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Abstract: In this paper, we develop in detail the geometric constructions that lead to many uniqueness
results for the determination of polyhedral sets, typically scatterers, by a finite minimal number of
measurements. We highlight how unique continuation and a suitable reflection principle are enough
to proceed with the constructions without any other assumption on the underlying partial differential
equation or the boundary condition. We also aim to keep the geometric constructions and their proofs
as simple as possible. To illustrate the applicability of this theory, we show how several uniqueness
results present in the literature immediately follow from our arguments. Indeed, we believe that this
theory may serve as a roadmap for establishing similar uniqueness results for other partial differential
equations or boundary conditions.
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1. Introduction

One of the most classical and important open questions in the inverse scattering
problems field is the following: How many (far-field) measurements are needed to uniquely
determine a scatterer? In other words, how many experiments corresponding to different
incident waves are needed to uniquely determine a scatterer? Here, we limit ourselves to
the time-harmonic case and incident waves of the planar type. As a matter of notation, let
us point out that a scatterer is just a compact set whose complement is connected. Clearly,
the answer strongly depends on the kind of waves used, on the nature of the scatterer, i.e.,
on the boundary condition imposed on its boundary, and on the geometry of the scatterer.
Specifically, the answer may differ if the scatterer is an obstacle, i.e., it is the closure of its
interior, or if the scatterer is a screen, i.e., its interior is empty. Just as an example, in R3,
typically, an obstacle is a solid object, whereas a screen is a portion of a surface. We recall
that a nice introduction to inverse scattering problems, in the acoustic and electromagnetic
cases, may be found, for instance, in [1].

Even in the simplest case of acoustic waves with sound-soft obstacles, the answer is
not yet complete. By Schiffer’s theorem, we know that countably infinitely many incident
waves (with the same frequency) are enough. With a given bound on the diameter R of the
region containing the unknown obstacle, finitely many incident waves are enough, a fact
first noted in [2]; in this case, the number of measurements depends on R and the frequency
of the incident waves and it is 1 provided such a frequency is small enough with respect
to R. If the scatterer includes screens and obstacles, this result has been extended in [3],
where some further although minimal regularity assumptions on the unknown scatterer
are required. However, there is long-standing conjecture that one measurement should
suffice, independently of the frequency of the incident wave or the size of the scatterer, at
least in the obstacle case.

To approach such a conjecture and to possibly find the minimal number of measure-
ments needed in other inverse scattering problems, the unique determination of scatterers
belonging to some special classes has been studied. In this respect, one of the most success-
ful special classes has been so far one of the so-called polyhedral scatterers, i.e., scatterers

Axioms 2023, 12, 1035. https://doi.org/10.3390/axioms12111035 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12111035
https://doi.org/10.3390/axioms12111035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-8107-2983
https://doi.org/10.3390/axioms12111035
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12111035?type=check_update&version=1


Axioms 2023, 12, 1035 2 of 16

whose boundary is the finite union of cells, a cell being the closure of an open subset of a
hyperplane. We note that a polyhedral obstacle is just the finite union of polyhedra.

The first breakthrough in this direction was obtained in [4], even if some earlier results
may be found in the unpublished work [5]. In [4], it was proved uniqueness for polygonal
obstacles satisfying a non-trapping condition, with one measurement in the sound-soft
case and two measurements in the sound-hard case. For sound-soft scatterers, this result
has been extended in [6] on several aspects. In fact, it was proved that one measurement
guarantees uniqueness in any dimension and for general sound-soft polyhedral scatterers,
thus removing both the obstacle and the non-trapping assumptions.

After [6], an enormous amount of research has been done in the field, pursuing
extensions to other boundary conditions or to other kinds of waves, like electromagnetic
waves or elastic waves. We just mention here the earliest and most significant results.

For general polyhedral scatterers, uniqueness was proved with N measurements,
N being the dimension of the space, first in [7] in the sound-hard case and then in [8]
in the mixed sound-soft and sound-hard case. Uniqueness with one measurement for
polyhedral obstacles was proved in the sound-hard case in [9] for N = 2 and in [10] for any
N ≥ 2. The two-dimensional result has been extended in [8] to the mixed sound-soft and
sound-hard case.

The electromagnetic case has been treated in [11,12], whereas the extension to elastic
waves has been developed in [13].

In a different and significant line of research stemming from the breakthrough result
of [14], polyhedral structures, in particular corners and edges, play an important role
also in the determination of the support of penetrable obstacles by a finite number of
measurements.

Despite the different equations or boundary conditions, it is clear that all these
uniqueness results for the determination of (non-penetrable) polyhedral scatterers share
two crucial common features. Specifically, unique continuation properties for the solutions
to the equation and a suitable reflection principle depending on the boundary condition.
These are combined in the development of suitable geometric constructions. In this paper,
we highlight that, indeed, these two conditions, summarized in Assumption 1, are enough
to develop these geometric constructions. Moreover, once Assumption 1 is satisfied, the
geometric constructions are completely independent of the other properties of the equation
or the boundary condition. Moreover, our effort is to keep these constructions as simple
and as general as possible in such a way as to make completely transparent the geometrical
procedure involved in these uniqueness results. In Section 2, we state and prove our two
main results, Theorem 1 for general polyhedral scatterers and Theorem 2 for polyhedral
obstacles. We also aim to keep proofs as simple as possible, and we fully succeeded, at least
for Theorem 1. Other important features of our results are the following.

• We can treat at the same time any (finite) number of measurements simply by changing
M in the definition of the differential operator A.

• We can treat at the same time different boundary conditions, i.e., we can treat mixed
boundary conditions, see Section 2.1, in particular Theorem 3.

To show the power of our general theory, we obtain in a single shot all previously
described uniqueness results, possibly with some extensions in the mixed boundary condi-
tions cases. These applications are developed in Section 3, first for the acoustic and then
for the electromagnetic and elastic waves. We thus believe that our general constructions
will be useful in order to obtain similar uniqueness results for other kinds of equations or
boundary conditions.

Finally, we wish to make some comments on the corresponding stability results. The
first stability result has been obtained in [15] for sound-soft general polyhedral scatterers
with one measurement. Stability has been extended to sound-hard general polyhedral
scatterers with N measurements and to sound-hard polyhedral obstacles with 1 measure-
ment in [16]. Finally, stability for the electromagnetic case has been proved in [17] with
2 measurements for general polyhedral scatterers and 1 measurement for polyhedral obsta-
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cles. In all these stability results, quantitative versions of Theorem 1 for general scatterers
and of Theorem 2 for obstacles are needed. The proof of Theorem 2 is much more difficult
than the one of Theorem 1. Likewise, its quantitative version is extremely involved. We refer
the interested reader to [17] for details. Here, we limit ourselves to consider quantitative
versions of Theorem 1 and to stress some of their common features. In fact, we believe that
a general stability result may be obtained independently of the equation and the boundary
condition provided the following kinds of properties are satisfied.

(1) The differential operator A satisfies interior and boundary regularity estimates.
(2) The differential operator A satisfies quantitative unique continuation results, like a

three-spheres inequality with optimal exponents.
(3) There are uniform bounds on the solutions to the scattering problem, which are

independent of the scatterer for scatterers belonging to suitable admissible classes.
(4) The boundary condition satisfies a quantitative version of the reflection principle,

which often reduces to quantitative estimates of solutions with respect to Cauchy data.

