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Abstract: Vector-valued analytic functions in Cn, which are known to have vector-valued tempered
distributional boundary values, are shown to be in the Hardy space Hp, 1 ≤ p < 2, if the boundary
value is in the vector-valued Lp, 1 ≤ p < 2, functions. The analysis of this paper extends the analysis
of a previous paper that considered the cases for 2 ≤ p ≤ ∞. Thus, with the addition of the results of
this paper, the considered problems are proved for all p, 1 ≤ p ≤ ∞.
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1. Introduction

Historically, the analysis of tempered distributions as boundary values of analytic
functions has found applications in mathematical physics, in the study of quantum field
theory. An important reference in this study is Streater and Wightman [1]. In field theory,
the “vacuum expectation values” are tempered distributions that are boundary values in
the tempered distribution topology of analytic functions, with the analytic functions being
Fourier–Laplace transforms. In addition, a field theory can be recovered from its “vacuum
expectation values” [1] (Chapter 3). A similar field theory analysis is contained in the work
by Simon [2].

Of particular interest with respect to the contents of this paper is the work of Raina [3]
in mathematical physics. In [3], Raina considered analytic functions in the upper half plane
that satisfied a pointwise growth condition associated with the analytic functions that have
tempered distributions as boundary value when Im(z)→ 0+. The important mathematical
result in [3] showed that if the tempered distributional boundary value was an element of
Lp(R1), 1 ≤ p ≤ ∞, then the analytic function was in the Hardy space Hp, 1 ≤ p ≤ ∞ of
analytic functions in the upper half plane. A converse result was proved. Raina described
the importance of the results of this type concerning tempered distributional boundary
values and the Hardy spaces Hp, 1 ≤ p ≤ ∞, which, in mathematical physics, are
associated with “form factor bounds”, including the use of Hardy spaces in general in
related topics in mathematical physics. Several associated references are given in [3].
Importantly, the tempered distributions are used in the analysis of the mathematical
physics in [1–3].

The results in [3] have led the author to consider the results of the type in [3] for
higher dimensions and for the analytic and Lp functions being both scalar-valued and
vector-valued. We have also desired to obtain representations of the analytic functions
involved in terms of Fourier–Laplace transforms, Cauchy integrals, and Poisson integrals.
Further, we have desired to obtain new results concerning both the scalar-valued and
vector-valued Hardy functions in higher dimensions, including the growth properties of
these functions.

Given our desires expressed in the previous paragraph, we first considered the scalar-
valued case in [4] where we obtained the pointwise growth of scalar-valued Hp functions on
tubes in Cn. In [4], we considered scalar-valued analytic functions on tubes in Cn that had a
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specified pointwise growth, leading to the existence of tempered distributions as boundary
values, and showed that if these boundary values were a Lp function, 1 ≤ p ≤ ∞, then the
scalar-valued analytic function was in Hp.Related results for other spaces of distributions
were obtained in [4].

Continuing to the vector-valued case and building upon the results of [4], in [5] we
considered vector-valued analytic functions in tube domains in Cn that have pointwise
growth, leading to the existence of vector-valued tempered distributions as boundary
values, and proved that if the boundary value is a vector-valued Lp, 2 ≤ p ≤ ∞ function
then the analytic function must be in the Hardy space Hp, 2 ≤ p ≤ ∞. We obtained integral
representations of the analytic functions and obtained pointwise growth of vector-valued
Hp functions in tubes, 1 ≤ p ≤ ∞.

In [6], we considered vector-valued analytic functions in tube domains without a
defining pointwise growth so that any boundary value would be considered to be in the
Schwartz vector-valued D′ space. We showed that if the analytic functions obtained a
distributional boundary value in the vector-valued distributionD′ sense with the boundary
value being a vector-valued function in Lp, 1 ≤ p ≤ ∞, then the analytic function is in the
vector-valued Hardy space. We obtained a Poisson integral representation of the analytic
functions in this case.

The cases for 1 ≤ p < 2 in the setting of [5] as described above are missing from our
analysis at this point. That is, we desire to consider vector-valued analytic functions in tube
domains that have specified pointwise growth that leads to the existence of vector-valued
tempered distributions as boundary values. We then desire to prove that if the boundary
value is a vector-valued Lp, 1 ≤ p < 2 function, then the analytic function is in the vector-
valued Hp, 1 ≤ p < 2, space. This additional analysis is desirable in order to obtain the
appropriate extension of the important Raina results to all of 1 ≤ p ≤ ∞ in our generalized
setting. Thus, the analysis in this paper concerns the values of p in 1 ≤ p < 2.

