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Abstract: Currently, two-component integrable nonlinear equations from the hierarchies of the vector
nonlinear Schrodinger equation and the vector derivative nonlinear Schrödinger equation are being
actively investigated. In this paper, we propose a new hierarchy of two-component integrable
nonlinear equations, which have an important difference from the already known equations. To
construct the hierarchical equations, we use the monodromy matrix method, as first proposed by B.A.
Dubrovin. The method we use consists of solving the following sequence of problems. First, using the
Lax operator, we find the monodromy matrix, which is a polynomial in the spectral parameter. More
precisely, we find a sequence of monodromy matrices dependent on the degree of this polynomial.
Each Lax operator has its own sequence of monodromy matrices. Then, using the terms from the
decomposition of the monodromy matrix, we construct a sequence of second operators from a Lax
pair. A hierarchy of evolutionary integrable nonlinear equations follows from the conditions of
compatibility of the sequence of Lax pairs. Also, knowledge of the monodromy matrix allows us
to find stationary equations that are analogs of the Novikov equations for the Korteweg–de Vries
equation. In addition, the characteristic equation of the monodromy matrix corresponds to the
spectral curve equation of the relevant multiphase solution for the integrable nonlinear equation.
Since the coefficients of the spectral curve equation are integrals of the hierarchical equations, they
can be utilized to find the simplest solutions of the constructed integrable nonlinear equations. In this
paper, we demonstrate the operation of this method, starting with the assignment of the Lax operator
and ending with the construction of the simplest solutions.

Keywords: spectral curve; derivative NLS equation; Lax pair; vector NLS equation; monodromy
matrix

MSC: 35Q51; 37C55; 37K40

1. Introduction

The transmission of information in optical fibers is carried out by means of modulation
of the reference laser signal. The fiber material is selected in such a way that the nonlinear
effects resulting from the wave’s interaction with the medium compensate for the dispersion.
The simplest model for the propagation of a polarized signal in an optical fiber is the
focusing nonlinear Schrodinger equation

ipz + ptt + 2|p|2 p = 0. (1)

Here, p is the slowly changing complex amplitude of the modulated signal superimposed
on the laser reference wave, z is the coordinate along the direction of the signal propagation,
and t is a linear combination of the time and longitudinal coordinates (see, for example, [1]
and references therein). It is not difficult to understand that Equation (1) is an equation in the
dimensionless variables, i.e., it is obtained from the original equation by replacing variables
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and functions. This model is obtained from Maxwell’s equations by discarding terms that have
little effect on the behavior of a nonlinear wave, i.e., it describes the real process with some
accuracy [1]. The advantage of Equation (1) is that it refers to integrable nonlinear equations
(see, for example, [1–6]), which have solutions in the form of solitary waves (solitons). Solitons
are nonlinear waves that propagate indefinitely without the loss of shape and speed. Naturally,
in real waveguides, solitons lose energy over time, but amplifiers and repeaters compensate
for these losses. When using lasers that generate femtosecond pulses, the dispersion terms of
the third, fourth, and fifth orders must be taken into account in the models. These models
correspond to the integrable Hirota equations [7–10]

ipz + α(ptt + 2|p|2 p)− iβ(pttt + 6|p|2 pt) = 0.

and integrable higher nonlinear Schrodinger equations [11–14]. There are also non-integrable
models, which we will not discuss in this paper. At the same time, these equations are also
actively investigated for the presence of solutions in the form of solitons [15]. To account for
other types of interactions between waves and the waveguide medium, derivative variants
of nonlinear Schrödinger equations can be used [16–28], including the Kundu–Eckhaus
equation [29–31]. Recently, wave models with double polarization have been actively
studied, since with the help of appropriate signals, it is possible to transmit twice as much
information [32–37].

Nonlinear signals are studied and filtered using a nonlinear Fourier
transform [2,4,5,20,28,34,36–42]. In this case, the spectral analysis targets not the non-
linear signal itself, but the first operator from the Lax pair. Every basic integrable nonlinear
differential equation can be obtained as a condition for the compatibility of two linear
differential equations, called a Lax pair [1–6]. In particular, the Lax pair for Equation (1)
has the form [1–6,43,44]