As one can easily check, these are the common essential ingredients of all the stability
results for general polyhedral scatterers, i.e., are the essential ingredients to obtain a
quantitative analog of Theorem 1. We finally note that point (3) above might be challenging
for the following reasons. First, dealing with polyhedral structures, we cannot expect to
have better than Lipschitz regularity on the scatterers. Moreover, when allowing obstacles
and screens or combinations of both, regularity might be even weaker. For the Dirichlet
boundary condition in the acoustic case, uniform bounds can be proved in a relatively easy
way, even for quite general scatterers; see, for instance, ref. [3]. For the Neumann boundary
condition in the acoustic case or the electromagnetic case, uniform bounds for general
scatterers are much harder to obtain. In this respect, the strategy developed in [18], and
optimized in [19], for Neumann in the acoustic case, might be a good starting point. In fact,
the same strategy proved successful in treating the electromagnetic case as well, see [17].

2. The Main Strategies for Uniqueness Results

The integer N ≥ 2 denotes the dimension of the space. For any x ∈ RN and any r > 0,
Br(x) is the open ball with center x and radius r. We also use the notation Br = Br(0).

For any (N − 1)-dimensional hyperplane Π, we call TΠ the reflection in Π. Moreover,
fixed a unit vector ν orthogonal to Π, we call H+

Π and H−Π the two connected components,
actually half-spaces, of RN\Π, with ν being the exterior unit normal on Π for H+

Π and the
interior unit normal on Π for H−Π .

We consider the following general framework. Let us fix positive integers M, L, L1, J
and J1. Let D ⊂ RN be an open set and let u = (u1, . . . , uM) : D ⊂ RN → CM be a complex
vector-valued function.

Let Ak, k = 1, . . . , L, be the following differential operators with constant coefficients

Aku =
M

∑
j=1

∑
|α|≤J

aj
α,kDαuj

and let us define
Au = (A1u, . . . , ALu).

As usual, α denotes an N-multiindex and |α| is its weight. The constants aj
α,k are complex

numbers.
Let Bk, k = 1, . . . , L1, be the following boundary operators with constant coefficients

Bku =
N

∑
i=1

M

∑
j=1

∑
|α|≤J1

νib
j
α,i,kDαuj +

M

∑
j=1

∑
|α|≤J1

bj
α,0,kDαuj

and let us define
Bu = (B1u, . . . , BL1 u).
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As usual, ν denotes the unit exterior normal vector on the boundary of D, where it is
well-defined. The constants bj

α,i,k are complex numbers.
On this general structure, we impose the following.

Assumption 1. We assume that the operator A and the boundary condition B satisfy the following.

(A.1) If u satisfies Au = 0 in an open set D, then all partial derivatives Dαuj appearing in the
definitions of A and B are continuous in D.

(A.2) A satisfies the unique continuation property, i.e., if u satisfies Au = 0 in an open connected
set D and u = 0 in some open nonempty D′ ⊂ D, then u = 0 in D.

(A.3) For any hyperplane Π, with unit normal ν, let D+ ⊂ H+
Π be an open set and let u+ satisfy

Au+ = 0 in D+. Then there exists an operator T̃Π,ν such that

u− = T̃Π,ν(u+ ◦ TΠ)

satisfies Au− = 0 in D− = TΠ(D+). Furthermore, the following properties are assumed.

(a) Let x ∈ Π be such that Br(x) ∩ H+
Π ⊂ D+. If Bu+ = 0 on Br(x) ∩Π, then Bu− = 0

on Br(x) ∩Π as well and, calling

u =

{
u+ in Br(x) ∩ H+

Π
u− in Br(x) ∩ H−Π

we have that Au = 0 in Br(x).
(b) On the other hand, if Au = 0 in Br(x) and

u|Br(x)∩H−Π
= T̃Π,ν(u|Br(x)∩H+

Π
◦ TΠ),

then Bu = 0 on Br(x) ∩Π (on either side of Π).
(c) Let Π1 be any hyperplane and let x ∈ Π1 be such that, for some ν1 orthogonal to Π1,

Br(x) ∩ H+
Π1
⊂ D+. If Bu+ = 0 on Br(x) ∩Π1, then Bu− = 0 on TΠ(Br(x) ∩Π1).

Remark 1. Important consequences of (A.3)(a) are the following. First, the condition Bu = 0
is independent of the choice of ν, thus excluding Robin-type boundary conditions. Moreover, let
Π be a hyperplane and let x ∈ Π. If, for some r > 0, Au = 0 in Br(x) and Bu = 0 on
Br(x) ∩Π, then, by the unique continuation of (A.2), u|Br(x)∩H−Π

= T̃Π,ν(u|Br(x)∩H+
Π
◦ TΠ) and

u|Br(x)∩H+
Π
= T̃Π,−ν(u|Br(x)∩H−Π

◦ TΠ).

Remark 2. Let Au = 0 in an open set D. Let x ∈ D and Π a hyperplane passing through x. If, for
some r > 0, Br(x) ⊂ D and Bu = 0 on Br(x) ∩Π, then Bu = 0 on S, the connected component of
D ∩Π containing x. In fact, let S1 be the largest open subset of S where Bu = 0. By contradiction,
let us assume that S1 is different from S, i.e., there exists x1 ∈ S belonging to the boundary of S1.
We assume that, for some r1 > 0, Br1(x1) ⊂ D, therefore Br1(x1) ∩Π ⊂ S. Moreover, there exists
x2 ∈ S1 and r2 > 0 such that Br2(x2) ⊂ Br1(x1) and Bu = 0 on Br2(x2) ∩Π. By the previous
remark, u|Br2 (x2)∩H−Π

= T̃Π,ν(u|Br2 (x2)∩H+
Π
◦ TΠ) and, again, by the unique continuation of (A.2),

the same holds on Br1(x1). By (A.3)(b), we conclude that Bu = 0 on Br1(x1) and we obtain a
contradiction.

Definition 1. We say that Σ ⊂ RN is a scatterer if it is bounded, closed, and G = RN\Σ is
connected. In turn, G is called an exterior domain, i.e., a connected open set whose complement
is bounded.

We say that a scatterer Σ is an obstacle if Σ coincides with the closure of its interior.
We call cell the closure of an open subset of an (N − 1)-dimensional hyperplane.
We say that a scatterer Σ is polyhedral if its boundary is the finite union of cells. Without loss

of generality, we assume that different cells are internally disjoint.
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Remark 3. We note that a cell need not to be an (N − 1)-dimensional polyhedron contained
in an (N − 1)-dimensional hyperplane. Moreover, its relative interior can have infinitely many
connected components.

However, if Σ is a polyhedral obstacle, then it is just the union of a finite number of pairwise
internally disjoint N-dimensional polyhedra. Hence, we can decompose the boundary of polyhe-
dral obstacles into a finite number of (N − 1)-dimensional polyhedra contained in an (N − 1)-
dimensional hyperplane. We call these (N − 1)-dimensional polyhedra the (N − 1)-faces of Σ and
we denote with FN−1 the set of all (N − 1)-faces of Σ. In turn, the boundary of any (N − 1)-face
of Σ is composed by a finite number of (N − 2)-dimensional polyhedra contained in an (N − 2)-
dimensional subspace. We call these (N − 2)-dimensional polyhedra the (N − 2)-faces of Σ and we
denote with FN−2 the set of all (N − 2)-faces of Σ. Proceeding iteratively, we can define k-faces of
Σ for 0 ≤ k ≤ N − 1 and we denote with Fk the set of all k-faces of Σ. We usually call vertices of Σ
the 0-faces of Σ. An important property to recall is that if P is a vertex of Σ, then the span of the
normals to all (N − 1)-faces of Σ containing P is the whole RN .