2. Definitions and Notation

All notation and definitions needed in this paper are the same as described or referred
to in [5]. We mention and refer to several of the most frequently used definitions and
notations here.

B will denote a Banach space,H will denote a Hilbert space, N will denote the norm
of the specified Banach or Hilbert space, and Θ will denote the zero vector of the specified
Banach or Hilbert space. C ⊂ Rn is a cone with a vertex at 0 = (0, 0, ..., 0) in Rn if y ∈ C
implies λy ∈ C for all λ > 0. The intersection of a cone C with the unit sphere |y| = 1 is
the projection of C and is denoted pr(C). A cone C′ such that pr(C′) ⊂ pr(C) is a compact
subcone of C. The dual cone C∗ of C is defined as C∗ = {t ∈ Rn :< t, y > ≥ 0 for all y ∈ C}.
An open convex cone that does not contain any entire straight line is called a regular cone.
Let v = (v1, v2, ..., vn) be any of the 2n n-tuples whose entries are 0 or 1. The 2n n-rants Cv =
{y ∈ Rn : (−1)vj yj > 0, j = 1, 2, ..., n} are examples of regular cones that will be useful in
this paper.

The Lp(Rn,B) functions, 1 ≤ p ≤ ∞, with values in B and their norms |h|p, the
Schwartz test spaces S(Rn) and S (m)(Rn), m ∈ N, and the spaces of tempered vector-
valued distributions with values in B, S ′(Rn,B) and S (m)′(Rn,B), are all noted in ([5],
Section 2). The reference for the Lp(Rn,B) functions is Dunford and Schwartz [7]. The
references for vector-valued distributions are Schwartz [8,9].

The Fourier transform on S ′(Rn,B) and on L1(Rn) or L1(Rn,B) is given in [5] (Section 2).
The Fourier transform of U ∈ S ′(Rn,B) comes from [8], and will be denoted F [U],
with the inverse Fourier transform being denoted F−1[U]. Similarly, all Fourier (inverse
Fourier) transforms on scalar-valued or vector-valued functions will be denoted F [φ(t); x]
or φ̂ (F−1[φ(t); x]). Of particular importance in this paper are the Fourier and inverse
Fourier transforms on the vector-valued L2 functions; the results that we need for these
functions are discussed and proved in [10] (Section 1.8). As stated in this reference and ref-
erenced in [10] (Section 1.11), the Plancherel theory is not valid for vector-valued functions
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except when B = H, a Hilbert space. That is, in order for the Fourier transform F to be an
isomorphism of L2(Rn,B) onto itself with the Parseval identity |̂f|2 = |f|2 holding, it is nec-
essary and sufficient that B = H, a Hilbert space; this fact comes from Kwapień [11]. The
Plancherel theory is complete in the L2(Rn,H) setting in that the inverse Fourier transform
is the inverse mapping of the Fourier transform with F−1F = I = FF−1, with I being
the identity mapping. As stated in [10] (Section 1.8), the Plancherel theory stated there is
valid for functions of several variables with values in Hilbert space. In the analysis of this
paper, we need the Plancherel theory holding on L2(Rn,B), and thus where needed we
take B = H, a Hilbert space.

Associated with the Fourier transform on vector-valued functions with values in
Banach space is the concept of Banach space of type p, 1 ≤ p ≤ 2, discussed in [12]
(Section 6). We note that every Banach space has Fourier type 1 and leave pursuit of this
concept of Fourier type to the interested reader.

Let B be an open subset of Rn. The Hardy space Hp(TB,B), 0 < p < ∞, consists of
those analytic functions f(z) on the tube TB = Rn + iB ⊂ Cn with values in a Banach space
B such that ∫

Rn
(N (f(x + iy)))pdx ≤ M, y ∈ B,

where z = x + iy ∈ TB and the constant M > 0 is independent of y ∈ B; the usual
modification is made for the case p = ∞.

Let C be an open convex cone in Rn. E(Rn) will denote the set of all infinitely differen-
tiable complex valued functions on Rn. We define the function dy(t) ∈ E(Rn), t ∈ Rn, y ∈
C, as in [5] (Section 2).

We define and state known results concerning the Cauchy and Poisson kernel functions
corresponding to tubes TB = Rn + iC ⊂ Cn. Let C be a regular cone in Rn and C∗ be the
corresponding dual cone of C. The Cauchy kernel corresponding to TC is

K(z− t) =
∫

C∗
e2πi〈z−t,η〉dη, t ∈ Rn, z ∈ TC,

where C∗ is the dual cone of C as noted. The Poisson kernel corresponding to TC is

Q(z; t) =
K(z− t)K(z− t)

K(2iy)
=
|K(z− t)|2

K(2iy)
, t ∈ Rn, z ∈ TC.

