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Abstract: In the context of uniformly convex Banach space, this paper focuses on examining the
strong convergence of the F∗ iterative algorithm to the fixed point of a strongly pseudocontractive
mapping. Furthermore, we demonstrate through numerical methods that the F∗ iterative algorithm
converges strongly and faster than other current iterative schemes in the literature and extends to
the fixed point of a strong pseudocontractive mapping. Finally, under a nonlinear quadratic Volterra
integral equation, the application of our findings is shown.
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1. Introduction

Throughout this work, Z will be a real Banach space and X a uniformly convex set. H
is considered to be a self-map, D(H) is the domain of the map H, and F(X) is the set of
fixed points of the map H.

A self-mapping H is said to be

1. L-Lipschitizian if there exists L > 1 such that for all x, y ∈ D(H)

‖Hx− Hy‖ ≤ L‖x− y‖,

if L = 1, then H is called nonexpansive, while H is called a contraction if L ∈ [0, 1).
2. k-strongly pseudocontractive if there exists a constant k > 1 such that[

‖x− y‖ ≤ ‖x− y + r(I − H)x− r(I − H)y‖
]

, ∀ x, y ∈ D(H) and ∀ r < 0.

3. Accretive if ∃ j(x− y) ∈ J(x− y) such that[
〈Hx− Hy, j(x− y)〉 ≤ ‖x− y‖2

]
,

∀ x, y ∈ D(H).

Remark 1. From [1], (2) and (3) above are equivalent.
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Remark 2. From inequality (2) above, ref. [2] obtained the following inequalities:

〈Hx− Hy, j(x− y)〉 ≤ k‖x− y‖2

and
〈Hx− Hy, j(x− y)〉 ≤ (1− k)‖x− y‖2.

Then, the mapping H is considered to be strongly pseudocontractive if k ∈ (0, 1).

Remark 3. A strongly pseudocontractive mapping is said to be a strongly φ-
pseudocontractive mapping, given φ defined as φ(s) = k for k ∈ (0, 1), where the converse is
not needed to be true.

4. A mapping H is said to be strongly φ-pseudocontractive if ∀ x, y ∈ Z, ∃ j(x− y) ∈
J(x− y) and having a strictly increasing function φ : [0, ∞) → [0, ∞) with φ(0) = 0
such that

〈Hx− Hy, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖)‖x− y‖.

Remark 4. A strongly φ-pseudocontractive mapping is said to be generalized strongly Φ-
pseudocontractive mapping with Φ : [0, ∞) → [0, ∞) defined by Φ(s) = φ(s) where the
converse is not needed to be true.

5. A mapping H is said to be generalized strongly Φ-pseudocontractive ∀ x, y ∈ Z,
having j(x− y) ∈ J(x− y) and a strictly increasing function Φ : [0, ∞)→ [0, ∞) with
Φ(0) = 0, such that

〈Hx− Hy, j(x− y)〉 ≤ ‖x− y‖2 −Φ(‖x− y‖).

Picard iteration: In 1890 [3], Picard discovered an iterative scheme called Picard iteration
which was used to estimate fixed points of nonexpansive mappings:{

p0 ∈ Z
pn+1 = Hpn.

The Mann iterative approach was developed in [4] to estimate fixed points of nonex-
pansive mappings: {

p0 ∈ Z
pn+1 = (1− rn)pn + rn Hpn.

Also, it was known that the Mann iterative scheme fails to converge to a fixed point
of pseudocontractive mapping. The author in [5] established a two-step Mann (Ishikawa)
iterative scheme which was firstly used to estimate fixed points of pseudocontractive
mappings. The iterative scheme was later used on nonexpansive mappings without any
assumption on the convexity of the Banach space:

p0 ∈ Z
pn+1 = (1− rn)pn + rn Hqn

qn = (1− sn)pn + sn Hpn.

S iteration: A two-step iterative scheme called an S iterative scheme was initiated in [6]
and was applied for nearly asymptotically nonexpansive mapping:

p0 ∈ Z
pn+1 = (1− rn)Hpn + rn Hqn

qn = (1− sn)pn + sn Hpn.



Axioms 2023, 12, 1041 3 of 13

Normal-S iteration: Sahu established in [2] an iterative scheme called the normal-S iterative
scheme for nonexpansive mapping, defined as{

p0 ∈ Z
pn+1 = H((1− rn)pn + rn Hpn).

