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Abstract: Efficient truck flow is essential for the efficient operation of a factory and the distribution of
its products. This study demonstrated methods to improve truck loading times and overall efficiency
at a major sugar manufacturing facility in the Middle East. The objective was to reduce truck
waiting times at loading units and increase capacity. The data were collected through questionnaires,
observations, and interviews with stakeholders. A simulation software was employed to analyze
truck activity at loading stations at the factory. Multi-criteria decision making (MCDM) tools, AHP
and TOPSIS, addressed five primary criteria and nine sub-criteria to assist in identifying, evaluating,
and ranking feasible solutions. The study suggested different utilization of the various factory loading
platforms at different times of the day. The findings from this study emphasize the importance of
simulation-based approaches supplemented with decision-making processes to improve efficiency in
sugar manufacturing facilities that may have broader applications in the factories of other industries.
The study highlights remarkable improvements in operational efficiency, as seen in Alternative 4

substantial 27.9% enhancement, resulting in cost savings and time efficiency. By implementing these
findings, factories can enhance their truck flow management system, reduce waiting times, increase
capacity utilization, optimize resource allocation, and improve overall efficiency.

Keywords: MCDM; ranking method; TOPSIS; AHP; simulation; sugar manufacturing; loading unit;
facility management

MSC: 90B50

1. Introduction

Efficiency plays a crucial role in the competitive world of sugar production [1–4]. While
many studies have focused on improving overall productivity, an area often overlooked
is optimizing truck flow and loading time at sugar factories. By streamlining this process,
sugar production factories can experience significant improvements in both operational
efficiency and profitability. Truck flow within a factory setting refers to the movement and
management of trucks during the loading and unloading processes. Indeed, truck flow
encompasses every movement from when the truck enters the premises until it leaves after
being loaded.

Efficient truck flow is vital for the overall efficiency of a factory. A smooth truck flow
can increase factory output by expediting loading, reducing waiting times, and minimizing
waiting periods [5]. In contrast, inadequate management can cause delays, increased costs,
and customer dissatisfaction due to late deliveries [6]. Loading time is a critical factor in
truck operations as it involves loading goods onto trucks. In sugar factories, this involves
loading processed sugar onto trucks for distribution to various sale points. Prolonged
loading times can lead to a buildup of trucks waiting to be loaded and congestion within the
factory’s premises. Such disruption hampers the overall truck flow and leads to potential
demurrage charges and decreased factory productivity.
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Maximizing the efficiency of truck flows plays a crucial role in enhancing customer
satisfaction. Sugar factories can meet customers’ expectations and foster stronger relation-
ships by minimizing loading time and ensuring timely deliveries. While the advantages
of improving truck efficiency may appear self-evident, some factories regularly encounter
challenges at their loading points due to traffic congestion. Such inefficiencies lead to
significant waiting times, ultimately decreasing their ability to pack as many trucks as
possible at an optimal cost.

One of the most important contributions of this study is the use of multi-criteria
decision-making (MCDM) techniques in decision making when there are conflicting criteria
in the loading unit in sugar factories. These methods and the uses of multiple scenarios have
not been previously extensively discussed through simulation modeling tools and their
integration with the MCDM techniques in making the appropriate decision. Therefore, this
provides insight to decision makers into the use of such powerful techniques to improve
the overall factory performance.

This study aims to reduce sugar manufacturing waiting times and select optimal
strategies using analytic hierarchy process (AHP) and Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS), facilitated by a realistic simulation model. By
using simulation software, this study analyzed the current state of the manufacturing
facility. Then, this study proposed various potential strategies to address the problem.
Experts evaluated and assigned weights to different factors that affect traffic congestion
utilizing the AHP methodology. Based on these weights, the strategies were ranked using
the TOPSIS methodology.

This study was motivated by the pursuit of enhancing operational efficiency and
profitability in sugar factories, driven by specific research questions. Firstly, it investigates
whether optimizing truck flow and loading time can lead to substantial improvements
in operational efficiency and overall profitability within the sugar manufacturing sector.
Secondly, it explores how MCDM methods, particularly AHP and TOPSIS, address complex
challenges associated with traffic congestion and loading inefficiencies in sugar factories.
Thirdly, it evaluates which strategies effectively reduce loading times and analyzes their
impact on operational efficiency and customer satisfaction. Lastly, the study examines
whether the integration of MCDM techniques offers a viable pathway to enhance opera-
tional efficiency across the broader spectrum of the sugar industry.

The remainder of this paper is as follows: Section 2 presents an overview of the current
state of sugar manufacturing and discusses previous studies that have utilized MCDM
techniques to optimize overall facility performance. Section 3 describes the simulation
software used in the study and reviews AHP and TOPSIS methods. Section 4 outlines this
study’s quantitative phases and explains the application of the decision-making process.
Section 5 presents a comprehensive discussion and shares the study’s findings. Lastly,
Section 6 presents the recommendations and conclusions based on the research outcomes.

2. Background and Relevant Literature

The sugar industry faces numerous challenges, including persistent price instability,
competition from alternative sweetener manufacturers, and shifting consumer preferences.
Fluctuations in supply and demand can result in significant fluctuations in sugar prices
that complicate planning for sugar producers. Other sweeteners like high-fructose corn
syrup and artificial sweeteners are easier to produce and more cost-effective than sugar,
which makes these alternatives appealing to food and beverage manufacturers. In addition,
consumers’ growing awareness and concerns regarding the health risks associated with
excessive sugar consumption have fostered a robust market of products that contain less
sugar or use alternative sweeteners.

The global sugar industry itself remains highly competitive. Thailand, Brazil, and India
are currently the largest sugar producers worldwide. These countries enjoy a competitive
advantage due to land availability, labor resources, and government subsidies.
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2.1. Background

This study analyzes the time required for a major sugar factory in the Middle East
to load processed sugar products onto suppliers’ trucks. While other factors may play
a role in the factory’s recent and significant financial losses, one obvious problem is its
poor record of loading its products onto trucks to be shipped to customers. For example,
the factory can occasionally take over 10 h to load a single truck rather than the expected
half-hour loading time. The primary cause of this problem is the prolonged waiting period
for trucks within the facility’s queue.

Like most large-scale factories, sugar factories must possess efficient organizational
processes to meet customer needs. This study focuses on enhancing organization and
efficiency related to truck loading times at the factory and subsequent product distribution
delays to market. An investigation concluded that the sugar factory under study can
accommodate more supplier requests and increase sales by addressing these internal
logistical challenges.

The specific issue under examination in this paper arises during the truck-loading
phase. The factory has four types of loading units: Retail Shipment Unit (RSU), Finished
Product Delivery Unit (FPDU), Direct Loading Unit (DLU), and Bulk Loading Unit (BLU).
Figure 1 illustrates the process map of the facility examined in this study.
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Figure 1. Facility process map for loading units.

All units can accommodate loading up to two trucks simultaneously except for the
FPDU unit, which can load up to four trucks simultaneously. The facility operates 24 h per
day with three eight-hour shifts.

Figure 2 provides an overview of a typical 24 h utilization of the loading unit stations.
During all shifts, two RSU stations are in use. The RSU units handle smaller packages,
typically five-kilogram bags of sugar. One to two BLU stations are typically in use during
each shift. The BLU transports sugar directly from the factory into trucks using bulk carriers.
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Similarly, one to two DLU stations are operational throughout all three shifts. The
DLU is an automated conveyance that loads 25 kg bags onto trucks. Lastly, between one
and four stations use the FPDU for loading large bags, each containing one ton of sugar.