∂tΨ = UΨ,

∂zΨt = V1Ψ,

where U = λJ + U0, V1 = λU + V0
1 ,

J =
(
−i 0
0 i

)
, U0 =

(
0 ip
−iq 0

)
, V0

1 =

(
−ipq −pt
−qt ipq

)
,

q = −p∗, i2 = −1.
Note that each basic integrable nonlinear equation is the first equation from an infinite

sequence of equations called a hierarchy. Each equation from the hierarchy corresponds
to its own second Lax pair operator. In particular, the nonlinear Schrodinger equation
is the first equation from the Ablowitz–Kaup–Newell–Sigur hierarchy [43–45]. One of
the useful features of hierarchies of integrable nonlinear equations is the fact that there
are functions p̂(t, z1, z2, . . . ) that satisfy all the equations of the hierarchy simultaneously.
Hence, the functions p(t, z) = p̂(t, α1(z), α2(z), . . . ) will be solutions of the so-called mixed
equations [11–14,43,44]. Therefore, considering mixed equations is one way to increase
the number of integrable models for wave propagation in nonlinear media. Another way
to construct new integrable models corresponding to the new properties of the studied
nonlinear signals is to consider new Lax pairs. In particular, the propagation of bi-polarized
waves through nonlinear optical waveguides is characterized by the Manakov system,
which is a compatibility condition of linear matrix differential equations with third-order
matrices [32–37,46–51]. Also, the compatibility conditions of Lax pairs with third-order
matrices lead to two-component derivative nonlinear Schrödinger equations that describe
more complex models of bi-polarized waves [52–56].

Naturally, all the models are regularly tested in practice when experimenters attempt
to detect certain forms of signals obtained theoretically [57–60]. Therefore, one of the goals
of theorists is to create new integrable models that could be used to describe nonlinear
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phenomena. In this paper, we propose a new integrable model, describing the propagation
of two interacting nonlinear waves

ipz2 = ptt + ip2 p∗t +
1
2

(
|p|4 p + 8|u|2 p + 4u2 p∗

)
,

iuz2 = utt − ip2u∗t − 2i(pu∗ + up∗)pt +
1
2
(3|p|4u + 2|p|2 p2u∗ + 4|u|2u).

In the absence of one of the waves (u ≡ 0), the model is reduced to the Gerdjikov–
Ivanov equation [23–25,27,28]. The presented article consists of an introduction, five
sections, and concluding remarks. In the first section, we consider various possible variants
of the Lax operator in the case of a quadratic spectral bundle. Based on the results of this
section, we decided to investigate a model with a more general than usual Lax operator.
Section 3 of the paper is devoted to finding the structure of the monodromy matrix and the
recurrent relations between its elements.

In Section 4, the stationary equations are derived and equations of spectral curves are
considered. In the context of scalar-derivative NLS equations [28], the stationary equations
form two groups. But, unlike the scalar case where equations from only one group were
applicable, for this model, it’s imperative to utilize both sets of equations. Moreover, in the
case of standard vector NLS equations [37,61], both components p1 and p2 satisfy similar
stationary equations. In this paper, components p and u satisfy stationary equations with
different structures.

Section 5 defines the sequence of the second equations from the Lax pair and the
evolutionary integrable nonlinear equations from the corresponding hierarchy. Note that
even hierarchical equations differ from odd ones. In particular, for n = 3, we have

ipz3 = 2utt − 2i(p∗ut − up∗t )p− i(6pu∗ + 4p∗u)pt + (|p|4 − 4|u|2)u,

uz3 = − pttt − i(p∗ptt + pp∗tt)p− 6(u∗pt + p∗ut)u− (4u∗ut + 2uu∗t )p

− 2ip|pt|2 −
3
2
|p|4 pt − 2i|pu|2 p− i

2
|p|6 p.

If we put u = 0 in an odd equation, then it ceases to be an evolutionary integrable
nonlinear equation. In Section 6, we present the simplest solutions of the second equation
from the hierarchy we constructed. In particular, we find a solution in the form of a solitary
wave, the components of which are described by different formulas. This is due to the fact
that each component satisfies its own nonlinear differential equation.

2. Structure of the Lax Operator for a Quadratic Spectral Bundle

Let the Lax pair be given by the equations

iΨt + UΨ = 0, (2)

iΨz + VΨ = 0, (3)

where
U = λ2 J + λQ1 + Q2, V = λ2K + λS1 + S2, (4)

J, K are constant matrices, and λ is a spectral parameter.
The condition of compatibility of the Equations (2) and (3) has the form

iVt − iUz + UV −VU = 0

or

λ4(JK− KJ) + λ3(JS1 − S1 J + Q1K− KQ1)

+ λ2(JS2 − S2 J + Q1S1 − S1Q1 + Q2K− KQ2) + · · · = 0. (5)
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Condition (5), and the integrable nonlinear equations, give algebraic constraints on the
elements of the matrices U and V. These restrictions have the following form:

JK = KJ, (6)

[J, S1] = [K, Q1], (7)

[J, S2] + Q1S1 = [K, Q2] + S1Q1. (8)

Usually, solutions of Equation (7) are written using the following relations:

S1 = [K, R], Q1 = [J, R], (9)

where R is a matrix of the same size.
Substituting (9) into (8), and simplifying it, we obtain

J(S2 + RKR− R2K)− (S2 + RKR− R2K)J

= K(Q2 + RJR− R2 J)− (Q2 + RJR− R2 J)K.

or
[J, S2 + [RK, R]] = [K, Q2 + [RJ, R]].