F∗ iteration: To determine the fixed points of weak contractions in Banach spaces, the
authors in [7] developed a novel two-step iterative approach known as F∗ iteration. It
was demonstrated that the built-in method firmly converges to the fixed point of weak
contractions. Additionally, it was demonstrated that the F∗ iterative scheme converged
to a fixed point more quickly than the Picard, Mann, Ishikawa, S, normal-S, and Varat
iterative schemes: 

p0 ∈ Z
pn+1 = Hqn

qn = H((1− rn)pn + rn Hpn).

However, the F∗ iteration produced a data-dependent result. Additionally, numer-
ical illustrations were provided to corroborate their findings. Their findings were also
applied to estimate the solution of the Volterra integral equation that is both nonlinear and
quadratic. Finally, in the researchers’ work there arose an open question: “Can the sequence
{pn} generated by the F∗ iterative scheme converge to a fixed point of nonexpansive or
pseudocontractive mappings?”

In response to this, our research is motivated by employing pseudocontractive map-
pings for the convergence of the sequence {pn} generated by iteration to a fixed point. To
achieve the desired result, certain existing inequalities in convex Banach spaces were uti-
lized following the assumption of the existence of a fixed point. Other necessary conditions
for convergence of the sequence generated by the F∗ algorithm to the fixed point of strong
pseudocontractive mapping were also obtained.

1.1. Various Results on Convergence

In [8], the following iteration method was considered:

pn+1 = x(1)n H(x(2)n H(...H(x(k)n Hpn + (1− x(k)n )pn + u(k)
n ) + ...) + (1− x(2)n )Pn + u(2)

n ) + (1− x(1)n )pn + u(1)
n , (1)

n = 1, 2, 3, ..., where 0 ≤ u(i)
n ≤ 1, for all n ≥ 1 and i = 1, 2, ..., k.

Given a sequence (pn) in Z satisfying (1), u(i)
n = 0 for all n = 1 and for all i ∈ {1, ..., k}

and the real sequence {u(i)
n }, i = 1, 2, ..., k satisfying

(c1) 0 ≤ u(i)
n ≤ u < 1 and ∑∞

n=0 ||u
(i)
n || ≤ ∞;

(c2) 0 ≤ u(i)
n ≤ 1, i = 2, ..., k;

(c3) ∑∞
n=1(u

(1)
n u(2)

n + ... + u(1)
n u(2)

n ...u(k)
n ) < ∞;

(c4) limn→∞(u(2)
n + u(2)

n u(3)
n + ... + u(2)

n u(3)
n ...u(k)

n = 0.
If H(p(i)n ) are bounded sets, then {pn} converges strongly to p ∈ F(H) and F(H) is
a singleton.

In [9], the author proposed a new iterative scheme which was used in investigating
the estimations of fixed points for nonexpansive mappings. The proposed iterative scheme
generalized both Mann [4] and Ishikawa [5] iterative schemes, which have been studied
rigorously by many researchers for estimating fixed points solutions of nonlinear mapping
in Banach spaces. Stevic, in [8], examined the convergence of the iterative scheme given
in (1) for strongly pseudocontractive mappings and a class of difference inequalities was
examined which frequently appears in the investigation of the proposed iterative scheme.
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The newly introduced iterative scheme was later used in [8] to examine the convergence
for strongly pseudocontractive mappings.

Theorem 1 ([10]). Given that Z is a real Banach space with a uniformly convex dual space Z∗

and D is a bounded closed convex subset of Z. If H : D → D is a single-valued Lipschitz strongly
pseudocontractive mapping, then the Ishikawa iterative scheme of H converges strongly to a unique
fixed point of H.

Theorem 2. Assume that Z is a real uniformly smooth Banach space and D is a bounded closed
convex and nonempty subset of Z. Given that H : D → D is a strongly pseudocontractive map such
that Hp∗ = p∗ for some p∗ ∈ K. Setting {rn}, {sn} to be real sequences satisfying the following
conditions:
(a.) 0 ≤ rn, sn ≤ 1 ∀ n ≥ 0;
(b.) limn∞ rn = 0; limn∞ sn = 0;
(c.) ∑∞

n=0 rn = ∞.
So, for arbitrary p0 ∈ D, the sequence {pn} given in the iterative form by

p0 ∈ Z,
pn+1 = (1− rn)pn + rn Hqn,
qn = (1− sn)pn + sn Hpn,

converges strongly to p∗. However, p∗ is unique.

