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Abstract: This study contains a two-dimensional mathematical model of solute transport in a river
with temporally and spatially dependent flow, explicitly focusing on pulse-type input point sources
with a fractional approach. This model is analyzed by assuming an initial concentration function as
a declining exponential function in both the longitudinal and transverse directions. The governing
equation is a time-fractional two-dimensional advection–dispersion equation with a variable form
of dispersion coefficients, velocities, decay constant of the first order, production rate coefficient
for the solute at the zero-order level, and retardation factor. The solution of the present problem
is obtained by the fractional reduced differential transform method (FRDTM). The analysis of the
initial retardation factor has been carried out via plots. Also, the influence of initial longitudinal and
transverse dispersion coefficients and velocities has been examined by graphical analysis. The impact
of fractional parameters on pollution levels is also analyzed numerically and graphically. The study
of convergence for the FRDTM technique has been conducted to assess its efficacy and accuracy.

Keywords: advection; dispersion; heterogeneous medium; fractional reduced differential transform
method (FRDTM)
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1. Introduction

Several authors have examined a space–time fractional partial differential equation.
The fundamental partial differential equation may be changed by replacing the second-
order space-derivative and first-order time-derivative with fractional derivatives of order
β > 0 and α > 0, respectively [1]. Authors have obtained a numerical solution of the
one-dimensional fractional advection–dispersion equations with variable coefficients on
a finite domain [2]. Fractional space derivatives represent anomalous diffusion or disper-
sion models, in which a particle plume spreads at a rate inconsistent with the classical
Brownian motion model. In groundwater hydrology, fractional advection–dispersion
equations represent passive tracer transfer in porous fluid flow. For a one-dimensional
advection–dispersion model with constant coefficients, Fourier transform techniques pro-
vide analytical solutions [3,4].

Research on the transport of contaminants through porous media using hydraulic
permeability is very significant for many technical, biophysical, and biological purposes.
These include the treatment of contaminants, extraction of oil, and the management of
high-level nuclear waste disposal [5]. Solute transport in disordered porous media is crucial
in many scientific and engineering fields. Some of its examples are Tracer investigations in
oil recovery, subsurface pollutant transfer, chemical transport in packed bed reactors, water
filtering, fuel cells, and current catalyst development [6].
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Several mathematical models have been created to study contaminant transport in porous
media during groundwater flow, focusing on pollutant migration mechanisms. Djordjevich and
Savovic have derived numerical solutions for the one-dimensional advection–diffusion equation
with variable coefficients in semi-infinite media. The equation includes the dependence of
flow on both time and space. The authors have used the explicit finite difference method
to obtain the solution [7]. A numerical solution for two-dimensional solute transport
was developed using finite difference techniques with periodic velocity in homogeneous
porous media [8]. Two-dimensional solute transport was modeled mathematically in
semi-infinite heterogeneous porous media. It has geographically and time-dependent
coefficients for various input concentration pulses [9]. The Galerkin spectral element
approach is used to provide an approximation of the Riesz space fractional in spatial
directions, primarily to calculate the fractional advection–dispersion equation that applies
in one and two dimensions of Riesz space [10]. For the alternative way to analyze the two-
dimensional time distributed-order diffusion-wave equation, authors have also applied
the Legendre–Laguerre spectral method over a semi-infinite domain [11]. The analysis of
memory-based two-dimensional advection–diffusion equations inside a domain with a
source located at the symmetry center of the domain is carried out by using Laplace and
double sine-Fourier transformations [12].

There are multiple advantages to studying two-dimensional contaminant transport
models over one-dimensional models. Two-dimensional models involve concentration
gradients and contaminant transport in the orthogonal direction of the groundwater flow.
Many researchers have analyzed two-dimensional models with longitudinal velocity com-
ponents, neglecting the transverse velocity components. In the present problem, we have
considered the dispersion coefficients as a linear multiple of spatially dependent function
and seepage velocity and velocity components as the nth power of spatially dependent
function. This is analyzed using the FRDTM, an advanced and effective method to iden-
tify solutions for the time-fractional two-dimensional advection–diffusion equation. Our
research’s primary contribution is forecasting water behavior, which has significant impli-
cations for preserving water quality in environmental systems. We have also analyzed the
effect of various factors on river pollution reduction.

In the context of modeling, fluid flow, and solute transport in porous media, the time-
fractional part allows for the inclusion of subdiffusion phenomena. Subdiffusion refers to
the phenomenon where the movement of fluid and solute particles is hindered, resulting in
slower rates of advection and diffusion compared to classical scenarios. This hindrance may
be attributed to many factors, such as obstacles or heterogeneities within the medium.