Therefore, the following representation of matrices S2 and Q2 can be used

S2 + [RK, R] = [K, R2],

Q2 + [RJ, R] = [J, R2]

or
S2 = [K, R2] + [R, RK],

Q2 = [J, R2] + [R, RJ],
(10)

where R2 is a new matrix of the same size.
Note that on the right-hand sides of equalities (9) and (10), it is possible to add linear

combinations of matrices commuting with J and K.
Taking into account the remaining constraints from condition (5) leads to the following

matrix of operators (2) and (3):

S1 = [K, R], Q1 = [J, R],

S2 = [K, R2] + [R, RK] + s20K,

Q2 = [J, R2] + [R, RJ] + q20 J,

(11)

where s20 and q20 are certain functions.
It is easy to see that the matrix J completely defines the structure of the operator (2).

For example, if J = diag(1,−1), then

Q1 =

(
0 2r12
−2r21 0

)
,

Q2 =

(
0 2r̃12
−2r̃21 0

)
+

(
2r12r21 −2r11r12
2r21r22 −2r12r21

)
+

(
q20 0
0 −q20

)
.

In the case of the main variants of the derivative nonlinear Schrödinger equations, we
have (q = −p∗)

• In the case of the Kaup–Newell equation [16–20,23,28]

r12 = ip/2, r21 = −iq/2, r̃12 = r11r12, r̃21 = r21r22, q20 = −2r12r21;
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• In the case of the Chen–Lee–Liu equation [22,23,28,62,63]

r12 = ip/2, r21 = −iq/2, r̃12 = r11r12, r̃21 = r21r22, q20 = −pq/4;

• in the case of the Gerdjikov–Ivanov equation [23–25,28]

r12 = ip/2, r21 = −iq/2, r̃12 = r11r12, r̃21 = r21r22, q20 = 0.

By choosing other values of q20, other special cases of the generalized derivative
nonlinear Schrödinger equation can be obtained [26,28,64–66]. Note that the solutions
of these equations are connected by a gauge transformation preserving the amplitude
(see [23,27,28,67–69]).

In these models, it is easy to see that matrices Q1 and Q2 only depend on functions
p and q, and that matrix Q2 is diagonal. Therefore, adding functions u and v to the
non-diagonal terms of matrix Q2 allows us to explore a new nonlinear integrable model:

r12 = p/2, r21 = q/2, r̃12 = r11r12 + u/2, r̃21 = r21r22 + v/2, q20 = 0.

This model at u = v = 0 is transformed into one of the special cases of the generalized
derivative nonlinear Schrödinger equation [28]. In the case of the new model, matrices J,
Q1, and Q2 are equal:

J =
(

1 0
0 −1

)
, Q1 =

(
0 p
−q 0

)
, Q2 =

1
2

(
pq 2u
−2v −pq

)
. (12)

3. The Monodromy Matrix

The monodromy matrix is a key object of the spectral analysis of periodic solutions
of the integrable nonlinear models. Spectral data in the case of periodic nonlinear signals
consist of the spectral curve, its genus, and its parameters. The spectral curve equation
is the characteristic equation of the monodromy matrix M, which is a polynomial of the
spectral parameter λ

M =
N

∑
j=0

mj(t)λj,

which satisfies equation [70]
iMt + UM−MU = 0. (13)

The monodromy matrix also exists in the limiting cases when the solution periods
become infinite. In particular, solitary waves are the limiting cases of periodic waves when
the period of a nonlinear wave becomes infinitely large.

From Equation (13), where matrix U is determined by equalities (4) and (12), the
following structure of matrix M follows

M = Wn +
n−1

∑
k=1

ckWn−k + cnU + cn+1W−1 + cn+2 J, (14)

where W−1 = λJ + Q1, U = λW−1 + Q2, W1 = λU + W0
1 ,

Wk+1 = λVk + W0
k+1, W0

k =

(
Fk Hk
−Gk −Fk

)
, k ≥ 1,

ck are real constants.
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From Equation (6), it also follows the recurrence relations on the elements of the matrix
W0

k :

H1 = − i
2

pt, G1 =
i
2

qt,

H2 = pF1 −
i
2

ut, G2 = qF1 +
i
2

vt,

Hk+2 = pFk+1 + uFk −
1
2

pqHk −
i
2

∂tHk,

Gk+2 = qFk+1 + vFk −
1
2

pqGk +
i
2

∂tGk,

∂tFk = i(vHk − uGk + qHk+1 − pGk+1).