Referring to [13] (Chapters 1 and 4) for details, we know for z ∈ TC that K(z− ·) ∈
D(∗, Lp) ⊂ DLp , 1 < p ≤ ∞; and Q(z; ·) ∈ D(∗, Lp) ⊂ DLp , 1 ≤ p ≤ ∞, where ∗ is
Beurling (Mp) or Roumieu {Mp}. These ultradifferentiable functions are contained in the
Schwartz spaceDLp = D(Lp,Rn). We also use the results [4] (Lemmas 3.1 and 3.2). Because
of the combined properties of the Cauchy and Poisson kernels from [13,14], we know that
the Cauchy and Poisson integrals∫

Rn h(t)K(z− t)dt and
∫
Rn h(t)Q(z; t)dt, z ∈ TC,

are well defined for h ∈ Lp(Rn,B), 1 ≤ p < ∞, and h ∈ Lp(Rn,B), 1 ≤ p ≤ ∞,
respectively, where B is a Banach space.

We use [5] (Lemma 3.4) several times in this paper. For convenience to the reader, we
state this result here to conclude this section. Throughout N(0, r) denotes the closed ball of
radius r > 0 centered at 0 ∈ Rn.

Theorem 1. Let f be analytic in TC = Rn + iC with values in a Banach space B, where C is a
regular cone in Rn, and have the Poisson integral representation

f(z) =
∫
Rn

h(t)Q(z; t)dt, z ∈ TC,
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for h ∈ Lp(Rn,B), 1 ≤ p ≤ ∞. We have f ∈ Hp(TC,B), 1 ≤ p ≤ ∞. For p = ∞, f(x + iy)→
h(x) in the weak-star topology of L∞(Rn,B) as y → 0, y ∈ C; for 1 ≤ p < ∞, f(x + iy) →
h(x), x ∈ Rn, in Lp(Rn,B) as y→ 0, y ∈ C; for 1 < p ≤ 2

N (f(x + iy)) ≤ M(C′)|h|p|y|−n/p, z = x + iy ∈ TC′ ,

for all compact subcones C′ ⊂ C, M(C′) being a constant depending on C′ ⊂ C and not on y ∈ C′,
while

N (f(x + iy)) ≤ My|h|p|y|−n/p, z = x + iy ∈ TC,

where My is a constant depending on y ∈ C; and for 2 < p < ∞

N (f(x + iy)) ≤ M(C′, r)|h|p,

z = x + iy ∈ T(C′, r) = {z = x + iy : x ∈ Rn, y ∈ (C′ \ (C′ ∩ N(0, r)))},

for all compact subcones C′ ⊂ C and all r > 0, M(C′, r) being a constant depending on C′ ⊂ C
and on r > 0, but not on y ∈ (C′ \ (C′ ∩ N(0, r))), while

N (f(x + iy)) ≤ My|h|p, z = x + iy ∈ TC,

where My is a constant depending on y ∈ C.

3. Tempered Distributional Boundary Values

Let C be an open convex cone in Rn and TC = Rn + iC ⊂ Cn. We denote the set of
analytic functions on TC with values in a Banach space B by A(TC,B). As above, N(0, r)
denotes the closed ball about 0 ∈ Rn of radius r > 0.

In [5] (Theorem 4.1), we have stated the following result which we need here.

Theorem 2. Let C be an open convex cone. Let f ∈ A(TC,B). For every compact subcone C′ ⊂ C
and every r > 0, let

N (f(x + iy)) ≤ M(C′, r)(1 + |x|)R|y|−k, (1)

z = x + iy ∈ T(C′, r) = Rn + i(C′ \ (C′ ∩ N(0, r))),

where M(C′, r) is a constant depending on C′ ⊂ C and on r, R is a nonnegative integer, k is an
integer greater than 1, and neither R nor k depend on C′ or r. There exists a positive integer m and
a unique element U ∈ S (m)′(Rn,B) ⊂ S ′(Rn,B) such that

lim
y→0,y∈C

N (〈f(x + iy), φ(x)〉 − 〈U, φ〉) = 0, φ ∈ S (m)(Rn). (2)

In Theorem 2, and in the remainder of this paper, by y → 0, y ∈ C, we mean that
y→ 0, y ∈ C′ ⊂ C, for every compact subcone C′ of C.

