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Abstract: In this paper, we investigate a delayed matrix exponential and utilize it to derive a rep-
resentation of solutions to a linear nonsingular delay problem with permutable matrices. To begin
with, we present a novel definition of α-exponential stability for these systems. Subsequently, we
put forward several adequate conditions to ensure the α-exponential stability of solutions for such
delay systems. Moreover, by constructing a Grammian matrix that accounts for delays, we provide a
criterion to determine the relative controllability of a linear problem. Additionally, we extend our
analysis to nonlinear problems. Lastly, we offer several examples to verify the effectiveness of our
theoretical findings.
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1. Introduction

Delay systems are common in various engineering applications, ranging from chemical
processes to mechanical systems. The presence of time delays in these systems can cause
instability and oscillatory behavior, which can be destructive to the performance and
reliability of the system. Consequently, the investigation into the stability and controllability
of time-delay systems has garnered substantial research attention over the years. In [1],
the concept of delayed matrix exponential was introduced by the authors. They utilized
this concept to derive a representation of solutions for a linear delay problem, specifically
when permutable matrices are taken into account. In a subsequent work by [2], by using
the concepts presented in [1], the authors extended those ideas to a discrete matrix delayed
exponential function and investigated the representation of solutions to linear discrete delay
systems. Motivated by the works of [1,2], numerous scholars have focused on investigating
a wide range of delay systems involving permutable matrices. For a comprehensive
understanding of delay systems, we refer interested readers to the following papers: [3–20].
These references delve into various aspects related to the aforementioned systems.

Exponential stability is a very important property of a control system. It is related to the
behavior of the system under continuous parameter variations. As for exponential stability,
it is crucial for linear control systems because it ensures that the output signals remain ap-
proximately constant in the presence of noise and parameter variations. Here, we present a
new definition of exponential stability for the investigated systems [4,5,7,11,13,16,18,21–24].

Control theory has attracted a lot of research interest for many years, with the aim
of designing efficient and robust control strategies for various engineering applications.
Relative controllability is an important concept in control theory, which measures the ability
of a control input to guide the system from one state to another. Specifically, we examine
the relative controllability of a conformable delay system by employing the concept of
null controllability. Null controllability is a fundamental property of linear systems that
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has been widely studied in the literature and provides a powerful tool for analyzing the
controllability of nonlinear systems [3,8,13–15,17,25–29].

In this paper, we build upon the concepts introduced in [1,3,5] to investigate the
α-exponential stability and relative controllability of investigated systems. Initially, we
focus on the α-exponential stability analysis of systems{

BD0
αz(ζ) = Fz(ζ) + Pz(ζ − κ), ζ ≥ 0, κ ≥ 0,

z(ζ) = ψ(ζ), − κ ≤ ζ ≤ 0,
(1)

and {
BD0

αz(ζ) = Fz(ζ) + Pz(ζ − κ) + m(ζ, z(ζ)), ζ ≥ 0, κ ≥ 0,

z(ζ) = ψ(ζ), − κ ≤ ζ ≤ 0,
(2)

and {
BD0

αz(ζ) = Fz(ζ) + Pz(ζ − κ) + l(ζ, z(ζ − κ)), ζ ≥ 0, κ ≥ 0,

z(ζ) = ψ(ζ), − κ ≤ ζ ≤ 0,
(3)

here D0
α(0 < α < 1) represents the conformable derivative with lower index zero (see

Definition 1 [30]), B, F, P ∈ Rn×n are constant permutable matrices and B is a nonsingular
matrix and ψ ∈ C1([−κ, 0],Rn). Together with, m, l ∈ C([0,+∞]×Rn,Rn). Also we are
going to discuss the relatively controllability of{

BD0
αz(ζ) = Fz(ζ) + Pz(ζ − κ) + y(ζ, z(ζ)) + Jv(ζ), ζ ∈ I, κ ≥ 0,

z(ζ) = ψ(ζ), − κ ≤ ζ ≤ 0,
(4)

where I := [0, ζ1], ζ1 > 0, J ∈ Rn, y ∈ C(I ×Rn,Rn) and the control function v(·) takes
values from L2(I,Rn).

We investigate sufficient conditions to ensure the α-exponential stability of solutions
to Equations (1)–(3) using Gronwall inequality techniques. Additionally, we explore the
application of a delay Grammian matrix in establishing both sufficient and necessary
conditions for relative controllability in linear delayed systems. The discussion also extends
to nonlinear problems, employing Krasnoselskii’s fixed point theorem.

The remainder of this paper is structured as follows. In Section 2, we provide relevant
notations, concepts, and lemmas, along with a representation of solutions to investigated
systems. Section 3 is dedicated to the study of α-exponential stability of solutions for
Equations (1)–(3). The relative controllability of system (4) is investigated in Section 4.
Finally, we present numerical examples in the Section 5 to illustrate our main findings.

2. Preliminaries

Let Rn represent the n-dimensional Euclidean space with the vector norm ‖ · ‖, and
Rn×n denote the n× n matrix space with real-valued elements. For z ∈ Rn and F ∈ Rn×n,
we define ‖z‖ = max1≤i≤n |zi| and ‖F‖ = max1≤i≤n ∑n

j=1 | fij|, here, zi ∈ z and fij ∈ F. Let
z lies in Banach space C(I,Rn), ‖z‖C = supζ∈I ‖z(ζ)‖. Furthermore, we define the norm
‖ψ‖C = supζ∈[−κ,0] ‖ψ(ζ)‖. Let Y1, Y2 be two Banach spaces, Lb(Y1, Y2) stands for the space
of all bounded linear operators from Y1 to Y2. Additionally, Lg(I, Y2) stands for the Banach
space of functions x : I → Y2 that are Bochner integrable, with the norm ‖y‖Lg(I,Y2)

(where
1 < g < ∞).

Consider the matrices Θ and I , where Θ represents the zero matrix and I represents
the identity matrix. Similar to Lemma 2.1 (You and Wang 2019 [21]), we introduce the
following lemma without proof.
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Lemma 1. Suppose Ω lie in a constant n× n matrix. If ‖Ω‖ ≤ βeβκ , β ∈ R+, then

‖eΩ(ζ−κ)
κ,α ‖ ≤ e

β
α ζα

, ζ ∈ R, (5)

where

eΩζ
κ,α =



Θ, −∞ < ζ < −κ, κ > 0

I , − κ ≤ ζ ≤ 0,

I + Ω
ζα

α
+ Ω2 1

2!