2.2. Relevant Literature

Traffic congestion is common in society and occurs when more vehicles are on a road
than it can handle. Numerous studies have addressed this issue and proposed various
solutions [7]. Modern simulation tools are often the most essential tool in analyzing
traffic movement. Such tools are invaluable in analyzing complex systems and helping to
anticipate potential delays [8–12]. Simulation tools create virtual representations of real-
world situations, allowing researchers and practitioners to improve their understanding of
problematic traffic patterns and review proposed improvements far faster than possible
using traditional, time-consuming efforts. For example, some studies have used multi-
agent simulations to analyze disorganized traffic flow [13], while others have developed
micro-simulation methods for studying congested scenarios on two-way streets [14], A new
traffic simulation environment called Traffic3D recently introduced an efficient platform
for simultaneously evaluating multiple traffic scenarios [15].

Simulation tools are a valuable resource for decision makers, as they allow for the
precise evaluation of different strategies and their impact [16]. Stakeholders can assess
alternative scenarios and make well-informed decisions based on reliable data [17]. This
capability enables organizations and businesses to implement proactive measures, mini-
mizing delays and optimizing resource allocation. For example, Sajadi et al. [18] identified
feasible economic alternatives to reduce waiting times for trucks in factories waiting to
load finished goods. Their study utilized system simulation to achieve this objective.

Similarly, Sharifi et al. [19] used simulation techniques to evaluate whether wait times
at postal offices could be shortened and customer satisfaction increased. The objective
of Gulhane’s study [20], on the other hand, was to improve the administration of hospi-
tal waiting lists by employing computer simulations that furthered an understanding of
queueing systems. Simulating changes with these systems and making necessary adjust-
ments improved queue management to meet evolving demands. To reduce waiting times,
Babashov et al. [21] used a discrete event simulation model to identify bottlenecks in the
radiotherapy planning process at the London Regional Cancer Program.

Perez et al. [22] utilized a planning methodology based on simulation to enhance the
quality of patient service at walk-in clinics. Walk-in clinics face significant challenges in
capacity planning due to uncertainties surrounding patient demand and arrival times. By
employing the simulation model developed by Perez et al. [22], clinics have the opportunity
to develop protocols that can minimize waiting times for patients by scheduling doctors
and medical assistants according to demand fluctuations. To address issues such as over-
crowded emergency departments, Monks and Meskarian [23] used simulation modeling
because of its flexibility and ability to handle varying demands in a complex system to
solve the problem of overcrowded emergency departments, ambulance shortages, canceled
elective surgeries, low staff morale, and financial penalties faced by acute hospitals in
the UK.

Continuing the exploration of simulation tools and modeling techniques, Viswanad-
ham et al. [24] delved into dynamic modeling techniques for the analysis of supply chain
networks using Generalized Stochastic Petri Nets (GSPNs). Their study considered a
Poisson-based customer order arrival process and made assumptions about exponential
service processes at various points within the supply chain. Their research specifically
encompassed both the procurement processes and the intricate delivery logistics operating
between different members of the supply chain. In their investigation, they conducted a
comparative analysis of two distinct production planning and control policies: the make-
to-stock and assemble-to-order systems. This analysis focused on evaluating the overall
cost, which included expenses related to inventory carrying and costs arising from delayed
deliveries. Furthermore, the authors tackled the decoupling point location problem within
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supply chains, formulating it as an optimization challenge to minimize total relevant costs,
which comprised both inventory carrying costs and delay-related expenses. To address this
complex problem effectively, they adopted an integrated modeling approach that combined
GSPNs at a higher level with a generalized queuing network at a lower level, allowing them
to successfully tackle the decoupling point location problem in supply chain management.
Building upon these insights, this section further explores the broader applications of
simulation tools in supply chain management.

Numerous modern decision-making tools are available. One of the most frequently
used models to discern optimal solutions to complex situations is the multiple criteria
decision-making technique. A wide variety of businesses and organizations regularly use
MCDM due to its flexibility, allowing decision makers to consider all objective criteria
when making decisions. With regard to optimizing sugar production, the insights from
recent agricultural studies prove invaluable.

In addition, AHP and TOPSIS are commonly used decision analysis methods to aid
in judging complex decision-making scenarios [25–27]. Developed independently and
based on different principles, AHP and TOPSIS are standalone methodologies that assist
in decision making. However, many researchers find that the different approaches are
complementary in reaching decisions. Using a hybrid combination model often increases
the strength of these models while minimizing their drawbacks. Choosing the optimal
strategy to achieve overall objectives for an organization can be challenging. In such cases,
the MCDM approach and AHP and TOPSIS methodologies can help determine the best
method when faced with conflicting criteria [28–33].

Agbejule et al. [34], in a 2021 study, employed the AHP model to select a suitable
technology on which to base waste management policies in Accra, Ghana. Other researchers
have also utilized the AHP model to address this issue [35] in detail, by assessing four
waste technologies in Moscow: incineration, landfill biogas, aerobic composting, and
anaerobic digestion [36]. On the other hand, Berdie et al. [37] and Zaidan et al. [38] used a
combination of the AHP-TOPSIS models in their studies. Berdie et al. [37] used this model
to evaluate three system applications. Similarly, Zaidan et al. [38] employed the combined
AHP-TOPSIS technique to assess and choose from a pool of 13 open-source EMR software
alternatives [39].

The effectiveness of the AHP-TOPSIS model in software decision making has been
established through these studies, and aligns with the findings of Misra and Ray’s re-
search [40]. Furthermore, Bafail and Abdulal [41] also employed the AHP-TOPSIS method
to identify the optimal strategy for implementing a recycling strategy. By incorporating
this model into their respective research methodologies, these scholars could efficiently
evaluate multiple options within various contexts, ranging from system applications to
recycling strategies. The utilization of the AHP-TOPSIS technique showcased its versatility
as an ideal decision-making tool across diverse fields.

The TOPSIS technique has been extensively employed throughout the academic lit-
erature of decision making and evaluating alternatives [42]. Strategies and policies can
be ranked using TOPSIS and Fuzzy TOPSIS [43,44]. TOPSIS can also be used to evaluate
criteria and weights for determining optimal solutions and rank alternatives [45], select-
ing optimal solutions, ranking projects [46], and prioritizing and ordering solutions [47].
Lei et al. [48] devised strategies to minimize total passenger waiting time and alleviate
congestion in an urban rail transit network that frequently experienced overcrowding
during peak hours, resulting in significant passenger backlogs on platforms, especially
transfer platforms.

In conclusion, the literature has underscored the significance of optimizing truck flow
and loading times within sugar factories, emphasizing their pivotal role in enhancing oper-
ational efficiency and competitiveness. This study aims to contribute to this essential area
by presenting the integration between AHP-TOPSIS and simulation modeling to address
the challenges of traffic congestion and insufficient loading units for sugar manufacturing.
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3. Methodology

The Middle Eastern sugar factory study utilized Simio simulation software to examine
traffic conditions at their loading unit facility.

Simio, a versatile 3D-modeling software, empowers users to construct dynamic models
of various systems, including factories, supply chains, and more. It employs an object-
oriented approach that involves combining objects representing the system’s physical
components. These objects possess customizable behaviors, responding to system events
accordingly. Users can access a Standard Object Library and craft specialized object libraries
to tailor models for specific applications. Hierarchical modeling seamlessly integrates
within Simio’s framework, granting users flexibility in system representation. Simio distin-
guishes itself by relying on intelligent objects, which simplifies model assembly through
graphical interfaces and ensures an accurate reflection of real-world systems in the models,
enhancing user-friendliness and adaptability [49].

