 (see [23]). Let (Lm) be the sequences of positive linear operators on C(I), and then,
for each f ∈ C(I),

statp lim
m→∞

‖ Lm( f ; x)− f ‖C(I)= 0

if and only if
statp lim

m→∞
‖ Lm( fi; x)− fi ‖C(I)= 0 (i = 0, 1, 2).

Theorem 3 (see [22]). Let (Lm) be a sequence of (positive) linear operators on C(I), and then, for
all f ∈ C(I),

Lm( f ; x) −→ f (equi− statP) on I (6)

if and only if

Lm( fi) −→ fi (equi− statP) (i = 0, 1, 2). (7)

As a primary finding in this investigation, we now establish the following new
Korovkin-type theorem.

Theorem 4. Let (an) and (bn) ∈ Z0+, and let (Lm) be linear operators on C(I). Then, for all
f ∈ C(I),

Lm( f ; x) −→ f (equi− statDP) on I (8)

if and only if

Lm( fi) −→ fi (equi− statDP) (i = 0, 1, 2). (9)

Proof. Since

fi(x) = xi ∈ C(I) (i = 0, 1, 2)

is continuous, the implication (8) =⇒ (9) is evidently trivial.
Now, to prove the implication (9) =⇒ (8), we suppose that f ∈ C(I)(∀ x ∈ I), and I being

closed, there exists E (a constant) with

−E 5 f (x) 5 E (x ∈ I).

Consequently,

−2E 5 ( f (t)− f (x)) 5 2E (x, t ∈ I).

Thus, for every ε > 0, ∃ δ > 0 such that

|x− t| < δ =⇒ | f (t)− f (x)| < ε (∀ x, t ∈ I). (10)
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Let us now choose ϑ such that

ϑ = ϑ(t, x) = t2 + x2 − 2tx.

We then immediately obtain

−2E
δ2 ϑ(t, x) 5 f (t)− f (x) 5

2E
δ2 ϑ(t, x) (x, t ∈ I), (11)

for

|t− x| = δ.

Now, from (10) and (11),

−ε− 2E
δ2 ϑ(t, x) 5 f (t)− f (x) 5 ε +

2E
δ2 ϑ(t, x) (x, t ∈ I). (12)

Applying the sequence
(
Lm(1, x)

)
of positive operators, which are both linear and

monotone, to the inequality (12), we subsequently have

Lm(1, x)
(
−ε− 2E

δ2 ϑ(t, x)
)
5 Lm(1, x)[ f (t)− f (x)] 5 Lm(1, x)

(
ε +

2E
δ2 ϑ(t, x)

)
.

Here, one can note that x is fixed, and so also, f (x) is a constant number. Thus, clearly,
we obtain

−ε Lm(1, x)− 2E
δ2 Lm(ϑ, x) 5 Lm( f , x)− f (x)Lm(1, x) 5 ε Lm(1, x) +

2E
δ2 Lm(ϑ, x),

which, in association with the following obvious identity:

[Lm( f , x)− f (x)Lm(1, x)] + f (x)[Lm(1, x)− 1] = Lm( f , x)− f (x),

yields

Lm( f , x)− f (x) < ε Lm(1, x) +
2E
δ2 Lm(ϑ, x) + f (x)[Lm(1, x)− 1]. (13)

We now see that

Lm(ϑ, x) = Lm
(
(t− x)2, x

)
= Lm(t2 − 2xt + x2), x)

= Lm(t2, x)− 2xLm(t, x) + x2Lm(1, x)

= [Lm(t2, x)− x2]− 2x[Lm(t, x)− x] + x2[Lm(1, x)− 1].

Additionally, by using (13), we have

Lm( f , x)− f (x) < ε Lm(1, x) +
2E
δ2 {[Lm(t2, x)− x2]

− 2x[Lm(t, x)− x] + x2[Lm(1, x)− 1]}+ f (x)[Lm(1, x)− 1]

= ε[Lm(1, x)− 1] + ε +
2E
δ2 {[Lm(t2, x)− x2]

− 2x[Lm(t, x)− x] + x2[Lm(1, x)− 1]}+ f (x)[Lm(1, x)− 1].