(15)

In particular,

F1 =
1
2
(pv + qu),

H2 =
1
2
(pqu + p2v− iut),

G2 =
1
2
(pqv + q2u + ivt),

F2 =
1
2

uv− 1
8

p2q2 +
i
4
(pqt − qpt),

H3 = uvp +
1
2

u2q− 1
8

p3q2 +
i
4

p2qt −
1
4

ptt,

G3 = uvq +
1
2

v2 p− 1
8

p2q3 − i
4

q2 pt −
1
4

qtt,

F3 =
1
4
(uq + pv)pq +

i
4
(pvt − vpt + uqt − qut),

H4 =
1
2

u2v− 1
8

p2q2u− i
4
(2qu + 3pv)pt +

i
4
(uqt − qut)p− 1

4
utt,

G4 =
1
2

uv2 − 1
8

p2q2v +
i
4
(3qu + 2pv)qt +

i
4
(pvt − vpt)q−

1
4

vtt,

F4 = pquv− 1
16

p3q3 +
3
8
(p2v2 + q2u2) +

1
8

ptqt

+
i
4
(uvt − vut)−

1
8
(pqtt + qptt).

It follows from recurrent relations (15) that when the reality conditions

q = σp∗, v = σu∗, σ = ±1, (16)

are met, the elements of the monodromy matrix satisfy the following relations:

Gk = σH∗k , F∗k = Fk. (17)

4. Conservation Laws

Since our work considers the hierarchy of integrable nonlinear equations, we have an
infinite set of conservation laws. These conservation laws are divided into two groups. The
first group is formed by stationary equations, which are satisfied by multiphase (finite-zone
and their degeneration) solutions. In the case of the Korteweg–de Vries equation, these
equations are called Novikov equations.

For each hierarchy, there are different solutions with the same number of phases.
Each type of multiphase solution has its own type of spectral curve. On the one hand, the
coefficients of the spectral curve equation are constant values, and on the other hand, they
are functions of the solution and its derivatives. One part of the coefficients of the spectral
curve equation is expressed in terms of the coefficients of stationary equations, and the



Axioms 2023, 12, 983 7 of 18

second part consists of additional integrals of the solution and its derivatives. Accordingly,
these additional integrals determine the type of multiphase solution with a given number
of phases.

The first set of conservation laws is described by the following stationary nonlinear
differential equations

Hn+1 +
n

∑
j=1

cj Hn+1−j + cn+1u + cn+2 p = 0,

Gn+1 +
n

∑
j=1

cjGn+1−j + cn+1v + cn+2q = 0,

and

Hn+2 − pFn+1 +
n−1

∑
j=1

cj
(

Hn+2−j − pFn+1−j
)

− icn

2
ut −

cn+1

2

(
p2q + ipt

)
+ cn+2u = 0,

Gn+2 − qFn+1 +
n−1

∑
j=1

cj
(
Gn+2−j − qFn+1−j

)
+

icn

2
vt −

cn+1

2

(
pq2 − iqt

)
+ cn+2v = 0.

These equations also follow from Equation (13). It follows from the stationary equa-
tions and reality conditions (16) and (17) that the constants cj (j = 1, . . . , n + 2) are real.

Any m-phase solution for m ≤ n and all values of t and z satisfy these stationary
equations. The parameters of the corresponding multiphase solution depend on the
constants ck and coefficients fk of the spectral curve (see below). It follows from the
reality conditions (17) that stationary equations admit reduction (16).

In particular, for n = 0, the stationary equations have the form

ipt − 2c1u− 2c2 p = 0,

iqt + 2c1v + 2c2q = 0,

iut + c1(p2q + ipt)− 2c2u = 0,

ivt − c1(pq2 − iqt) + 2c2v = 0.

(18)

It is easy to see that for c1 6= 0, the components u and v are connected to the compo-
nents p and q using the following relations

u = − 1
2c1

(2c2 p− ipt), v = − 1
2c1

(2c2q + iqt).

As will be shown below, in this case, all components are expressed in terms of elliptic
functions or their degeneration. Note that for c1 = 0, the system of stationary Equation (18)
splits into two separate identical systems, the solutions of which are plane waves. Accord-
ingly, when c1 = 0, additional components can be removed from the model by putting
u = v = 0.

Recall that the characteristic equation of the monodromy matrix M is the equation of
the corresponding spectral curve

Γ : R(µ, λ) = det(M− µI) = 0. (19)
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Here, I is the identity matrix. It follows from Equations (14) and (19) that the equation
of the spectral curve has the form

µ2 = λ2n+4 +
2n+4

∑
k=1

fkλ2n+4−k, (20)

where fk are constants (integrals). Therefore, the spectral curve Γ is an hyperelliptic curve
of genus g = n + 1. Naturally, this statement is true only for equations corresponding to
non-degenerate connected curves.