Fractional-order models provide greater flexibility in capturing complex dynamic
behaviors due to their continuous nature, which can be more representative of real-world
dynamics. Nonlinear fractional partial differential equations are often more challenging
than linear ones. Moreover, no method gives an exact solution for the fractional-order
differential equation. Hence, nonlinear PDEs of fractional order make the research more sig-
nificant. They can describe systems with memory and hereditary properties more accurately.
Fractional-order models explicitly capture non-local memory effects, while integer-order
models assume local memory. However, there are some drawbacks to fractional-order
models. They can be more mathematically complex and challenging to analyze com-
pared to integer-order models. It requires specialized techniques to solve fractional-order
differential equations.

In this paper, we have applied the latest technique, namely the FRDTM—an efficient
and robust method to find the solutions of the time-fractional two-dimensional advection–
dispersion equation. The FRDTM provides highly accurate numerical results for nonlinear
time-fractional differential equations without spatial discretization, linearization, transformation,
or perturbation. The FRDTM can be applied to derive a variety of fractional-order nonlinear
problems with distinct physical structures arising in science, which is the novelty of our work.

The remainder of this paper is structured as follows: Section 2 discusses the math-
ematical construction of the model. Section 3 revisits several fundamental concepts and
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features of the FRDTM. Section 4 discusses the numerical results and their consequences.
Section 5 closes with concluding comments.

2. Mathematical Construction of the Problem

The two primary mechanisms by which contaminants penetrate the subsurface are
advection, which is brought on by groundwater movement, and dispersion, which results
from mechanical mixing and molecular diffusion, both occurring simultaneously. The small
seepage velocity precludes the investigation of molecular diffusions. The two-dimensional
advection–diffusion equation can have its mathematical form provided by a parabolic
partial differential equation of the second order. It is expressed as [13]

R? ∂c
∂τ

=
∂

∂x

(
D?

x
∂c
∂x
− u?c

)
+

∂

∂y

(
D?

y
∂c
∂y
− v?c

)
− α?c + β? (1)

The variable c (mg L−1) represents the solute concentration of the pollutant as it is
transported through the medium along the flow field at any given place (x, y) and time τ.
D?

x (m2 day−1) and D?
y (m2 day−1) represent the longitudinal and transverse dispersion

coefficients, respectively. Additionally, the parameters u? (m day−1) and v? (m day−1)
values represent the unstable uniform seepage velocity in the longitudinal and transverse
directions, respectively. The value α? (day−1) represents the decay constant of the first
order, while the parameter β? (kg m−3 day−1) identifies the production rate coefficient for
the solute at the zero-order level which represents the production of the solute internally or
externally in the medium. The dimensionless quantity known as the retardation factor is
symbolized by R?.

Consider the spatial and temporal dependencies of the flow domain parameters as
under [13]

D?
x = Dx0(1 + ax)3(1 + by)g(mτ), D?

y = Dy0(1 + by)3(1 + ax)g(mτ),

u? = u0(1 + ax)2(1 + by)g(mτ), v? = v0(1 + by)2(1 + ax)g(mτ),

R? = R0(1 + ax)(1 + by), α? = α0(1 + ax)(1 + by)g(mτ), β? = β0(1 + ax)(1 + by)g(mτ)

(2)

The parameters a and b represent heterogeneity in the longitudinal and transverse
directions. The varied values of a and b reflect various levels of heterogeneity. The het-
erogeneity of the porous media refers to the condition where the porosity or hydraulic
conductivity varies based on the specific location within the medium. Initial dispersion
coefficients in the longitudinal and transverse directions are denoted by the symbols Dx0 and
Dy0 , respectively. Initial unstable uniform seepage velocities in the longitudinal and lateral
directions are denoted by the notation u0 and v0, respectively. The parameter for unsteadiness
is denoted by m. The initial decay constant of the first order and the zero-order production
rate coefficient for the solute are denoted by the notations α0 and β0, respectively. R0 is the
initial retardation factor. We assumed g(mτ), where g(mτ) = 1 when τ = 0 or m = 0. The
first situation depicts a steady flow, while the second represents the initial state. g(mτ) is an
expression without dimensions. Therefore, Equation (1) is converted into the given form.

R0

g(mτ)

∂c
∂τ

= Dx0(1 + ax)2 ∂2c
∂x2 + Dy0(1 + by)2 ∂2c

∂y2 + (3Dx0 a− u0)(1 + ax)
∂c
∂x

+
(
3Dy0 b− v0

)
(1 + by)

∂c
∂y
− 2(au0 + bv0)c− α0c + β0

(3)

Let us introduce new variables defined as under [13].

X = log(1+ax)
a , Y = log(1+by)

b and T =
∫ τ

0 g(mτ)dτ.

Hence, Equation (3) transforms into the given form using the provided transformations.