As we know that ε > 0 is a very small arbitrary constant, we can write
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Lm( f , x)− f (x) =
(

ε +
2E
δ2 + E

)
|Lm(1, x)− 1|+ 2E

δ2 |Lm(t2, x)− x2| − 4E
δ2 |Lm(t, x)− x|

5 G
{
|Lm(1, x)− 1| − |Lm(t, x)− x|+ |Lm(t2, x)− x2|

}
, (14)

where

G = max
{

ε +
2E
δ2 + E,

4E
δ2 ,

2E
δ2

}
.

Next, for λ > 0, we choose ε > 0 with 0 < ε < λ. Consequently,

Hm(x, ε) = {m ∈ (an, bn] and |Lm( f , x)− f (x)| = λ}

and

Hi,m(x, ε) =

{
an < m 5 bn and |Lm( fi, x)− fi(x)| = λ− ε

3G

}
,

we thereafter easily find from (14) that

Hm(x, ε) 5
2

∑
i=0
Hi,m(x, ε).

We thus obtain

lim
0<s→R−

1
q(s) ∑

m∈Hm(x,ε)
qmsm 5

2

∑
i=0

lim
0<s→R−

1
q(s) ∑

m∈Hi,m(x, λ−ε
3G )

qmsm. (15)

Finally, the right-hand side (RHS) of (15) tends to zero under the aforementioned
assumption regarding the implication in (9) and by using Definition 6. Therefore, as a
result, we obtain

lim
0<s→R−

1
q(s) ∑

m∈Hm(x,ε)
qmsm = 0.

Therefore, this implication (8) certainly holds true. Theorem 4 is thus proved.

3. Geometrical View of Theorem 4

In view of our Theorem 4, we present below an example under certain specific positive
linear polynomials, called the Bernstein polynomials. Moreover, for better understanding
of the readers, we present their geometrical interpretation by using MATLAB software.

Example 4. Let I = [0, 1], and let the Bernstein polynomials Bm( f ; x) be such that

Bm( f ; x) =
m

∑
j=0

f
(

j
m

)(
m
j

)
xj(1− x)m−j (x ∈ [0, 1])

on C(I).
We now denote Lm( f , x) as the linear operator sequence under the composition of the Bernstein

polynomials and sequences of functions as follows:

Lm( f , x) =
(
1 + fm(x)

)
Bm( f ; x)

(
x ∈ I; f ∈ C(I)

)
, (16)

where the sequence ( fm) is given by (5) with
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qm =


1 (m = n2; n ∈ N)

0 (otherwise).

We then calculate the positive linear operators Lm( fi, x) for each value of i = 0, 1, 2, that is,

Lm( f0; x) =
(
1 + fm(x)

)
f0(x)

Lm( f1; x) =
(
1 + fm(x)

)
f1(x)

and

Lm( f2; x) =
(
1 + fm(x)

)[
f2(x) +

x(1− x)
m

]
.

Since

fm → f = 0 (equi− statDP) on I,

for the sequence ( fm) as defined in Example 2, we have

Lm( fi)→ fi (equi− statDP) on I,

for every value of i = 0, 1, 2. Thus, by our Theorem 4, one can see that

Lm( f ; x)→ f (equi− statDP) on I

for every f ∈ C(I).

In view of Figures 1–4, one can easily understand the nature of equi-statistical con-
vergence of the proposed sequence of positive linear operators Lm( fi; x) (i = 0, 1, 2) for
m = 1, 4, 9, 16. In Figures 1 and 2 corresponding to m = 1 and m = 4, we notice the
overlapping of the curves under the sequence of positive linear operators (16). However,
for m = 9 and m = 16, we observe the smoothness of the curves in the the correspond-
ing Figures 3 and 4. Thus, the convergence of our proposed sequence of positive linear
operators under (16) is well-behaved with the increase in the values of m.