In [5] (Theorem 4.4), we proved for C, a regular cone, and the boundary value U in
Theorem 2 being a function h ∈ Lp(Rn,H), 2 ≤ p ≤ ∞, that the analytic function f in
Theorem 2 is, in fact, in Hp(TC,H), 2 ≤ p ≤ ∞. In [5], we were not able to obtain this
result for the cases 1 ≤ p < 2. We now have a proof for the cases 1 ≤ p < 2, and we obtain
the result [5] (Theorem 4.4) for the cases 1 ≤ p < 2 here.

To obtain [5] (Theorem 4.4) for 1 ≤ p < 2, we follow some of the structure of [5] by
first proving our result for the case that the cone C is a n-rant cone Cv or is contained in
a n-rant cone and then using this case to obtain the general result for the cone C being
any regular cone. Because 1 ≤ p < 2, here the details of our proof in the case C ⊆ Cv in
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Theorem 3 below are different in many instances than those of [5] (Theorems 4.2 and 4.3).
The values of the functions and distributions in the remainder of this section will be in
Hilbert spaceH because of the need for the Fourier transform properties on L2(Rn,H), as
described in Section 2 above.

We give an outline of the proof of Theorem 3 for the benefit of the reader. Given the
assumed function f(z) in Theorem 3, we will divide it by a structured analytic function
Xε(z), z ∈ TC, ε > 0, and put gε(z) = f(z)/Xε(z), z ∈ TC, ε > 0. gε(z) is represented as
the Fourier transform involving a function Gε(t), which has support in C∗. gε(x + iy) is
shown to have boundary value F [Gε] in S ′(Rn,H) as y→ 0, y ∈ C, and then is shown to
equal the Cauchy integral and the Poisson integral of a function involving the boundary
value h of f(x + iy). After establishing some important limit analysis, we proceed to prove
that f(z) equals the Poisson integral of the boundary value h, which will then yield the
conclusions of Theorem 3.

Theorem 3. Let C be an open convex cone which is contained in or is any of the 2n n-rants
Cv ⊂ Rn. Let H be a Hilbert space. Let f ∈ A(TC,H) and satisfy (1). Let the unique boundary
value U of Theorem 2 be h ∈ Lp(Rn,H), 1 ≤ p < 2. We have f ∈ Hp(TC,H), 1 ≤ p < 2, and

f(z) =
∫
Rn

h(t)Q(z; t)dt, z ∈ TC. (3)

Proof. As noted above, the proof has a structure similar to that of [5] (Theorems 4.2 and 4.3),
but many details are different. We refer to [5] (Theorems 4.2 and 4.3) where appropriate.
Put gε(z) = f(z)/Xε(z), z ∈ TC, ε > 0, where

Xε(z) =
n

∏
j=1

(1− iε(−1)vj zj)
R+n+2, ε > 0.

gε(z) satisfies (1). (By Theorem 2, there is a unique Uε ∈ S ′(Rn,H) such that (2) holds
for gε(z) in S ′(Rn,H), a fact that we use later in this proof.) By the same analysis as in the
proof of [5] (Theorem 4.2), we obtain [5, (15)] here; that is,

N (gε(z)) ≤ M′(C′, r, ε)(1 + |z|)−n−2, (4)

z ∈ T(C′, r) = Rn + i(C′ \ (C′ ∩ N(0, r))),

for all compact subcones C′ ⊂ C ⊆ Cv and all r > 0 where M′(C′, r, ε) is a constant. Put

Gε(t) =
∫
Rn

gε(x + iy)e−2πi〈x+iy,t〉dx, y ∈ C, t ∈ Rn. (5)

Using (4), the same proof as in the proof of [5] (Theorem 4.2) yields that Gε(t) is a
continuous function of t ∈ Rn for y ∈ C and ε > 0, is independent of y ∈ C, and has
support in C∗, the dual cone of C.

For any compact subcone C′ ⊂ C, any r > 0, and any ε > 0 Equation (4) yields

N (Gε(t)) ≤ M′′(C′, r, ε)e2π〈y,t〉, t ∈ Rn, y ∈ (C′ \ (C′ ∩ N(0, r))), (6)

from which e−2π〈y,t〉Gε(t) ∈ Lp(Rn,H) for y ∈ C and for all p, 1 ≤ p < ∞, by ([5],
Lemma 3.1). From Equation (5), e−2π〈y,t〉Gε(t) = F−1[gε(x + iy); t], y ∈ C, with the
transform holding in both the L1(Rn,H) and L2(Rn,H) cases, and in L2(Rn,H):

gε(x + iy) = F [e−2π〈y,t〉Gε(t); x], z = x + iy ∈ TC. (7)
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From the properties of Gε, the Fourier transform in (7) is in both the L1(Rn,H) and
L2(Rn,H) cases, and (7) becomes

gε(x + iy) =
∫
Rn

Gε(t)e2πi〈x+iy,t〉dt, z = x + iy ∈ TC. (8)