Theorem 3 ([11]). Given that Z is a real Banach space with a uniformly convex dual Z∗, D
is a nonempty closed convex bounded subset of Z, and H : D → D is a continuous strongly
pseudocontractive mapping. So, the Ishikawa iterative sequence {pn}∞

n=0 defined in [5] converges
strongly to the unique fixed point of H.

Theorem 4. Let p0 be an arbitrary point in Z. Suppose {pn} is a sequence in Z which satisfies the
recursive Formula (1), {tn} is a sequence in Z such that

ϑn = ‖pn+1 − (1− x(1)n )pn − x(1)n Hp(1)n − u(1)
n ‖, n = 0, 1, ...

where (u(i)
n ) is a set of sequences in a real Banach space Z and (xi

n) such that i = 1, k, are k real
sequences in [0, 1] satisfying under the following conditions:
(c1.) ∑∞

n=0‖u
(1)
n ‖ ≤ ∞;

(c2.) limn→∞‖u(i)
n ‖ = 0 , i = 2, k;

(c3.) limn→∞ x(i)n = 0, i = 1, k;
(c4.) ∑∞

n=1 x(i)n = ∞.
Then,
(i) the sequence {pn} is almost H-stable;
(ii) limn→∞ pn+1 = p ∈ f (H) implies limn→∞ ϑ = 0.

1.2. Nonlinear Quadratic Volterra Integral Equation

The authors in [12] investigated the monotonicity properties of the superposition
operator and its applications. It was stated that an application of the monotonicity
properties directly examines the solvability of a quadratic Volterra integral equation given
in the form

x(z) = g(z) + f (z, x(z))
∫ z

0
u(z, τ, x(τ))dτ, (2)

where x and g are elements of a Frechet space J, f is a linear continuous map from J → J,
and u is a nonlinear map from J → J such that z ∈ J = [0, 1].
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Several problems in science, physics, engineering and related disciplines lead to linear
and nonlinear Volterra integral equations of both the first and second kind. These equations
are often difficult to solve analytically but an approximated solution can be provided using
numerical techniques (see [13–18]).

1.3. Useful Lemmas

The lemmas below will be helpful in showing our main results.

Lemma 1 ([19]). Suppose J : Z → Z2 is a normalized duality mapping; then,

‖a + b‖2 ≤ ‖a‖2 + 2〈b, j(a + b)〉, (3)

for all a, b ∈ Z where j(a + b) ∈ J(a + b).

Lemma 2 ([11]). Given that {µn}∞
n=0 is a set of non-negative real sequences satisfying

µn+1 ≤ (1− γn)µn + σn, (4)

where γn ∈ [0, 1], ∑∞
n=1 γn = ∞, and σn = o(γn). Then, µn → 0 as n→ ∞.

2. Main Results

In this section, we will prove the strong convergence theorem for the F∗ iterative
method for a strongly pseudocontractive mapping in uniformly convex Banach space.

Theorem 5. Let Z be a real Banach space with a uniformly convex dual Z∗, D be a nonempty
closed convex bounded subset of Z and H : D → D be a continuous strongly pseudocontractive
mapping. Then, the F∗ iterative sequence {pn}∞

n=1 defined by
p0 ∈ Z,
pn+1 = Hqn,
qn = H((1− rn)pn + rn Hpn),

(5)

where {rn} and {pn} converges strongly to the unique fixed point of H.

Proof. The existence of a fixed point follows from [20].
Let p be a unique fixed point of H. Since H : D → D is strongly pseudocontractive, I − H
is strongly accretive, where I is the identity operator and for every x, y ∈ D

‖pn+1 − p‖2 = ‖Hqn − p‖2

= 〈H(H((1− rn)pn + rn Hpn))− Hp, j(pn+1 − p)〉
≤ k‖H((1− rn)pn + rn Hpn)− p‖2

= k〈H((1− rn)pn + rn Hpn)− Hp, j(qn − p)〉
≤ k2‖(1− rn)pn + rn Hpn − p‖2 = k2‖pn − rn pn + rn Hpn + rn pn − rn pn − p‖2

