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1. Introduction

The aim of this paper is to establish the existence of at least three weak solutions to
the fractional discrete boundary value problem

T+1∇α
k (k∇α

0(u(k))) + k∇α
0(T+1∇α

k (u(k))) + ϕp(u(k))
= λ f (k, u(k)) + µg(k, u(k)),

u(0) = u(T + 1) = 0,

(1)

for any k ∈ [1, T]N0 , where 0 < α < 1, λ > 0 and µ ≥ 0 are parameters, k∇α
0 is the left nabla

discrete fractional difference, and T+1∇α
k is the right nabla discrete fractionl difference.

Here, f , g : [1, T]N0 × R → R are continuous functions, ϕp is the p-Laplacian operator
defined as ϕp(s) = |s|p−2s with 1 < p < ∞.

Fractional differential equations have become an area of great interest in recent years.
This is due to both the intensive development of the theory of fractional calculus itself as
well as the applications of such problems in various scientific and social scientific fields;
see, for example, Refs. [1–6] and the references therein.

A considerable number of boundary value-type problems and problems involving
numerical simulations can be formulated as special cases of nonlinear algebraic systems. For
this reason, in recent years, many authors have developed various methods and techniques,
such as fixed points theorems or upper and lower solutions methods, to study discrete
problems. In this paper, we are interested in investigating nonlinear discrete boundary
value problems by using a variational approach; for recent contributions, see [7–10] and
the references therein.

Nonlinear boundary value problems involving p-Laplacian operators occur in var-
ious physical phenomena including non-Newtonian fluids, reaction-diffusion models,
petroleum extraction, flows through porous media, etc. Thus, the study of such prob-
lems and their generalizations have attracted research mathematicians in recent years
(e.g., [11–13]).
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While p-Laplacian boundary value problems for ordinary differential equations, finite
difference equations, and dynamic equations on time scales have been studied extensively,
there are relatively few results on discrete fractional p-Laplacian boundary value problems
involving Caputo fractional differences. For example, Lv [14] used Schaefer’s fixed point
theorem to obtain the existence of solutions to a discrete fractional boundary value problem
with a p-Laplacian operator. Heidarkhani and Moradi [15] used variational methods to
obtain the existence of at least one solution to the problem (1) in the case where µ = 0.
Heidarkhani, Moradi, and Afrouzi [16] applied variational methods to obtain the existence
of infinitely many solutions to (1) again in the case where µ = 0.

Motivated by the above observations, in the present paper we use the critical point
theorems obtained in [17,18] to obtain two results that ensure the existence of at least three
weak solutions to the problem (1). In particular, in Theorem 4 we require that the primitive
F of the function f is p-sublinear at infinity and satisfies some other local growth conditions.
In Theorem 5, we require a sign condition on the function f and a growth condition on
F in a bounded interval, but no asymptotic condition on f at infinity; we obtain that for
every non-negative continuous function g, there exist at least three non-negative weak
solutions that are uniformly bounded. We then apply our theorems to some special cases
and illustrate our results with examples. Compared to previously known results in the
literature, our required conditions are new.

In Section 2, we recall some basic definitions and the main tools to be used in the
proofs. Section 3 is devoted to our main results and their applications.

2. Materials and Methods: Preliminary Notions

Our main tools are the two following three critical points theorems. In the first one,
the coercivity of a certain functional is required, and in the second one, a suitable sign
condition is needed.

Theorem 1 ([18] Theorem 3.6). Let X be a reflexive real Banach space, Φ : X → R be a coercive,
continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose
Gâteaux derivative admits a continuous inverse on X∗, and Ψ : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact and such that Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and v ∈ X, with r < Φ(v), such that:

(a1)
supΦ(u)≤r Ψ(u)

r
<

Ψ(v)
Φ(v)

;

(a2) For each λ ∈ Λr :=

(
Φ(v)
Ψ(v)

,
r

supΦ(u)≤r Ψ(u)

)
, the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr, the functional Φ− λΨ has at least three distinct critical points in X.

Theorem 2 ([19] Theorem 2.2). Let X be a reflexive real Banach space, Φ : X → R be a convex,
coercive, and continuously Gâteaux differentiable functional whose derivative admits a continuous
inverse on X∗, and let Ψ : X → R be a continuously Gâteaux differentiable functional whose
derivative is compact and such that:

1. infX Φ = Φ(0) = Ψ(0) = 0;
2. For each λ > 0 and all u1, u2 ∈ X that are local minima for the functional Φ− λΨ and such

that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, we have

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are two positive constants r1 and r2 and v ∈ X with 2r1 < Φ(v) <
r2

2
such that:

(b1)
supu∈Φ−1((−∞,r1))

Ψ(u)

r1
<

2
3

Ψ(v)
Φ(v)

;
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(b2)
supu∈Φ−1((−∞,r2))

Ψ(u)

r2
<

1
3

Ψ(v)
Φ(v)

.

Then, for each

λ ∈
(

3
2

Φ(v)
Ψ(v)

, min

{
r1

supu∈Φ−1((−∞,r1))
Ψ(u)

,
r2
2

supu∈Φ−1((−∞,r2))
Ψ(u)

})
,

the functional Φ− λΨ has at least three distinct critical points in Φ−1((−∞, r2)).

Theorems 1 and 2 have been successfully used to ensure the existence of at least three
solutions for perturbed boundary value problems in the papers [19,20]. Next, we will
introduce several basic definitions, notations, and lemmas to be used in this paper.

Definition 1 ([21]).