R0
∂c
∂T

= Dx0

∂2c
∂X2 + Dy0

∂2c
∂Y2 − (u0 − 2aDx0)

∂c
∂X
− (v0 − 2bDy0)

∂c
∂Y
− 2(au0 + bv0)c− α0c + β0 (4)
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The initial values of the function c(X, Y, T) are supposed to follow a declining expo-
nential pattern with respect to both X and Y [14].

c(X, Y, 0) = e−
(X+Y)

γ0 (5)

3. Fractional Reduced Differential Transform Method (FRDTM)

Some of the basic ideas and characteristics of the theory of fractional calculus are
explained in this section [15,16].

Definition 1. The fractional derivative of the function w of order λ, in the sense of Caputo, is
denoted by Dλw(τ) and is defined as

Dλw(τ) =
1

Γ(n− λ)

∫ 1

0
(τ − t)wn(t)dt,

f or n− 1 < λ ≤ n, n ∈ N
(6)

Let us consider a function of three variables, denoted as ω(ϑ, v, τ), which can be
expressed as the product of three single-variable functions, i.e., ω(ϑ, v, τ) = s(ϑ)k(v)u(τ).
The representation of function ω(ϑ, v, τ) may be determined based on the characteristics
of differential transform.

ω(ϑ, v, τ) =
∞

∑
n=0

Ωn(ϑ, v)τλn (7)

where Ωn(ϑ, v) is a t-dimensional spectrum function. Ωn(ϑ, v) is the transformed function
of ω(ϑ, v, τ). The basic definitions and operations of the FRDTM are as follows:

The RD operator signifies the reduced differential transform, whereas the R−1
D denotes

the inverse reduced differential transform.

Definition 2. Let us examine the function ω(ϑ, v, τ), which is assumed to possess analyticity and
continuous differentiability with respect to ϑ, v, and τ inside the selected domain. The definition of
the reduced differential transformations for the function ω(ϑ, v, τ) is as follows [17,18]:

RD[ω(ϑ, v, τ)] ≈ Ωn(ϑ, v) =
1

Γ(λn + 1)

[
∂λn

∂τλn ω(ϑ, v, τ)

]
τ=0

(8)

The symbol λ is used to denote the time-fractional-order derivative.

Definition 3. The following is a presentation of the inverse differential transformations of the
function Ωn(ϑ, v):

R−1
D [Ωn(ϑ, v)] ≈ ω(ϑ, v, τ) =

∞

∑
n=0

Ωn(ϑ, v)τλn (9)

From Equations (8) and (9), we obtain

ω(ϑ, v, τ) =
∞

∑
n=0

1
Γ(λn + 1)

[
∂λn

∂τλn ω(ϑ, v, τ)

]
τ=0

τλn (10)

In order to elucidate the fundamental principles of the FRDTM, let us examine the
following nonlinear partial differential equation expressed in an operator format [19]:

Lω(ϑ, v, τ) + Hω(ϑ, v, τ) + Wω(ϑ, v, τ) = f (ϑ, v, τ) (11)

with initial condition ω(ϑ, v, 0) = h(ϑ, v) (12)

where L = ∂λ

∂τλ , the linear operator H has partial derivatives, whereas the operator
Wω(ϑ, v, τ) is nonlinear, and f (ϑ, v, τ) represents an inhomogeneous term.
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Based on the principles of the FRDTM, it is possible to derive the following iteration formula:

Γ(λ(n + 1) + 1)
Γ(λn + 1)

Ωn+1(ϑ, v) = Fn(ϑ, v)− HΩn(ϑ, v)−WΩn(ϑ, v) (13)

The functions Ωn(ϑ, v), HΩn(ϑ, v), WΩn(ϑ, v), and Fn(ϑ, v) represent the transfor-
mations of the functions ω(ϑ, v, τ), Hω(ϑ, v, τ), Wω(ϑ, v, τ), and f (ϑ, v, τ), respectively.

Based on the initial condition (12), we formulate

Ω0(ϑ, v) = h(ϑ, v) (14)

By substituting Equation (14) into Equation (13) and conducting a basic iterative
computation, we get the values of Ωn(ϑ, v) as follows. Subsequently, the inverse transla-
tion of the set of values {Ωn(ϑ, v)}k

n=0 yields the k-terms approximation solution in the
following manner:

ωk(ϑ, v, τ) =
k

∑
n=0

Ωn(ϑ, v)τλn (15)

Hence, the exact answer is given by

ω(ϑ, v, τ) = lim
k→∞

ωk(ϑ, v, τ) (16)

Theorem 1. If ω(ϑ, v, τ) = ∑∞
n=0 Ωn(ϑ, v)τλn is given series [20–22]:

1. Given series solution is convergent if ∃ 0 < α < 1 such that ‖Ωn+1‖
‖Ωn‖ ≤ α.

2. Given series solution is divergent if ∃ α > 1 such that ‖Ωn+1‖
‖Ωn‖ ≥ α.

The proof of Theorem 1, which is a particular case of Banach’s fixed point theorem,
can be found in the reference.