(
(ζ − κ)α

α

)2

+ Ω3 1
3!

(
(ζ − 2κ)α

α

)3

+ · · ·+ Ωk 1
k!

(
(ζ − (k− 1)κ)α

α

)k
, (k− 1)κ ≤ ζ < kκ, k = 1, 2, · · · ,

(6)

(this is referred to as the delayed matrix exponential (see [1])).

Remark 1. Clearly, (5) is reflated to α-time power function, which is different from 1-time power
function in Lemma 2.1 (You and Wang 2019 [21]).

From (6), the uniform continuity of eΩ·
κ,α on a compact interval can be observed easily.

By employing the transformation x = Bz in Equation (1), we obtain{
D0

αx(ζ) = FB−1x(ζ) + PB−1x(ζ − κ), ζ ≥ 0, κ ≥ 0,

x(ζ) = Bψ(ζ), − κ ≤ ζ ≤ 0,
(7)

Using Theorem 3.4 [31], for (7), we have

x(ζ) = P(ζ)eFB−1 κα

α Bψ(−κ) +
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds, (8)

where P(ζ) = eFB−1 ζα

α eP1B−1ζ
κ,α and P1 = eFB−1 (ζ−κ)α−ζα

α P satisfying initial condition ([31])

P(ζ) = e−A (−ζ)α

α ,−κ ≤ ζ < 0, where

eA ζα

ζ :=

eA ζα

α , ζ ≥ 0,

e−A (−ζ)α

α , − κ ≤ ζ ≤ 0.
(9)

Now substituting x = Bz into (8), by solving it, we can observe that any solution of
Equation (1) takes the form

z(ζ) = P(ζ)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds, (10)

where FB = BF, FP = PF, PB = BP are employed.
Likewise, by utilizing the transformation x = Bz in{

BD0
αz(ζ) = Fz(ζ) + Pz(ζ − κ) + v(ζ), ζ ≥ 0, κ ≥ 0,

z(ζ) = ψ(ζ), − κ ≤ ζ ≤ 0,
(11)

one has {
D0

αx(ζ) = FB−1x(ζ) + PB−1x(ζ − κ) + v(ζ), ζ ≥ 0, κ ≥ 0,

x(ζ) = Bψ(ζ), − κ ≤ ζ ≤ 0,
(12)

(here x : [0,+∞)→ Rn is continuous).
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Using Theorem 3.5 [31], for (12), we have

x(ζ) = P(ζ)eFB−1 κα

α Bψ(−κ) +
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α v(s)sα−1ds. (13)

Now substituting x = Bz into (13), upon solving it, it becomes evident that the form
of any solution to Equation (11) is given by

z(ζ) = P(ζ)eGB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α v(s)sα−1ds.

Likewise, the solution to Equation (2) is given by

z(ζ) = P(ζ)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α m(s, z(s))sα−1ds, (14)

and the form of any solution to Equation (3) is given by

z(ζ) = P(ζ)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α l(s, z(s− κ))sα−1ds. (15)

Based on the representation (15) since D0
αψ exists (i.e., ψ ∈ D0

α([−κ, 0],Rn)), here is the
presented definition.

Definition 1. The α-exponential stability is attributed to the trivial solution of (1) (or (2), (3)),
provided that positive constants c1, c2, δ exist, depending on B, F, P and ‖ψ‖1, where ‖ψ‖1 :=
max
[−κ,0]

‖ψ‖+ max
[−κ,0]

‖D0
αψ‖, catering to ‖z(ζ)‖ ≤ c1e−c2ζα

, ζ ≥ 0, for ‖ψ‖1 < δ, here, z represents

any solution to (1) (or (2), (3)).

Definition 2 (see [3]). Equation (4) to be relatively controllable, suppose there exists an arbitrary
initial vector function ψ ∈ C1([−κ, 0],Rn), and a final state of the vector z1 ∈ Rn at ζ1. If there is
a control v ∈ L2(I,Rn) such that Equation (4) has a solution z ∈ C([−κ, ζ1],Rn) satisfying the
boundary condition z(ζ1) = z1.

3. α-Exponential Stability

This section focuses on examining the α-exponential stability of solutions in con-
formable systems. We take into account the following hypotheses .

(H1) Set σ(FB−1) = {λ1, λ2, · · ·, λn} be the eigenvalues of FB−1 with

Reλ1 ≤ Reλ2 ≤ · · · ≤ Reλn ≤ −k < 0, k > 0,

i.e., for 0 < α < 1, there exist W, w > 0 such that

‖eFB−1 ζα

α ‖ ≤We−w ζα

α for all ζ ≥ 0.

(H2) Suppose ‖P1B−1‖ ≤ βeβκ for β ∈ R+.
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(H3) For ζ ≥ 0 and z ∈ Rn, there is a positive constant L such that the inequality
‖m(ζ, z)‖ ≤ L‖z‖ holds.

(H4) For ζ ≥ 0 and z ∈ Rn, there is a positive constant Q such that the inequality
‖l(ζ, z)‖ ≤ Q‖z‖ holds.

(H5) Suppose β− w < 0.

(H6) Suppose ‖B−1‖W2Lew κα

α + β− w < 0.

(H7) Suppose ‖B−1‖W2Qew κα

α + β− w < 0.

Lemma 2. Under the hypotheses (H1) and (H2), the inequality

‖P(ζ)eFB−1 κα

α ‖ ≤W2eβ κα

α e
(β−w)ζα

α , β, ζ ∈ R+. (16)

holds.

Proof. From (H1) and (H2) via Lemma 1, we have

‖P(ζ)eFB−1 κα

α ‖ ≤ ‖eFB−1 ζα

α ‖‖eP1B−1ζ
κ,α ‖‖eFB−1 κα

α ‖

≤ We−w ζα

α eβ
(ζ+κ)α

α We−w κα

α

≤ W2e
(β−w)ζα+β|(ζ+κ)α−ζα |

α

≤ W2eβ κα

α e
(β−w)ζα

α .

Thus, the proof is concluded.

At present, we are prepared to provide adequate conditions for the α-exponential
stability of solutions in investigated systems.

Theorem 1. Under the hypotheses (H1), (H2) and (H5), the solution of Equation (1) exhibits
α-exponential stability.