Let Σ be a polyhedral scatterer. We assume that u is a solution to Au = 0 in G = RN\Σ
and that Bu = 0 on flat portions of boundary, i.e., for any x ∈ ∂Σ, if x belongs to the interior
of a cell C contained in a hyperplane Π and, for some ν orthogonal to Π and some r > 0, we
have Br(x) ∩ H+

Π ⊂ G, then Bu = 0 on Br(x) ∩Π. Please note that if also Br(x) ∩ H−Π ⊂ G,
then Bu = 0 on either side of Π. We can also state this condition as follows. For any cell C,
contained in a hyperplane Π, and any ν orthogonal to Π such that for any x belonging to
the interior of C there exists r > 0 with Br(x) ∩ H+

Π ⊂ G, we have Bu = 0 in the interior of
the cell C.

Following [6], we consider the following.

Definition 2. A point x ∈ G is a flat point for u if there exists Π passing through x such that
Bu = 0 on Π ∩ Br(x) for some r > 0 with Br(x) ⊂ G.

For any flat point x ∈ G, let S be the connected component of G ∩ Π containing x. By
Remark 2, we have that Bu = 0 on S. Fixing ν orthogonal to Π, we call G+ the connected
component of G\S containing Br(x) ∩ H+

Π and G− the connected component of G\S containing
Br(x) ∩ H−Π . We note that it may happen that G+ = G−. We call E+ the connected component
of G+ ∩ TΠ(G−) containing Br(x) ∩ H+

Π and E− the connected component of G− ∩ TΠ(G+)
containing Br(x) ∩ H−Π . We note that E− = TΠ(E+) and that u|E− = T̃Π,ν(u|E+ ◦ TΠ). Let
E = E(x) be the set E = E+ ∪ E− ∪ S. We note that E is a connected set contained in G, which is
symmetric with respect to Π. Moreover, the boundary of E is bounded and contained in ∂Σ∪ TΠ(∂Σ)
and any point y ∈ ∂E\Σ is a flat point.

Finally, any hyperplane Π such that Bu = 0 on Π\BR for some R > 0 will be called a
reflection hyperplane.

Remark 4. Let x ∈ G be a flat point, with respect to the hyperplane Π, and let E = E(x). Then,
there are two cases: either E is unbounded or E is bounded. If E is unbounded, then there exists
R > 0 such that Π\BR is contained in E, hence, by (A.3)(b), Bu = 0 on Π\BR. Consequently, if E
is unbounded, then Π is a reflection hyperplane.

Moreover, if Σ ⊂ BR0 , for some R0 > 0, and ‖x‖ > R0 + 1, then E is unbounded, thus Π is
a reflection hyperplane.

Remark 5. Another important observation is that the reflection in a reflection hyperplane of a
reflection hyperplane is still a reflection hyperplane.

In particular, let κ be any (N − 2)-dimensional subspace. We consider the set of all reflection
hyperplanes containing κ, assuming such a set is not empty. There are two cases. If the reflection
hyperplanes containing κ are finite, let us say m ≥ 1, then they subdivide the whole space into 2 m
equal sectors. If they are infinite, then, by a simple continuity argument due to the regularity of
(A.1), any hyperplane containing κ is a reflection hyperplane.

The key result is the following.
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Theorem 1. Let us assume that u admits a flat point x ∈ G. Then, there exists a reflection
hyperplane Π1.

Proof. Let γ : [0,+∞) → RN be a piecewise smooth curve in G with first endpoint
γ(0) = x and such that ‖γ(t)‖ → +∞ as t→ +∞.

First of all, we claim that the set of flat points belonging to γ is closed. Analogously,
the set of t ∈ [0,+∞) such that x = γ(t) is a flat point is closed. In fact, let xn = γ(tn),
n ∈ N, be a sequence of flat points converging to x = γ(t) as n → +∞. We need to show
that x is a flat point as well. Let Πn be the hyperplane related to xn and νn one of its unit
normal. Up to a subsequence, we can assume that νn → ν as n→ +∞, and we call Π the
hyperplane orthogonal to ν passing through x. A simple continuity argument due to the
regularity of (A.1) allows us to prove the claim.

If the set A = {t ∈ [0,+∞) : γ(t) is a flat point} is unbounded, then the proof is
concluded by the last part of Remark 4.

Assume that A is bounded and let t̃ = max A and x̃ = γ(t̃). If the corresponding set
E = E(x̃) is unbounded, the proof is concluded. It remains the case in which E is bounded.
Then there exists t̃1 > t̃ such that x̃1 = γ(t̃1) belongs to ∂E ∩ G = ∂E\Σ. Hence, x̃1 is a flat
point, and we obtain a contradiction. Therefore, the proof is concluded.

When we are dealing with polyhedral obstacles, we can prove something more.

Theorem 2. Let Σ be a polyhedral obstacle. Let Σ′ be a finite union of polyhedra with Σ′\Σ 6= ∅.
Let G̃ be the unbounded connected component of RN\(Σ ∪ Σ′). Assume that any x ∈ ∂G̃ ∩ G is a
flat point.

Then there exist N reflection hyperplanes Π1, . . . , ΠN , whose corresponding normals ν1, . . . , νN
are linearly independent.

To prove this result, we need several preliminary facts and lemmas. First of all, we
consider some easy cases.

If Π is a reflection hyperplane such that Σ ⊂ H+
Π for some ν orthogonal to Π, then the

result is proved by the following argument. Since Σ is an obstacle, we can find (N− 1)-faces
of Σ, C1, . . . , CN , belonging to hyperplanes Π̃1, . . . , Π̃N with normals ν̃1, . . . , ν̃N , respectively,
such that ν̃1, . . . , ν̃N are linearly independent. By reflecting in Π, it is easy to see that the
hyperplanes Πi = TΠ(Π̃i), i = 1, . . . , N, satisfy the thesis.

If there exist two different reflection hyperplanes with the same normal ν, by iterative
reflections, we can find infinitely many equispaced reflection hyperplanes with the same
normal. Eventually, for one of these, let us call it Π. We have Σ ⊂ H+

Π , and the proof
is concluded.

Let R0 > 0 be such that Σ is contained in BR0 . Let κ be an (N − 2)-dimensional
subspace whose distance from the origin is greater than or equal to 2R0 + 1. Let Q ∈ κ
be the projection of the origin on κ. Let ν0 = Q/‖Q‖. Then there exists a constant α0,
0 < α0 < 1, depending on R0 only, such that if Π is a reflection hyperplane containing κ
and with normal ν such that ν · ν0 ≥ α0, then BR0 , hence Σ, is contained in H+

Π and the
proof is concluded. In particular, assume we have two different reflection hyperplanes
Π1 and Π2 whose intersection is κ and whose normals ν1 and ν2 satisfy α0 ≤ ν1 · ν2 < 1.
We have that ν0 belongs to the plane spanned by ν1 and ν2. By Remark 5, we can find a
reflection hyperplane Π containing κ such that its normal ν satisfies ν · ν0 ≥ α0, and the
proof is concluded.