For n = 0 (g = 1), the equation of the spectral curve has the form

µ2 = λ4 + 2c1λ3 + (c2
1 + 2c2)λ

2 + f3λ + f4,

where the integrals f3 and f4 are equal

f3 = 2c1c2 − c1 pq− uq− pv,

f4 = c2
2 + (c2 − c2

1)pq +
1
4

p2q2 − uv− c1(pv + uq).

i.e., for n = 0, the non-degenerate spectral curve is elliptic.
For n = 1 (g = 2), the stationary equations have a more complex form

iut − (pv + qu)p + ic1 pt − 2c2u− 2c3 p = 0,

ivt + (pv + qu)q + ic1qt + 2c2v + 2c3q = 0,

ptt − 2(pv + qu)u− ipqpt + 2ic1ut + 2c2(p2q + ipt)− 4c3u = 0,

qtt − 2(qu + pv)v + ipqqt − 2ic1vt + 2c2(pq2 − iqt)− 4c3v = 0.

(21)

It follows from the first two equations of system (21) that in the case of g = 2, the
dependence of the components u and v on p and q can be found in the solution of the
following linear matrix differential equation

i∂t

(
u
v

)
−
(

pq + 2c2 p2

−q2 −pq− 2c2

)(
u
v

)
= −ic1∂t

(
p
q

)
+

(
2c3 0
0 −2c3

)(
p
q

)
.

It is easy to see that for c1 = c3 = 0, this equation admits solutions of the form
u = v = 0. In this case, the stationary equations for the components p and q will take a
simpler form

ptt − ipqpt + 2c2(p2q + ipt) = 0,

qtt + ipqqt + 2c2(pq2 − iqt) = 0.
(22)

At the same time, it is not difficult to see that for c1 = c3 = 0 there are solutions of
stationary Equation (21) that satisfy the condition u2 + v2 6≡ 0.

The equation of the spectral curve for n = 1 has the form

µ2 = λ6 + 2c1λ5 + (c2
1 + 2c2)λ

4 + 2(c1c2 + c3)λ
3 + f4λ2 + f5λ + f6,

where integrals f4, f5, and f6 are equal

f4 = c2
2 + 2c1c3 − c1(pv + qu)− c2 pq +

1
4

p2q2 − uv− i
2
(pqt − qpt),

f5 = 2c2c3 + (c3 − c1c2)pq− c2
1(pv + qu) +

1
2

c1 p2q2 − 2c1uv +
1
2

pq(pv + qu)

− i
2

c1(pqt − qpt)−
i
2
(uqt − vpt),

f6 = c2
3 + (c1c3 − c2

2)pq +
1
4

c2
1 p2q2 − c2

1uv + (c3 − c1c2)(pv + qu)
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+
1
2

c1 pq(pv + qu) +
1
4
(p2v2 + q2u2) +

1
2

pquv

− i
2

c2(pqt − qpt)−
i
2

c1(uqt − vpt)−
1
4

ptqt.

For n = 2 (g = 3), the stationary equations become even more complicated

utt + ip2vt + 2i(pv + qu)pt − 2u2v + p3qv +
3
2

p2q2u

+ c1(ptt − ipqpt − 2(pv + qu)u) + 2ic2ut + 2c3(p2q + ipt)− 4c4u = 0,

vtt − iq2ut − 2i(pv + qu)qt − 2uv2 + pq3u +
3
2

p2q2v

+ c1(qtt + ipqqt − 2(pv + qu)v)− 2ic2vt + 2c3(pq2 − iqt)− 4c4v = 0,

ptt − ip2qt − 4uvp− 2qu2 +
1
2

p3q2 + 2c1(iut − (pv + qu)p)

+ 2ic2 pt − 4c3u− 4c4 p = 0,

qtt + iq2 pt − 4uvq− 2pv2 +
1
2

p2q3 − 2c1(ivt + (pv + qu)q)

− 2ic2qt − 4c3v− 4c4q = 0.

It is easy to see that for n = 2, the dependence between components (u, v) and (p, q) is
described by nonlinear equations. At the same time, these equations allow solutions of the
form u = v = 0 for c1 = c3 = 0. The equations for components p and q in this case have
the form

ptt − ip2qt +
1
2

p3q2 + 2ic2 pt − 4c4 p = 0,

qtt + iq2 pt +
1
2

p2q3 − 2ic2qt − 4c4q = 0.
(23)

We will omit the values of the coefficients in the equation of the spectral curve for
n = 2, since they are very cumbersome and are not interesting at the moment.

It is worth noting that the nonlinear stationary Equations (22) and (23) are very
different, despite the fact that they have the same order.