Proof. It is worth noting that the solution of (1) takes the form (10). Now from (10) we get

‖z(ζ)‖ ≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
W2ew κα

α e
(β−w)(ζ−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
W2ew κα

α e
(β−w)[(ζ−s)α−ζα ]+(β−w)ζα

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

≤ W2eβ κα

α e
(β−w)tα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
W2ew κα

α e
(β−w)|(ζ−s)α−ζα |+(β−w)ζα

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

≤W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
W2ew κα

α e
(β−w)(−s)α+(β−w)ζα

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

≤ U(ψ,D0
αψ)e

(β−w)ζα

α ,

where

U(ψ,D0
αψ) = W2

(
eβ κα

α ‖ψ(−κ)‖+ ‖B−1‖
∫ 0

−κ
ew κα

α e
(β−w)(−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

)
> 0.
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Now if we choose D0
αψ small enough, then 0 ≤ M(ψ,D0

αψ) < δ by (H5).

Theorem 2. Under the hypotheses (H1), (H2), (H3) and (H6), the solution of Equation (2) ex-
hibits α-exponential stability.

Proof. It is important to note that the solution of Equation (2) takes the form (14). Let t ≥ 0.
From (14), using (H1)− (H3) via (16), we get

‖z(ζ)‖ ≤ ‖P(ζ)eFB−1 κα

α ‖‖ψ(−κ)‖+ ‖B−1‖
∫ 0

−κ
‖P(ζ − κ − s)eFB−1 κα

α ‖‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖
∫ ζ

0
‖P(ζ − κ − s)eFB−1 κα

α ‖‖m(s, z(s))‖sα−1ds

≤ W2eβ κα

α e
(β−w)tα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
W2ew κα

α e
(β−w)ζ−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖
∫ ζ

0
W2ew κα

α e
(β−w)(ζ−s)α

α L||z(s)||sα−1ds

≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
W2ew κα

α e
(β−w)(−s)α+(β−w)ζα

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖
∫ ζ

0
W2ew κα

α e
(β−w)(−s)α ]+(β−w)ζα

α L||z(s)||sα−1ds

≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
W2ew κα

α e(β−w) ζα

α e(β−w) (−s)α
α ‖BD0

αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖
∫ ζ

0
W2ew κα

α e(β−w) ζα

α e(β−w) (−s)α
α L||z(s)||sα−1ds

≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α e(β−w) ζα

α

∫ 0

−κ
e(β−w) (−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖LW2ew κα

α e(β−w) ζα

α

∫ ζ

0
e(β−w) (−s)α

α ||z(s)||sα−1ds,

so,

e(w−β) ζα

α ‖z(ζ)‖ ≤ U(ψ,D0
αψ) + ‖B−1‖LW2ew κα

α

∫ ζ

0
e(β−w) (−s)α

α ‖z(s)‖sα−1ds.

By employing the classical Gronwall inequality and Equation (9), we obtain

e(w−β) ζα

α ‖z(ζ)‖ ≤ U(ψ,D0
αψ)e‖B

−1‖W2Lew κα
α ζα

α ,

this results in

‖z(ζ)‖ ≤ U(ψ,D0
αψ)e(‖B

−1‖W2Lew κα
α +β−w) ζα

α .

Based on (H6), the desired outcome is valid.

Theorem 3. Under the hypotheses (H1), (H2), (H4) and (H7), the solution of Equation (3) ex-
hibits α-exponential stability.
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Proof. It is known that the solution of Equation (3) can be expressed in the form of (15).
Let ζ ≥ 0, from (15), utilizing (H1), (H2) and (H4) via (16), we get

‖z(ζ)‖ ≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α

∫ 0

−κ
e
(β−w)[(ζ−s)α−ζα ]+(β−w)ζα

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2Qew κα

α

∫ ζ

0
e
(β−w)[(ζ−s)α−ζα ]+(β−w)ζα

α ||z(s− κ)||sα−1ds

≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α

∫ 0

−κ
e
(β−w)(−s)α+(β−w)ζα

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2Qew κα

α

∫ ζ

0
e
(β−w)(−s)α+(β−w)ζα

α ||z(s− κ)||sα−1ds

≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α

∫ 0

−κ
e(β−w) ζα

α e(β−w) (−s)α
α ‖BD0

αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2Qew κα

α

∫ ζ

0
e(β−w) ζα

α e(β−w) (−s)α
α ||z(s− κ)||sα−1ds

≤ W2eβ κα

α e
(β−w)ζα

α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α e(β−w) ζα

α

∫ 0

−κ
e(β−w) (−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2Qew κα

α e(β−w) ζα

α

∫ ζ

0
e(β−w) (−s)α

α ||z(s− κ)||sα−1ds.

This suggests that

e(w−β) ζα

α ‖z(ζ)‖ ≤ U(ψ,D0
αψ) + ‖B−1‖W2Qew κα

α

∫ ζ

0
e(β−w) (−s)α

α ‖z(s− κ)‖sα−1ds. (17)

Take note e(w−β) ζα

α ‖z(ζ)‖ = e(w−β) ζα

α ‖ψ(ζ)‖, ζ ∈ [−κ, 0]. Applied Lemma 2.4 of [21] to (17),
we can obtain

e(w−β) ζα

α ‖z(ζ)‖ ≤
(

U(ψ,D0
αψ) + ‖B−1‖W2Qew κα

α

∫ κ

0
e(β−w) (−s)α

α ‖ψ(s− κ)‖sα−1ds
)

e‖B
−1‖W2Qew κα

α ( ζα

α −
κα

α ),

which yields (from (9))

‖z(ζ)‖ ≤ U∗(ψ,D0
αψ)e(‖B

−1‖W2Qew κα
α +β−w) ζα

α .

whereU∗(ψ,D0
αψ) = [U(ψ,D0

αψ)+ ‖B−1‖W2Qew κα

α
∫ κ

0 e(β−w) (−s)α
α ‖ψ(s− κ)‖sα−1ds]e−‖B

−1‖
W2Qew κα

α κα

α > 0. It can be observed from (H7) that Equation (3) exhibits α-exponential
stability. Therefore, the proof is concluded.

4. Relative Controllability

We will examine the controllability relative to (4) in this section. It should be noted
that any solution to (4) can be displayed in the pattern of

z(ζ) = P(ζ)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α [y(s, z(s)) + Jv(s)]sα−1ds. (18)
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4.1. Linear Problem

Assuming y ≡ 0, we can turn (4) into the system{
BD0

αz(ζ) = Fz(ζ) + Pz(ζ − κ) + Jv(ζ), ζ ∈ I, κ ≥ 0,

z(ζ) = ψ(ζ), − κ ≤ ζ ≤ 0.
(19)

The introduction of a delay Grammian matrix is taken the form:

Mc[0, ζ1] =
∫ ζ1

0
B−1P(ζ1 − κ − s)eFB−1 κα

α J J>eFB−1 κα

α P>(ζ1 − κ − s)B−1>sα−1ds. (20)

where ·> represents the matrix’s transpose.