Both Gε(t) and e−2π〈y,t〉Gε(t), y ∈ C, are elements of S ′(Rn,H), and gε(x + iy) ∈
S ′(Rn,H), y ∈ C. Thus, gε(x + iy) = F [e−2π〈y,t〉Gε(t); x], z = x + iy ∈ TC, in S ′(Rn,H)
now. Let φ ∈ S(Rn) and ψ = F [φ; ·]. We have

〈gε(x + iy), φ(x)〉 = 〈e−2π〈y,t〉Gε(t), ψ(t)〉 (9)

→ 〈Gε(t), ψ(t)〉 = 〈F [Gε], φ〉

as y → 0, y ∈ C. As noted above, by Theorem 2, there is a unique Uε ∈ S ′(Rn,H) such
that gε(x + iy) → Uε in S ′(Rn,H) as y → 0, y ∈ C; hence, F [Gε] = Uε in S ′(Rn,H) and
Gε = F−1[Uε] ∈ S ′(Rn,H).

Since gε(z) = f(z)/Xε(z), z ∈ TC, ε > 0, we have f(z) = gε(z)Xε(z), z ∈ TC. By
hypothesis, f(x + iy) has boundary value h ∈ Lp(Rn,H) in S ′(Rn,H) as y→ 0, y ∈ C, and
Xε(x + iy)gε(x + iy) → XεF [Gε] = XεUε in S ′(Rn,H) as y → 0, y ∈ C. Thus, XεUε = h
in S ′(Rn,H), ε > 0. For φ ∈ S(Rn)

〈 h(x)
Xε(x)

, φ(x)〉 = 〈h(x),
φ(x)

Xε(x)
〉 = 〈Uε, φ〉

and Uε = h(x)/Xε(x) ∈ S ′(Rn,H). For h ∈ Lp(Rn,H), 1 ≤ p < 2, we have h/Xε ∈
L1(Rn,H), since 1/Xε ∈ Lq(Rn) for all q, 1 ≤ q ≤ ∞. We put Hε = F−1[h(x)/Xε(x); ·];
thus Hε ∈ L∞(Rn,H). Since supp(Gε) ⊆ C∗, then supp(Hε) ⊆ C∗ almost everywhere.
Recalling the function dy(t) defined in Section 2, we have dy(t)e2πi〈z,t〉 ∈ S(Rn), z ∈ TC.
For z ∈ TC

∫
C∗

Gε(t)e2πi〈z,t〉dt = 〈Uε,F−1[dy(t)e2πi〈z,t〉; η]〉 (10)

= 〈 h(η)
Xε(η)

,F−1[dy(t)e2πi〈z,t〉; η]〉 =
∫

C∗
Hε(t)e2πi〈z,t〉dt

with Hε ∈ L∞(Rn,H). From [4] (Lemma 2.1), IC∗(t)e2πi〈z,t〉 ∈ Lp(Rn) for all p, 1 ≤ p ≤ ∞,
for z ∈ TC where IC∗(t) is the characteristic function of C∗, and the integral on the right of
(10) is convergent, since Hε ∈ L∞(Rn,H) and supp(Hε) ⊆ C∗ almost everywhere. From
(8), (10), and the fact that supp(Gε) ⊆ C∗, we have for z ∈ TC

gε(x + iy) = 〈Hε(t), IC∗(t)e2πi〈z,t〉〉 (11)

= 〈F−1[h(x)/Xε(x); t], IC∗(t)e2πi〈z,t〉〉 =
∫
Rn

h(η)
Xε(η)

K(z− η)dη.

We proceed to construct a Poisson integral representation for gε(z) in addition to
the Cauchy integral representation in (11). Let w be an arbitrary point of TC. Using [4]
(Lemma 3.2), we have for z ∈ TC that K(z + w)gε(z) = K(z + w)f(z)/Xε(z) is analytic in
z ∈ TC and satisfies the growth (1) of f(z). Further,

lim
y→0,y∈C

K(x + iy + w)gε(x + iy) = K(x + w)Uε =
K(x + w)h(x)

Xε(x)
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in S ′(Rn,H) with K(x + w)h(x)/Xε(x) ∈ Lp(Rn,H), 1 ≤ p < 2, since both K(x + w)
and 1/Xε(x) are bounded for x ∈ Rn. The same proof leading to (11) applied to K(z +
w)gε(z), z ∈ TC, yields

K(z + w)gε(z) =
∫
Rn

h(t)
Xε(t)

K(t + w)K(z− t)dt, z ∈ TC. (12)

For z = x + iy ∈ TC, we choose w = −x + iy ∈ TC. Then, (12) combined with (11)
becomes

gε(z) =
∫

C∗
Gε(t)e2πi〈z,t〉dt (13)

=
∫
Rn

h(t)
Xε(t)

K(z− t)dt =
∫
Rn

h(t)
Xε(t)

Q(z; t)dt, z ∈ TC.