= k2‖rn(Hpn − p) + (1− rn)(pn − p)‖2

≤ k2(1− rn)
2‖pn − p‖2 + 2rnk2〈Hpn − p, j(zn − P)〉

≤ k2(1− rn)
2‖pn − p‖2 + 2rnk2〈Hpn − p, j(zn − P)− j(pn − P)〉

+ 2rnk2〈Hpn − p, j(pn − P)〉

≤ k2(1− rn)
2‖pn − p‖2 + 2rnk3‖pn − p‖2 + 2rnk2〈Hpn − p, j(zn − P)− j(pn − P)〉

= k2
(
(1− rn)

2 + 2rnk‖pn − p‖2 + 2rn〈Hpn − p, j(zn − P)− j(pn − P)〉
)
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Recall that 0 < k < 1 implies 0 < k2 < 1, which gives the inequality below

‖pn+1 − p‖2 ≤
(
(1− rn)

2 + 2rnk‖pn − p‖2 + 2rn〈Hpn − p, j(zn − P)− j(pn − P)〉
)

=
(

1−
(

2rn − r2
n − 2rnk

))
‖pn − p‖2 + 2rn〈Hpn − p, j(zn − P)− j(pn − P)〉

= (1− rn(2− rn − 2k))‖pn − p‖2 + 2rn〈Hpn − p, j(zn − P)− j(pn − P)〉

where
αn = 〈Hpn − p, j(zn − P)− j(pn − P)〉.

Now, we shall show αn → 0 as n→ ∞. We observed that {Hpn − Hp} is bounded; then, to
show αn → 0 as n→ ∞, it suffices to show

j(zn − P)− j(pn − P)→ 0 as n→ ∞.

Truly, since X∗ is uniformly convex, j is uniformly continuous on any bounded subset of X.
Noting that

(zn − p)− (pn − p) = zn− pn = (1− rn)pn + rn Hpn− pn = rn Hpn− rn pn → 0 as n→ ∞.

so we see that
j(zn − P)− j(pn − P)→ 0 as n→ ∞.

where
σn = 2rn〈Hpn − p, j(zn − p)− j(pn − p)〉.

We choose a large positive integer N such that for all n ≤ N, then

1− rn

2
< k <

2− rn

2
.

Thus, the above inequality yields

‖pn+1 − p‖2 ≤ (1− rn(2− rn − 2k))‖pn − p‖2 + σn. (6)

Setting µn = ‖pn − p‖2 and γn = rn(2− rn − 2k). Then,

µn+1 ≤ (1− γn)µn + σn,

with

γn ∈ [0, 1],
∞

∑
n=1

γn = ∞,

and
σn = o(rn).

By Lemma 2, (6) yields µn → 0 as n→ ∞.

3. Application to Nonlinear Quadratic Volterra Integral Equation

In this section, the solution estimated by the F∗ iterative process for a nonlinear
quadratic Volterra integral problem will be discussed. So, we look at Equation (2) for the
nonlinear quadratic Volterra integral, taking into account that the following claims are true:
(D1) g ∈ C(J) and g is non-negative and nondecreasing on J = [0, 1].
(D2) The function f : J × K → R such that the following restrictions hold:

(i) f on the set J × K is continuous;
(ii) For x ∈ K, z ∈ J both fixed, the functions z→ f (z, x) and x → f (z, x) are increasing

on J and K, respectively, and f = f (z, x) is Lipschitz with respect to x, given that
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g0 = g(0) = min{g(z), z ∈ J}. However, f is positive on the set J × K, since K ⊂ R+

is not bounded and h0 ∈ K.

(D3) An increasing function k(t) = k : [g0,+∞]→ R+ :
| f (z, x1)− f (z, x2)| ≤ K(t)|x1 − x2|, for any z ∈ J and ∀ x1, x2 ∈ [g0, t].
(D4) A function u : J × J × R → R is continuous, such that u : J × J × R+ → R+, for
arbitrarily fixed τ ∈ J and x ∈ R+ and the function z→ u(z, τ, x) is increasing on J.
(D5) A nondecreasing map m : R+ → R+ : u(z, τ, x) ≤ m(x) for z, τ ∈ J and x ≥ 0.
(D6) There is a positive solution t0 for the inequality

‖g‖+ (rk(t) + E1)m(t) ≤ t,

where E1 = sup{ f (z, 0) : z ∈ J}. Moreover, k(t0)m(t0) < 1.
Now, the existence result follows as proved in [12] and which was later used in [7].