Theorem 4. The linear problem (19) exhibits relative controllability if and only if the matrix
Mc[0, ζ1] is nonsingular.

Proof. Sufficiency. As the matrix Mc[0, ζ1] is nonsingular, the existence of its inverse is
guaranteed.

A control function can be chosen in the following manner:

v(ζ) = J>eFB−1 κα

α P>(ζ1 − κ − ζ)B−1>M−1
c [0, ζ1]η,

where

η = z1 −P(ζ1)eFB−1 κα

α ψ(−κ)− B−1
∫ 0

−κ
P(ζ1 − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds.

Then

z(ζ1) = P(ζ1)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ1 − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ1

0
P(ζ1 − κ − s)eFB−1 κα

α J J>eFB−1 κα

α P>(ζ1 − κ − s)B−1>M−1
c [0, ζ1]ηsα−1ds (21)

= z1.

It is evident that the initial condition is satisfied as well. By applying Definition 2 and
Equation (21), we can conclude that (19) exhibits relative controllability.

Necessity. We will present a proof by contradiction. Let us assume that Mc[0, ζ1] is a
singular matrix, implying the existence of at least a non-zero state z̃ ∈ Rn meeting

z̃>Mc[0, ζ1]z̃ = 0.

Moreover, one can achieve

0 = z̃>Mc[0, ζ1]z̃

=
∫ ζ1

0
z̃>B−1P(ζ1 − κ − s)eFB−1 κα

α J J>eFB−1 κα

α P>(ζ1 − κ − s)B−1> z̃sα−1ds

= (eFB−1 κα

α )2
∫ ζ1

0
‖z̃>B−1P(ζ1 − κ − s)J‖2sα−1ds,

which implies that

z̃>B−1P(ζ1 − κ − s)J = (

n︷ ︸︸ ︷
0, · · · , 0) := 0>, ∀s ∈ I. (22)

Given that (19) exhibits relative controllability, according to Definition 2, there is one
control v1(ζ) that can steer the initial state to 0 at ζ1, i.e.,
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z(ζ1) = P(ζ1)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ1 − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ1

0
P(ζ1 − κ − s)eFB−1 κα

α Jv1(s)sα−1ds (23)

= 0.

Likewise, there is one control v2(ζ) capable of directing the initial state to the state z̃ at
ζ1, which can be represented as

z(ζ1) = P(ζ1)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ1 − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ1

0
P(ζ1 − κ − s)eFB−1 κα

α Jv2(s)sα−1ds (24)

= z̃.

From (23) and (24), one has

z̃ = B−1
∫ ζ1

0
P(ζ1 − κ − s)eFB−1 κα

α J[v2(s)− v1(s)]sα−1ds. (25)

Multiply both sides of (25) by z̃> and via (22) we have

z̃> z̃ =
∫ ζ1

0
z̃>B−1P(ζ1 − κ − s)eFB−1 κα

α J[v2(s)− v1(s)]sα−1ds

= eFB−1 κα

α

∫ ζ1

0
z̃>B−1P(ζ1 − κ − s)J[v2(s)− v1(s)]sα−1ds

= 0.

This leads to the conclusion that z̃ = 0, which contradicts the non-zero nature of z̃. Hence,
Mc[0, ζ1] is nonsingular. Thus, the proof is concluded.

4.2. Nonlinear Problem

Let us examine the following requirements:
[AW] : The operator M : L2(I,Rn)→ Rn defined as

Mv = B−1
∫ ζ1

0
P(ζ1 − κ − s)eFB−1 κα

α Jv(s)sα−1ds.

The operator M has an inverse, denoted as M−1, which operates on the space L2(I,Rn)/kerM.
Set U1 = ‖M−1‖Lb(Rn ,L2(I,Rn)/kerM). According to the Remark in Wang et al. (2017) [15],

it can be inferred that

U1 =
√
‖M−1

c [0, ζ1]‖, (26)

here, M−1
c [0, ζ1] is determined to (20). According to Theorem 4, M−1

c [0, ζ1] will be well-
defined if (19) exhibits relative controllability.

[AF] : The function y : I ×Rn → Rn is continuous and there is one constant h > 1 and
Ly(·) ∈ Lh(I,R+) meeting

‖y(ζ, z)− y(ζ, v)‖ ≤ Ly(ζ)‖z− v‖, z, v ∈ Rn.
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Theorem 5. Assuming that (H1), (H2), [AW] and [AF] hold true, it can be concluded that
system (4) exhibits relative controllability under the condition that

b
[
1 + W2U1‖B−1‖‖J‖ew κα

α e
(β−w)ζα

1
α

ζα
1

α

]
< 1, (27)

where b = ‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α
[ 1

gα−g+1 ζ
gα−g+1
1

] 1
g ‖Ly‖Lh(I,R+), and 1

g + 1
h = 1, g, h > 1.

Proof. By exploiting hypothesis [AW] for any z(·) ∈ C(I,Rn), defining one control function
vz(t) as follows:

vz(ζ) = M−1
[

z1 −P(ζ1)eFB−1 κα

α ψ(−κ)− B−1
∫ 0

−κ
P(ζ1 − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

−B−1
∫ ζ1

0
P(ζ1 − κ − s)eFB−1 κα

α y(s, z(s))sα−1ds
]
(ζ), ζ ∈ I. (28)

We demonstrate that by employing this control, the operator T : C(I,Rn) → C(I,Rn)
defined as follows:

(T z)(ζ) = P(ζ)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α y(s, z(s))sα−1ds

+B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α Jvz(s)sα−1ds,

The operator T has one fixed point z, which corresponds to a solution of (4).
We must verify (T z)(ζ1) = z1 and (T z)(0) = z0, indicating that vz guides the

system (4) from z0 to z1 within a finite time ζ1. This confirmation implies that system (4)
exhibits relative controllability over I.

For every positive number r, consider the set Sr = {z ∈ C(I,Rn) : ‖z‖C ≤ r}. Let
N = sup

ζ∈I
‖y(ζ, 0)‖. The proof will be divided into a couple of procedures.