5. Integrable Nonlinear Evolutionary Equations

Let the second equation of the Lax pair have the form

iΨtk + VkΨ = 0, (24)

where Vk = 2mWk, k = 2m or k = 2m− 1.
Then, from the compatibility condition of Equations (2) and (24), the following evolu-

tionary equations follow:

ipzk + 2m+1Hk+1 = 0,

−iqzk + 2m+1Gk+1 = 0,

iuzk + 2m+1(Hk+2 − pFk+1) = 0,

−ivzk + 2m+1(Gk+2 − qFk+1) = 0

(25)

It is not difficult to see that the evolutionary Equation (25), as well as the stationary
equations, admit reduction (16). Accordingly, after replacing (16), an integrable nonlin-
ear two-component equation with different dependencies of the components on vari-
ables zk will be obtained from the system of Equations (25). Note that the well-known
two-component integrable nonlinear equations [32,33,35–37,46–56] describe models with
identical dependencies of components on variables zk.
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We present the first evolutionary integrable equations from the corresponding hier-
archy. For k = 1, the structures of the first two equations of the system differ from the
structures of the last two:

ipz1 = 2iut − 2(pv + qu)p,

−iqz1 = − 2ivt − 2(pv + qu)q,

iuz1 = ptt − ipqpt − 2(pv + qu)u,

−ivz1 = qtt + ipqqt − 2(pv + qu)v.

(26)

Note that the last two equations of system (26), when performing reduction (16), are
analogous to the derivative nonlinear Schrödinger equation. At the same time, the first two
equations describe a fairly simple relationship between the components.

For k = 2, the evolutionary equations have the form

ipz2 = ptt − ip2qt +
1
2
(p3q2 − 8uvp− 4u2q),

−iqz2 = qtt + iq2 pt +
1
2
(p2q3 − 8uvq− 4v2 p),

iuz2 = utt + ip2vt + 2i(pv + qu)pt +
1
2
(3p2q2u + 2p3qv− 4u2v),

−ivz2 = vtt − i2q2ut − 2i(pv + qu)qt +
1
2
(3p2q2v + 2pq3u− 4uv2).

(27)

It is easy to see that Equation (27) is analogous to the two-component coupled deriva-
tive nonlinear Schrödinger equation.

Assuming q = −p∗ and v = −u∗, we obtain from Equation (27) a new two-component
derivative nonlinear Schrödinger equation

ipz2 = ptt + ip2 p∗t +
1
2

(
|p|4 p + 8|u|2 p + 4u2 p∗

)
,

iuz2 = utt − ip2u∗t − 2i(pu∗ + up∗)pt +
1
2
(3|p|4u + 2|p|2 p2u∗ + 4|u|2u).

(28)

Unlike the usual vector derivative nonlinear Schrödinger equation [52–56], in this case,
the evolution of components p and u is described by different equations.

For k = 3, the evolutionary equations are again divided into two groups. The first two
equations are analogs of the nonlinear Schrodinger equation, and the second are analogs of
the modified Korteweg–de Vries equation

ipz3 = 2utt + 2i(qut − uqt)p + i(6pv + 4qu)pt + (p2q2 − 4uv)u,

−iqz3 = 2vtt − 2i(pvt − vpt)q− i(6qu + 4pv)qt + (p2q2 − 4uv)v,

uz3 = − pttt + i(qptt + pqtt)p + 6(vpt + qut)u + (4vut + 2uvt)p

+ 2ipptqt −
3
2

p2q2 pt − 2ip2quv +
i
2

p4q3,

vz3 = − qttt − i4(qptt + pqtt)q + 6(pvt + uqt)v + (2vut + 4uvt)q

− 2iqptqt −
3
2

p2q2qt + 2ipq2uv− i
2

p3q4.

(29)

Assuming q = −p∗ and v = −u∗, we obtain from Equation (29) a two-component
mixed equation

ipz3 = 2utt − 2i(p∗ut − up∗t )p− i(6pu∗ + 4p∗u)pt + (|p|4 − 4|u|2)u,

uz3 = − pttt − i(p∗ptt + pp∗tt)p− 6(u∗pt + p∗ut)u− (4u∗ut + 2uu∗t )p

− 2ip|pt|2 −
3
2
|p|4 pt − 2i|pu|2 p− i

2
|p|6 p.
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The first equation is an analog of the derivative NLS equation and the second equation
is an analog of the modified Korteweg–de Vries equation.

Note that furthering the structure of the evolutionary Equations (25) will depend
on the parity of the number of equations. For the odd k, the order of derivatives with
respect to t will be different, for an even k, it is the same. In particular, for k = 4, the
system of evolutionary equations will resemble the vector-modified Korteweg–de Vries
equation. Note that even equations admit reduction u = v = 0, whereas odd ones do
not. In this case, Equation (27) under this reduction and under condition (16) passes into
the Gerdjikov–Ivanov equation [23–25,27,28,62,63,71]. The model explored in this paper
expands upon already established integrable models of nonlinear wave propagation.

6. One-Phase Solutions

To show the differences in component behaviors, we consider examples with n = 0
and c1 6= 0. To find solutions to system (18), we express u and v from the first two equations
and substitute them with the rest. After simplification, we have

ptt − 2i(c2
1 − 2c2)pt − 2c2

1 p2q− 4c2
2 p = 0,

qtt + 2i(c2
1 − 2c2)qt − 2c2

1 pq2 − 4c2
2q = 0.