Corollary 1. The series solution ∑∞
n=0 Ωn(ϑ, v, τ) exhibits convergence toward the exact solution

ω(ϑ, v, τ) with the condition that 0 ≤ ξk < 1, where every k belongs to the whole number [20–22].

ξk =

{ ‖Ωk+1‖
‖Ωk‖

, ‖Ωk‖ 6= 0

0, ‖Ωk‖ = 0

Table 1 presents the essential mathematical operations of the FRDTM, providing
simple accessibility.

Table 1. Transform table [23–26].

Function Transformation

ω(ϑ, v, τ) Ωj(ϑ, v) = 1
Γ(λj+1)

[
∂λj

∂τλj ω(ϑ, v, τ)
]

τ=0

αφ± βξ αΦj ± βΞj, α and β are constant.

φ(ϑ, v, τ)ξ(ϑ, v, τ) ∑
j
n=0 Φn(ϑ, v)Ξj−n(ϑ, v)

∂λn

∂τλn ω(ϑ, v, τ)
Γ(jλ+nλ+1)

Γ(jλ+1) Ωj+n(ϑ, v)

∂n

∂ϑn ω(ϑ, v, τ) ∂n

∂ϑn Ωj(ϑ, v).

∂n

∂vn ω(ϑ, v, τ) ∂n

∂vn Ωj(ϑ, v).

ϑmvpτn ϑmvpδ(jλ− n) where δ(jλ− n) =

{
1 jλ = n
0, jλ 6= n

.
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4. Results and Discussion

This part illustrates the numerical and graphical outcomes of the derived general
solution, which includes several parameters. The impact of various parameters on the
concentration profile has also been observed. In order to analyze this, Equation (4) was
transformed into time-fractional partial differential equations, which are presented as follows:

R0
∂λc
∂Tλ

= Dx0

∂2c
∂X2 + Dy0

∂2c
∂Y2 − (u0 − 2aDx0)

∂c
∂X
− (v0 − 2bDy0)

∂c
∂Y
− 2(au0 + bv0)c− α0c + β0 (17)

Applying the FRDTM on both sides of Equation (17), we obtain

R0
Γ(λ(n + 1) + 1)

Γ(λn + 1)
Cn+1 = Dx0

∂2Cn

∂X2 + Dy0

∂2Cn

∂Y2 − (u0 − 2aDx0)
∂Cn

∂X
− (v0 − 2bDy0)

∂Cn

∂Y
−2(au0 + bv0)Cn − α0Cn + β0δ(nλ)

(18)

Cn+1 =
Γ(λn + 1)

R0Γ(λ(n + 1) + 1)
[Dx0

∂2Cn

∂X2 + Dy0

∂2Cn

∂Y2 − (u0 − 2aDx0)
∂Cn

∂X
− (v0 − 2bDy0)

∂Cn

∂Y
−2(au0 + bv0)Cn − α0Cn + β0δ(nλ)]

(19)

From the initial condition (5), we obtain

C0 = e−
(X+Y)

γ0 (20)

From Equation (19) and (20), we obtain the general solution

c(X, Y, T) = C0(X, Y) + C1(X, Y)Tλ + C2(X, Y)Tλ2 + ... = Φ0 + Φ1 + Φ2 + ... (21)

where

C0 = e−
(X+Y)

γ0

C1 =
e
− X+Y

γ0

(
Dx0+Dy0+γ0 u0+γ0 v0−α0 γ2

0+γ2
0 β0 e

X+Y
γ0 −2 a Dx0 γ0−2 b Dy0 γ0−2 a γ2

0 u0−2 b γ2
0 v0

)
γ2

0 R0 Γ(λ+1)

C2 =
e
− X+Y

γ0 (α0+2 a u0+2 b v0)

(
α0+2 a u0+2 b v0−β0 e

X+Y
γ0

)
R2

0 Γ(2 λ+1)
+

e
− X+Y

γ0 (Dx0+Dy0)
2

γ4
0 R2

0 Γ(2 λ+1)

−

e
− X+Y

γ0


4 a2 D2

x0
− 8 a b Dx0 Dy0 + 8 a Dx0 u0 + 4 a Dx0 v0 + 4 a Dy0 u0
−4 b2 D2

y0
+ 4 b Dx0 v0 + 4 b Dy0 u0 + 8 b Dy0 v0

+2 α0 Dx0 + 2 α0 Dy0 − u2
0 − 2 u0 v0 − v2

0


γ2

0 R2
0 Γ(2 λ+1)

+
2 e
− X+Y

γ0 (Dx0+Dy0) (u0+v0−2 a Dx0−2 b Dy0)
γ3

0 R2
0 Γ(2 λ+1)

− 2 e
− X+Y

γ0 (α0+2 a u0+2 b v0) (u0+v0−2 a Dx0−2 b Dy0)
γ0 R2

0 Γ(2 λ+1)

Furthermore, in order to perform a convergence analysis of a given series solution, we
calculate the terms ξk using corollary 1. ξ0 = ‖Φ1‖

‖Φ0‖
= 0.2057 < 1, ξ1 = ‖Φ2‖

‖Φ1‖
= 0.2054 < 1.