Next, it is interesting to note that the sequence ( fm) as specified in (5) does not
statistically uniformly converge to f = 0 over I under the deferred power-series method.
Thus, clearly, the result of Demirci et al. [22] and the result of Ünver and Orhan [23] do
not certainly operate for the operators

(
Lm( f ; x)

)
in (16). Moreover, since ( fm) does not

converge uniformly to f = 0 (in the classical sense) on I, the aforementioned traditional
Korovkin theorem [24] also does not operate here. Thus, our recommended operators
considered in (16) genuinely satisfy Theorem 4.
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Figure 1. Equi-stat convergence of L1( fi; x) (i = 0, 1, 2).
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Figure 2. Equi-stat convergence of L4( fi; x) (i = 0, 1, 2).
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Figure 3. Equi-stat convergence of L9( fi; x) (i = 0, 1, 2).
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Figure 4. Equi-stat convergence of L16( fi; x) (i = 0, 1, 2).

4. Rate of DP-Equi-Statistical Convergence

We wish to investigate here the rates of equi-statistical convergence under the proposed
deferred power-series technique for the positive linear operator sequences with respect to
the modulus of continuity.
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Definition 8. Let (tm) be a non-increasing sequence (positive). If, for every ε > 0,

lim
0<s→R−

1
tmq(s) ∑

m∈Km(x,ε)
qmsm = 0 (uniformly) in x ∈ I,

then ( fm) is equi-statistically convergent under the deferred power-series technique to f with the
rate of convergence o(tm). Symbolically, we write

fm − f = o(tm) (equi− statDP) on I.

Before presenting the theorem for equi-statistical convergence rates, we establish
Lemma 2 below.

Lemma 2. Let ( fm)and (gm) ∈ C(I) with

fm(x)− f (x) = o(sm) (equi− statDP) on I

and

gm(x)− g(x) = o(cm) (equi− statDP) on I.

Then, each of the following assertions is satisfied:

(i) [ fm(x) + gm(x)]− [ f (x) + g(x)] = o(dm) (equi− statDP) on I

(ii) [ fm(x)− f (x)][gm(x)− g(x)] = o(tmcm) (equi− statDP) on I

(iii) λ[ fm(x)− f (x)] = o(tm) (equi− statDP) on I for any scalar λ

(iv)
√
| fm(x)− f (x)| = o(tm) (equi− statDP) on I,

where
dm = max{tm, cm}. (17)

Proof. For the assertion (i) to prove, let x ∈ I and ε > 0, we define the following sets:

Am(x, ε) = |{m ∈ (an, bn] and |( fm + gm)(x)− ( f + g)(x)| = ε}|,

A0,n(x, ε) =
∣∣∣{m ∈ (an, bn] and | fm(x)− f (x)| = ε

2

}∣∣∣
and

A1,n(x, ε) =
∣∣∣{m ∈ (an, bn] and |gm(x)− g(x)| = ε

2

}∣∣∣.
Clearly, this yields

An(x, ε) 5 A0,n(x, ε) +A1,n(x, ε).

Additionally, since
dm = max{tm, cm},

under the condition (8) of our Theorem 4, we obtain

lim
0<s→R−

1
q(s) ∑

m∈Am(x,ε)
qmsm 5 lim

0<s→R−

1
q(s) ∑

m∈A0,m(x,ε)
qmsm + lim

0<s→R−

1
q(s) ∑

m∈A1,m(x,ε)
qmsm.

Again, by considering the condition (9) of Theorem 4, we have

lim
0<s→R−

1
q(s) ∑

m∈Am(x,ε)
qmsm = 0.
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The proof of condition (i) is thus completed. Moreover, the remaining conditions (ii) to (iv)
are similar to condition (i), so we skip the details involved. This completes the proof of
Lemma 2.

Next, recalling the modulus of continuity ω( f , µ) of a function f ∈ C(I) as

ω( f , µ) = sup
x,t∈I
{| f (t)− f (x)| : |t− x| 5 µ},

we propose the following Theorem.

Theorem 5. Let
(
Lm( f ; x)

)
: C(I)→ C(I) be positive linear operators. Suppose also that each of

the following conditions is satisfied:

(i) Lm(1, x)− 1 = o(tm) (equi− statDP) on I

(ii) ω( f , µm) = o(cm) (equi− statDP) on I,

where

µm(x) =
√

Lm(ϑ2; x) and ϑ(t, x) = t− x.

Then, for f ∈ C(I), the following statement holds true:

Lm( f , x)− f = o(dm) (equi− statDP) on I, (18)

where dm is already mentioned in (17).