(30)

It is worth noting that Equation (30) differs from Equations (22) and (23).
Following [72], we will make a replacement in these equations

p =
√

r exp
{
−
∫ w

2r
dt
}

, q =
√

r exp
{∫ w

2r
dt
}

, (31)

where
r = pq, w = pqt − qpt.

After simplification, we have

w = −2i(c2
1 − 2c2)r + ic3, (32)

2rrtt − (rt)
2 − 8c2

1r3 + 4c2
1(c

2
1 − 4c2)r2 − c2

3 = 0. (33)

Here, c3 is an integration constant.
Additional relations follow from the equation of the spectral curve. Converting

expressions for constants f3 and f4 using substitutions (31) and (32), we obtain

f3 = 2c1c2 −
c3

2c1
,

(rt)
2 = 4c2

1r3 − 4c2
1(c

2
1 − 4c2)r2 + 4c2

1(4c2
2 − c3 − 4 f4)r− c2

3. (34)

It is not difficult to check the compatibility of Equations (33) and (34). It follows from
these equations that the function r(t) is an elliptic function or its degeneration.

In particular, if the spectral curve is given by the equation

µ2 =
(
(λ− a)2 + b2

)2
,

then the constants ck and f4 have the following values

c1 = −2a, c2 = a2 + b2, c3 = 0, f4 =
(

a2 + b2
)2

.

For these values of constants, the function r(t) satisfies the equation

(rt)
2 = 16a2r3 + 64a2b2r2.
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Solving this equation, we have

r(t) = −4b2 sech2(4abt + α), α = const.

In this case,
w(t) = 16ib2(a2 − b2) sech2(4abt + α).

Substituting this value of functions r(t) and w(t) into Formulas (31) and (27), we
obtain the solution to Equation (27)

p = 2ib sech(φ1(t, z2))eiφ2(t,z2),

q = 2ib sech(φ1(t, z2))e−iφ2(t,z2),

u = 2b sech(φ1(t, z2))(ia− b tanh(φ1(t, z2)))eiφ2(t,z2),

v = 2b sech(φ1(t, z2))(ia + b tanh(φ1(t, z2)))e−iφ2(t,z2),

(35)

where

φ1(t, z2) = 4abt− 16ab(a2 − b2)z2,

φ2(t, z2) = 2(a2 − b2)t + 4(a4 − 6a2b2 + b4)z2.

It is easy to see that the components of solution (35) satisfy the reductions q = −p∗

and v = −u∗. The amplitudes of the components p and u for a = 2 and b = 3 are shown in
Figure 1.

|p(t, z2)| |u(t, z2)|

Figure 1. The amplitudes of the solution (35) for a = 2 and b = 3.

It is not difficult to see that the shape of the component u is quite different from the
shape of component p. Component p is a classical soliton. At the same time, component u
is defined using a completely new expression.

Assuming c3 = 0, 0 < k < 1, it is possible to construct three different solutions in
elliptic Jacobi functions [73,74].

If c2 = (c4
1 − 1− k2)/(4c2

1) , then the function r(t) is expressed in terms of sn(t; k):

r(t) =
k2

c2
1

sn2(t; k).

The spectral curve of this solution is determined by the equation

µ2 =
4

∏
j=1

(λ− λj), (36)
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where

λ1,2 = −
1 + c2

1 ± k
2c1

, λ3,4 =
1− c2

1 ± k
2c1

.

In this case,

p(t, z2) =
k
c1

sn(φ1(t, z2); k)eiφ2(t,z2),

u(t, z2) = −
k

2c2
1

(
c2

1 sn(φ1(t, z2); k)− i sn′(φ1(t, z2); k)
)

eiφ2(t,z2),

q = p∗, v = u∗,

(37)

where

φ1(t, z2) = t +
c4

1 + 1 + k2

c2
1

z2,

φ2(t, z2) =
c4

1 + 1 + k2

2c2
1

t +
c8

1 + 6(k2 + 1)c4
1 + 1 + 4k2 + k4

4c4
1

z2.

Since the solution (37) to Equation (27) satisfies the conditions q = p∗, v = u∗, it is not
suitable for describing the propagation of nonlinear optical signals.

When c2 = (c4
1 + 2− k2)/(4c2

1), function r(t) has the form

r(t) = − 1
c2

1
dn2(t; k).

The spectral curve is again determined by Equation (36). Only the branching points in
this case are not real, but complex conjugates

λ1,2 = − c1

2
± i

1 +
√

1− k2

2c1
, λ3,4 = − c1

2
± i

1−
√

1− k2

2c1
.