Queueing theory is inherently integrated into simulations dealing with systems fea-
turing waiting lines. It serves as an embedded framework within simulations, providing
essential guidance on how entities queue, move through queues, and receive service. In
essence, queueing theory is seamlessly incorporated into simulations to model and analyze
real-world scenarios involving queues effectively. Simulation is a broader modeling tech-
nique that can encompass queueing theory when dealing with systems involving queues.
Both simulation and queueing theory play crucial roles in understanding and optimizing
complex systems in various fields.

Therefore, the simulation assisted in assessing the current situation and developing
strategies to reduce waiting times for trucks at the loading units while considering other
important criteria. Two MCDM methods, AHP and TOPSIS, assisted in evaluating and
ranking these strategies. The AHP was used to calculate the weights of the criteria involved
in the study, while TOPSIS assisted in ranking the alternative strategies by identifying the
one that best aligned with the factory’s goals.

Simio simulation software was integral in analyzing and addressing traffic flow issues.
Questionnaires, direct observations, and interviews conducted with key individuals, such
as the facility’s employees, drivers, traffic experts, and management personnel, constituted
the data used in the analysis. The interviews and observations revealed that processing
time in each loading unit followed a triangular distribution pattern.

Triangular distribution depends on three parameters: the lower limit a, the mode b, and
the upper limit c. An exponential distribution is often the foundation for predicting success,
failure, or arrival waiting times. Therefore, the trucks’ arrival follows the exponential
distribution expressed in Equation (1):

F(x) =
{

0 x ≤ 0
1− e−λx x > 0

(1)

where λ represents the events per unit time and x represents the time.
In business decision analysis, triangular distribution is often the calculation of choice

when the only data available are the maximum and minimum values [50]. Equation (2)
presents the probability density function for triangle distribution:

f (x) =


2(x−a)

(b−a)(c−a) a < x ≤ b
2(c−x)

(c−a)(c−b) b < x ≤ c
(2)

This paper developed several strategies to reduce the trucks’ total time in the system
to alleviate the logistical traffic issues plaguing the factory. The study considered various
criteria, and AHP calculated the weight of each criterion. As a decision-making tool, AHP
is a powerful and practical instrument developed by Saaty [51].

The AHP hierarchy enables researchers to break complex problems down into man-
ageable chunks. As a result, it is a preferred method of ranking criteria because it makes it
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easier to analyze and understand the problem. Making informed decisions is dependent
on determining what criteria should be weighted, which is a function of AHP that allows
scholars to assign importance to each criterion based on its relative significance. Moreover,
quantitative as well as qualitative problems can be addressed using AHP. This flexibility
makes it a favored choice among scholars for ranking criteria. One of the strong reasons
scholars use the AHP method is due to its ability to measure the consistency of judgments.
This is achieved through a metric known as the Consistency Ratio (CR). The CR compares
the consistency index of the matrix to the consistency index of a random matrix, indicating
how much a person’s preferences deviate from consistency. The steps involved in the AHP
methodology were as follows [52]:
Step 1: Hierarchical structures permitted breaking down the problem into goals, criteria,
sub-criteria, and alternative forms. Hierarchies imply relationships between elements of
one level and those of another.
Step 2: Data collected relating to decision makers and experts following their hierarchical
structure served as the basis for pairwise comparisons. To establish the relative importance
of different criteria, this study used Saaty’s 1–9 preference scale to assist in developing the
pairwise comparison matrix [53]. This AHP methodology ensured a systematic and rigor-
ous decision-making approach, enabling a comprehensive evaluation of various factors.
Step 3: As a result of step 2, a square matrix provided a means to compare different criteria.
The diagonal elements of the matrix were set to 1. If an element (i, j) exceeded 1, the criteria
in the i-th row were deemed better than those in the j-th column. Conversely, if element (i,
j) was less than or equal to 1, the criteria in the j-th column were better than those in the
i-th row. Additionally, element (i, j) is not element of matrix. It denotes indices of rows and
columns in the matrix.
Step 4: The eigenvalues and normalized right eigenvectors of the comparison matrix
provided insight into the relative importance of different criteria. This study referred to the
normalized eigenvector elements as weights and ratings, which were determined based on
the criteria or sub-criteria and denoted by λi.
Step 5: The comparisons made using this method were subjective, so assessing the consistency
of the matrix of order n was crucial. The AHP allowed for inconsistency through redundancy
in its approach. If the consistency index failed to meet the required level, re-evaluating
comparisons might have been necessary. Equation (3) expresses the consistency index (CI):

CI =
λmax − n

n− 1
(3)

Based on the CI value, the Random Index (RI) is determined from Saaty’s table for CR
calculation [54], and Saaty [51] suggests the value of RI should be less than 0.1.
Step 6: To achieve ratings at the local level for each criterion, this study multiplied the
weights of the sub-criteria by the rating of each alternative. This process resulted in a global
rating by multiplying the local ratings with the weights assigned to each criterion.

In this paper, the TOPSIS method was employed to rank the developed strategies.
TOPSIS was introduced in 1981 by Hwang and Yoon [55]. TOPSIS methods provide
advantages such as simplicity, rationality, computational efficiency, and measurement of
the relative performance of alternatives within a mathematical formulation. The TOPSIS
method can be explained in the following steps:

Step 1: Decision matrix determination. A decision matrix, X, can be expressed as follows:

B1 B2 B3 . . . Bn

X =

A1
A2
A3
...

Am


X11 X12 X13 . . . X1n
X21 X22 X23 . . . X2n
X31 X32 X33 . . . X3n

...
...

...
. . .

...
Xm1 Xm2 Am3 . . . Xmn


(4)
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where Ai represents the alternative strategy i, i = 1, . . ., m, Bj denotes decision criteria j,
and j = 1, . . ., n on the basis of which alternative are judged. Xij represents j-th criteria with
respect to i-th alternative strategy.
Step 2: Determination of normalized decision matrix:

fij =
xij√

∑m
i=1 x2

ij

, i =, . . . , m; j = 1, . . . , n (5)

Step 3: Determination of the weighted normalized decision matrix: The weighted normal-
ized decision matrix can be determined by multiplying the normalized decision matrix by
the weight of decision criteria and is expressed as:

vij = wj fij, i = 1, . . . , m; j = 1, . . . , n (6)

where wj is the weight of the j-th criterion.
Step 4: Determination of the positive ideal and negative ideal solutions:

Z+ =
{

v+1 , v+2 , . . . , v+j
}
=
{(

maxvij
∣∣j ∈ I

)
,
(
minvij

∣∣j ∈ I′
)}

(7)

Z− =
{

v−1 , v−2 , . . . , v−j
}
=
{(

minvij
∣∣j ∈ I

)
,
(
maxvij

∣∣j ∈ I′
)}

(8)

where I is associated with the benefit criteria and I′ is associated with cost criteria.
Step 5: Calculation of the separation measure. The separation of each alternative from the
positive ideal solution and from the negative ideal solution are evaluated, respectively as:

S+
i =

{
∑n

j=1

(
vij − v+j

)2
} 1

2
i = 1, 2, . . . , m; j = 1, 2, . . . , n (9)

S−i =

{
∑n

j=1

(
vij − v−j

)2
} 1

2
i = 1, 2, . . . , m; j = 1, 2, . . . , n (10)

Step 6: Calculation of the relative closeness to the positive ideal solution. The relative
closeness pi of the alternatives to the positive ideal solution is evaluated as follows:

pi =
S−i

S+
i + S−i

, i = 1, . . . , m (11)

The alternative with the maximum pi value is the optimal solution.