Proof. Suppose f ∈ C(I) and x ∈ I. We have,

|Lm( f ; x)− f (x)| 5M|Lm(1; x)− 1|+
(
Lm(1; x) +

√
Lm(1; x)

)
ω( f , µm),

where

M = ‖ f ‖C[I].

This certainly yields

|Lm( f ; x)− f (x)| 5M|Lm(1; x)− 1|+ 2ω( f , µm)

+ ω( f , µm)|Lm(1; x)− 1|+ ω( f , µm)
√
|Lm(1; x)− 1|. (19)

In view of the requirements (i) and (ii) of Theorem 5 along with Lemma 2, the final
inequality (19) leads us to the assertion (18) of our Theorem 5. Hence, Theorem 5 is
proved.

5. Concluding Remarks and Observations

In this section, we present a number of additional remarks and observations pertaining
to the numerous findings that we have proved here.

Remark 1. Let ( fm)m∈N be the sequence of functions given in Example 2. Then, since

fm → f (equi− statDP) on [0, 1],

we immediately obtain

Lm( fi; x)→ fi (equi− statDP) on [0, 1] (i = 0, 1, 2). (20)
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Therefore, by applying Theorem 4, we write

Lm( f ; x)→ fi (equi− statDP) on [0, 1] (21)

for all f ∈ C(I). Moreover, since ( fm) is not uniformly statistically convergent to f = 0 over
[0, 1] under the deferred power-series technique, and since it is also not simply uniformly
convergent, then the classical Korovkin-type theorem does not impartially operate under
our recommended operator in (16). Hence, the above notions shows that our Theorem 4 is
a non-trivial generalization of some well-established published results (see [21,24,34]).

Remark 2. If we substitute (am) = 0 and (bm) = m into our main Theorem 4, then the earlier-
published results by Demirci et al. [22] and by Ünver and Orhan [23] are deduced. In this sense, we
say that Theorem 4 is a non-trivial generalization of the earlier-published results (see [22,23]).

Remark 3. In place of the conditions (i) and (ii) in our Theorem 4, we consider the following condition:

Lm( fi, x)− fi = o(tmi ) (equi− statDP) over I. (22)

Then, since

Lm(ϑ
2; x) = Lm(t2; x)− 2xLm(t; x) + x2Lm(1; x),

we can write

Lm(ϑ
2; x) 5 T

2

∑
i=0
|Lm( fi; x)− fi(x)|, (23)

where

T = 1 + 2‖ f1‖C(I) + ‖ f2‖C(I).

It now follows from (22), (23) and Lemma 2 that

µn =
√

Lm(ϑ2) = o(vm) (equi− statDP) on I, (24)

where

o(vm) = max{tm0 , tm1 , tm2}.

Thus, clearly, we have

ω( f , µ) = o(vn) (equi− statDP) on I.

Using (24) in Theorem 4, we immediately see f ∈ C(I) that

Lm( f ; x)− f (x) = o(vn) (equi− statDP) on I. (25)

In order to obtain the rates of the equi-statistical convergence under the deferred power-series method
of Lm( f ; x) in Theorem 5, we must substitute the condition (22) in Theorem 4 for the conditions (i)
and (ii).

Remark 4. Through this study, we have preluded the conception of statistical convergence in the
sense of the deferred power-series technique and presented some new definitions and thereafter
established certain new theorems. Next, considering the modulus of continuity, we have estimated
the rates of equi-statistical convergence under our proposed deferred power-series method for the
positive linear operator sequences.
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Many researchers have considered different summability means on the sequence spaces to prove
several approximation results. A list of some articles has been mentioned in the references. Further,
combining the existing ideas and direction of the sequence spaces associated with our proposed mean,
many new Korvokin-type approximation theorems can be proved under different settings of algebraic
and trigonometric functions.

Influenced by a recently published article by Demirci et al. [22], we extract the cognizance of
the interested learners concerning the possibilities of establishing some Korvokin-type approximation
theorems over the sequence space as well as the probability space. Additionally, in view of the latest
result of Paikray et al. [34] and Saini and Raj [18], the consciousness of the curious readers is drawn
out for future research pertaining to fuzzy approximation theorems.
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