(i) Let m be a natural number; then the m rising factorial of t (t to the m rising) is defined as

tm =
m−1

∏
k=0

(t + k), m ∈ N, where t0 = 1.

(ii) For any real number α, the α rising function (t to the α rising) i s defined as

tα =
Γ(t + α)

Γ(t)

where t ∈ R \ {. . . ,−2,−1, 0} and 0α = 0.

In what follows, for a, b ∈ N, we will use the notation:

Na = {a, a + 1, a + 2, . . . } and bN = {. . . , b− 2, b− 1, b}.

Definition 2. Let α ∈ (0, 1) and f be defined on Na−1 ∩ b+1N with a < b. Then the left nabla
discrete Caputo fractional difference is defined by

(C
k∇

α
a−1 f )(k) =

1
Γ(1− α)

k

∑
s=a
∇s f (s)(k− ρ(s))−α, k ∈ Na, (2)

and the right nabla discrete Caputo fractional difference by

(C
b+1∇

α
k f )(k) =

1
Γ(1− α)

b

∑
s=k

(−∆s f )(s)(s− ρ(k))−α, k ∈ bN, (3)

where ρ is the backwards operator ρ(k) = k− 1.

Definition 3. Let α ∈ (0, 1) and f be defined on Na−1 ∩ b+1N with a < b. The left and right
nabla discrete Riemann fractional differences are defined by

(R
k∇

α
a−1 f )(k) =

1
Γ(1− α)

∇k

k

∑
s=a

f (s)(k− ρ(s))−α =
1

Γ(−α)

k

∑
s=a

f (s)(k− ρ(s))−α−1, k ∈ Na,

and

(R
b+1∇

α
k f )(k) =

1
Γ(1− α)

(−∆k)
b

∑
s=k

( f (s))(s− ρ(k))−α =
1

Γ(−α)

b

∑
s=k

( f (s))(s− ρ(k))−α−1, k ∈ bN,

respectively, where again ρ(k) = k− 1.
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For example, let f (k) = 1 be defined on Na−1 ∩ b+1N; then from (2) and (3), we have

C
b+1∇

α
k 1 = C

k∇
α
a−11 = 0, k ∈ Na ∩ bN. (4)

The relationships between the left and right nabla Caputo and Riemann fractional
differences are as follows:

(C
k∇

α
a−1 f )(k) = (R

k∇
α
a−1 f )(k)− (k− a + 1)−α

Γ(1− α)
f (a− 1), (5)

(C
b+1∇

α
k f )(k) = (R

b+1∇
α
k f )(k)− (b + 1− k)−α

Γ(1− α)
f (b + 1). (6)

Thus, by (4)–(6), for any k ∈ Na ∩ bN, we have

R
b+1∇

α
k 1 =

(b + 1− k)−α

Γ(1− α)
, R

k∇
α
a−11 =

(k− a + 1)−α

Γ(1− α)
.

Concerning the domains of the fractional differences, we see that (i) the left nabla fractional
difference a−1∇α

k map functions defined on a−1N to functions defined on aN, and (ii) the
right nabla fractional difference k∇α

b+1 maps functions defined on b+1N to functions defined
on bN. It can be shown that as α→ 0, a∇α

k ( f (k))→ f (t), and as α→ 1, a∇α
k ( f (k))→ ∇ f (t).

We note that for 0 < α < 1, the nabla Riemann and Caputo fractional differences agree for
functions that vanish at the endpoints, that is, if f (a− 1) = 0 = f (b+ 1) (see [22,23]), which
is our situation here. For 0 < α < 1, these follow from (5) and (6). So, for convenience, in
the future, we will use the symbol ∇α instead of R∇α or C∇α.

Next, we present a summation by parts formula for this new discrete fractional calculus.

Theorem 3 ([24] Theorem 4.4 (Integration by parts for fractional differences)). For functions
f and g defined on Na ∩ bN, with a < b and 0 < α < 1, we have

b

∑
k=a

f (k)(k∇α
a−1g)(k) =

b

∑
k=a

g(k)(b+1∇α
k f )(k).

Similarly,
b

∑
k=a

f (k)(b+1∇α
k g)(k) =

b

∑
k=a

g(k)(k∇α
a−1 f )(k).

In order to give a variational formulation for the problem (1), we define the finite
T-dimensional Banach space

W =
{

u : [0, T + 1]N0 → R : u(0) = u(T + 1) = 0
}

,

equipped with the norm

‖u‖ =
(

T

∑
k=1
|u(k)|2

) 1
2

.

The next lemma is obvious.

Lemma 1. For every 0 < α < 1 and u ∈W, we have

‖u‖∞ = max
k∈[1,T]N0

|u(k)| ≤ ‖u‖. (7)
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Corresponding to the functions f and g, we define the functions F, G : [1, T]N0 ×R→
R by

F(x, t) =
∫ t

0
f (x, ξ)dξ and G(x, t) =

∫ t

0
g(x, ξ)dξ

for all (x, t) ∈ [1, T]N0 ×R. For all u ∈W, consider the functionals Φ, Ψ, and Iλ defined by

Φ(u) =
1
2

T

∑
k=1
|(k∇α

0u)(k)|2 + |(T+1∇α
k u)(k)|2 + 1

p

T

∑
k=1
|u(k)|p, (8)

Ψ(u) =
T

∑
k=1

F(k, u(k)) +
µ

λ

T

∑
k=1

G(k, u(k)), (9)

and Iλ(u) = Φ(u)− λΨ(u).