4. Application and Results

As noted, the issue under investigation arises during the shipping phase of sugar when
the trucks load the finished product. Figure 3 illustrates the four loading units involved:
RSU, BLU, DLU, and FPDU. At times, congestion and traffic jams occur in truck loading
due to the lengthy processing times required by the loading units.

In this study, the data for 365 consecutive days were collected, with this data reflecting
the waiting times for each loading unit per hour. The data collection process was meticulous
and comprehensive, focusing on gathering detailed information about the movement of
trucks within the system, from their entry to the moment of shipment and subsequent exit.
In total, an extensive dataset of 61,241 trucks was examined as part of this study. To ensure
data quality and reliability, a thorough cleaning process was executed, which involved the
removal of outliers and erroneous entries. Notably, any entries with negative time values
and exceptionally short total time spent within the system were deemed non-credible and
thus eliminated. For instance, a case was identified where a truck purportedly spent only
2 min within the system, an implausible scenario given that the minimum required time
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for loading such trucks with products is approximately 25 min. After meticulous data
cleaning, the analysis revealed valuable insights. Specifically, the average time spent in
the system for trucks processed through the Retail Shipment Unit (RSU) was 204 min,
encompassing a dataset of 23,957 trucks. In contrast, the Bulk Loading Unit (BLU) exhibited
an average system time of 198 min for 5356 served trucks. The Direct Loading Unit (DLU)
demonstrated an average system time of 342 min, involving a dataset of 4856 trucks. Lastly,
the Finished Product Delivery Unit (FPDU) recorded an average system time of 318 min,
encompassing a dataset of 27,072 trucks. These meticulously collected and refined data
form the foundation upon which the subsequent analysis and findings of this study are
based. Table 1 presents the simulation data.
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Table 1. Simulation input data.

Name Distribution Distribution Parameters Parameters Values

Vehicle arrival rate Exponential λ 8.55 min
RSU processing time Triangular a, b, c (25, 30, 35) min
BLU processing time Triangular a, b, c (45, 55, 70) min
DLU processing time Triangular a, b, c (50, 60, 70) min
FPDU processing time Triangular a, b, c (40, 45, 55) min
Uptime Between Failures for RSU Constant - 7.1 h
Uptime Between Failures for BLU Constant - 5.4 h
Uptime Between Failures for DLU Constant - 5.2 h
Uptime Between Failures for FPDU Constant - 7 h
Time To Repair for RSU Constant - 0.9 h
Time To Repair for BLU Constant - 2.6 h
Time To Repair for DLU Constant - 2.8 h
Time To Repair for FPDU Constant - 1 h

An in-depth analysis of the truck arrival data revealed that the most fitting distribution
was the exponential distribution, characterized by a rate parameter (λ) of 8.55 min. In this
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context, the rate parameter (λ) represents the average rate of truck arrivals per unit of time,
with a value of 8.55 min indicating that, on average, a truck arrived at the loading station
approximately every 8.55 min. This determination was based on empirical observations
and aligned with Equation (1).

All loading units in the system were characterized by a triangular distribution pattern
for their processing times. This choice was based on insights gained from interviews with
facility experts, who highlighted the influence of human factors on operational dynamics.
The triangular distribution was selected for its ability to effectively represent these com-
plexities, as it allowed for the incorporation of minimum, mode, and maximum values for
each loading unit’s processing time. As seen in Table 1, the parameters for the triangular
distribution were determined through expert interviews, precisely reflecting the specific
operational variations at play. For instance, the RSU processing time ranged from 25 to
35 min, while the BLU’s processing time varied between 45 and 70 min. Similarly, the
DLU’s processing time ranged from 50 to 70 min, and the FPDU’s processing time spanned
from 40 to 55 min. These parameters comprehensively captured the range and intricacies of
loading unit operations, accounting for the human-centric factors influencing their perfor-
mance. By applying Equation (2), these distributions were incorporated into the simulation
model, allowing for a more accurate representation of the loading processes within the
system. In Table 1, the “Uptime Between Failures” indicated that during an eight-hour
shift, the station generally operated smoothly but experienced some disruption towards
the end of the shift. Furthermore, the “Time to Repair Failures” mentioned in Table 1
highlighted how quickly these disruptions were addressed and resolved. The dedicated
attention ensured that issues were rectified promptly and allowed optimal operational
status to resume within a relatively short period. During this verification phase, the model’s
precision was assessed by directly comparing it with real-world observations. This practice
entailed contrasting the simulation outcomes with empirical data from the actual system.
The simulation’s effectiveness was evaluated based on its ability to accurately replicate the
actual system’s dynamics, behaviors, and performance metrics. A thorough comparison
validated the process further between the simulation outputs and the actual system’s
performance. Specifically, this study examined average waiting times at all stations, the
number of trucks served by each station, and, in total, through the entire system. Table 2
presents the findings and results of this comparison.

Table 2. Validation of the simulation model.

Loading Unit
Avg. Waiting Time

in Real
System (Minutes)

Avg. Waiting Time
in the Simulation
Model (Minutes)

Error%
Number of

Trucks Served
in Real System

Number of
Trucks Served
in Simulation

Error%

RSU 204 210 2.94% 23,957 24,042 0.35%

BLU 198 216 9.09% 5356 5369 0.24%

DLU 342 312 8.77% 4856 4860 0.08%

FPDU 318 342 7.55% 27,072 27,175 0.38%

Table 2 presents a comprehensive comparison between the real system’s performance
and the simulation model’s results, shedding light on the accuracy and effectiveness of the
simulation in replicating real-world conditions. The primary metric under scrutiny is the
average waiting time in system for trucks, a critical factor directly impacting the efficiency
of the loading units within the sugar manufacturing facility. For the Retail Shipment
Unit (RSU), the real system data indicate an average waiting time of 204 min, while the
simulation model approximates it to be 210 min, resulting in a modest error percentage of
2.94%. Impressively, the number of trucks served in the real system, amounting to 23,957,
closely aligns with the simulation’s performance, which served 24,042 trucks, yielding
a minimal error percentage of only 0.35%. This close concordance between real system
and simulation outcomes for RSU demonstrates the model’s ability to accurately mimic
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real-world performance. The Bulk Loading Unit (BLU) presents a similar picture, with an
average waiting time of 198 min in the real system and 216 min in the simulation. While
this shows a slightly higher error percentage of 9.09%, the number of trucks served in both
settings closely matches, with an error percentage of merely 0.24%. This indicates that the
simulation model adequately captures the essential dynamics of BLU operations. Moving
to the Direct Loading Unit (DLU), the real system recorded an average waiting time of
342 min, while the simulation model yielded a lower estimate of 312 min, resulting in an
error percentage of 8.77%. Nonetheless, the number of trucks served in both the real system,
4856 trucks, and the simulation, 4860 trucks, is nearly identical, with a negligible error
percentage of 0.08%. Despite the discrepancy in waiting times, the simulation showcases
a strong ability to replicate the DLU’s overall performance. Lastly, the Finished Product
Delivery Unit (FPDU) exhibited an average waiting time of 318 min in the real system,
compared to 342 min in the simulation, resulting in a 7.55% error percentage. Similar to
the previous units, the number of trucks served in the real system, 27,072 trucks, closely
aligns with the simulation’s performance, serving 27,175 trucks, with an error percentage
of only 0.38%.