Step 1. It is asserted that there is one positive constant r meeting T (Sr) ⊆ Sr.

Note that ∫ ζ

0
sα−1Ly(s)ds ≤

[ 1
gα− g + 1

ζ
gα−g+1
1

] 1
g ‖Ly‖Lh(I,R+),

and ∫ ζ

0
‖y(s, 0)‖sα−1ds ≤

ζα
1

α
N.
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Taking into account (28), and using (H1), (H2), [AW] and [AF], we can get

‖vz‖ ≤ ‖M−1‖Lζ1
(Rn ,L2(I,Rn)/kerM)

(
‖z1‖+ ‖P(ζ1)eFB−1 κα

α ‖‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
‖P(ζ1 − κ − s)eFB−1 κα

α ‖‖BD0
αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖
∫ ζ1

0
‖P(ζ1 − κ − s)eFB−1 κα

α ‖‖y(s, z(s))‖sα−1ds
)

≤ U1

(
‖z1‖+ W2eβ κα

α e
(β−w)ζα

1
α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α

∫ 0

−κ
‖BD0

αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α

∫ ζ1

0
Ly(s)‖z(s)‖sα−1ds

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

∫ ζ1

0
‖y(s, 0)‖sα−1ds

)
≤ U1

(
‖z1‖+ W2eβ κα

α e
(β−w)ζα

1
α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α

∫ 0

−κ
‖BD0

αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α

[ 1
gα− g + 1

ζ
gα−g+1
1

] 1
g ‖Ly‖Lh(I,R+)‖z‖C

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α N

ζα
1

α

)
≤ U1‖z1‖+ U1a + U1b‖z‖C,

where

a = W2eβ κα

α e
(β−w)ζα

1
α ‖ψ(−κ)‖+ ‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α

∫ 0

−κ
‖BD0

αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α N

ζα
1

α
.

Based on the assumptions [AW] and [AF], we can derive

‖(T z)(ζ)‖ ≤ W2eβ κα

α e
(β−w)ζα

1
α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α

∫ 0

−κ
‖BD0

αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

[ 1
gα− g + 1

ζ
gα−g+1
1

] 1
g ‖Ly‖Lh(I,R+)‖z‖C

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α N

ζα
1

α

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖[U1‖z1‖+ U1a + U1b‖z‖C]

ζα
1

α
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≤W2eβ κα

α e
(β−w)ζα

1
α ‖ψ(−κ)‖

+‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α

∫ 0

−κ
‖BD0

αψ(s)− Fψ(s)‖sα−1ds

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

[ 1
gα− g + 1

ζ
gα−g+1
1

] 1
g ‖Ly‖Lh(I,R+)‖z‖C

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α N

ζα
1

α

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖U1‖z1‖

ζα
1

α

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖U1a

ζα
1

α

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖U1b‖z‖C

ζα
1

α

≤ a[1 + ‖B−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖U1

ζα
1

α
]

+‖E−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖U1

ζα
1

α
‖z1‖

+b[1 + ‖B−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖U1

ζα
1

α
]r

≤ a
(
1 +

U1‖J‖
N

a
)
+

U1‖J‖
N

a‖z1‖+ b
(
1 +

U1‖J‖
N

a
)
r = r,

where

r =
a
(
1 + U1‖J‖

N a + U1‖J‖
N ‖z1‖

)
1− b

(
1 + U1‖J‖

N a
) .

Thus, we deduce that T (Sr) is a subset of Sr for this particular value of r.
Throughout the remaining proof, the aforementioned value of r will be the one under

consideration. Operators T1 and T2 are defined as follows:

(T1z)(ζ) = P(ζ)eFB−1 κα

α ψ(−κ) + B−1
∫ 0

−κ
P(ζ − κ − s)eFB−1 κα

α [BD0
αψ(s)− Fψ(s)]sα−1ds

+B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α Jvz(s)sα−1ds,

(T2z)(ζ) = B−1
∫ ζ

0
P(ζ − κ − s)eFB−1 κα

α y(s, z(s))sα−1ds,

for ζ ∈ I.

Step 2. The operator T1 exhibits the properties of a contraction mapping.

Let z, ω ∈ Sr. In view of [AW] and [AF], for every ζ ∈ I, we obtain

‖uz(ζ)− uω(ζ)‖ ≤ U1‖B−1‖
∫ ζ1

0
‖P(ζ1 − κ − s)eFB−1 κα

α ‖‖y(s, z(s))− y(s, w(s))‖sα−1ds

≤ U1‖B−1‖
∫ ζ1

0
W2ew κα

α e
(β−w)(ζ−s)α

α Ly(s)‖z(s)−ω(s)‖sα−1ds

≤ U1b‖z−ω‖C.
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Thus,

‖(T1z)(ζ)− (T1ω)(ζ)‖ ≤ ‖B−1‖
∫ ζ

0
‖P(ζ − κ − s)eFB−1 κα

α ‖‖J‖‖uz(s)− uω(s)‖sα−1ds

≤ ‖B−1‖
∫ ζ

0
W2ew κα

α e
(β−w)(ζ−s)α

α sα−1ds‖J‖U1b‖z−ω‖C

≤ ‖B−1‖W2ew κα

α e
(β−w)ζα

1
α ‖J‖U1b

ζα
1

α
‖z−ω‖C

= bW2U1‖B−1‖‖J‖ew κα

α e
(β−w)ζα

1
α

ζα
1

α
‖z−ω‖C,

so we obtain
‖T1z− T1ω‖C ≤ Λ‖z−ω‖C,

where Λ = bW2U1‖B−1‖‖J‖ew κα

α e
(β−w)ζα

1
α

ζα
1

α .
Since (27) implies Λ < 1, it follows that the operator T is a contraction mapping.

Step 3. The operator T2 : Sr → C(I,Rn) is both compact and continuous.

Consider zn ∈ Sr with zn → z in Sr as n→ ∞. By utilizing [AF], we obtain y(·, zn)→
y(·, z) in C(I,Rn) as n→ ∞ and thus

‖(T2zn)(ζ)− (T2z)(ζ)‖ ≤ ‖B−1‖
∫ ζ

0
W2ew κα

α e
(β−w)(ζ−s)α

α ‖y(s, zn(s))− y(s, z(s))‖sα−1ds

≤ ‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

ζα
1

α
‖y(s, zn(s))− y(s, z(s))‖C

→ 0 while n→ ∞.