We now present some limited analyses, which we need to analyze the function, the
Poisson integral of h, that we will show represents f(z) and from which the conclusion
of the proof of this theorem will follow. Since |1/Xε(x)| ≤ 1, x ∈ Rn, ε > 0, both h and
h/Xε are in Lp(Rn,H), 1 ≤ p < 2. We have

(N (
h(x)

Xε(x)
− h(x)))p ≤ (N (

h(x)
Xε(x)

) +N (h(x)))p ≤ 2p+2(N (h(x)))p

with the right side being independent of ε > 0. Further,

lim
ε→0+

N
(

h(x)
Xε(x)

− h(x)
)
= lim

ε→0+
|(1/Xε(x))− 1|N (h(x)) = 0, x ∈ Rn.

By the Lebesgue dominated convergence theorem

lim
ε→0+

∣∣∣∣ h(x)
Xε(x)

− h(x)
∣∣∣∣

p
= lim

ε→0+

(∫
Rn

(
N
(

h(x)
Xε(x)

− h(x)
))p

dx
)1/p

= 0 (14)

which proves h/Xε → h in Lp(Rn,H), 1 ≤ p < 2, as ε→ 0+.
We now define and analyze the function which we desire to be the Poisson integral

representation of f(z), as noted in the preceding paragraph; this function is

G(z) =
∫
Rb

h(t)Q(z; t)dt, z ∈ TC. (15)

Let zo be an arbitrary but fixed point of TC. Choose the closed neighborhood N(zo, ρ) =
{z : |z− zo| ≤ ρ, ρ > 0} ⊂ TC of [5] (Lemma 3.3), and note that [5] (Lemma 3.3) holds
for all p, 1 ≤ p ≤ ∞. Let the constant B(zo) in (16) below be the constant obtained in [5]
(Lemma 3.3). Using the Hölder inequality if 1 < p < 2 and the boundedness of Q(z; t) from
the proof of [5] (Lemma 3.3) ([4] (Lemma 3.4)) if p = 1 and using (13) and (15), we have

N (gε(z)−G(z)) = N
(∫

Rn

(
h(t)

Xε(t)
− h(t)

)
Q(z; t)dt

)
(16)

≤ B(zo)

(∫
Rn

(
N
(

h(t)
Xε(t)

− h(t)
))p

dt
)1/p

= B(zo)

∣∣∣∣ h(t)
Xε(t)

− h(t)
∣∣∣∣

p
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for z ∈ N(zo, ρ) ⊂ TC. Using (14) and (16) for 1 ≤ p < 2, we have

lim
ε→0+

gε(z) = G(z)

uniformly in z ∈ N(zo, ρ). Since gε(z) is analytic in TC, ε > 0, we have that G(z) is analytic
at zo ∈ TC; hence G(z) is analytic in TC since zo is an arbitrary point in TC. Applying
Theorem 1, we have G(z) ∈ Hp(TC,H), 1 ≤ p < 2.

Let φ ∈ S(Rn). Using Hölder’s inequality, if 1 < p < 2 and the boundedness of
φ ∈ S(Rn) if p = 1, we have

N (〈G(x + iy), φ(x)〉 − 〈h(x), φ(x)〉) = N
(∫

Rn
(G(x + iy)− h(x))φ(x)dx

)
≤ |G(x + iy)− h(x)|p||φ||Lq(Rn).

By Theorem 1, G(x + iy) → h(x) in Lp(Rn,H), 1 ≤ p < 2, as y → 0, y ∈ C; hence
G(x + iy)→ h(x) in S ′(Rn,H) as y→ 0, y ∈ C.