This observation confirms that the FRDTM yields a series solution that exhibits convergence
toward the exact solution. Now, we have obtained the numerical values of the concentration
for fixed R0 = 1.15, u0 = 1.05, v0 = 0.105, α0 = 0.01, Dx0 = 1.25, Dy0 = 0.125, γ0 = 1.02,
a = b = 0.01 and β0 = 0.0021 [13].

Tables 2–4 give the numerical values of concentration at fixed (Y = 0.33, T = 0.2),
(Y = 0.55, T = 0.4), and (Y = 0.77, T = 0.3) for different values of λ, respectively. We have
shown a negative correlation between the change in X and the change in concentration.
As Y continues to rise, the concentration will continue to fall. If there is an increase in T,
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there is also an increase in concentration. Additionally, we saw that the concentration was
becoming lower as the λ value increased.

Table 2. c(X, 0.33, 0.2).

X λ = 0.11 λ = 0.33 λ = 0.66 λ = 0.88 λ = 1

0.1 3.980477607 2.607343465 1.454181455 1.099631673 0.98151519

0.2 3.60889774 2.363961035 1.318444752 0.996983733 0.88988869

0.3 3.272018472 2.143307276 1.195384045 0.903921741 0.80681889

0.4 2.96659923 1.943259632 1.083815565 0.819550497 0.7315067

0.5 2.689702069 1.761893767 0.982666092 0.7430584 0.66322765

0.6 2.438663406 1.597465053 0.89096263 0.673709644 0.60132496

0.7 2.211068402 1.448391786 0.807823046 0.610837137 0.54520316

0.8 2.004727734 1.313239971 0.73244759 0.553836082 0.49432238

0.9 1.817656529 1.190709532 0.664111196 0.502158164 0.44819319

1 1.648055278 1.079621801 0.602156508 0.455306275 0.40637185

Table 3. c(X, 0.55, 0.4).

X λ = 0.11 λ = 0.33 λ = 0.66 λ = 0.88 λ = 1

0.1 3.567649774 2.782692086 1.752639746 1.312338402 1.1429389

0.2 3.234633278 2.5229612 1.589067531 1.189862087 1.03627113

0.3 2.932716077 2.287485712 1.440770778 1.078823425 0.93956471

0.4 2.658993912 2.07400049 1.306322961 0.978154291 0.85188937

0.5 2.410833743 1.880451938 1.184430776 0.886886311 0.77240174

0.6 2.185848421 1.704978238 1.073921694 0.804141542 0.70033719

0.7 1.981873725 1.545891438 0.973732685 0.729124029 0.63500251

0.8 1.796947542 1.401661222 0.882899991 0.661112151 0.57576922

0.9 1.629290996 1.270900182 0.800549859 0.599451675 0.52206752

1 1.477291334 1.152350478 0.72589013 0.543549463 0.47338085

Table 4. c(X, 0.77, 0.3).

X λ = 0.11 λ = 0.33 λ = 0.66 λ = 0.88 λ = 1

0.1 2.750852231 1.988701837 1.177128614 0.878166651 0.77053285

0.2 2.494109165 1.803107244 1.067284338 0.796218808 0.6986261

0.3 2.261342475 1.634844708 0.967698051 0.7219238 0.63343449

0.4 2.050313086 1.482295647 0.877411794 0.654566954 0.5743309

0.5 1.858991025 1.343992632 0.795557068 0.593500337 0.5207468

0.6 1.685535891 1.218605273 0.721346481 0.538136528 0.47216674

0.7 1.52827915 1.104927418 0.654066172 0.487942959 0.42812341

0.8 1.38570809 1.001865558 0.593068946 0.4424368 0.38819314

0.9 1.256451263 0.9084283 0.537768046 0.401180308 0.35199182

1 1.139265299 0.823716834 0.487631512 0.363776622 0.31917122

Figure 1 presents a three-dimensional depiction of the concentration profile at various
time points (T). Figures 2 and 3 provide visual depictions of concentration variations
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for distinct values of X and Y, respectively. The value of variable c exhibits a positive
correlation with the value of variable T, wherein a rise in T results in a corresponding
increase in the value of c. The value of variable c exhibits a negative correlation with the
values of variables X and Y as the latter two variables grow.