Definition 4. By a weak solution to the BVP (1), we mean any function u ∈W such that

T

∑
k=1

(k∇α
0u(k))(k∇α

0v(k)) + (T+1∇α
k u(k))(T+1∇α

k v(k)) +
T

∑
k=1
|u(k)|p−2u(k)v(k)

− λ
T

∑
k=1

f (k, u(k))v(k)− µ
T

∑
k=1

g(k, u(k))v(k) = 0

for every v ∈W.

Our next lemma clarifies the relationship between critical points of the functional Iλ

and a weak solution to our problem.

Lemma 2. A function u ∈W is a critical point of Iλ if and only if u is a solution to (1).

Proof. If u ∈W be a critical point of Iλ, then for every v ∈W, we have

T

∑
k=1

(k∇α
0u(k))(k∇α

0v(k)) + (T+1∇α
k u(k))(T+1∇α

k v(k)) +
T

∑
k=1
|u(k)|p−2u(k)v(k)

− λ
T

∑
k=1

f (k, u(k))v(k)− µ
T

∑
k=1

g(k, u(k))v(k) = 0.

Bearing in mind that v ∈W is arbitrary, we have that for some ū ∈W,

T+1∇α
k (k∇α

0(ū(k)))+k∇α
0(T+1∇α

k (ū(k))) + |ū(k)|
p−2ū(k)

− λ f (k, ū(k))− µ
T

∑
k=1

g(k, ū(k)) = 0

for every k ∈ [1, T]N. Therefore, ū is a weak solution to the problem (1). Hence, every
critical point of the functional Iλ in W is a weak solution to the problem (1).

On the other hand, if ū is a weak solution to the problem (1), then arguing in the
reverse order, completes the proof.

The following lemma helps us satisfy an important assumption in Theorems 1 and 2.

Lemma 3. Let S : W →W∗ be the operator defined by

S(u)(v) =
T

∑
k=1

(k∇α
0u(k))(k∇α

0v(k)) + (T+1∇α
k u(k))(T+1∇α

k v(k))
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+
T

∑
k=1
|u(k)|p−2u(k)v(k)

for every u, v ∈W. Then, S admits a continuous inverse on W∗.

Proof. Now

S(u)(u) =
T

∑
k=1

(k∇α
0u(k))2 + (T+1∇α

k u(k))2 +
T

∑
k=1
|u(k)|p ≥ (T + 1)

p(p−2)
4 ‖u‖p, (10)

so S is coercive. Also,

〈S(u)− S(v), u− v〉 =
T

∑
k=1

(k∇α
0(u(k)− v(k)))2 + (T+1∇α

k (u(k)− v(k))2
T

∑
k=1
|(u(k)− v(k))|p

≥ (T + 1)
p(p−2)

4 ‖u− v‖p > 0 (11)

for every u, v ∈ W. Hence, S is strictly increasing. Moreover, since W is reflexive, for
un → u strongly in W as n→ ∞, we have S(un)→ S(u) weakly in W∗ as n→ ∞. Hence,
S is demicontinuous, so by [25] (Theorem 26.A(d)), the inverse operator S−1 exists and it
is continuous.

Let en be a sequence in W∗ such that en → e strongly in W∗ as n→ ∞. Let un, u ∈W
be such that S−1(en) = un and S−1(e) = u. Taking into account the fact that S is coercive,
we see that the sequence un is bounded in the reflexive space W. For a suitable subsequence,
once again called un, we have un → û weakly for some û ∈W. This implies

〈S(un)− S(u), un − û〉 = 〈en − e, un − û〉 = 0.

Since un → û weakly in W and S(un)→ S(û) strongly in W∗, we have un → û strongly in
W. Since S is continuous, S(û) = S(u). Hence, taking into account that S is an injection, we
have u = û.

Now set

Gθ :=
T

∑
k=1

max
|ξ|≤θ

G(k, ξ) for all θ > 0

and
Gσ := T inf

[1,T]N0×R
G(k, ξ) for all σ > 0.

If g is sign-changing, then clearly Gθ ≥ 0 and Gσ ≤ 0.

3. Results

We are ready to present our main existence results.
Fix two positive constants θ and σ such that

σ2

(Γ(1− α))2 ∑T
k=1 |(k)−α|2 + Tσp

p

∑T
k=1 F(k, σ)

<
(T + 1)

p(p−2)
4 θp

p ∑T
k=1 max|x|≤θ F(k, x)

,

choose

λ ∈ Λ :=


σ2

(Γ(1−α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
T

∑
k=1

F(k, σ)

,
(T + 1)

p(p−2)
4 θp

p
T

∑
k=1

max
|x|≤θ

F(k, x)

,

set δλ,g =
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min


(T + 1)

p(p−2)
4 θp − λp

T

∑
k=1

max
|x|≤θ

F(k, x)

pGθ
,

∣∣∣∣∣∣∣∣∣∣
σ2

(Γ(1−α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
− λ

T

∑
k=1

F(k, σ)

min{0, Gσ}

∣∣∣∣∣∣∣∣∣∣

,

and

δλ,g := min


δλ,g,

1

max

{
0,

pT

(T + 1)
p(p−2)

4

lim sup
|x|→+∞

supk∈[1,T]N0
G(k, x)

xp

}


. (12)

Here we mean γ/0 = +∞, so that, for example, δλ,g = +∞ if

lim sup
|x|→+∞

supk∈[1,T]N0
G(k, x)

xp ≤ 0

and Gσ = Gθ = 0.
Our first existence result is given in the following theorem.