Now, consider f(z)−G(z), z ∈ TC, which is analytic in TC. For 1 < p < 2, we have
the pointwise bound on G(z) for y = Im(z) in any compact subcone C′ ⊂ C contained in
Theorem 1. (see also ([5], (6)).) Thus, combining the bounds (1) on f(z) and the pointwise
bound just noted on G(z) for y = Im(z) in any compact subcone C′ ⊂ C, we have the
inequality

N (f(z)−G(z)) ≤ P(C′, r)(1 + |z|)R, (17)

z = x + iy ∈ T(C′, r) = Rn + i(C′ \ (C′ ∩ N(0, r))),

on f(z)−G(z) for the cases 1 < p < 2 for any compact subcone C′ ⊂ C and any r > 0
where P(C′, r) is a constant depending on C′ ⊂ C and on r > 0. If p = 1, by combining
inequalities ([4], (10) and (11)) in the proof of Theorem 1 given in ([5], Lemma 3.4), we have

Q(z; t) =
|K(z− t)|2

K(2iy)
≤ (Zn(n− 1)!δ−n)2(B(C))−1|y|−n,

z = x + iy ∈ TC′ , C′ ⊂ C,

and hence

N (G(z)) ≤ |h|1(Zn(n− 1)!δ−n)2(B(C))−1|y|−n,

z = x + iy ∈ TC′ , C′ ⊂ C,

where δ depends only on C′ and not on C and Zn is the surface area of the unit sphere
in Rn. Combining this inequality on G(z) with inequality (1) on f(z), we again have that
f(z)−G(z), z ∈ TC, also satisfies (17) for p = 1. In addition, we know from the boundary
values of f(z) and G(z) that

lim
y→0,y∈C

(f(x + iy)−G(x + iy)) = h(x)− h(x) = Θ (18)

in S ′(Rn,H) for 1 ≤ p < 2.
Using (18), we now proceed to complete the proof by proving f(z) = G(z), z ∈ TC.

Put F(z) = f(z) − G(z), z ∈ TC, which is analytic in TC. F(z) satisfies (17) and (18) for
each p, 1 ≤ p < 2. Consider g(z) = F(z)/X1(z), z ∈ TC, where X1(z) is defined at the
beginning of this proof for ε = 1. As in obtaining (4) for ε = 1, we have for C′ ⊂ C ⊆ Cv
and r > 0
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N (g(z)) ≤ P′(C′, r, 1)(1 + |z|)−n−2,

z = x + iy ∈ T(C′, r) = Rn + i(C′ \ (C′ ∩ N(0, r))),

where P′(C′, r, 1) is a constant. Now putting as in (5)

A(t) =
∫
Rn

g(x + iy)e−2πi〈x+iy,t〉dx, y ∈ C, t ∈ Rn,

and proceeding with the proof from (5) to (8), we have that A(t) is continuous, is inde-
pendent of y ∈ C; has support in C∗; satisfies a growth as in (6); satisfies e−2π〈y,t〉A(t) =
F−1[g(x + iy); t], t ∈ Rn, y ∈ C, with the transform holding in both the L1(Rn,H) and
L2(Rn,H) cases; and with e−2π〈y,t〉A(t) ∈ Lp(Rn,H) for all p, 1 ≤ p < ∞, y ∈ C; satisfies
g(x + iy) = F [e−2π〈y,t〉A(t); x], x ∈ Rn, y ∈ C; and satisfies

g(x + iy) =
∫
Rn

A(t)e2πi〈x+iy,t〉dt, z = x + iy ∈ TC. (19)

For φ ∈ S(Rn) and y ∈ C

〈F(x + iy)/X1(x + iy), φ(x)〉 = 〈g(x + iy), φ(x)〉
= 〈F [e−2π〈y,t〉A(t); x], φ(x)〉 = 〈e−2π〈y,t〉A(t),F [φ(x); t]〉
→ 〈A(t),F [φ(x); t]〉 = 〈F [A], φ(x)〉

as y→ 0, y ∈ C; and

〈F(x + iy), φ(x)〉 = 〈g(x + iy), X1(x + iy)φ(x)〉
→ 〈F [A], X1(x)φ(x)〉 = 〈X1(x)F [A], φ(x)〉

as y → 0, y ∈ C. Combining this fact with (18) yields X1(x)F [A] = Θ, since F(z) =
f(z)−G(z); hence, A = Θ in S ′(Rn,H). Put

∆ =
n

∏
j=1

(
1− i(−1)vj

(
−1
2πi

∂

∂tj

))R+n+2

.

From (19),

F(z) = X1(z)g(z) = X1(z)
∫
Rn

A(t)e2πi〈x+iy,t〉dt

= 〈∆A(t), dy(t)e2πi〈x+iy,t〉〉 = Θ, z = x + iy ∈ TC.