Figure 1. Three-dimensional comparison of approximate solution for different values of T = 0.2,
0.5, 0.7, and 0.9 for R0 = 1.15, u0 = 1.05, v0 = 0.105, α0 = 0.04, Dx0 = 1.25, Dy0 = 0.125, a = b = 0.01,
λ = 1, γ0 = 1.02, and β0 = 0.0021.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

Figure 2. Two-dimensional comparison of approximate solution for different values of X = 0.1,
0.4, 0.7, and 1 for R0 = 1.15, u0 = 1.05, v0 = 0.105, α0 = 0.04, Dx0 = 1.25, Dy0 = 0.125, a = b = 0.01,
λ = 1, γ0 = 1.02, and β0 = 0.0021.
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Figure 3. Two-dimensional comparison of approximate solution for different values of Y = 0.2, 0.5, 0.8,
and 1 for R0 = 1.15, u0 = 1.05, v0 = 0.105, α0 = 0.04, Dx0 = 1.25, Dy0 = 0.125, a = b = 0.01, λ = 1,
γ0 = 1.02, and β0 = 0.0021.

The graphical depiction of concentration for various fractional order values (λ = 0.22,
0.55, 0.77, 1) at a constant period (T = 0.3) is shown in Figure 4. As the value of λ increases
from 0 to 1, the value of c decreases.

Figure 4. Behavior of approximate solution for different values of λ = 0.22, 0.55, 0.77, and 1 for
R0 = 1.15, u0 = 1.05, v0 = 0.105, α0 = 0.04, Dx0 = 1.25, Dy0 = 0.125, a = b = 0.01, T = 0.3, γ0 = 1.02,
and β0 = 0.0021.

Figure 5 presents a visual depiction of the impact of the retardation factor on the
concentration of pollutants. Tables 5 and 6 give the numerical values of pollutant concen-
tration for different initial retardation factor R0 = 1.15 and R0 = 2.25, respectively, for
fixed parameters u0 = 1.05, v0 = 0.105, α0 = 0.04, Dx0 = 1.25, Dy0 = 0.125, a = b = 0.01,
T = 0.5, γ0 = 1.02 and β0 = 0.0021.
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Figure 5. Comparison of the concentration profile in three dimensions for various retardation
coefficients R0 = 1.15, 1.85, 2, and 2.25 for u0 = 1.05, v0 = 0.105, α0 = 0.04, Dx0 = 1.25, Dy0 = 0.125,
a = b = 0.01, T = 0.5, γ0 = 1.02, and β0 = 0.0021.

Table 5. c(X, Y, 0.5) for fixed R0 = 1.15.

X\Y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 2.101758 1.905566 1.727696 1.566436 1.420236 1.287689 1.16752 1.058574 0.959801 0.870252

0.2 1.905566 1.727696 1.566436 1.420236 1.287689 1.16752 1.058574 0.959801 0.870252 0.789067

0.3 1.727696 1.566436 1.420236 1.287689 1.16752 1.058574 0.959801 0.870252 0.789067 0.715462

0.4 1.566436 1.420236 1.287689 1.16752 1.058574 0.959801 0.870252 0.789067 0.715462 0.648732

0.5 1.420236 1.287689 1.16752 1.058574 0.959801 0.870252 0.789067 0.715462 0.648732 0.588233

0.6 1.287689 1.16752 1.058574 0.959801 0.870252 0.789067 0.715462 0.648732 0.588233 0.533384

0.7 1.16752 1.058574 0.959801 0.870252 0.789067 0.715462 0.648732 0.588233 0.533384 0.483657

0.8 1.058574 0.959801 0.870252 0.789067 0.715462 0.648732 0.588233 0.533384 0.483657 0.438574

0.9 0.959801 0.870252 0.789067 0.715462 0.648732 0.588233 0.533384 0.483657 0.438574 0.397701

1 0.870252 0.789067 0.715462 0.648732 0.588233 0.533384 0.483657 0.438574 0.397701 0.360645

Table 6. c(X, Y, 0.5) for fixed R0 = 2.25.

X\Y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 1.367598 1.239926 1.124177 1.019237 0.924097 0.837842 0.759642 0.688745 0.624469 0.566195

0.2 1.239926 1.124177 1.019237 0.924097 0.837842 0.759642 0.688745 0.624469 0.566195 0.513363

0.3 1.124177 1.019237 0.924097 0.837842 0.759642 0.688745 0.624469 0.566195 0.513363 0.465465

0.4 1.019237 0.924097 0.837842 0.759642 0.688745 0.624469 0.566195 0.513363 0.465465 0.42204

0.5 0.924097 0.837842 0.759642 0.688745 0.624469 0.566195 0.513363 0.465465 0.42204 0.382671

0.6 0.837842 0.759642 0.688745 0.624469 0.566195 0.513363 0.465465 0.42204 0.382671 0.346977

0.7 0.759642 0.688745 0.624469 0.566195 0.513363 0.465465 0.42204 0.382671 0.346977 0.314618