In summary, Table 2 illustrates the simulation model’s commendable accuracy in
replicating real-world waiting times and the number of trucks served within the sugar
manufacturing facility. While minor discrepancies exist in waiting time estimates, the
consistency in the number of trucks served underscores the model’s ability to provide
reliable insights into the facility’s operations, making it a valuable tool for decision makers
seeking to enhance efficiency and optimize truck flow.

Figure 4 displays the average waiting time for each loading unit, measured in minutes.
The FPDU registered an average waiting time of 193 min, followed by the DLU, with an
average wait time of 182 min. The RSU had a low average wait time of approximately
98 min. Lastly, BLU registered an average wait time of around 81 min. Figure 5 provides an
overview of the current condition of the factory. It shows that the total average waiting
time for all trucks within the system was approximately 276 min. Additionally, each station
experienced an average waiting time of 140 min for trucks, while their average processing
time was 71 min. These findings suggest a significant delay in truck wait times within
the system.
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Figure 4. Average waiting time in each loading unit (minutes).

Finding a suitable solution for the facility to address the challenges was paramount.
This solution should align with the facility’s objectives, which included reducing waiting
time and increasing capacity to accommodate more trucks. Ultimately, this would lead to
increased sales for the manufacturer. One potential approach was to enhance the capacity of
one loading unit. However, selecting which loading unit to prioritize involved considering
conflicting criteria.
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Figure 5. The current average waiting time for trucks at the sugar facility.

Dealing with conflicting criteria added complexity to the decision-making process.
To tackle this challenge effectively, MCDM tools proved useful. To determine the needed
criteria, a comprehensive survey was conducted based on previous studies and insights
from top management at the facility. All necessary data for these criteria must be readily
available to generate viable capacity-enhancing options. As a result of extensive evalu-
ation and analysis, five primary criteria and nine sub-criteria were identified, as seen in
Figure 6. These chosen factors played pivotal roles in determining how to increase facility
capacity while addressing conflicting considerations. By leveraging MCDM techniques
alongside carefully examining essential selection factors within an organization’s context,
it became possible to identify feasible solutions and make informed decisions that optimize
performance and drive success.

Axioms 2023, 12, x FOR PEER REVIEW 13 of 22 
 

 
Figure 6. The hierarchy model of the problem under investigation. 

This study incorporated five primary criteria: cost (C1), waiting time (C2), revenue 
(C3), customer satisfaction (C4), and lost sales (C5) to determine which unit load should 
be increased. The cost criterion consisted of three sub-criteria: cost of labor (C11) for the 
new loading unit, new station cost (C12), and new equipment cost (C13). Similarly, the 
waiting time criterion included three sub-criteria: waiting time in system (C21), the aver-
age waiting time at each station (C22), and the average waiting time for processing at each 
station (C23). The revenue criterion considered truck volume (C31), which means the total 
number of trucks served, total station revenue (C32), and total production produced by 
the facility (C33).  

 Customer satisfaction influenced the average waiting time experienced by customers 
whose trucks were within the system. Consequently, as customers spent more time wait-
ing, their level of satisfaction decreased. On the other hand, lost sales referred to trucks 
not loaded due to congestion within the system. A scale from 1 to 9 was utilized to evalu-
ate each criterion mentioned, as presented in Table 3. 

Table 3. Evaluation score used in pairwise matrix. 

Verbal Judgment Numeric Value 

Extremely important 
9 
8 

Very strongly more important 
7 
6 

Strongly more important 
5 
4 

Moderately more important 
3 
2 

Equally important 1 

Table 4 presents the pairwise comparison matrix for the main criteria and sub-crite-
ria. In addition, Table 5 provided the overall weight of each criterion. It is worth noting 
that all comparison matrices had a consistency ratio below 10%, as recommended by Saaty 
[51]. 

  

Figure 6. The hierarchy model of the problem under investigation.

This study incorporated five primary criteria: cost (C1), waiting time (C2), revenue
(C3), customer satisfaction (C4), and lost sales (C5) to determine which unit load should
be increased. The cost criterion consisted of three sub-criteria: cost of labor (C11) for the
new loading unit, new station cost (C12), and new equipment cost (C13). Similarly, the
waiting time criterion included three sub-criteria: waiting time in system (C21), the average
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waiting time at each station (C22), and the average waiting time for processing at each
station (C23). The revenue criterion considered truck volume (C31), which means the total
number of trucks served, total station revenue (C32), and total production produced by the
facility (C33).

Customer satisfaction influenced the average waiting time experienced by customers
whose trucks were within the system. Consequently, as customers spent more time waiting,
their level of satisfaction decreased. On the other hand, lost sales referred to trucks not
loaded due to congestion within the system. A scale from 1 to 9 was utilized to evaluate
each criterion mentioned, as presented in Table 3.

Table 3. Evaluation score used in pairwise matrix.

Verbal Judgment Numeric Value

Extremely important 9
8

Very strongly more important 7
6

Strongly more important 5
4

Moderately more important 3
2

Equally important 1

Table 4 presents the pairwise comparison matrix for the main criteria and sub-criteria.
In addition, Table 5 provided the overall weight of each criterion. It is worth noting that all
comparison matrices had a consistency ratio below 10%, as recommended by Saaty [51].

Table 4. The pairwise comparison matrices.

Criteria C1 C2 C3 C4 C5 Consistency Ratio Weight

C1 1 2 1 1/2 1

<10%

0.15
C2 1/2 1 1/2 1/4 1/4 0.08
C3 1 2 1 1/2 1/2 0.15
C4 2 4 2 1 1 0.31
C5 2 4 2 1 1 0.31

Criteria C11 C12 C13 Consistency Ratio Weight

C11 1 1/2 1/2
<10%

0.20
C12 2 1 1 0.40
C13 2 1 1 0.40

Criteria C21 C22 C23 Consistency Ratio Weight

C21 1 1 4
<10%

0.44
C22 1 1 4 0.44
C23 1/4 1/4 1 0.11

Criteria C31 C32 C33 Consistency Ratio Weight

C31 1 1/2 1/2
<10%

0.20
C32 2 1 1 0.40
C33 2 1 1 0.40

In order to address the issue at hand, this research paper offers several alternative
approaches using the TOPSIS method. Table 6 details each of these alternatives. It is worth
noting that Alternative0 refers to the current state of affairs in the facility, which includes
continuous operation 24 h a day and seven days a week. Three shifts comprise the schedule.
The first shift begins at midnight and ends at 8 a.m., followed by the second shift from 8 a.m.
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to 4 p.m., and the last shift starts at 4 p.m. and ends at midnight. The data presented in
Table 7 originate from the simulation model output. Subsequently, these simulation outputs
were transformed into input data for the MCDM method, while Tables 8 and 9 present
the TOPSIS weighted normalized matrix and the ideal/negative ideal values, respectively.
Finally, Table 10 provides an overview of how each alternative solution ranks based on
TOPSIS evaluation criteria.

Table 5. The normalized sub-criteria weightings.

Criteria/Sub-Criteria Level One Weight Level Two Weight Overall Weight

C1 0.150 0.150
C11 0.200 0.030
C12 0.400 0.060
C13 0.400 0.060

C2 0.080 0.080
C21 0.440 0.035
C22 0.440 0.035
C23 0.110 0.009

C3 0.150 0.150
C31 0.200 0.030
C32 0.400 0.060
C33 0.400 0.060

C4 0.310 0.310
C5 0.310 0.310

Table 6. Alternative solutions.