Theorem 6. Under the assertions (D1)–(D6), Equation (2) has a minimum of a solution x =
x(z) ∈ C(J) that is increasing and positive on the interval J. There follow some assertions for the
estimation of the result of the integral Equation (2). Let P = {x ∈ C(J) : x(z) ≥ ho for z ∈ J} ⊂
C(W) and Pt0 = {x ∈ P : ‖x‖ ≤ t0}, where t0 > 0 comes from assertion (D6), Pt0 is nonempty
since t0 ≤ h0 is a closed bounded convex subset of C(J).
If the Lipschitz condition u(z, τ, x) with respect to x holds, i.e., for z, τ ∈ J and for x1, x2 ∈ Pto ,
then ∃ N > 0:

‖u(z, τ, x1)− u(z, τ, x2)‖ ≤ N‖x1 − x2‖.

(χ) t0 in assertion (D6) satisfies the following inequality:

0 < (m(t0)K(t0) + (t0K(t0) + E1)) < 1.

So, we define an operator H on the set Pt0 by

Hx(z) = g(z) + f (z, x(z))
∫ z

0
u(z, τ, x(τ))dτ, ∀z ∈ J. (7)

According to the proof provided in [12], H transforms the set Pt0 into itself as well as P. Additionally,
H has at least one fixed point in Pt0 and is continuous on Pt0 .

Now, we show that the operator H is strongly pseudocontraction on Pt0 , and then, for
z ∈ J, we have

‖Hx(z)− Hy(z)‖2 = ‖ f (z, x(z))
∫ z

0
u(z, τ, x(τ))dτ − f (z, y(z))

∫ z

0
u(z, τ, y(τ))dτ‖2

= ‖ f (z, x(z))
∫ z

0
u(z, τ, x(τ))dτ − f (z, y(z))

∫ z

0
u(z, τ, x(τ))dτ

+ f (z, y(z))
∫ z

0
u(z, τ, x(τ))dτ − f (z, y(z))

∫ z

0
u(z, τ, y(τ))dτ‖2

≤
[
‖ f (z, x(z))

∫ z

0
u(z, τ, x(τ))dτ − f (z, y(z))

∫ z

0
u(z, τ, x(τ))dτ‖

+ ‖ f (z, y(z))
∫ z

0
u(z, τ, x(τ))dτ − f (z, y(z))

∫ z

0
u(z, τ, y(τ))dτ‖

]2

≤
[

k(t0)‖x(z)− y(z)‖
∫ z

0
|u(z, τ, x(τ))|dτ + | f (z, y(z))|

∫ z

0
|u(z, τ, x(τ))− u(z, τ, y(τ))|dτ

]2

≤ [m(t0)k(t0)‖x(z)− y(z)‖+ (t0k(t0) + E1)N‖x(z)− y(z)‖]2

= [(m(t0)k(t0) + (t0k( t0) + E1)N)‖x(z)− y(z)‖]2

= (m(t0)k(t0) + (t0k(t0) + E1)N)2‖x(z)− y(z)‖2
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By assumption (χ), we have that

(m(t0)k(t0) + (t0k(t0) + E1)N) < 1.

Let k = (m(t0)k(t0) + (t0k(t0) + E1)N)2 and by (χ), we have
√

k < 1 =⇒ k < 1.
Thus, operator S is a pseudocontraction which satisfies the inequality below:

‖Hx(z)− Hy(z)‖2 = 〈Hx(z)− Hy(z), j(x(z)− y(z))〉 ≤ k‖x(z)− y(z)‖2.

Taking Y = C(J), C = Pt0 , and H as in Equation (7), we obtain our desired result.
As stated in Theorem 2, we consider that p∗ is the fixed point of H. So, we show that

pn → p∗ as n → ∞. Substituting the iterative scheme (5), Equation (7), and conditions
(D1)–(D4), we have

‖zn(z)− p(z)‖ = ‖(1− rn)pn(z) + rn Hpn(z)− p(z)‖
= ‖(1− rn)pn(z) + rn Hpn(z)− rn p(z) + rn p(z)− p(z)‖
= ‖(1− rn)(pn(z)− p(z)) + rn(Hpn(z)− p(z))‖
≤ (1− rn)‖pn(z)− p(z)‖+ rn‖Hpn(z)− p(z)‖