0.8 0.688745 0.624469 0.566195 0.513363 0.465465 0.42204 0.382671 0.346977 0.314618 0.28528

0.9 0.624469 0.566195 0.513363 0.465465 0.42204 0.382671 0.346977 0.314618 0.28528 0.258682

1 0.566195 0.513363 0.465465 0.42204 0.382671 0.346977 0.314618 0.28528 0.258682 0.234568
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Figure 6 presents a three-dimensional graphical depiction illustrating the impact
of initial velocity on the concentration of pollutants. Tables 7 and 8 present numerical
values of the concentration function for various initial velocities. The values of (u0, v0) are
(1.05, 0.105) and (2.5, 0.25), respectively, for the specified parameters. The values of the
parameters are as follows: R0 = 1.15, α0 = 0.04, Dx0 = 1.25, Dy0 = 0.125, a = b = 0.01,
T = 0.4, γ0 = 1.02, and β0 = 0.0021.

Table 7. c(X, Y, 0.4) for fixed u0 = 1.05, v0 = 0.105.

X\Y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 1.776338 1.610519 1.460186 1.323891 1.200325 1.088298 0.986733 0.894653 0.811172 0.735486

0.2 1.610519 1.460186 1.323891 1.200325 1.088298 0.986733 0.894653 0.811172 0.735486 0.666869

0.3 1.460186 1.323891 1.200325 1.088298 0.986733 0.894653 0.811172 0.735486 0.666869 0.60466

0.4 1.323891 1.200325 1.088298 0.986733 0.894653 0.811172 0.735486 0.666869 0.60466 0.54826

0.5 1.200325 1.088298 0.986733 0.894653 0.811172 0.735486 0.666869 0.60466 0.54826 0.497128

0.6 1.088298 0.986733 0.894653 0.811172 0.735486 0.666869 0.60466 0.54826 0.497128 0.45077

0.7 0.986733 0.894653 0.811172 0.735486 0.666869 0.60466 0.54826 0.497128 0.45077 0.408742

0.8 0.894653 0.811172 0.735486 0.666869 0.60466 0.54826 0.497128 0.45077 0.408742 0.370638

0.9 0.811172 0.735486 0.666869 0.60466 0.54826 0.497128 0.45077 0.408742 0.370638 0.336093

1 0.735486 0.666869 0.60466 0.54826 0.497128 0.45077 0.408742 0.370638 0.336093 0.304774

Figure 6. Comparison of the concentration profile in three dimensions for various initial velocities
(u0 = 1.05, v0 = 0.105), (u0 = 1.85, v0 = 0.185), and (u0 = 2.5, v0 = 0.25) for R0 = 1.15, α0 = 0.04,
Dx0 = 1.25, Dy0 = 0.125, a = b = 0.01, T = 0.4, γ0 = 1.02, and β0 = 0.0021.

Figure 7 provides a visual depiction of the impact of the dispersion coefficient on
the concentration of pollutants. The numerical values of the concentration profile for
different initial dispersion coefficients at various space and time intervals are shown in
Tables 9 and 10. The value of initial dispersion coefficients (Dx0 , Dy0) are (1.25, 0.125)
and (2.5, 0.25), respectively, for the fixed parameters R0 = 1.15, u0 = 1.05, v0 = 0.105,
α0 = 0.04, a = b = 0.01, T = 0.8, γ0 = 1.02, and β0 = 0.0021. The concentration function’s
value (c) drops as R0 rises. The value of the concentration function(c) rises when (Dx0 , Dy0)
and (u0, v0) in the longitudinal and transverse directions are increased.
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Table 8. c(X, Y, 0.4) for fixed u0 = 2.5, v0 = 0.25.

X\Y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 2.691031 2.439792 2.212015 2.005509 1.818288 1.648552 1.494666 1.355151 1.228665 1.113991

0.2 2.439792 2.212015 2.005509 1.818288 1.648552 1.494666 1.355151 1.228665 1.113991 1.010027

0.3 2.212015 2.005509 1.818288 1.648552 1.494666 1.355151 1.228665 1.113991 1.010027 0.915771

0.4 2.005509 1.818288 1.648552 1.494666 1.355151 1.228665 1.113991 1.010027 0.915771 0.830317

0.5 1.818288 1.648552 1.494666 1.355151 1.228665 1.113991 1.010027 0.915771 0.830317 0.752844

0.6 1.648552 1.494666 1.355151 1.228665 1.113991 1.010027 0.915771 0.830317 0.752844 0.682605

0.7 1.494666 1.355151 1.228665 1.113991 1.010027 0.915771 0.830317 0.752844 0.682605 0.618926

0.8 1.355151 1.228665 1.113991 1.010027 0.915771 0.830317 0.752844 0.682605 0.618926 0.561194

0.9 1.228665 1.113991 1.010027 0.915771 0.830317 0.752844 0.682605 0.618926 0.561194 0.508853

1 1.113991 1.010027 0.915771 0.830317 0.752844 0.682605 0.618926 0.561194 0.508853 0.4614

Figure 7. Comparison of the concentration profile in three dimensions for various initial dispersion
coefficients (Dx0 = 1.25, Dy0 = 0.125), (Dx0 = 1.85, Dy0 = 0.185), and (Dx0 = 2.5, Dy0 = 0.25) for
R0 = 1.15, u0 = 1.05, v0 = 0.105, α0 = 0.04, a = b = 0.01, T = 0.8, γ0 = 1.02, and β0 = 0.0021.