The following periodic solution to Equation (27) corresponds to this curve:

p(t, z2) =
i

c1
dn(φ1(t, z2); k)eiφ2(t,z2),

u(t, z2) = −
i

2c2
1

(
c2

1 dn(φ1(t, z2); k)− i dn′(φ1(t, z2); k)
)

eiφ2(t,z2),

q = −p∗, v = −u∗,

(38)

where

φ1(t, z2) = t +
c4

1 − 2 + k2

c2
1

z2,

φ2(t, z2) =
c4

1 − 2 + k2

2c2
1

t +
c8

1 + 6(k2 − 2)c4
1 + 6− 6k2 + k4

4c4
1

z2.

Since reductions q = −p∗, v = −u∗ are performed, solution (38) can be used to
describe the propagation of a periodic nonlinear two-component wave. The amplitudes of
the components p and u for c1 = 0.5 and k = 0.7 are shown in Figure 2.

It is easy to see that component p is an ordinary “dnoidal” wave, while component u
has a non-standard shape.
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|p(t, z2)| |u(t, z2)|

Figure 2. The amplitudes of the solution (38) for c1 = 0.5, k = 0.7.

The third elliptic solution to Equation (27) for c2 = (c4
1 − 1 + 2k2)/(4c4

1) is expressed
in terms of the cn(t; k) [73,74]:

r(t) = − k2

c2
1

cn2(t; k),

and
p(t, z2) =

ik
c1

cn(φ1(t, z2); k)eiφ2(t,z2),

u(t, z2) = −
ik

2c2
1

(
c2

1 cn(φ1(t, z2); k)− i cn′(φ1(t, z2); k)
)

eiφ2(t,z2),

q = −p∗, v = −u∗,

(39)

where

φ1(t, z2) = t +
c4

1 + 1− 2k2

c2
1

z2,

φ2(t, z2) =
c4

1 + 1− 2k2

2c2
1

t +
c8

1 + 6(1− 2k2)c4
1 + 1− 6k2 + 6k4

4c4
1

z2.

The spectral curve of the solution (39) is given by Equation (36), where

λ1,2 = − c1

2
+

√
1− k2 ± ik

2c1
, λ3,4 = − c1

2
−
√

1− k2 ± ik
2c1

.

The examples we considered have shown that, as in the case of the standard nonlinear
Schrödinger equation, the locations of the branching points of the spectral curve correspond
to the sign of reduction. If q = p∗, then the branching points are on the real axis. If q = −p∗,
then the branching points form complex conjugate pairs.

7. Concluding Remarks

Equation (28), from our point of view, is the most useful for practical applications.
For u = 0 and z2 = −z, this equation becomes the Gerdjikov–Ivanov equation [24,25]

ipz + ptt + ip2 p∗t +
1
2
|p|4 p = 0, (40)

This equation, along with its generalizations, finds application in nonlinear optics [75–80].
It is worth noting that in nonlinear optics, only the perturbed Gerdjikov–Ivanov equations
are considered. This is due to the fact that the unperturbed equation does not adequately



Axioms 2023, 12, 983 15 of 18

describe the propagation of waves in nonlinear optics. In our paper, the first equation from
system (28)

ipz + ptt + ip2 p∗t +
1
2

(
|p|4 p + 8|u|2 p + 4u2 p∗

)
= 0, z = −z2,

is also a perturbed Gerdjikov–Ivanov equation. The perturbation u is related to the main
signal p by means of stationary equations. In the case of soliton propagation, the corre-
sponding link is given by Equation (18). It should be noted that due to the integrability of
the equation, the perturbation u satisfies the second equation of the system (28). Since the
authors are mathematicians, the physical meaning of perturbation u is not fully understood
by them. The authors hope that this physical meaning will be found.

Another possibility of constructing a perturbed equation involves the use of mixed
equations. In particular, the function p(t, α1(z), α2(z)) satisfies to the equation

ipz − α′2(z)
(

ptt + ip2 p∗t +
1
2

(
|p|4 p + 8|u|2 p + 4u2 p∗

))
−α′1(z)(2iut − 2(pu∗ + up∗)p) = 0.

From (15) and (25), the following equality

∂tFk+1 = 2−m∂zk F1 (41)

follows; thus, there exists the function Φ, such that

F1 = ∂tΦ, Fk+1 = 2−m∂zk Φ.

Note that the same statement is also true for other hierarchies (see [37,61,81,82]).
As shown in [61], using Equation (41), it is possible to construct a new perturbed

Gerdjikov–Ivanov equation, which will be an analog of the Kundu–Eckhaus equation.
To summarize, we note that the monodromy matrix method is a very useful method.

Using this method, we investigated completely different hierarchies of integrable non-
linear equations [20,28,37,61,82–84]. We considered Lax operators with matrices of the
second [20,28,84], third [28,37,61], and fifth [82,83] orders. In all our works, we found hier-
archies of integrable nonlinear equations, the simplest solutions of these equations, and
spectral curves corresponding to these solutions. In this paper, we show the operation of
this method using the example of a new Lax operator and invite other researchers to use
the monodromy method in their work.
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