Theorem 4. Assume that there exist positive constants θ and σ with

θ < p

√√√√ p

(T + 1)
p(p−2)

4

(
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

)
, (13)

such that

(A1)

T

∑
k=1

max
|x|≤θ

F(k, x)

θp <
(T + 1)

p(p−2)
4

pσ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

T

∑
k=1

F(k, σ);

(A2) T lim sup
|x|→∞

F(k, x)
xp < Θ uniformly with respect to k ∈ [1, T]N0 , where

Θ :=

T

∑
k=1

max
|x|≤θ

F(k, x)

(T + 1)
p(p−2)

4

p
θp

.

Then, for each λ ∈ Λ and for every continuous function g : [1, T]N0 ×R→ R satisfying

lim sup
|x|→+∞

supk∈[1,T]N0
G(k, x)

xp < +∞,

there exists δλ,g > 0 given by (12) such that, for each µ ∈ [0, δλ,g), the problem (1) admits at least
three distinct weak solutions in W.

Proof. Fix λ, g, and µ as in the conclusion of the theorem, and consider the functionals Φ,
Ψ, and Iλ as given in (8) and (9). We first wish to prove that the functionals Φ and Ψ satisfy
the basic conditions in Theorem 1.
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Since W is compactly embedded in (C0([1, T]N0),R), it is well known that Ψ is a
Gâteaux differentiable functional whose Gâteaux derivative at the point u ∈ W is the
functional Ψ′(u) ∈W∗ given by

Ψ′(u)(v) =
T

∑
k=1

f (k, u(k))v(k) +
µ

λ

T

∑
k=1

g(k, u(k))v(k)

for every v ∈ W, and Ψ is sequentially weakly upper semicontinuous. Moreover, Φ is
Gâteaux differentiable with Gâteaux derivative at the point u ∈W given by

Φ′(u)(v) =
T

∑
k=1

(k∇α
0u(k))(k∇α

0v(k)) + (T+1∇α
k u(k))(T+1∇α

k v(k))

+
T

∑
k=1
|u(k)|p−2u(k)v(k)

for every v ∈ W. In addition, from the definition of Φ, we see that it is sequentially
weakly lower semicontinuous and strongly continuous. For every u ∈ W, we have
(see (10) and (11))

1
p
(T + 1)

p(p−2)
4 ‖u‖p ≤ Φ(u) ≤ 2T(T + 1)‖u‖2 +

1
p
(T + 1)

2−p
2 ‖u‖p. (14)

Using the first inequality in (14), it follows that lim‖u‖→+∞ Φ(u) = +∞, i.e., Φ is coercive.
Lemma 3 shows that Φ′ admits a continuous inverse on W∗. Therefore, the regularity
assumptions on Φ and Ψ required in Theorem 1 are satisfied. We also note that Iλ is a
C1(W,R) functional and the critical points of Iλ are weak solutions to the problem (1).

Choose

r :=
(T + 1)

p(p−2)
4

p
θp

and set

wσ(k) =

{
σ, k ∈ [1, T]N0 ,
0, k ∈ 0, T + 1.

Clearly, wσ ∈ W. Since wσ vanishes at the endpoints, its nabla Riemann and Caputo
fractional differences coincide. Hence, for any k ∈ N1 ∩ TN, we have

(T+1∇α
k wσ)(k) = (R

T+1∇α
k wσ)(k) = (C

T+1∇α
k wσ)(k) =

σ(T + 1− k)−α

Γ(1− α)
,

and

(k∇α
0wσ)(k) = (R

k∇
α
0wσ)(k) = (C

k∇
α
0wσ)(k) =

σ(k)−α

Γ(1− α)
.

Thus,

Φ(wσ) =
1
2

T

∑
k=1
|(k∇α

0wσ)(k)|2 + |(T+1∇α
k wσ)(k)|2 +

1
p

T

∑
k=1
|wσ(k)|p

=
1
2

T

∑
k=1

∣∣∣∣∣ σ(k)−α

Γ(1− α)

∣∣∣∣∣
2

+

∣∣∣∣∣σ(T + 1− k)−α

Γ(1− α)

∣∣∣∣∣
2

+
Tσp

p

=
σ2

2(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + |(T + 1− k)−α|2 + Tσp

p

=
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
. (15)
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We also have

Ψ(wσ) =
T

∑
k=1

F(k, wσ(k)) =
T

∑
k=1

F(k, σ). (16)

Then, from condition (13), we see that 0 < r < Φ(wσ). From the definition of Φ, and
in view of (7) and (14), for every r > 0,

Φ−1(−∞, r) = {u ∈W : Φ(u) < r}

⊆
{

u ∈W : ‖u‖p ≤ pr

(T + 1)
p(p−2)

4

}
⊆
{

u ∈W : ‖u‖p
∞ ≤

pr

(T + 1)
p(p−2)

4

}

=
{

u ∈W : ‖u‖p
∞ ≤ θp

}
,

and it follows that

sup
Φ(u)<r

Ψ(u) = sup
Φ(u)<r

T

∑
k=1

F(k, u(k)) ≤
T

∑
k=1

max
|x|≤θ

F(k, x).

for every u ∈ X such that Φ(u) ≤ r. Therefore,

sup
u∈Φ−1(−∞,r]

Ψ(u)

r
≤ p

(T + 1)
p(p−2)

4

T

∑
k=1

max
|x|≤θ

F(k, x)

θp , (17)

and

Ψ(wσ)

Φ(wσ)
=

T

∑
k=1

F(k, wσ(k)) +
µ

λ

T

∑
k=1

G(k, wσ(k))

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

≥

T

∑
k=1

F(k, σ) +
µ

λ
Gσ

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

. (18)

Since µ < δλ,g, we have

µ <

(T + 1)
p(p−2)

4 θp − λp
T

∑
k=1

max
|x|≤θ

F(k, x)

pGθ
,

which implies

p

(T + 1)
p(p−2)

4

T

∑
k=1

max
|x|≤θ

F(k, x) +
µ

λ
Gθ

θp <
1
λ

.