From now on, let N0, 1 ≤ N0 ≤ N, be the dimension of the span of the normals to
reflection hyperplanes.

Lemma 1. If N0 < N, then the number of reflection hyperplanes is finite.

Proof. Assume by contradiction that this is not the case. We can find a sequence of different
reflection hyperplanes Πn, with normal νn, such that νn converges to ν∞ as n→ +∞. For
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m > n, let κn,m = Πn ∩Πm, and αn,m = νn · νm. Without loss of generality, we can assume
that α0 ≤ αn,m < 1 for any m > n. If for some m > n, the distance of κn,m from the origin is
greater than or equal to 2R0 + 1, we obtain a contradiction by the property described above.
Hence, we can assume that the distance of κn,m from the origin is less than 2R0 + 1 for any
m > n.

Let F =
⋃N−1

k=0 Fk be the set of all faces of Σ. Let δ > 0 be the minimum distance
between any two disjoint faces of Σ, i.e.,

δ = min
{

dist(σ, σ′) : σ, σ′ ∈ F , σ ∩ σ′ = ∅
}

.

We can find a constant α1, α0 ≤ α1 < 1, depending on R0 and δ only, such that if
α1 ≤ αn,m < 1 the following holds. For any P ∈ BR0 , we can find a reflection hyper-
plane Π containing κn,m, depending on P, such that if P′ is the reflection of P in Π, then
0 < ‖P′ − P‖ ≤ δ/2. Again, without loss of generality, we can assume that α1 ≤ αn,m < 1
for any m > n.

Let us fix any m > n. We have that α = αn,m satisfies α1 ≤ α < 1. We call κ = κn,m.
Without loss of generality, up to a rigid change in coordinates, let κ = Q̃× RN−2, with
Q̃ a point in R2, so that Q = (Q̃, 0, . . . , 0) is the element of κ closest to the origin. Let,
for any P = (P1, . . . , PN) ∈ RN , s(P) denote the distance of P from κ. For any r > 0, let
κr = {P ∈ RN : s(P) ≤ r}. We begin with the following remark. Let r0 = min{r : Σ ⊂ κr}.
If P ∈ Σ is such that s(P) = r0, then P cannot belong to the interior of an (N − 1)-face of
Σ. Instead, it belongs to a k-face of Σ, with k ≤ N − 2, contained in (P1, P2)×RN−2. Please
note that such a face may consist of P only. Actually, we can indeed find a vertex P of Σ such
that s(P) = r0. Let P′ be its reflection in a reflection hyperplane Π as constructed above.
We have that s(P′) = r0, P′ is not contained in (P1, P2)×RN−2 and its distance from P is
less than δ. Hence, P′ cannot belong to Σ. On the other hand, we can find (N − 1)-faces of
Σ, C1, . . . , CN , belonging to hyperplanes Π̃1, . . . , Π̃N with normals ν̃1, . . . , ν̃N , respectively,
such that ν̃1, . . . , ν̃N are linearly independent and P ∈ Ci for any i = 1, . . . , N. By reflect-
ing in Π, it is easy to see that the hyperplanes Πi = TΠ(Π̃i), i = 1, . . . , N, are actually
reflection hyperplanes passing through P′ and thus we obtain a contradiction. The proof is
concluded.

Before starting the next lemma, we recall the following classical result; see, for details,
([17], Lemma 2.14).

Remark 6. Let D be an open connected set in RN , N ≥ 2. Let C be the union of a finite number of
(N − 2)-dimensional subspaces. Then D\C is still connected.

Lemma 2. Let N0 < N. Let S be a linear subspace of RN of dimension M, with 1 < M ≤ N0.
Then there cannot exist M + 1 reflection hyperplanes Π1, . . . , ΠM+1, with normals ν1, . . . , νM+1
belonging to S, and H0, an M-dimensional bounded convex polyhedron in S whose boundary is
contained in the union of Π̃i = Πi ∩ S, i = 1, . . . , M + 1.

Proof. We let RN = RM ×RN−M and, without loss of generality, S = RM × {0}. We iden-
tify S with RM, H0 with a bounded convex polyhedron in RM and Π̃i, i = 1, . . . , M + 1, with
hyperplanes in RM. Let us consider all reflection hyperplanes Π of the kind Π = Π̃×RN−M

with Π̃ a hyperplane in RM. With a little abuse of notation, we still call Π̃ a
reflection hyperplane.

Let K be the union of all (M − 2)-dimensional subspaces of RM obtained by inter-
secting any pair of different reflection hyperplanes Π̃. Let V be the set of all points of
RM obtained by intersecting any M reflection hyperplanes whose normals are linearly
independent. The set K is closed, whereas the set V is finite, hence bounded and closed. Let
us fix R > 0 such that V ⊂ BR. Consequently, H0 ⊂ BR as well.

Let γ : [0, 1]→ RM be a smooth curve connecting x0, a point in the interior of H0, to x1,
a point such that ‖x1‖ ≥ 4R + 2. We can assume that x1 does not belong to any reflection
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hyperplane Π̃ and, by Remark 6, that γ does not contain any element of K. Moreover, we
can assume that for some c > 0, ‖γ′(t)‖ ≥ c for any t ∈ [0, 1].

Let t0 be the largest t ∈ [0, 1] such that γ(t) ∈ H0. Let Π̃0 be the (only) reflection
hyperplane to which γ(t0) belongs. We call H1 the reflection of H0 in Π̃0. It is clear that
for some t > t0, γ(t) belongs to the interior of H1. Moreover, any (M− 1)-dimensional
face of H1 is contained in a reflection hyperplane, and any vertex of H1 belongs to V. Let
t1 > t0 be the last t ∈ (t0, 1] such that γ(t) ∈ H1. Let Π̃1 be the (only) reflection hyperplane
to which γ(t1) belongs. We note that Π̃1 is different from Π̃0. We call H2 the reflection of
H1 in Π̃1. It is clear that for some t > t1, γ(t) belongs to the interior of H2. Moreover, any
(M− 1)-dimensional face of H2 is contained in a reflection hyperplane, and any vertex
of H2 belongs to V. By induction, with the same procedure, we construct t1, . . . , tn until
‖γ(tn)‖ > 4R + 1. If this is the case, Hn ∩ BR = ∅ but the vertices of Hn must belong
to V, and we have a contradiction. Otherwise, we construct a sequence {tn}n∈N, with
tn → t∞ < 1. Since tn+1 − tn → 0 as n → +∞, and Π̃n+1 is different from Π̃n for any
n ∈ N, we can find a point Pn ∈ Hn ∩ K such that ‖γ(tn) − Pn‖ → 0 as well. Clearly,
Pn → γ(t∞) as n→ +∞. Since K is closed, we conclude that γ(t∞) ∈ K, thus we obtain a
contradiction.

Lemma 3. If N0 < N, then there exists an (N − N0)-dimensional subspace κ such that κ is
contained in all reflection hyperplanes.

Let Π1, . . . , Πm be all the reflection hyperplanes and W = {TΠ1 , . . . , TΠm}. Then the set

T =
{

T : T is the finite composition of reflections belonging to W
}

is finite.