This indicates that T2 is continuous on Sr.
To demonstrate the compactness of T2 on Sr, we need to establish that T2(Sr) is both

equicontinuous and bounded. For any z ∈ Sr, ζ1 ≥ ζ + ν ≥ ζ > 0, we proceed with the
following proof:

(T2z)(ζ + ν)− (T2z)(ζ)

= B−1
∫ ζ+ν

ζ
P(ζ + ν− κ − s)eFB−1 κα

α y(s, z(s))sα−1ds

+B−1
∫ ζ

0
eFB−1 κα

α eFB−1 (ζ+ν−κ−s)α
α

(
eP1B−1(ζ+ν−κ−s)

κ,α − eP1B−1(ζ−κ−s)
κ,α

)
y(s, z(s))sα−1ds

+B−1
∫ ζ

0
(eFB−1 (ζ+ν−κ−s)α

α − eFB−1 (ζ−κ−s)α
α )eP1B−1(ζ−κ−s)

κ,α eFB−1 κα

α y(s, z(s))sα−1ds.

Let

Q1 = B−1
∫ ζ+ν

ζ
P(ζ + ν− κ − s)eFB−1 κα

α y(s, z(s))sα−1ds,

Q2 = B−1
∫ ζ

0
eFB−1 κα

α eFB−1 (ζ+ν−κ−s)α
α

(
eP1B−1(ζ+ν−κ−s)

κ,α − eP1B−1(ζ−κ−s)
κ,α

)
y(s, z(s))sα−1ds,

Q3 = B−1
∫ ζ

0
(eFB−1 (ζ+ν−κ−s)α

α − eFB−1 (ζ−κ−s)α
α )eP1B−1(ζ−κ−s)

κ,α eFB−1 κα

α y(s, z(s))sα−1ds.

Based on the aforementioned analysis, we can conclude that

‖(T2z)(ζ + ν)− (T2z)(ζ)‖ ≤ ‖Q1‖+ ‖Q2‖+ ‖Q3‖.
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Now, it remains to verify that ‖Qi‖ → 0 as ν→ 0 for i = 1, 2, 3. Note

‖Q1‖ ≤ ‖B−1‖
∫ ζ+ν

ζ
‖P(ζ + ν− κ − s)eFB−1 κα

α ‖‖y(s, z(s))‖sα−1ds

≤ ‖B−1‖
∫ ζ+ν

ζ
W2ew κα

α e
(β−w)(ζ+ν−s)α

α Ly(s)‖z(s)‖sα−1ds

+‖B−1‖
∫ ζ+ν

ζ
W2ew κα

α e
(β−w)(ζ+ν−s)α

α ‖y(s, 0)‖)sα−1ds

≤ ‖B−1‖W2ew κα

α e
(β−w)να

α
1

gα− g + 1
[
ζ + ν)gα−g+1 − ζgα−g+1] 1

g ‖Ly‖Lh(I,R+)r

+‖B−1‖W2ew κα

α e
(β−w)να

α N
1
α
[(ζ + ν)α − ζα]→ 0 as ν→ 0,

and

‖Q2‖ ≤ ‖B−1‖eFB−1 κα

α eFB−1 (ζ+ν−κ)α

α

∫ ζ

0

∥∥eP1B−1(ζ+ν−κ−s)
κ,α − eP1B−1(ζ−κ−s)

κ,α
∥∥

·(Ly(s)‖z(s)‖+ ‖y(s, 0)‖)sα−1ds

≤ ‖B−1‖eFB−1 κα

α eFB−1 (ζ+ν−κ)α

α ‖Ly‖Lh(I,R+)

ζα
1

α
r

×
( ∫ ζ

0

∥∥eP1B−1(ζ+ν−κ−s)
κ,α − eP1B−1(ζ−κ−s)

κ,α
∥∥gds

) 1
g

+‖B−1‖eFB−1 κα

α eFB−1 (ζ+ν−κ)α

α N
ζα

1
α

∫ ζ

0

∥∥eP1B−1(ζ+ν−κ−s)
κ,α − eP1B−1(ζ−κ−s)

κ,α
∥∥ds

→ 0 as ν→ 0,

where the uniformly continuity of eP1B−1·
κ,α is used. Next

‖Q3‖ ≤ ‖B−1‖Weβ
ζα
1
α

∫ ζ

0
‖eFB−1 (ζ+ν−κ−s)α

α − eFB−1 (ζ−κ−s)α
α ‖(Ly(s)‖z‖C + N)sα−1ds.

Note that lim
ν→0

∥∥∥eFB−1 (ζ+ν−κ−s)α
α − eFB−1 (ζ−κ−s)α

α

∥∥∥ = 0. So

‖Q3‖ ≤ ‖B−1‖Weβ
ζα
1
α

∫ ζ

0
‖eFB−1 (ζ+ν−κ−s)α

α − eFB−1 (ζ−κ−s)α
α ‖(Ly(s)‖z‖C + N)sα−1ds

→ 0 while ν→ 0,

from utilizing the dominated convergence theorem of Lebesgue.
Consequently, we receive

‖(T2z)(ζ + ν)− (T2z)(ζ)‖ → 0 while ν→ 0,

for all z ∈ Sr, thus establishing the equicontinuity of T2(Sr).
Continuing with the aforementioned calculations, we can further deduce that

‖(T2z)(ζ)‖ ≤ ‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

∫ ζ

0
sα−1Ly(s)‖z(s)‖ds

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

∫ ζ

0
‖y(s, 0)‖sα−1ds

≤ ‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

[ 1
gα− g + 1

ζ
gα−g+1
1

] 1
g ‖Ly‖Lh(I,R+)r

+‖B−1‖W2ew κα

α e
(β−w)ζα

1
α

ζα
1

α
N.
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Hence T2(Sr) is bounded. From the Arzela-Ascoli theorem, T2(Sr) is relatively com-
pact in C(I,Rn). Hence, T2 : Sr → C(I,Rn) is an operator that is both compact and continu-
ous.

By invoking Krasnoselskii’s fixed point theorem, we can ensure the existence of one
fixed point z for the operator T on Sr. Obviously, z is a solution to the system (4) that
satisfies z(ζ1) = z1. Additionally, the boundary condition z(ζ) = ψ(ζ), for −κ ≤ ζ ≤ 0
holds true based on Equation (18). Thus, the proof is concluded.

5. Examples

This section will take a few numerical examples to verify our theoretical results. For
simulation purposes, we utilize the infinite-norm.