Alternative
Number

Shift 1 Shift 2 Shift 3

RSU BLU DLU FPDU RSU BLU DLU FPDU RSU BLU DLU FPDU

Alternative0 2 1–2 1 2–3 2 2 1–2 4 2 1–2 1 2–4
Alternative1 2 1–2 1 4 2 2 1–2 4 2 1–2 1 4
Alternative2 3 1–2 1 2–3 3 2 1–2 4 3 1–2 1 2–4
Alternative3 3 1–2 1 4 3 2 1–2 4 3 1–2 1 4
Alternative4 2 1–2 2 4 2 2 2 4 2 1–2 2 4
Alternative5 2 1–2 3 4 2 2 3 4 2 1–2 3 4
Alternative6 2 1–2 4 4 2 2 4 4 2 1–2 4 4
Alternative7 2 1–2 2 2–3 2 2 2 4 2 1–2 2 2–4
Alternative8 2 1–2 3 2–3 2 2 3 4 2 1–2 3 2–4
Alternative9 2 1–2 4 2–3 2 2 4 4 2 1–2 4 2–4
Alternative10 3 1–2 2 2–3 3 2 2 4 3 2 1 2–4
Alternative11 3 1–2 3 2–3 3 2 3 4 3 2 3 2–4
Alternative12 3 1–2 4 2–3 3 2 4 4 3 2 4 2–4
Alternative13 3 1–2 3 4 3 2 3 4 3 1–2 3 4
Alternative14 2 2 1 4 2 2 1–2 4 2 2 1 4
Alternative15 2 2 1 2–3 2 2 1–2 4 2 2 1 2–4
Alternative16 3 2 1 2–3 3 2 1–2 4 3 2 1 2–4
Alternative17 2 2 2 2–3 2 2 2 4 2 2 2 2–4
Alternative18 2 2 3 2–3 2 2 3 4 2 2 3 2–4
Alternative19 2 2 4 2–3 2 2 4 4 2 2 4 2–4
Alternative20 2 2 2 4 2 2 2 4 2 2 2 4
Alternative21 2 2 3 4 2 2 3 4 2 2 3 4
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Table 7. Summary of the data.

Hour/day C11 C12 C13 C21 C22 C23 C31 C32 C33 C4 C5
Feature Min Min Min Min Min Min Max Max Max Max Min
Weight 0.03 0.06 0.06 0.03 0.03 0.01 0.03 0.06 0.06 0.31 0.31
Unit U.S. $ U.S. $ U.S. $ Minutes Minutes Minutes No. U.S. $ No. No. No.

Alternative1 41,054.70 0.00 0.00 212.20 102.82 70.52 61545 29,424,680 1,138,583 5 4
Alternative2 16,596.58 2666.67 4800.00 241.77 117.08 70.74 61431 29,370,251 1,136,477 5 44
Alternative3 57,651.28 2666.67 4800.00 178.11 81.22 70.55 61453 29,379,818 1,136,879 9 0
Alternative4 55,030.77 0.00 0.00 199.11 68.95 68.69 61443 29,375,328 1,136,692 7 0
Alternative5 73,374.36 0.00 0.00 200.15 66.38 68.77 61505 29,406,245 1,137,837 7 1
Alternative6 91,717.95 0.00 0.00 199.45 65.65 68.78 61420 29,366,320 1,136,268 7 1
Alternative7 13,976.07 0.00 0.00 264.14 105.47 68.96 61497 29,405,707 1,137,696 5 40
Alternative8 32,319.66 0.00 0.00 261.11 100.77 68.99 61436 29,371,689 1,136,570 5 37
Alternative9 50,663.25 0.00 0.00 263.39 101.13 69.29 61497 29,405,332 1,137,700 5 43
Alternative10 30,572.65 2666.67 4800.00 233.39 86.14 68.66 61475 29,392,113 1,137,288 5 18
Alternative11 48,916.24 2666.67 4800.00 229.34 80.98 68.99 61494 29,405,734 1,137,641 5 16
Alternative12 67,259.83 2666.67 4800.00 230.88 80.77 69.04 61466 29,385,224 1,137,125 5 17
Alternative13 89,970.94 2666.67 4800.00 166.11 44.90 68.56 61493 29,403,298 1,137,628 9 0
Alternative14 48,042.74 0.00 0.00 207.23 94.18 70.25 61437 29,374,276 1,136,575 7 0
Alternative15 6988.03 0.00 0.00 269.52 127.56 70.61 61408 29,363,340 1,136,055 5 26
Alternative16 23,584.62 2666.67 4800.00 240.33 110.18 70.47 61373 29,340,153 1,135,404 5 23
Alternative17 20,964.10 0.00 0.00 260.10 97.30 68.53 61588 29,448,807 1,139,372 5 37
Alternative18 39,307.69 0.00 0.00 261.15 94.81 68.75 61533 29,419,997 1,138,359 5 36
Alternative19 57,651.28 0.00 0.00 257.84 91.79 68.73 61429 29,366,938 1,136,429 5 37
Alternative20 62,018.80 0.00 0.00 195.99 61.12 68.14 61422 29,365,441 1,136,305 7 0
Alternative21 80,362.39 0.00 0.00 197.71 59.28 68.38 61583 29,443,456 1,139,289 7 1

Table 8. The weighted normalized decision matrix.

C11 C12 C13 C21 C22 C23 C31 C32 C33 C4 C5

Alternative1 0.00501 0.00000 0.00000 0.00606 0.00749 0.00222 0.00655 0.01311 0.01311 0.05546 0.01093
Alternative2 0.00203 0.02268 0.02268 0.00691 0.00852 0.00223 0.00654 0.01308 0.01308 0.05546 0.12018
Alternative3 0.00704 0.02268 0.02268 0.00509 0.00591 0.00222 0.00654 0.01309 0.01309 0.09983 0.00000
Alternative4 0.00672 0.00000 0.00000 0.00569 0.00502 0.00216 0.00654 0.01309 0.01309 0.07765 0.00000
Alternative5 0.00896 0.00000 0.00000 0.00572 0.00483 0.00217 0.00655 0.01310 0.01310 0.07765 0.00273
Alternative6 0.01120 0.00000 0.00000 0.00570 0.00478 0.00217 0.00654 0.01308 0.01308 0.07765 0.00273
Alternative7 0.00171 0.00000 0.00000 0.00754 0.00768 0.00217 0.00655 0.01310 0.01310 0.05546 0.10926
Alternative8 0.00395 0.00000 0.00000 0.00746 0.00734 0.00217 0.00654 0.01308 0.01309 0.05546 0.10106
Alternative9 0.00619 0.00000 0.00000 0.00752 0.00736 0.00218 0.00655 0.01310 0.01310 0.05546 0.11745
Alternative10 0.00373 0.02268 0.02268 0.00667 0.00627 0.00216 0.00655 0.01309 0.01309 0.05546 0.04917
Alternative11 0.00597 0.02268 0.02268 0.00655 0.00590 0.00217 0.00655 0.01310 0.01310 0.05546 0.04370
Alternative12 0.00821 0.02268 0.02268 0.00659 0.00588 0.00218 0.00655 0.01309 0.01309 0.05546 0.04643
Alternative13 0.01098 0.02268 0.02268 0.00474 0.00327 0.00216 0.00655 0.01310 0.01310 0.09983 0.00000
Alternative14 0.00587 0.00000 0.00000 0.00592 0.00686 0.00221 0.00654 0.01309 0.01309 0.07765 0.00000
Alternative15 0.00085 0.00000 0.00000 0.00770 0.00929 0.00222 0.00654 0.01308 0.01308 0.05546 0.07102
Alternative16 0.00288 0.02268 0.02268 0.00686 0.00802 0.00222 0.00654 0.01307 0.01307 0.05546 0.06282
Alternative17 0.00256 0.00000 0.00000 0.00743 0.00708 0.00216 0.00656 0.01312 0.01312 0.05546 0.10106
Alternative18 0.00480 0.00000 0.00000 0.00746 0.00690 0.00217 0.00655 0.01311 0.01311 0.05546 0.09833
Alternative19 0.00704 0.00000 0.00000 0.00736 0.00668 0.00217 0.00654 0.01308 0.01308 0.05546 0.10106
Alternative20 0.00757 0.00000 0.00000 0.00560 0.00445 0.00215 0.00654 0.01308 0.01308 0.07765 0.00000
Alternative21 0.00981 0.00000 0.00000 0.00565 0.00432 0.00215 0.00656 0.01312 0.01312 0.07765 0.00273