Also,

µ <

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
− λ

T

∑
k=1

F(k, σ)

Gσ
,
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so
T

∑
k=1

F(k, σ) +
µ

λ
Gσ

(T + 1)
p(p−2)

4

p
θp

>
1
λ

.

Therefore,

p

(T + 1)
p(p−2)

4

T

∑
k=1

max
|x|≤θ

F(k, x) +
µ

λ
Gθ

θp <
1
λ
<

T

∑
k=1

F(k, σ) +
µ

λ
Gσ

(T + 1)
p(p−2)

4

p
θp

. (19)

Hence, from (17)–(19), condition (a1) of Theorem 1 is satisfied.
Finally, since µ < δλ,g, we can fix l > 0 such that

lim sup
|x|→+∞

supk∈[1,T]N0
G(k, x)

xp < l

and µl <
(T + 1)

p(p−2)
4

pT
. Therefore, there exists a function $ ∈ R such that

G(k, x) ≤ lxp + $, (20)

for every (k, x) ∈ [1, T]N0 × R. Now fix 0 < γ <
1

λΘ1

(
(T+1)

p(p−2)
4

p − µlT

)
. From (A2),

there is a function τ ∈ R such that

T
Θ1

F(k, x) ≤ γ|x|p + τ, (21)

for every (k, x) ∈ [1, T]N0 ×R. In view of (7), from (20) and (21), for each u ∈W, we have

Iλ(u) = Φ(u)− λΨ(u) ≥ 1
p
(T + 1)

p(p−2)
4 ‖u‖p − λ

T

∑
k=1

[F(k, u(k)) +
µ

λ
G(k, u(k))]

≥ 1
p
(T + 1)

p(p−2)
4 ‖u‖p −

λΘ1(γ
T

∑
k=1
|u(k)|p + τ)

T
− µ(l

T

∑
k=1
|u(k)|p + $)

≥
(

1
p
(T + 1)

p(p−2)
4 − λΘ1γ− µlT

)
‖u‖p − λΘ1τ

T
− µ$,

and so
lim

‖u‖→+∞
Φ(u)− λΨ(u) = +∞.

That is, the functional Iλ is coercive. From (17)–(19) we also have

λ ∈
(

Φ(wσ)

Ψ(wσ)
,

r
supΦ(u)≤r Ψ(u)

)
,

and so condition (a2) of Theorem 1 holds. Theorem 1 then assures the existence of three
critical points for the functional Iλ that correspond to solutions to the problem (1). This
completes the proof of the theorem.
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We next present two variants of Theorem 4. Instead of an asymptotic condition on the
function g, in the first result, the functions f and g are assumed to be non-negative. In the
second one, the function g is taken to be non-negative.

For the first theorem, let us fix positive constants θ1, θ2, and σ such that

3
2

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
T

∑
k=1

F(k, σ)

<
(T + 1)

p(p−2)
4

p
min


θ

p
1

T

∑
k=1

max
|x|≤θ1

F(k, x)

,
θ

p
2

2
T

∑
k=1

max
|x|≤θ2

F(k, x)

,

and take
λ ∈ Λ′ :=

3
2

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
T

∑
k=1

F(k, σ)

,

(T + 1)
p(p−2)

4

p
min


θ

p
1

T

∑
k=1

max
|x|≤θ1

F(k, x)

,
θ

p
2

2
T

∑
k=1

max
|x|≤θ2

F(k, x)



.

Theorem 5. Assume that there exist three positive constants θ1, θ2, and σ with

p√2θ1 < p

√√√√ p

(T + 1)
p(p−2)

4

(
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

)
<

θ2
p
√

2
, (22)

such that

(B1) f (k, x) ≥ 0 for each (k, x) ∈ [1, T]N0 ×R;

(B2) max


T

∑
k=1

max
|x|≤θ1

F(k, x)

θ
p
1

,
2

T

∑
k=1

max
|x|≤θ2

F(k, x)

θ
p
2


< 2

3
(T+1)

p(p−2)
4

pσ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

T

∑
k=1

F(k, σ).

Then, for each λ ∈ Λ′ and for every non-negative continuous function g : [1, T]N0 ×R→ R,
there exists δ∗λ,g > 0 given by

min


(T + 1)

p(p−2)
4 θ

p
1 − pλ

T

∑
k=1

max
|x|≤θ1

F(k, x)

pGθ1
,

(T + 1)
p(p−2)

4 θ
p
2 − 2pλ

T

∑
k=1

max
|x|≤θ2

F(k, x)

2pGθ2


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such that, for each µ ∈ [0, δ∗λ,g), problem (1) admits at least three distinct non-negative weak
solutions ui, i = 1, 2, 3, such that

0 ≤ ui(k) < θ2, for all k ∈ [1, T]N0 , i = 1, 2, 3.

Proof. In order to apply Theorem 2, we consider the auxiliary problem{
T+1∇α

k (k∇α
0(u(k))) + k∇α

0(T+1∇α
k (u(k))) + ϕp(u(k)) = λ f̂ (k, u(k)) + µg(k, u(k)),

u(0) = u(T + 1) = 0,
(23)

where f̂ : [1, T]N0 ×R→ R is the continuous function defined by

f̂ (k, ξ) =


f (k, 0), if ξ < −θ2,
f (k, ξ), if − θ2 ≤ ξ ≤ θ2,
f (k, θ2), if ξ > θ2.