Example 1. Let us examine the subsequent linear conformable delay system, which is nonsingular:{
BD0

0.5z(ζ) = Fz(ζ) + Pz(ζ − 0.2), ζ ≥ 0,

z(ζ) = ψ(ζ) = (0.2, 0.1)>, − 0.2 ≤ ζ ≤ 0.
(29)

where κ = 0.2 and we set

F =

[
−1.2 −0.4

0 −2

]
, P =

[
0.6 0.1
0 0.8

]
, B =

[
1.4 0
0 1.4

]
.

Note

FP =

[
−0.72 −0.44

0 −1.6

]
= PF, FB =

[
1.68 −0.56

0 −2.8

]
= BF,

PB =

[
0.84 0.14

0 1.12

]
= BP, B−1 =

[
0.7143 0

0 0.7143

]
,

‖P1B−1‖ =
∥∥∥∥[−9.6 −7.44

0 −2.16

]∥∥∥∥ ≤ βe0.2β, choosing β = 0.9354.

Clearly, for α = 1
2 , ‖eFB−1 ζα

α ‖ = e−2.8
√

ζ ≤ We−2w
√

ζ with W = 1 and w = 1. Next ‖ψ‖1 =
0.2 < δ := 0.25 and

U(ψ,D0
αψ) = W2

(
eβ κα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
ew κα

α e
(β−w)(−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

)
= 0.1616 > 0.

and β− w = −0.0646 < 0.
At present, those requirements stipulated in Theorem 1 are fulfilled. Hence,

‖z(ζ)‖ ≤ U(ψ,D0
αψ)e(β−w)2

√
ζ = 0.1616e−0.1292

√
ζ → 0 while ζ → ∞,

Therefore, the solution to (29) exhibits α-exponential stability.

Example 2. Let us contemplate the given linear conformable system:{
BD0

0.5z(ζ) = Fz(ζ) + Pz(ζ − 0.2) + l(ζ, z(ζ − 0.2)), ζ ≥ 0,

z(ζ) = ψ(ζ) = (0.1, 0.2)>, − 0.2 ≤ ζ ≤ 0.
(30)
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where κ = 0.2 and suppose

F =

[
−2.3 0.5

0 −2.4

]
, P =

[
1.6 0.5
0 1.5

]
, B =

[
1.6 0
0 1.6

]
.

Note

l(ζ, z(ζ − 0.2)) =
[

0.2z1(ζ − 0.2)sinζ
0.15z2(ζ − 0.2)sinζ

]
.

Note

FP =

[
−3.68 −0.4

0 −3.6

]
= PF, FB =

[
−3.68 0.8

0 −3.84

]
= BF,

PB =

[
2.56 0.8

0 2.4

]
= BP, B−1 =

[
0.625 0

0 0.625

]
,

‖P1B−1‖ =
∥∥∥∥[1.5527 1.0946

0 1.8264

]∥∥∥∥ ≤ βe0.4β, choosing β = 0.8211.

Clearly, for α = 1
2 , ‖eFB−1 ζα

α ‖ = e−3
√

ζ ≤We−2w
√

ζ with W = 1 and w = 1.3. ‖l(ζ, z(ζ −
0.2))‖ ≤ Q‖z(ζ − 0.2)‖ with Q = 0.2.

Subsequently ‖ψ‖1 = 0.2 < δ := 0.25 and

U(ψ,D0
αψ) = W2

(
eβ κα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
ew κα

α e
(β−w)(−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

)
= 0.1587 > 0.

U∗(ψ,D0
αψ) = [U(ψ,D0

αψ) + ‖B−1‖
∫ κ

0 W2Qe(w−β)s‖ψ(s− κ)‖sα−1ds]e−‖B
−1‖W2Q

ζα
1
α e(w−β)κκ

= 0.1690 > 0 and ‖B−1‖W2Qew κα

α + β− w = −0.1445 < 0.
It is obvious those requirements stipulated in Theorem 3 are fulfilled. Hence,

‖z(ζ)‖ ≤ U∗(ψ,D0
αψ)e(‖B

−1‖W2Qew κα
α +β−w) ζα

α = 0.1690e−0.2890
√

ζ → 0 while ζ → ∞,

Hence, the solution of (30) exhibits α-exponential stability.

Example 3. Let us contemplate the given conformable system:{
BD0

0.5z(ζ) = Fz(ζ) + Pz(ζ − 0.2) + m(ζ, z(ζ)), ζ ≥ 0,

z(ζ) = ψ(ζ) = (0.2, 0.15, 0.1)>, − 0.2 ≤ ζ ≤ 0.
(31)

where κ = 0.2 and setting

F =

−3.6 0 4
0 −6.8 0.8
0 0 −2.2

, P =

2.8 0 −1
0 2.45 0
0 0 2.45

,

B =

1.8 0 0
0 1.8 0
0 0 1.8

, m(ζ, z(ζ)) =

0.2z1(ζ) sin ζ
0.1z2(ζ) sin ζ
0.2z3(ζ) sin ζ

.
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Note

FP =

−10.08 0 13.4
0 −16.66 1.96
0 0 −5.39

 = PF,

FB =

6.48 0 7.2
0 −12.24 1.44
0 0 −3.96

 = BF,

PB =

5.04 0 −1.8
0 4.41 0
0 0 4.41

 = BP, B−1 =

0.5556 0 0
0 0.5556 0
0 0 0.5556

,

‖P1B−1‖ =

∥∥∥∥∥∥
3.6248 0 −3.4163

0 3.7828 −0.2463
0 0 2.5999

∥∥∥∥∥∥ ≤ βe0.8β, choosing β = 0.3996.

Clearly, for α = 1
2 , ‖eFB−1 ζα

α ‖ = e−7.556ζ ≤ We−2w
√

ζ where W = 1 and w = 3.
‖m(ζ, z(ζ))‖ ≤ L‖z(ζ)‖, here L = 0.2. Together with ‖ψ‖1 = 0.2 < δ := 0.25,

U(ψ,D0
αψ) = W2

(
eβ κα

α ‖ψ(−κ)‖

+‖B−1‖
∫ 0

−κ
ew κα

α e
(β−w)(−s)α

α ‖BD0
αψ(s)− Fψ(s)‖sα−1ds

)
= 0.1641 > 0,

with ‖B−1‖W2Lew κα

α + β− w = −0.9744 < 0.
It is evident those requirements stipulated in Theorem 2 are fulfilled. Hence,

‖z(ζ)‖ ≤ U(ψ,D0
αψ)e(‖B

−1‖W2Lew κα
α +β−w) ζα

α = 0.1641e−1.9488
√

ζ → 0 while ζ → ∞,

Thus, the solution of (31) exhibits α-exponential stability.