Table 9. TOPSIS ideal and negative ideal values.

C11 C12 C13 C21 C22 C23 C31 C32 C33 C4 C5

Z+ 0.000853 0.000000 0.000000 0.004745 0.003269 0.002147 0.006559 0.013119 0.013118 0.099834 0.000000
Z− 0.011197 0.022678 0.022678 0.007698 0.009287 0.002229 0.006536 0.013070 0.013072 0.055463 0.120182
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Table 10. The relative closeness Pi of the alternatives to the ideal solution.

Alternative Pi Rank

Alternative1 0.712176 9
Alternative2 0.065310 21
Alternative3 0.796479 7
Alternative4 0.845982 1
Alternative5 0.838559 4
Alternative6 0.833759 6
Alternative7 0.229817 19
Alternative8 0.256283 17
Alternative9 0.206020 20
Alternative10 0.492262 12
Alternative11 0.521865 10
Alternative12 0.505683 11
Alternative13 0.792284 8
Alternative14 0.845837 2
Alternative15 0.415045 13
Alternative16 0.409757 14
Alternative17 0.257860 16
Alternative18 0.267241 15
Alternative19 0.253965 18
Alternative20 0.844889 3
Alternative21 0.837024 5

5. Discussion

This study employed a hybrid multiple criteria decision-making (MCDM) method-
ology that combined the analytic hierarchy process (AHP) and Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) approaches to evaluate various alterna-
tives for capacity enhancement within a factory setting. The results of the analysis revealed
that Alternative 4 emerged as the most viable choice among the options considered. This
particular alternative involved the strategic utilization of the factory’s four loading units,
with an emphasis on maximizing the capacity of the Dock Loading Unit (DLU) and the
Factory Production Dock Unit (FPDU), while allowing the Receiving and Shipping Unit
(RSU) and the Bulk Loading Unit (BLU) to operate under regular conditions.

Notably, when we assessed all proposed solutions against the weighted criteria using
both the AHP and TOPSIS methodologies, they consistently outperformed the existing
system. This underscores the significance of adopting a well-informed and comprehensive
approach when contemplating capacity enhancements. Such enhancements must not only
aim to increase throughput but also consider their impact on pertinent metrics and criteria,
thus ensuring a holistic and sustainable improvement process.

Table 11 presents a detailed comparison of the top five alternatives, along with the
selected criteria and their corresponding rankings. These criteria encompass various
aspects, such as financial implications, time efficiency, and resource utilization. Each
alternative’s performance is evaluated in terms of its impact on these criteria, providing a
clear overview of their relative strengths and weaknesses.

Table 11. Top five alternatives along with the selected criteria comparison.

Unit USD USD Minutes Minutes USD No. No No. %

Alternative Pi C11 C12 C13 C21 C32 C31 C4 Rank Improvement

Alternative4 0.845982 55,030.77 0.00 0.00 199.11 29,375,328 61,443 7 1 27.9%
Alternative14 0.845837 48,042.74 0.00 0.00 207.23 29,374,276 61,437 7 2 24.9%
Alternative20 0.844889 62,018.80 0.00 0.00 195.99 29,365,441 61,422 7 3 29.0%
Alternative5 0.838559 73,374.36 0.00 0.00 200.15 29,406,245 61,505 7 4 27.5%
Alternative21 0.837024 80,362.39 0.00 0.00 197.71 29,443,456 61,583 7 5 28.4%
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It is important to note that the improvement percentages were computed by com-
paring the total time within the system, and all five alternatives demonstrated enhanced
performance in terms of reducing this total time. However, in a real-world context, the
choice of the optimal solution is not solely based on minimizing waiting time. A holistic
perspective encompassing all criteria is crucial, as other factors, such as cost and resource
utilization, play a significant role in decision making.

Considering this broader context, Alternative 4 emerges as the best option, as it
exhibits a well-rounded performance across various criteria. Nevertheless, it is essential
to acknowledge that this study primarily focuses on capacity enhancements, which are
relatively straightforward to implement compared to more complex adjustments, such as
addressing station failures or altering process times.

Maintaining a delicate equilibrium is imperative, as capacity changes can significantly
impact worker utilization rates and overall operational efficiency. While this study presents
promising avenues for system enhancement, including potential productivity gains through
the scrutiny of processing and failure times, there are still opportunities for future research to
delve deeper into these areas. Exploring more complex adjustments and optimizing worker
utilization can facilitate substantial advancements in facility performance and efficiency.

Furthermore, the analysis demonstrates that as the arrival rate of products increases,
Alternative 4 continues to perform commendably. It exhibits a 27% enhancement compared
to the baseline state, albeit accompanied by a minor increase in lost sales. These findings
underscore the feasibility and merit of continuous improvement efforts, validating the
system’s resilience and growth potential even in the face of increased demand.

Moreover, this study has provided valuable insights into the complex decision-making
process surrounding capacity enhancements within a factory setting. By adopting a hybrid
MCDM methodology and considering multiple criteria, it has identified Alternative 4 as the
most promising choice. However, the path to enhancing facility performance and efficiency
is multifaceted, and future research should explore additional dimensions and complexities
to further optimize operations in such environments.

While Alternative 20 showcased an impressive reduction in the total time within
the system, it is essential to note that the highest percentage of improvement alone does
not necessarily make it the recommended choice for implementation. This observation
highlights the inherent beauty of employing the AHP and TOPSIS methods in tandem.
These methods, by design, consider and weigh multiple criteria simultaneously, ensuring
that the chosen alternative aligns with a broader set of objectives beyond just minimizing
time. Indeed, decreasing time is a vital factor, but in a holistic decision-making process,
it must be considered alongside other crucial factors such as customer satisfaction, cost-
effectiveness, resource utilization, and more. The true strength of these methods lies in
their ability to facilitate a well-informed, balanced decision that takes into account the
multidimensional nature of complex real-world problems. Thus, Alternative 4 emerges as
the superior choice, as it offers a well-rounded improvement across the spectrum of criteria,
exemplifying the comprehensive nature of the AHP and TOPSIS methodologies in guiding
strategic decision making.