Since F(z) = f(z)−G(z), z ∈ TC, and G(z) is given in (15), we conclude

f(z) = G(z) =
∫
Rn

h(t)Q(z; t)dt, z ∈ TC;

and f(z) ∈ Hp(TC,H), 1 ≤ p < 2, since we have previously obtained G(z) ∈ Hp(TC,H),
1 ≤ p < 2, from Theorem 1. The proof of Theorem 3 is complete.

With Theorem 3 proved for 1 ≤ p < 2, we now obtain this result for C being an
arbitrary regular cone in Rn; this is our desired result, which extends [5] (Theorem 4.4)
to the cases 1 ≤ p < 2. The proof of the following theorem for the cases 1 ≤ p < 2 is
obtained using Theorem 3 by exactly the same proof that [5] (Theorem 4.4) was proved
using [5] (Theorems 4.2 and 4.3); we ask the interested reader to follow the suggested proof
if desired.
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Theorem 4. Let C be a regular cone in Rn. Let H be a Hilbert space. Let f ∈ A(TC,H) and
satisfy (1). Let the unique boundary value U of Theorem 2 be h ∈ Lp(Rn,H), 1 ≤ p < 2. We
have f ∈ Hp(TC,H), 1 ≤ p < 2, and

f(z) =
∫
Rn

h(t)Q(z; t)dt, z ∈ TC.

The Poisson integral representation of the function f(z) in Theorem 4 follows from
the fact that the unique S ′(Rn,H) boundary value h ∈ Lp(Rn,H), 1 ≤ p < 2, is obtained
independently of how y→ 0, y ∈ C, and follows from the structure of the tubes TSj , j =
1, ..., k, in the referenced proof of [5] (Theorem 4.4). f(z) equals the Poisson integral of h in
each of these tubes by Theorem 3 and hence in all of TC.

In summary concerning the proofs here of Theorems 3 and 4 for 1 ≤ p < 2 and
the proofs of the corresponding results in [5] for 2 ≤ p ≤ ∞, we note the following. In
certain places in the analysis, the products or quotients involving the boundary value h
and other terms must be analyzed carefully in order for the analysis to proceed. In both
restrictions on p, many times we need the product or quotient to be Fourier transformable
in L1(Rn,H) or L2(Rn,H) or both. The properties of such products or quotients can be
different depending on whether 1 ≤ p < 2 or 2 ≤ p ≤ ∞; hence, the analysis must be
suitably adjusted to proceed with the proof. Further, to obtain appropriate boundedness
properties in the proofs the method to proceed depends on whether p = 1 or 1 < p < 2 for
the case 1 ≤ p < 2, and depends on whether 2 ≤ p < ∞ or p = ∞ for the case 2 ≤ p ≤ ∞.
These and other technical difficulties must be overcome for the proofs to proceed, and the
difficulties depend on the two cases, 1 ≤ p < 2 or 2 ≤ p ≤ ∞. Additionally, here we have
stated the Poisson integral representation of f(z) as a conclusion in Theorem 4, but should
have done so in [5] (Theorem 4.4) as well, where this conclusion is obtained by the same
argument used in the paragraph below Theorem 4 above.

4. Conclusions

The primary goal of this paper was to extend the result [5] (Theorem 4.4) to the cases for
1 ≤ p < 2 in the tempered distribution setting. This we have accomplished. Combining [5]
(Theorem 4.4) with Theorem 4 of this paper, we have the desired result for all p, 1 ≤ p ≤ ∞.
The author was motivated to obtain these results by the paper of Raina [3]. As previously
described, the results of [3] are applicable in mathematical physics. In the Introduction, we
have also recalled the important work of Streater and Wightman [1] and Simon [2]. Our
growth estimate (1) is of the type with which Tillmann [14] characterized those analytic
functions which obtain tempered distributional boundary values. We note that the results
of Tillmann have been extended by Meise [15,16] in studying tempered vector-valued
distributions as boundary values of vector-valued analytic functions.

Other authors have made contributions to mathematical physics in which tempered
distributional boundary values of analytic functions are involved. Vladimirov [17] shows
that analytic functions similar to those in this paper arise in applying the Fourier–Laplace
transform to convolution equations which describe linear homogeneous processes with
causality that find application in several applicable fields. The analysis of linear conjugacy
of analytic functions of several variables involves tempered distributional boundary values
of analytic functions represented as Fourier–Laplace integrals. Vladimirov [18] states that
many problems arising in mathematical physics reduce to the problem of linear conjugacy
involving tempered distributions. Considering the analysis in this paper we suggest, for
example, that the linear conjugacy problem can be extended to the vector-valued case. We
plan to work on the linear conjugacy problem in the vector-valued case in the future.
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