Proof. Let Π1, . . . , ΠN0 be reflection hyperplanes whose normals are linearly independent.
Then let κ be the intersection of Π1, . . . , ΠN0 . Clearly κ is an (N−N0)-dimensional subspace.
We need to show that all reflection hyperplanes contain κ.

Let RN = RN0 × RN−N0 . For simplicity and without loss of generality, let us as-
sume that the span of the corresponding normals ν1, . . . , νN0 is SN0 = RN0 × {0} and
that κ = {0} ×RN−N0 . It is enough to consider the geometry in SN0 . For any reflection
hyperplane Π, we call Π̃ its intersection with SN0 and we identify it with a hyperplane of
RN0 , which with a little abuse of notation we still call Π̃ and still refer to as a reflection
hyperplane.

Let us assume, by contradiction, that there exists a reflection hyperplane Π̃N0+1 not
passing through the origin. Let νN0+1 be its normal. If any N0 elements of {ν1, . . . , νN0+1} are
linearly independent, then Π̃1, . . . , Π̃N0+1 bound a convex polyhedron thus contradicting
Lemma 2 with M = N0.

Therefore, we can assume, up to reordering, that ν2, . . . , νN0+1 are linearly dependent.
Let SN0−1 be the span of ν2, . . . , νN0 . Let us call Π̃1

i the restrictions of Πi to SN0−1. The
intersection of Π̃1

2, . . . , Π̃1
N0

is the origin of SN0−1 and Π̃1
N0+1 cannot pass through the origin

of SN0−1, otherwise Π̃N0+1 would pass through the origin of SN0 . If any N0 − 1 elements of
{ν2, . . . , νN0+1} are linearly independent, then Π̃1

2, . . . , Π̃1
N0+1 bound a convex polyhedron

thus contradicting Lemma 2 with M = N0 − 1.
Iterating the procedure, and with suitable reordering, we obtain that νN0−1, νN0 , νN0+1

are linearly dependent. Calling S2 the span of νN0−1 and νN0 , and Π̃N0−2
i the restrictions

of Π̃i to S2, we obtain that the intersection of Π̃N0−2
N0−1 and Π̃N0−2

N0
is the origin of S2 and

Π̃N0−2
N0+1 cannot pass through the origin of S2. If any pair of {νN0−1, νN0−1, νN0+1} are linearly

independent, we contradict Lemma 2 with M = 2. Hence ΠN0+1 is parallel to, and different
from, either ΠN0−1 or ΠN0 . This contradicts the fact that N0 < N and the first part of the
proof is concluded.

Once we have shown that all reflection hyperplanes intersect κ, we have that any
element of T is a rigid change in coordinates, keeping κ fixed. Let us consider T ∈ T . The
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set {T(ν1), . . . , T(νN0)} is a base of SN0 and fully characterizes T. Since the image through T
of any reflection hyperplane Π is another reflection hyperplane, the set {T(ν1), . . . , T(νN0)}
is a subset of {±ν1, . . . ,±νm}. It immediately follows that T is finite.

Lemma 4. Let N0 < N. Let Σ0 be a polyhedral scatterer that is symmetric with respect to all
reflection hyperplanes. We call G0 = RN\Σ0. Let x0 be any point in G0 not belonging to any
reflection hyperplane. Then there exists a piecewise smooth path γ : [0,+∞) → RN such that
‖γ(t)‖ → +∞ as t→ +∞ and γ(t) belongs to G0 and does not belong to any reflection hyperplane
for any t ≥ 0.

Proof. Let Π1, . . . , Πm be all reflection hyperplanes and κ be their intersection, as in
Lemma 3.

We can assume that 0 ∈ κ and that, for some R > 0, we have Σ ⊂ BR. Let D0 be the
connected component of RN\(⋃m

i=1 Πi) containing x0. Please note that for any s ≥ R + 1,
∂Bs ∩ D0 is contained in G0 and is connected.

Let P be the projection of x0 on κ. Let l be the half-line starting from P and passing
through x0. With the exception of P, any element of l belongs to D0. Let x1 be an element of
l such that after x1, any element of l is outside BR+1. Therefore, the half-line contained in l,
which starts from x1, is contained in G0 and does not intersect any reflection hyperplane. To
conclude the proof, it is enough to show that D0 ∩ G0 is connected, namely that there exists
a piecewise smooth curve γ in D0 ∩ G0 connecting x0 to x1. We denote s = ‖x1‖ ≥ R + 1.

Let K be the union of the intersections of any pair of different reflection hyperplanes.
By Remark 6, G0\K is still connected. Let γ0 : [0, 1] → RN be a smooth curve in G0\K
connecting x0 to x1. We can assume that for some constant c > 0 we have ‖γ′0(t)‖ ≥ c for
any t ∈ [0, 1].

If γ0 ⊂ D0, there is nothing to prove. In fact, by a small perturbation argument, we
can change γ0 such that γ0 ⊂ G0 ∩ D0. Otherwise, calling t′0 = 0, let t1 > 0 be largest
t such that γ0(t1) ∈ ∂D0 and γ0(t) ∈ D0 for any 0 ≤ t < t1. We call Π̃1 the reflection
hyperplane containing γ0(t1) and D1 the reflection of D0 in Π̃1. Let t′1 ≥ t1 be the largest
t such that γ0(t′1) ∈ Π̃1 and γ0(t) ∈ D0 ∪ D1 for any t ∈ (t1, t′1). By the symmetry of Σ0,
TΠ̃1

(
γ0([t1, t′1] ∩ D1)

)
is contained in G0 ∩ D0. Hence, by performing such a reflection, we

can assume that γ0(t) ∈ D0 for any t ∈ [0, t′1). Let us define for any t ∈ [0, 1]

γ1(t) =
{

γ0(t) if t ∈ [0, t′1]
TΠ̃1

(γ0(t)) if t ∈ (t′1, 1].

If γ1 ⊂ D0, by a small perturbation argument we can change γ1 such that γ1 ⊂ G0∩D0.
Then we connect γ1(1) to x1 along ∂Bs ∩ D0 and the result is proved. Otherwise, let t2 > t′1
be largest t such that γ1(t2) ∈ ∂D0 and γ1(t) ∈ D0 for any 0 ≤ t < t2. We call Π̃2 the
reflection hyperplane containing γ1(t2) and D2 the reflection of D0 in Π̃2. Please note that
Π̃2 is different from Π̃1 by construction. Let t′2 ≥ t2 be the largest t such that γ1(t′2) ∈ Π̃2
and γ1(t) ∈ D0 ∪ D2 for any t ∈ (t2, t′2). By the symmetry of Σ0, TΠ̃2

(
γ1([t2, t′2] ∩ D2)

)
is contained in G0 ∩ D0. Hence, by performing such a reflection, we can assume that
γ1(t) ∈ D0 for any t ∈ [0, t′2). Let us define for any t ∈ [0, 1]

γ2(t) =
{

γ1(t) if t ∈ [0, t′2]
TΠ̃2

(γ1(t)) if t ∈ (t′2, 1].