Table 9. c(X, Y, 0.8) for fixed Dx0 = 1.25, Dy0 = 0.125.

X\Y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 3.286394 2.979622 2.701499 2.449348 2.220745 2.013491 1.825591 1.655239 1.500795 1.360774

0.2 2.979622 2.701499 2.449348 2.220745 2.013491 1.825591 1.655239 1.500795 1.360774 1.233829

0.3 2.701499 2.449348 2.220745 2.013491 1.825591 1.655239 1.500795 1.360774 1.233829 1.11874

0.4 2.449348 2.220745 2.013491 1.825591 1.655239 1.500795 1.360774 1.233829 1.11874 1.014398

0.5 2.220745 2.013491 1.825591 1.655239 1.500795 1.360774 1.233829 1.11874 1.014398 0.9198

0.6 2.013491 1.825591 1.655239 1.500795 1.360774 1.233829 1.11874 1.014398 0.9198 0.834036

0.7 1.825591 1.655239 1.500795 1.360774 1.233829 1.11874 1.014398 0.9198 0.834036 0.756282

0.8 1.655239 1.500795 1.360774 1.233829 1.11874 1.014398 0.9198 0.834036 0.756282 0.685789

0.9 1.500795 1.360774 1.233829 1.11874 1.014398 0.9198 0.834036 0.756282 0.685789 0.621879

1 1.360774 1.233829 1.11874 1.014398 0.9198 0.834036 0.756282 0.685789 0.621879 0.563937
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Table 10. c(X, Y, 0.8) for fixed Dx0 = 2.5, Dy0 = 0.25.

X\Y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 5.577341 5.056625 4.584537 4.156536 3.768504 3.41671 3.097768 2.808611 2.546458 2.308786

0.2 5.056625 4.584537 4.156536 3.768504 3.41671 3.097768 2.808611 2.546458 2.308786 2.09331

0.3 4.584537 4.156536 3.768504 3.41671 3.097768 2.808611 2.546458 2.308786 2.09331 1.897956

0.4 4.156536 3.768504 3.41671 3.097768 2.808611 2.546458 2.308786 2.09331 1.897956 1.720846

0.5 3.768504 3.41671 3.097768 2.808611 2.546458 2.308786 2.09331 1.897956 1.720846 1.560275

0.6 3.41671 3.097768 2.808611 2.546458 2.308786 2.09331 1.897956 1.720846 1.560275 1.4147

0.7 3.097768 2.808611 2.546458 2.308786 2.09331 1.897956 1.720846 1.560275 1.4147 1.282719

0.8 2.808611 2.546458 2.308786 2.09331 1.897956 1.720846 1.560275 1.4147 1.282719 1.163064

0.9 2.546458 2.308786 2.09331 1.897956 1.720846 1.560275 1.4147 1.282719 1.163064 1.054583

1 2.308786 2.09331 1.897956 1.720846 1.560275 1.4147 1.282719 1.163064 1.054583 0.956232

5. Conclusions

The efficacy of using the fractional reduced differential transform method (FRDTM) has
been shown in acquiring a two-dimensional analytical solution for the advection–dispersion
problem. This approach can handle variable parameters and is used explicitly for nonreac-
tive pollutant transport. Additionally, the FRDTM approach demonstrates a more rapid
convergence of the solutions. The level of concentration has a positive correlation with the
increase in time. The concentration negatively correlates with the rise in variables X and
Y. When the initial retardation factor rises, there is a corresponding fall in pollutant levels.
When the starting velocity and dispersion coefficient rise, there is a corresponding increase
in the pollutant level. The impact of the fractional order of the Caputo derivative on the
concentration of pollutants is significant. In the context of the present study, it is observed
that, when the fractional order is smaller, there is an increase in the concentration of pollu-
tants within the specified research area. The discovered solution demonstrates excellent
applicability to actual instances of solute transport phenomena. An analytic solution is
essential and cost-effective because it offers a more accurate physical understanding of
water transport and solutes. This study will demonstrate that several methods have been
provided to address this specific real-life problem to demonstrate the efficacy and efficiency
of the procedure under consideration.
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