If any solution to the problem (1) satisfies the condition −θ2 ≤ u(k) ≤ θ2 for every
k ∈ [1, T]N0 , then any weak solution to problem (23) is also a weak solution to (1). Therefore,
it suffices to show that our conclusion holds for (1).

Fix λ, g, and µ as in the conclusion of the theorem and take Φ and Ψ as in (8) and (9).
We note that as before, the regularity assumptions of Theorem 2 on Φ and Ψ are satisfied.
We need to show that conditions (b1) and (b2) hold.

To this end, we choose

wσ(k) =

{
σ, k ∈ [1, T]N0 ,
0, k ∈ 0, T + 1,

r1 :=
(T + 1)

p(p−2)
4

p
θ

p
1 , and r2 :=

(T + 1)
p(p−2)

4

p
θ

p
2 .

In view of (22), we see that 2r1 < Φ(wσ) <
r2

2
. Since µ < δ∗λ,g and Gσ ≥ 0, taking (15) into

account, we have

sup
u∈Φ−1(−∞,r1)

Ψ(u)

r1
≤

supu∈Φ−1(−∞,r1)

T

∑
k=1

F(k, u(k)) + sup
u∈Φ−1(−∞,r1)

µ

λ

T

∑
k=1

G(k, u(k))

r1

≤

T

∑
k=1

max
|x|≤θ1

F(k, x) +
µ

λ
Gθ1

(T + 1)
p(p−2)

4

p
θ

p
1

<
1
λ
<

2
3

T

∑
k=1

F(k, σ) +
µ

λ
Gσ

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

≤ 2
3

T

∑
k=1

F(k, σ) +
µ

λ

T

∑
k=1

G(k, wσ(k))

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

=
2
3

Ψ(wσ)

Φ(wσ)
(24)



Axioms 2023, 12, 991 13 of 20

and

2 sup
u∈Φ−1(−∞,r2)

Ψ(u)

r2
= 2

supu∈Φ−1(−∞,r2)

T

∑
k=1

F(k, u(k)) + sup
u∈Φ−1(−∞,r2)

µ

λ

T

∑
k=1

G(k, u(k))

r2

≤ 2

T

∑
k=1

max
|x|≤θ2

F(k, x) +
µ

λ
Gθ2

(T + 1)
p(p−2)

4

p
θ

p
2

<
1
λ
<

2
3

T

∑
k=1

F(k, σ) +
µ

λ
Gσ

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

≤ 2
3

T

∑
k=1

F(k, σ) +
µ

λ

T

∑
k=1

G(k, wσ(k))

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

=
2
3

Ψ(wσ)

Φ(wσ)
.

Therefore, conditions (b1) and (b2) of Theorem 2 are satisfied.
Finally, to show that Iλ = Φ− λΨ satisfies condition 2 of Theorem 2, let u1 and u2 be

two local minima of Iλ. Then u1 and u2 are critical points of Φ− λΨ, and so they are weak
solutions to the problem (1). We want to prove that they are non-negative, so let u0 be a weak
solution to (1). Arguing by contradiction, assume that the setA =

{
k ∈ [1, T]N0 : u0(k) < 0

}
is non-empty and of positive measure. Set v̄(k) = min{0, u0(k)} for all k ∈ [1, T]N0 . Clearly,
v̄s. ∈W and

T

∑
k=1

(k∇α
0u0(k))(k∇α

0 v̄(k)) + (T+1∇α
k u0(k))(T+1∇α

k v̄(k)) +
1
p

T

∑
k=1
|u0(k)|p−2u0(k)v̄(k)

− λ
T

∑
k=1

f (k, u0(k))v̄(k)− µ
T

∑
k=1

g(k, u0(k))v̄(k) = 0.

Thus, from our sign assumptions,

0 ≤ (T + 1)
p(p−2)

4 ‖u‖p
A ≤∑

A
(k∇α

0u0(k))
2 + (T+1∇α

k u0(k))
2 +

1
p ∑
A
|u0(k)|p

= λ ∑
A

f (k, u0(k))u0(k) + µ ∑
A

g(k, u0(k))u0(k) ≤ 0.

Hence, ‖u0‖A = 0, which is a contradiction, and so u1(k) ≥ 0 and u2(k) ≥ 0 for every
k ∈ [1, T]N0 . It follows that su1 + (1− s)u2 ≥ 0 for all s ∈ [0, 1], and

(λ f + µg)(x, su1 + (1− s)u2) ≥ 0.

and so Ψ(su1 + (1− s)u2) ≥ 0 for every s ∈ [0, 1]. From Theorem 2, for every

λ ∈

3
2

Φ(w)

Ψ(w)
, min

 r1

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)
,

r2/2
sup

u∈Φ−1(]−∞,r2[)

Ψ(u)


,
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the functional Φ− λΨ has at least three distinct critical points that in turn are solutions to
the problem (1). This proves the theorem.

Remark 1. In Theorems 4 and 5, if either f (k, 0) 6= 0 for some k ∈ [1, T]N0 or g(k, 0) 6= 0 for
some k ∈ [1, T]N0 , then the solutions obtained from the theorems are non-trivial.

Remark 2. If, in Theorem 4, f (·, x) and g(·, x) are odd functions in x, then we are guaranteed the
existence of at least five distinct weak solutions. The reason for this is that if u is a nontrivial weak
solution, then −u is a weak solution since satisfies the equation

T

∑
k=1

(k∇α
0(−u(k)))(k∇α

0v(k)) + (T+1∇α
k (−u(k)))(T+1∇α

k v(k))

+
T

∑
k=1
|(−u(k))|p−2(−u(k))v(k)− λ

T

∑
k=1

f (k, (−u(k)))v(k)− µ
T

∑
k=1

g(k, (−u(k)))v(k) = 0

for every v ∈W.