We proceed iteratively in the same way. If, for some n ∈ N, γn ⊂ D0, by a small
perturbation argument we can change γn such that γn ⊂ G0 ∩ D0. Then we connect γn(1)
to x1 along ∂Bs ∩ D0 and the result is proved. Otherwise, we find a sequence {t′n}n∈N
with 0 < t′n < t′n+1 < 1 such that γn−1(t′n) ∈ ∂D0, with Π̃n being the reflection hyperplane
containing γn−1(t′n), and γn−1(t) ∈ D0 for any 0 ≤ t ≤ t′n. We note that, by construction,
Π̃n+1 is different from Π̃n for any n ∈ N. Let t′∞ = limn t′n. We have that γ0(t′n) ∈

⋃m
i=1 Πi,
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hence γ0(t′∞) ∈ ⋃m
i=1 Πi as well. We conclude that t′∞ < 1. Let Π̂n be the reflection hy-

perplane to which γ0(t′n) belongs. We note that Π̂n+1 is different from Π̂n for any n ∈ N.
Since t′n+1 − t′n → 0 as n → +∞, we can find a point Pn ∈ Π̂n ∩ Π̂n+1 ⊂ K such that
‖γ0(t′n) − Pn‖ → 0 as well. Clearly, Pn → γ0(t′∞) as n → +∞. Since K is closed, we
conclude that γ0(t′∞) ∈ K, thus we obtain a contradiction.

Lemma 5. If N0 < N, then Σ is symmetric with respect to all reflection hyperplanes.

Proof. Let us consider κ and the set T defined in Lemma 3. Without loss of generality, we
assume that 0 ∈ κ and that for some R > 0, we have that Σ ⊂ BR.

For any T ∈ T , we can define uT in T(G) = RN\T(Σ) such that AuT = 0 in T(G) and
uT = u outside BR+1. Moreover, BuT = 0 on any flat part of ∂(T(Σ)).

Let G0 be the unbounded connected component of
⋂

T∈T T(G) and Σ0 = RN\G0. Let
us show that G0 is symmetric with respect to any reflection hyperplane. Let x ∈ G0, Π
be a reflection hyperplane and y = TΠ(x). Let γ : [0, 1] → RN be a continuous curve
in G0 connecting x to a point x1 outside BR+1. For any t ∈ [0, 1], γ(t) ∈ T(G) for any
T ∈ T . Since TΠ ◦ T still belongs to T , γ(t) ∈ (TΠ ◦ T)(G) for any T ∈ T , hence
TΠ(γ(t)) ∈ TΠ

(
(TΠ ◦ T)(G)

)
= T(G) for any T ∈ T . Hence γ1 = TΠ(γ) ⊂ ⋂

T∈T T(G).
Since RN\BR ⊂ G0 and y1 = TΠ(x1) is also outside BR+1, we conclude that y ∈ G0 as well.

On G0, we have that u = uT for any T ∈ T . Since Σ0 =
⋃

T∈T T(Σ), we have that Σ0 is
a polyhedral obstacle containing Σ and Bu = 0 on any flat portion of ∂Σ0. Moreover, by
symmetry, no flat portion of ∂Σ0 is a subset of any reflection hyperplane.

Let us assume that Σ0 is different from Σ. Then there exists x ∈ ∂Σ0 ∩ G. Without loss
of generality, we can assume that x belongs to a flat portion of ∂Σ0 and x does not belong
to any reflection hyperplane. For some ν normal to the cell of ∂Σ0 to which x belongs and
some ε0 > 0, we have that, for any t ∈ (0, ε0], x + tν ∈ G0 and does not belong to any
reflection hyperplane. We call x0 = x + ε0ν and, by Lemma 4, we can find a piecewise
smooth curve γ : [0,+∞) → RN such that γ(0) = x, γ(t) = x + tν for any t ∈ (0, ε0] and
γ(t) belongs to G0 and does not belong to any reflection hyperplane for any t ≥ ε0. We note
that x is a flat point for u. By the same argument used in the proof of Theorem 1, we can
find t1 ∈ [0,+∞) such that x1 = γ(t1) is a flat point belonging to a reflection hyperplane
for u. Since no point of γ belongs to any reflection hyperplane, we obtain a contradiction.

We conclude that Σ0 = Σ hence Σ is symmetric with respect to any reflection hyper-
plane.

Proof of Theorem 2. By renaming Σ′ = RN\G̃, without loss of generality, we can assume
that Σ′ is a polyhedral obstacle, with Σ ⊂ Σ′ and Σ′\Σ 6= ∅. Let us assume by contradiction
that N0 < N. Let x0 ∈ G be such that x0 does not belong to any reflection hyperplane and
x0 is contained in the interior of Σ′. Let γ be as in Lemma 4 with Σ0 replaced by Σ. It is clear
that there exists t0 > 0 such that γ(t0) ∈ ∂Σ′, hence γ(t0) is a flat point for u. Again, by the
same argument used in the proof of Theorem 1, we can find t1 ≥ t0 such that y1 = γ(t1) is
a flat point belonging to a reflection hyperplane for u. This contradicts the properties of γ,
and the proof is concluded.

2.1. The Case of Mixed Boundary Conditions

Now, we briefly consider the case of mixed boundary conditions. Let us assume that
we have n different boundary conditions B1, . . . , Bn satisfying (A.3)(a) and (A.3)(b), with
T̃Π,ν clearly depending on i ∈ {1, . . . , n}. We also assume that, for any i = 1, . . . , n, the
property (A.3)(c) is replaced by

(A.3)(c1) Let Π1 be any hyperplane and let x ∈ Π1 be such that, for some ν1 orthogonal
to Π1, Br(x) ∩ H+

Π1
⊂ D+. Then, for any j = 1, . . . , n, if Bju+ = 0 on Br(x) ∩Π1,

then Bju− = 0 on TΠ(Br(x) ∩Π1).

Let Σ be a polyhedral scatterer. We assume that u is a solution to Au = 0 in G = RN\Σ
and that for any cell C, contained in a hyperplane Π, and any ν orthogonal to Π such that



Axioms 2023, 12, 1035 11 of 16

for any x belonging to the interior of C there exists r > 0 with Br(x) ∩ H+
Π ⊂ G, we have

Biu = 0 in the interior of the cell C for some i ∈ {1, . . . , n} depending on C.
We note that in particular in the case of polyhedra, on any (N − 1)-face, we can have

more than one boundary condition, i.e., we can split such a face into two or more internally
pairwise disjoint cells, and on each of them, a different boundary condition is satisfied.

Definition 2 is replaced by the following.

Definition 3. A point x ∈ G is a flat point for u if there exists Π passing through x and
i ∈ {1, . . . , n} such that Biu = 0 on Π ∩ Br(x) for some r > 0 with Br(x) ⊂ G.

Furthermore, any hyperplane Π such that, for some i ∈ {1, . . . , n}, Biu = 0 on Π\BR for
some R > 0 will be called a reflection hyperplane.

With the same proofs, using the suitable reflection depending on the boundary con-
dition, the two main theorems, Theorems 1 and 2, can be restated in the case of mixed
boundary conditions as follows.

Theorem 3. Let us assume that u admits a flat point x ∈ G. Then, there exists a reflection
hyperplane Π1.

Let Σ be a polyhedral obstacle. Let Σ′ be a finite union of polyhedra with Σ′\Σ 6= ∅. Let G̃ be
the unbounded connected component of RN\(Σ ∪ Σ′). Assume that any x ∈ ∂G̃ ∩ G is a flat point.
Then there exist N reflection hyperplanes Π1, . . . , ΠN , whose corresponding normals ν1, . . . , νN
are linearly independent.