Example 4. Set t1 = 0.9. Let us contemplate the given conformable differential controlled system:{
BD0

0.6z(ζ) = Fz(ζ) + Pz(ζ − 0.2) + y(ζ, z(ζ)) + Jv(ζ), ζ ∈ I := [0, 0.9],

z(ζ) = ψ(ζ) = (0.3, 0.2)>, − 0.2 ≤ ζ ≤ 0.
(32)

where κ = 0.2 and let

F =

[
−2 −0.2
0 −1.8

]
, P =

[
0.8 0.2
0 0.6

]
, B =

[
1 −0.2
0 1.2

]
,

J =
[

1 0
0 1

]
, y(ζ, z(ζ)) =

[
0.2ζz1(ζ)
0.1ζz2(ζ)

]
.

Note

FP =

[
−1.6 −0.52

0 −1.08

]
= PF, FB =

[
−2 0.16
0 −2.16

]
= BF,
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PB =

[
0.8 0.08
0 0.72

]
= BP, B−1 =

[
1 0.1667
0 0.8333

]
,

‖P1B−1‖ =
∥∥∥∥[1.8221 0.3644

0 1.4577

]∥∥∥∥ ≤ βe0.4β, choosing β = 0.7993.

Clearly, for α = 0.6, ‖eFB−1 ζα

α ‖ = e−3.3ζ0.6 ≤ We−2wζ0.6
where W = 1 and w = 1.2.

Together with ‖J‖ = 1 and ‖B−1‖ = 1.
Subsequently, we will utilize Equation (26) to estimate U1. To achieve this, we first need

to obtain Mc[0, ζ1], followed by the calculation of its inverse, Mc[0, ζ1]
−1. The delay Grammian

matrix takes the form of

Mc[0, ζ1] =
∫ ζ1

0
B−1P(ζ1 − κ − s)eFB−1 κα

α J J>eFB−1 κα

α P>(ζ1 − κ − s)B−1>sα−1ds

=
∫ ζ1

0
B−1eFB−1 (ζ1−κ−s)α

α eP1B−1(ζ1−κ−s)
κ,α eFB−1 κα

α J

×J>eFB−1 κα

α e(P1B−1)>(ζ1−κ−s)
κ,α e(FB−1)>

(ζ1−κ−s)α
α B−1> sα−1ds

=
∫ ζ1

0
B−1eF′ (ζ1−κ−s)α

α eP′(ζ1−κ−s)
κ,α eF′ κα

α J J>eF′> κα

α eP′>(ζ1−κ−s)
κ,α eF′> (ζ1−κ−s)α

α B−1> sα−1ds

=
∫ 0.9

0
B−1eF′ (0.7−s)α

α eP′(0.7−s)
ζ,α eF′ κα

α eF′> κα

α eP′>(0.7−s)
κ,α eF′> (0.7−s)α

α sα−1ds

= M1 + M2 + M3.

where F′ = FB−1 and P′ = P1B−1,

M1 =
∫ 0.3

0
B−1eF′ (0.7−s)α

α

[
I + P′

(0.7− s)α

α
+ P′2

1
2!
( (0.5− s)α

α

)2
]
eF′ κα

α eF′> κα

α

×
[
I + P′>

(0.7− s)α

α
+ (P′>)2 1

2!
( (0.5− s)α

α

)2
]
eF′> (0.7−s)α

α B−1> sα−1ds,

and

M2 =
∫ 0.6

0.3
B−1eF′ (0.7−s)α

α

[
I + P′

(0.7− s)α

α

]
eF′ κα

α eF′> κα

α

×
[
I + P′>

(0.7− s)α

α

]
eF′> (0.7−s)α

α B−1> sα−1ds,

and

M3 =
∫ 0.9

0.6
B−1eF′ (0.7−s)α

α I2eF′ κα

α eF′> κα

α eF′> (0.7−s)α
α B−1> sα−1ds.

Note

M1 =

[
19.4212 11.0558
12.2618 7.6964

]
, M2 =

[
6.6098 3.9537
4.2875 2.9241

]
,

M3 =

[
1.0284 0.7608
0.7767 0.4579

]
.
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Therefore, we obtain

Mc[0, ζ1] =

[
27.0594 15.7703
17.3260 11.0784

]
, M−1

c [0, ζ1] =

[
0.4174 −0.5942
−0.6529 1.0196

]
.

and
U1 =

√
‖M−1

c [0, ζ1]‖ =
√

0.4254 = 0.6522.

Moreover, ∀u, v ∈ Rn,

‖y(ζ, u)− y(ζ, v)‖ = max{0.2ζ‖u1 − v1‖, 0.1ζ‖u2 − v2‖}
≤ 0.2ζ max{‖u1 − v1‖, ‖u2 − v2‖}
= 0.2ζ‖u− v‖.

Now, setting Ly(ζ) = 0.2ζ ∈ Lg(I,R+) with g = h = 2.
Observing that ‖Ly‖L2(I,R+) = (

∫ 0.9
0 (0.2s)2ds)

1
2 = 0.0441,

b = ‖B−1‖W2ew κα

α e
(β−w)(ζ1+κ)α

α
[ 1

gα− g + 1
ζ

gα−g+1
1

] 1
g ‖Ly‖Lh(I,R+) = 0.1030,

and

b
[
1 + W2U1‖B−1‖‖J‖ew κα

α e
(β−w)ζα

1
α

ζα
1

α

]
= 0.2814 < 1.

As a result, all the requirements stipulated in Theorem 5 are satisfied, indicating that (32) exhibits
relative controllability on the interval [0, 0.9].

6. Conclusions

This article is a generalization of literature [20]. Based on literature [20], this paper
introduces a class of nonsingular conformable delay systems with non-singular term B.
By giving an estimate of the delayed matrix exponential with non-singular term B, which
makes our analysis of systems (1)–(3) more refined. In the first part, we give the sufficient
conditions for α-exponential stability of systems (1)–(3) through introducing the definition
of α-exponential stability. In the second part, by constructing a Grammian matrix with
non-singular terms B, the relative controllability of the linear and nonlinear problems
discussed is provided. Finally, we validate our theoretical results with several examples.

Further work will be able to discuss some issues such as periodic solutions and their
stability of related systems.
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