Remark 3. If we consider the autonomous case of (1) (i.e., the functions f and g do not explicitly
depend on k), namely,{

T+1∇α
k (k∇α

0(u(k))) +k ∇α
0(T+1∇α

k (u(k))) + ϕp(u(k)) = λ f (u(k)) + µg(u(k)),
u(0) = u(T + 1) = 0,

(25)

where f , g : R→ R are non-negative, continuous, and not identically zero functions, then putting
F(x) =

∫ x
0 f (ξ)dξ, for each x ∈ R, in Theorem 4 the conditions (A1) and (A2) take the form

(Â1)
max|x|≤θ F(x)

θp <
(T + 1)

p(p−2)
4

pσ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

F(σ);

(Â2) T lim sup
|x|→∞

F(x)
xp < Θ where

Θ :=
T max|x|≤θ F(x)

(T + 1)
p(p−2)

4

p
θp

,

respectively. In addition,

Λ :=


σ2

(Γ(1−α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

TF(σ)
,
(T + 1)

p(p−2)
4 θp

pT max
|x|≤θ

F(x)

,

and δ̂λ,g =

min


(T + 1)

p(p−2)
4 θp − λpT max

|x|≤θ
F(x)

pGθ
,

∣∣∣∣∣∣∣∣∣∣
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
− λTF(σ)

min{0, Gσ}

∣∣∣∣∣∣∣∣∣∣

.

In this case, condition (B2) in Theorem 5 takes the form

(B̂2) max

{
max|x|≤θ1

F(x)

θ
p
1

,
2 max|x|≤θ2

F(x)

θ
p
2

}
<

2
3

(T + 1)
p(p−2)

4

pσ2

(Γ(1−α))2 ∑T
k=1 |(k)−α|2 + Tσp

F(σ).
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Moreover,

Λ′ :=

3
2

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

TF(k)
,

(T + 1)
p(p−2)

4

Tp
min

{
θ

p
1

max|x|≤θ1
F(x)

,
θ

p
2

2 max|x|≤θ2
F(x)

}
and

δ∗λ,g = min


(T + 1)

p(p−2)
4 θ

p
1 − pλT max

|x|≤θ1

F(x)

pGθ1
,
(T + 1)

p(p−2)
4 θ

p
2 − 2pλT max|x|≤θ2

F(x)
2pGθ2

.

As a special case of Theorem 4, we have the following theorem in which the functions
f and g are autonomous.

Theorem 6. Assume that

lim inf
x→0

F(x)
xp = lim sup

x→+∞

F(x)
xp = 0. (26)

Then, there exists λ∗ > 0 such that for each λ > λ∗ and every non-negative continuous function
g : R→ R satisfying

lim sup
x→+∞

G(x)
|x|p < +∞,

there exists δ > 0 such that, for each µ ∈ [0, δ), the problem (25) admits at least three distinct
solutions.

Proof. Fix λ > λ∗ :=

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

TF(σ)
for some σ ≥ 0. From (26), there

is a sequence {θn} ⊂ (0,+∞) such that lim
n→∞

θn = 0 and limn→+∞

sup
|ξ|≤θn

F(ξ)

θ
p
n

= 0. We

then have

lim
n→∞

sup
|ξ|≤θn

F(ξ)

θ
p
n

= lim
n→∞

F(ξθn)

ξ
p
θn

ξ
p
θn

θ
p
n

= 0,

where F(ξθn) = sup
|ξ|≤θn

F(ξ). Hence, there exists θ > 0 such that

sup|x|≤θ F(x)

θ
p < min


(T + 1)

p(p−2)
4

pσ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

F(σ),
(T + 1)

p(p−2)
4

λpT


and

θ < p

√√√√ p

(T + 1)
p(p−2)

4

(
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p

)
.
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Applying Theorem 4 proves the theorem.

The following example illustrates Theorem 6.

Example 1. Let T = 2, p = 5, and consider the problem{
3∇α

k (k∇α
0(u(k))) + k∇α

0(3∇α
k (u(k))) + ϕ5(u(k)) = λ f (u(k)),

u(0) = u(3) = 0,
(27)

where α =
1
2

and

f (ξ) =

6ξ5, if ξ ≤ 1,
6
ξ
+ sin2(ξ − 1), if ξ > 1.

From f , we have

F(ξ) =

ξ6, if ξ ≤ 1,

6 ln(ξ) +
1
2

ξ − 1
4

sin 2(ξ − 1) +
1
2

, if ξ > 1.

and

lim
x→0+

F(x)
x5 = lim

x→+∞

F(x)
x5 = 0.

Taking σ = 1, we see that all the conditions of Theorem 6 are satisfied. Therefore, for each

λ >
1

2(Γ( 1
2 ))

2

2

∑
k=1
|(k)−

1
2 |2 + 1

5

and for every non-negative continuous function g : R→ R satisfying

lim sup
x→+∞

G(x)
|x|5 < +∞,

there exists δ > 0 such that, for each µ ∈ [0, δ), problem (27) admits at least three distinct solutions.

The next result is a consequence of Theorem 5. Again here, f and g are independent
of k.