The prevalence of Multi-Criteria Decision-Making (MCDM) methods in addressing
various quandaries within the realm of the sugar industry is significant. This includes
the deployment of simulation models to streamline processes within sugar facilities. For
instance, an amalgamation of two MCDM methods—analytic hierarchy process (AHP)
and Elimination Et Choix Traduisant la Realité III (ELECTRE III)—was utilized for the
optimal site selection of an air quality monitoring station in a sugar factory [56]. Further,
an integrated AHP and VIKOR method was implemented for discerning the most suitable
material in the sugar industry [57]. In another instance, MCDM methods facilitated the
selection of pipe materials within the sugar industry [58].

Moreover, the literature highlights the use of MCDM methods in determining sustain-
able juice extraction techniques for the non-centrifugal sugar industry [59]. These examples
clearly delineate the extensive use and significant benefit derived from MCDM methods
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within the sugar industry. However, the scope of the current study extends this application
to a hypered MCDM technique, aimed at optimizing the flow of trucks within a sugar
factory. Our study involved the creation of various scenarios using a simulation model.
The integrated MCDM technique was subsequently employed to rank these alternatives. It
should be emphasized that the generation of alternative scenarios for loading units within
a sugar facility using simulation and the subsequent selection of an optimal one using
MCDM techniques is not discussed extensively in the literature. Thus, our study addresses
this gap and contributes to the evolving body of knowledge on this subject

6. Conclusions

This paper presents a simulation-based approach to enhancing the flow of truck traffic
in sugar manufacturing. Various scenarios were tested and examined based on essential
criteria to determine the most feasible one. Sugar industry experts participated in evaluating
these criteria using the Analytical Hierarchy Process. AHP calculated the weight of each
criterion, and TOPSIS ranked the alternative solutions. This research provides valuable
insights for informed decision making within the sugar manufacturing industry through
advanced technology and a robust methodology. A hybrid methodology was utilized in
this study to offer helpful recommendations for improving their decision-making processes.

In conclusion, the findings and methodologies unveiled in this study hold profound
implications for both academic research and practical applications. From an academic
perspective, this research showcases the pragmatic and pertinent utilization of advanced
simulation tools, such as Simio, in tackling intricate real-world dilemmas within the realms
of operations management and industrial engineering. Moreover, the seamless incorpo-
ration of Multi-Criteria Decision Making (MCDM) methods, notably AHP and TOPSIS,
not only underscores their remarkable adaptability, but also underscores their efficacy in
resolving multifaceted challenges pertaining to facility management, logistics, and decision-
making processes. These insights present an inspiring avenue for further scholarly inquiry
within the realm of decision sciences and management.

On a practical front, the study’s outcomes extend a direct lifeline to sugar manufac-
turing facilities and industries facing similar logistical challenges. By operationalizing
the strategies born from this study, factories stand to amplify their operational efficiency,
optimize resource allocation, and elevate their overall throughput. Furthermore, the com-
mitment to ensuring timely deliveries and exceeding customer expectations underscores
a direct path to heightened customer satisfaction and more robust client relationships.
In a fiercely competitive market landscape, these efficiency enhancements can provide a
coveted competitive edge. Remarkably, the methodologies harnessed in this research are
not limited to the sugar industry alone. They present a blueprint for broader applicability
across industries grappling with analogous logistical hurdles, spanning manufacturing,
distribution, and supply chain management. In sum, this study contributes not only to
academic knowledge, but also empowers real-world enterprises to thrive in the face of
complex operational challenges

Furthermore, this research offers significant practical benefits in the context of sugar
manufacturing and beyond. The findings highlight substantial opportunities for process
improvement. Alternatives like Alternative 4, which demonstrated a remarkable 27.9%
enhancement in performance compared to others, showcase the potential for optimizing
operational efficiency, cost reduction, and resource allocation. The practical recommenda-
tions derived from simulation and evaluation findings can substantially boost efficiency,
productivity, and cost-effectiveness in sugar manufacturing. Moreover, the study suggests
expanding the decision-making process by incorporating additional criteria, facilitating
even more informed decisions. These versatile methodologies are applicable across indus-
tries, providing a pathway to enhanced operational excellence and competitiveness. It
is worth noting that the decision-making process can be further extended by containing
additional criteria. Therefore, this study suggests including more factors in order to allow
manufacturers to make more informed decisions.
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However, this study not only offers valuable insights and practical recommendations,
but also acknowledges its limitations. The objective of this study was twofold: to minimize
waiting times for trucks and to enhance overall operational efficiency while considering
various criteria. With the results obtained in this study, it is evident that the percentage
of improvement correlates with the reduction in waiting times. This alignment with the
main objective of minimizing waiting times underscores the accomplishment of the study’s
primary goal. The simulation model and recommendations are constructed based on
assumptions and expert judgments collected from industry experts. This introduces a
level of subjectivity that may impact the model’s accuracy over time as industry dynamics
evolve. Moreover, the study primarily concentrates on enhancing operational efficiency,
cost reduction, and resource allocation within the sugar manufacturing domain. While
these methodologies exhibit potential for broader application, further empirical validation
would be necessary to confirm their effectiveness and adaptability to various industries. In
this way, the research goals were realized by providing a comprehensive framework for
optimizing truck traffic flow in sugar manufacturing.

Lastly, this research significantly enhances sugar manufacturing by reducing waiting
times and improving efficiency. By integrating AHP, TOPSIS, and simulation, it offers a
structured framework applicable across industries, fostering informed decision making
and competitiveness in today’s business landscape.
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56. Hacıoğlu, H.; Ari, A.; Özkan, A.; Elbir, T.; Tuncel, G.; Yay, O.D.; Gaga, E.O. A New Approach for Site Selection of Air Quality

Monitoring Stations: Multi-Criteria Decision-Making. Aerosol Air Qual. Res. 2016, 16, 1390–1402. [CrossRef]
57. Anojkumar, L.; Ilangkumaran, M.; Vignesh, M. A decision making methodology for material selection in sugar industry using

hybrid MCDM techniques. Int. J. Mater. Prod. Technol. 2015, 51, 102. [CrossRef]
58. Anojkumar, L.; Ilangkumaran, M.; Sasirekha, V. Comparative analysis of MCDM methods for pipe material selection in sugar

industry. Expert Syst. Appl. 2014, 41, 2964–2980. [CrossRef]
59. Beeram, S.; Raj, S.P.; KS, R. Selection of sustainable juice extraction techniques for non-centrifugal sugar industry using multi-

criteria decision-making methods. J. Food Process Eng. 2020, 43, e13415. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/0734242X21994903
https://www.ncbi.nlm.nih.gov/pubmed/33759660
https://doi.org/10.1080/00207543.2017.1355124
https://doi.org/10.1177/0954405416666893
https://doi.org/10.1080/19397038.2012.682100
https://doi.org/10.1108/IJLSS-12-2014-0041
https://doi.org/10.1108/IJLSS-06-2016-0023
https://doi.org/10.1016/j.simpat.2022.102510
https://doi.org/10.1016/j.mcm.2008.06.013
https://doi.org/10.1007/978-1-4613-2805-6_12
https://doi.org/10.1007/b97668
https://doi.org/10.29020/nybg.ejpam.v1i1.6
https://doi.org/10.1007/978-981-33-4745-8_3
https://doi.org/10.4209/aaqr.2014.11.0273
https://doi.org/10.1504/IJMPT.2015.071770
https://doi.org/10.1016/j.eswa.2013.10.028
https://doi.org/10.1111/jfpe.13415

	Introduction 
	Background and Relevant Literature 
	Background 
	Relevant Literature 

	Methodology 
	Application and Results 
	Discussion 
	Conclusions 
	References