3. Application to Uniqueness Results for the Determination of Polyhedral Scatterers
and Examples

Let Σ and Σ′ be two polyhedral scatterers contained in BR0 . Let u satisfy Au = 0 in
G and be such that Bu = 0 on any flat part of ∂Σ. Let u′ satisfy Au′ = 0 in G′ = RN\Σ′
and be such that Bu′ = 0 on any flat part of ∂Σ′. Assume that u = u′ on an open subset D̃
of G̃, G̃ being the unbounded connected component of RN\(Σ ∪ Σ′). For example, D̃ can
be any open subset of RN\BR0 . Then, by unique continuation u = u′ on G̃, u and u′ have
the same reflection hyperplanes. Our aim is to prove a uniqueness result, i.e., to show that
Σ = Σ′. In other words, the measurement u|D̃, or any equivalent one, uniquely determines
the polyhedral scatterer Σ. The argument is the following. Assume, by contradiction, that
Σ 6= Σ′. Up to swapping Σ with Σ′, we can find x ∈ ∂G̃\Σ ⊂ ∂Σ′\Σ, hence u admits a
flat point. Using Theorem 1, we can conclude that u, and u′ as well, admits a reflection
hyperplane. If we have suitable conditions guaranteeing that u, and equivalently u′, does
not admit any reflection hyperplane, we obtain a contradiction, and the uniqueness result
holds true.

Under the same assumptions, if Σ and Σ′ are different polyhedral obstacles, by using
Theorem 2 instead, we can conclude that u, and u′ as well, admits N reflection hyperplanes
whose normals are linearly independent. If we have suitable conditions guaranteeing
that u, and equivalently u′, does not admit N reflection hyperplanes whose normals are
linearly independent, the measurement u|D̃, or any equivalent one, uniquely determines
the polyhedral obstacle Σ.

For example, let us assume that u and u′ can be written as

u = ui + us and u′ = ui + (u′)s

where ui is an entire solution to Au = 0. About us, we assume that it satisfies the following
decay condition at infinity, namely that, for any ε > 0, there exists R > R0 such that, for
any unit vector ν,

|Bus|, |B((u′)s)| ≤ ε outside BR. (1)

Then on any reflection hyperplane Π of u or of u′ we have

|Bui| ≤ ε on Π\BR. (2)
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If u = u′ on D̃, or equivalently us = (u′)s on D̃, then, on any reflection hyperplane Π
of u and u′, (2) holds. If Σ 6= Σ′, then

there exists a hyperplane Π such that |Bui| ≤ ε on Π\BR. (3)

If we further assume that Σ and Σ′ are polyhedral obstacles, then

there exist N hyperplanes Π1, . . . , ΠN with linearly independent

normals such that |Bui| ≤ ε on Πi\BR for any i = 1, . . . , N. (4)

Hence, proving the corresponding uniqueness results reduces to finding a suitable ui

violating either (3) or (4).
This situation is typical of inverse scattering problems. In this context, ui is called the

incident field or wave, whereas us is called the scattered field or wave. A suitable condition
at infinity, the radiation condition, has to be imposed on us, and it usually guarantees the
validity of (1). The scattered field may be measured either on the set D̃ (near-field data) or
at infinity (far-field data). In fact, typically, some kind of Rellich lemma holds, i.e., if the
far-field data of us and (u′)s coincide, then us and (u′)s coincide on the whole G̃.

In the next, we collect a few examples to show the applicability of the theory. The list
is clearly not exhaustive.

3.1. Acoustic Waves

Let ω ∈ R, ω > 0, and
Au = ∆u + ω2u.

If u solves Au = 0, then u is real-analytic. We use two boundary conditions: Bu = BDu = u
for the Dirichlet case, with T̃Π(u) = −u, or Bu = BNu = ∇u · ν for the Neumann case,
with T̃Π(u) = u, in both cases independently of ν. We note that BD and BN satisfy (A.3)(c1)
as well.

Please note that by setting L = L1 = M and Aku = Auk and Bku = Buk we can
actually consider M different measurements, i.e., we can consider M different experiments
using M different incident fields ui

k.
The radiation condition is the Sommerfeld radiation condition. The far-field data corre-

sponds to the so-called far-field pattern of the scattered field. The Rellich lemma states that if
the far-field pattern is zero, then the scattered wave is identically zero. The Sommerfeld
radiation condition indeed implies the validity of (1).

For any incident direction d ∈ SN−1, let the incident wave be given by a planar
plane wave

ui
d(x) = eiωx·d, x ∈ RN .

Since |ui
d(x)| = 1 for any x ∈ RN , choosing 0 < ε < 1, (3) cannot hold, and we have

uniqueness with a single measurement (that is, with M = 1 corresponding to using a
single incident field) in the Dirichlet case. In the Neumann case, |BNui

d| = ω|ν · d|. If we
obtain N measurements (that is, M = N), corresponding to N different incident fields ui

dk
,

k = 1, . . . , N, with dk linearly independent, then no matter what ν is, |BNui
dk
| = ω|ν · dk| > 0

for some k and, choosing 0 < ε < ω|ν · dk|, (3) cannot hold. Therefore, we have uniqueness
with N measurements in the Neumann case or the mixed Dirichlet and Neumann case. For
polyhedral obstacles, no matter what d is, |BNui

d| = ω|νi · d| > 0 for some i, where νi are
the linearly independent normals of reflection hyperplanes. Choosing 0 < ε < ω|νi · d|, (4)
can not hold. Therefore, we have uniqueness with 1 measurement in the Neumann case, or
in the mixed Dirichlet and Neumann case, for polyhedral obstacles.

3.2. Electromagnetic Waves

Let N = 3.
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We let u = (E, H) = (E1, E2, E3, H1, H2, H3) ∈ C6. Let ω ∈ R, ω > 0, and

Au = (∇× E− iωH,∇× H + iωE).

If Au = 0, then ∆E + ω2E = 0 and ∆H + ω2H = 0, hence any component of u is real-
analytic. We consider two boundary conditions: Bu = BE = E× ν, for a perfectly electric
conducting scatterer, and Bu = BHu = H × ν, for a perfectly magnetic conducting scatterer.
Then, independently of ν, T̃Π(u) = ±(−TΠ(E), TΠ(H)), with + for BE and − for BH . We
note that BE and BH satisfy (A.3)(c1) as well.

Please note that by setting L = L1 = M and Aku = Auk and Bku = Buk we can
actually consider M different measurements, i.e., we can consider M different experiments
using M different incident fields ui

k.
The radiation condition is the Silver-Müller radiation condition, which is equivalent

to the validity of the Sommerfeld radiation condition for any component of E and H.
Therefore, the Silver-Müller radiation condition implies the validity of (1). About near-field
data, we can just measure E or H on D̃. About far-field data, we can just measure the
far-field pattern of all components of E or of all components of H.

About incident fields, let ui = (Ei, Hi) be given by

Ei(x) =
i
ω
∇×

(
∇× peiωx·d

)
, Hi(x) = ∇× peiωx·d, x ∈ R3, (5)

that is,
Ei(x) = −ωi(q× d)eiωx·d, Hi(x) = −ωi(p× d)eiωx·d, x ∈ R3.