Theorem 7. Let f : R→ R be a non-negative continuous function such that

lim
x→0+

f (x)
x3 = 0

and

F(100) <
3× 108 × (Γ( 1

2 ))
2

12(Γ( 1
2 ))

2 + 8(Γ( 3
2 ))

2
F(1).

Then, for every λ ∈
(

9(Γ( 1
2 ))

2 + 6(Γ( 3
2 ))

2

4F(1)(Γ( 1
2 ))

2
,

9× 108

16F(100)

)
and for every nonnegative continuous

function g : R → R, there exists δ > 0 such that, for each µ ∈ [0, δ), (25) admits at least three
distinct non-negative solutions.
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Proof. Our aim is to employ Theorem 5 by taking T = 2, p = 4, α =
1
2

, σ = 1, and θ2 = 100.
Simple calculations show that

3
2

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσp

p
T

∑
k=1

F(σ)

=
9(Γ( 1

2 ))
2 + 6(Γ( 3

2 ))
2

4F(1)(Γ( 1
2 ))

2

and
(T + 1)

p(p−2)
4

p
θ

p
2

2
T

∑
k=1

max
|x|≤θ2

F(x)

=
9× 108

16F(100)
.

Moreover, since lim
x→0+

f (x)
x3 = 0, we have

lim
x→0+

∫ x

0
f (ξ)dξ

x4 = 0.

Then there exists a positive constant

θ1 < 4

√√√√12(Γ( 1
2 ))

2 + 8(Γ( 3
2 ))

2

36(Γ( 1
2 ))

2

such that
F(θ1)

θ4
1

<
6(Γ( 1

2 ))
2F(1)

6(Γ( 1
2 ))

2 + 4(Γ( 3
2 ))

2

and
θ4

1
F(θ1)

>
9× 108

16F(100)
.

The conditions of Theorem 5 are satisfied, and this proves the theorem.

We end this paper by presenting the following versions of Theorems 4 and 5 for the
case where p = 2.

Theorem 8. Assume that there exist two positive constants θ and σ with

θ <

√√√√2

(
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσ2

2

)

such that
T

∑
k=1

max
|x|≤θ

F(k, x)

θ2 <
1

2σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσ2

T

∑
k=1

F(k, σ)

and
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T lim sup
|x|→∞

F(k, x)
x2 < Θ uniformly with respect to k ∈ [1, T]N0 , where

Θ :=

2
T

∑
k=1

max
|x|≤θ

F(k, x)

θ2 .

Then, for each

λ ∈


σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσ2

2
T

∑
k=1

F(k, σ)

,
θ2

2
T

∑
k=1

max
|x|≤θ

F(k, x)

,

and for every continuous function g : [1, T]N0 ×R→ R satisfying

lim sup
|x|→+∞

supk∈[1,T]N0
G(k, x)

x2 < +∞,

there exists δλ,g > 0 given by

δλ,g := min


δλ,g,

1

max

{
0, 2T lim sup

|x|→+∞

supk∈[1,T]N0
G(k, x)

x2

}


where

δλ,g = min


θ2 − 2λ

T

∑
k=1

max
|x|≤θ

F(k, x)

2Gθ
,

∣∣∣∣∣∣∣∣∣∣
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσ2

2
− λ

T

∑
k=1

F(k, σ)

min{0, Gσ}

∣∣∣∣∣∣∣∣∣∣


such that, for each µ ∈ [0, δλ,g), the problem{

T+1∇α
k (k∇α

0(u(k))) + k∇α
0(T+1∇α

k (u(k))) + u(k) = λ f (k, u(k)) + µg(k, u(k)),
u(0) = u(T + 1) = 0,

(28)

admits at least three distinct weak solutions in W.

Theorem 9. Assume that there exist three positive constants θ1, θ2, and σ, with

√
2θ1 <

√√√√2

(
σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσ2

2

)
<

θ2√
2

,

such that
f (k, x) ≥ 0 for each (k, x) ∈ [1, T]N0 ×R

and
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max


T

∑
k=1

max
|x|≤θ1

F(k, x)

θ2
1

,

2
T

∑
k=1

max
|x|≤θ2

F(k, x)

θ2
2

 <
2
3

1

2σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσ2

T

∑
k=1

F(k, σ).

Then, for each

λ ∈

3
2

σ2

(Γ(1− α))2

T

∑
k=1
|(k)−α|2 + Tσ2

2
T

∑
k=1

F(k, σ)

, min


θ2

1

2
T

∑
k=1

max
|x|≤θ1

F(k, x)

,
θ2

2

4
T

∑
k=1

max
|x|≤θ2

F(k, x)



,

and for every non-negative continuous function g : [1, T]N0 × R → R, there exists δ∗λ,g > 0
given by

min


θ2

1 − 2λ
T

∑
k=1

max
|x|≤θ1

F(k, x)

2Gθ1
,

θ2
2 − 4λ

T

∑
k=1

max
|x|≤θ2

F(k, x)

4Gθ2


such that, for each µ ∈ [0, δ∗λ,g), the problem (28) admits at least three distinct non-negative weak
solutions ui for i = 1, 2, 3, such that

0 ≤ ui(k) < θ2, for all k ∈ [1, T]N0 , i = 1, 2, 3.

4. Discussion

In this paper, we used two the critical point theorems [17,18] to obtain two new results
that ensure the existence of at least three weak solutions to the problem under discussion,
namely, (1). In our first main result, Theorem 4, under modest conditions on the nonlinear
functions f and g, we were able to obtain the existence of three solutions to our problem.

Based on this result (Theorem 4), we were able to present some variant results, one
of which showed that the three solutions obtained were uniformly bounded. An example
illustrates some of the results.
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