Here ui = ui
d,p is the normalized electromagnetic plane wave with incident direction d ∈ S2

and polarization vector p ∈ R3, p 6= 0 orthogonal to d, and q = p × d. Then
|Bui

d,p| = ω|ν × (q × d)|. Arguing as for the Neumann acoustic case, we have unique-
ness with two measurements (that is, M = 2) corresponding to 2 different incident fields
ui

d1,p1
and ui

d2,p2
with q1 × d1 and q2 × d2 linearly independent for BE and p1 × d1 and

p2 × d2 linearly independent for BH . If q1 × d1 and q2 × d2 are linearly independent and
p1 × d1 and p2 × d2 are also linearly independent (for example if d1 = d2 and p1 and p2 are
linearly independent) then we have uniqueness with these two measurements also in the
mixed electric and magnetic conducting cases. For polyhedral obstacles, instead, we have
uniqueness with just 1 measurement in the electric conducting, magnetic conducting, and
mixed electric and magnetic conducting cases.

3.3. Elastic Waves

Let N ≥ 2. For a CN-valued function u, let

Au = µ∆u + (λ + µ)∇(div(u)) + ρω2u. (6)

The equation Au = 0 is the Navier equation; here λ and µ are the Lamé constants such that
µ > 0 and λ + 2µ > 0, ρ > 0 is the density and ω > 0 is the frequency.

The symmetric gradient of u, Eu = 1
2 (∇u + (∇u)T), is the strain tensor while the stress

σ(u) is
σ(u) = 2µEu + λtr(Eu)IN = 2µEu + λdiv(u)IN ,

where tr denotes the trace and IN is the identity matrix. The Navier equation Au = 0 can
be rewritten as

div(σ(u)) + ρω2u = 0,

where the div applies row by row.
By Helmholtz decomposition, any u such that Au = 0 satisfies

u = us + up
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where up is the longitudinal wave up and us is the transversal wave. We have that both up and
us solve Au = 0. Moreover,

up = −∇div(u)
ω2

p
, ∆up + ω2

pup = 0, ω2
p =

ρω2

λ + 2µ
. (7)

Finally,

us =
∇div(u)− ∆u

ω2
s

, ∆us + ω2
s us = 0, ω2

s =
ρω2

µ
. (8)

We immediately conclude that u is real-analytic.
About boundary conditions, first of all, we define the surface traction Tr(u) = σ(u)ν.

For any ν and any vector V, we denote Vτ = V − (V · ν)ν the tangential component of V
with respect to ν. We consider the so-called third and fourth boundary conditions. Specifically,

Bu = B3u = (u · ν, (Tr(u))τ)

and
Bu = B4u = (uτ , Tr(u) · ν)

Then, in both cases independently of ν, T̃Π(u) = ±TΠ(u), with + for the third boundary
condition and − for the fourth one. We note that B3 and B4 satisfy (A.3)(c1) as well.

Please note that by setting L = L1 = M and Aku = Auk and Bku = Buk we can
actually consider M different measurements, i.e., we can consider M different experiments
using M different incident fields ui

k.
The radiation condition is the Kupradze radiation condition, which corresponds to both

us and up solving the Sommerfeld radiation condition. Therefore, the Kupradze radiation
condition implies the validity of (1). About near-field data, we measure u on D̃. About
far-field data, we measure the far-field pattern of u, which is equivalent to measuring the
far-field pattern of both the longitudinal and transversal waves of u.

About incident fields, we let ui
p,d be a longitudinal plane wave

ui
p,d(x) = d eiωpd·x, x ∈ RN , (9)

where d ∈ SN−1 is the incident direction, and let ui
s,d,q be transversal plane wave

ui
s,d,q(x) = q eiωsd·x, x ∈ RN , (10)

where q ∈ CN\{0} is a unitary vector orthogonal to d. Then, as incident wave ui we can
choose a linear combination of longitudinal and transversal plane waves, namely

ui = cpui
p,d + csui

s,d,q (11)

for some cp, cs ∈ C such that |cp|2 + |cs|2 = 1. In this case ‖ui(x)‖ = 1 for any x ∈ RN .
If cp = 0 we call ui a pure transversal incident wave, and if cs = 0 we call ui a pure
longitudinal incident wave.

Then
ui · ν = cpeiωpd·xd · ν + cseiωsd·xq · ν

and
ui

τ = cpeiωpd·xdτ + cseiωsd·xqτ .

If d and q are row vectors,

σ(ui) = cpiωpeiωpd·x
(

2µdTd + λIN

)
+ csiωseiωsd·xµ

(
dTq + qTd

)
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hence

Tr(ui) = σ(ui)ν =

cpiωpeiωpd·x
(

2µ(d · ν)dT + λν
)
+ csiωseiωsd·xµ

(
(q · ν)dT + (d · ν)qT

)
.

Therefore

Tr(ui) · ν = cpiωpeiωpd·x
(

2µ(d · ν)2 + λ
)
+ csiωseiωsd·x2µ(q · ν)(d · ν)

and
(Tr(ui))τ = cpiωpeiωpd·x2µ(d · ν)dτ + csiωseiωsd·xµ((q · ν)dτ + (d · ν)qτ).

In conclusion,

B3(ui) =
(

cpeiωpd·xd · ν + cseiωsd·xq · ν,

cpiωpeiωpd·x2µ(d · ν)dτ + csiωseiωsd·xµ((q · ν)dτ + (d · ν)qτ)
)

and

B4(ui) =
(

cpeiωpd·xdτ + cseiωsd·xqτ ,

cpiωpeiωpd·x
(

2µ(d · ν)2 + λ
)
+ csiωseiωsd·x2µ(q · ν)(d · ν)

)
.

We conclude that for B4, it is enough to use 1 measurement corresponding to any pure
longitudinal incident wave with any d (that is, by choosing cp = 1 and cs = 0, for example).
In fact, if dτ 6= 0, then the norm of the first component of B4(ui) is ‖dτ‖ > 0 and we obtain
a contradiction. Otherwise, |d · ν| = 1 and the modulus of the second component of B4(ui)
is ωp(2µ + λ) > 0 and we obtain a contradiction.

Instead, for B3, we need to use two measurements to avoid the unfortunate case
that both d and q are orthogonal to ν. For example, one can use two pure transversal
incident waves ui

s,d1,q1
and ui

s,d2,q2
with d1 = d2 and q1 and q2 linearly independent.

We note that these measurements give uniqueness even in the mixed third and fourth
boundary conditions.

Finally, in the case of polyhedral obstacles, one measurement is enough by choosing
as an incident wave any pure transversal incident wave or any pure longitudinal incident
wave, even in the mixed third and fourth boundary conditions.

4. Conclusions

We have shown that the proof of unique determination of polyhedral scatterers by
a finite number of scattering measurements is based on a purely geometric argument,
provided some structural assumptions on the equation, and the boundary condition are
satisfied. This geometric argument is extremely robust and allows us to treat in the same
way different kinds of equations, different boundary conditions, also of mixed type, and
any finite number of measurements. Indeed, we have shown that most uniqueness results
of this nature available in the literature straightforwardly follow our general procedure.
Therefore, the results described here point out the way to obtain these kinds of uniqueness
results in other contexts, with the great advantage of just focusing on the physics of the
system without having to deal with the challenging geometry of the problem.
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