= (1− rn)‖pn(z)− p∗(z)‖+ rn‖ f (z, pn(z))
∫ z

0
u(z, τ, pn(τ))dτ

− f (z, p∗(z))
∫ z

0
u(z, τ, pn(τ))dτ‖

≤ (1− rn)‖pn(z)− p∗(z)‖+ rn‖ f (z, pn(z))
∫ z

0
f (z, τ, pn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, pn(τ))dτ‖

+ rn‖ f (z, p∗(z))
∫ z

0
u(z, τ, pn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, pn(τ))dτ‖

≤ (1− rn)‖pn(z)− p∗(z)‖+ k(t0)rn‖pn(z)− p∗(z)‖
∫ z

0
|u(z, τ, pn(τ))|dτ

+ rn‖ f (z, p∗(z))
(∫ z

0
u(z, τ, pn(τ))dτ −

∫ z

0
u(z, τ, p∗(τ))dτ

)
‖

≤ (1− rn)‖pn(z)− p∗(z)‖+ k(t0)rn‖pn(z)− p∗(z)‖
∫ z

0
|u(z, τ, pn(τ))|

+ rn‖ f (z, p∗(z))‖
(∫ z

0
|u(z, τ, pn(τ))− u(z, τ, p∗(τ))|dτ

)
≤ (1− rn)‖pn(z)− p∗(z)‖+ rnm(t0)k(t0)‖pn(z)− p∗(z)‖+ rn(t0k(t0) + E1)N‖pn(z)− p∗(z)‖

∴ ‖zn(z)− p∗(z)‖ ≤
[
(1− rn) + rn{m(t0)k(t0) + rn(t0k(t0) + E1)N}

]
‖pn(z)− p∗(z)‖ (8)

‖qn(z)− p∗(z)‖ = ‖Hzn(z)− p∗(z)‖

= ‖ f (z, zn(z))
∫ z

0
u(z, τ, zn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, pn(τ))dτ‖

≤ ‖ f (z, zn(z))
∫ z

0
u(z, τ, zn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, zn(τ))dτ‖

+

∣∣∣∣ f (z, p∗(z))
∫ z

0
u(z, τ, zn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, p∗(τ))dτ

∣∣∣∣
≤ ‖ f (z, zn(τ))− f (z, p∗(z))‖|

∫ z

0
u(z, τ, zn(τ))dτ|+ ‖ f (z, p∗)‖|

∫ z

0
u(z, τ, zn(τ))dτ −

∫ z

0
u(z, τ, p∗(τ))dτ|

≤ k(t0)‖zn(z)− p∗(z)‖
∫ z

0
|u(z, τ, pn)|dτ + (t0k(t0) + E1)N‖zn(z)− p∗(z)‖

= m(t0)k(t0)‖zn(z)− p∗(z)‖+ (t0k(t0) + E1)N‖zn(z)− p∗(z)‖

∴ ‖qn(z)− p∗(z)‖ ≤ [m(t0)k(t0) + (t0k(t0) + E1)N]‖zn(z)− p∗(z)‖ (9)
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Substituting (8) into (9), we have

‖qn(z)− p∗(z)‖ ≤
[

m(t0)k(t0) + (t0k(t0) + E1)N
][

(1− rn) + rn{m(t0)k(t0) + (t0k(t0)

+ E1)N}
]
‖pn(z)− p∗(z)‖

(10)

‖pn+1(z)− p∗(z)‖ = ‖Hqn(z)− p∗(z)‖

= ‖ f (z, qn(z))
∫ z

0
u(z, τ, qn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, p∗(τ))dτ‖

≤ ‖ f (z, qn(z))
∫ z

0
u(z, τ, qn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, qn(τ))dτ‖

+ ‖ f (z, p∗(z))
∫ z

0
u(z, τ, qn(τ))dτ − f (z, p∗(z))

∫ z

0
u(z, τ, p∗(τ))dτ‖

≤ k(t0)‖qn(z)− p∗(z)‖
∫ z

0
|u(z, τ, pn(τ))|dτ + (t0k(t0) + E1)N‖qn(z)− p∗(z)‖

= m(t0)k(t0)‖qn(z)− p∗(z)‖+ (t0k(t0) + E1)N‖qn(z)− p∗(z)‖

therefore,

‖pn+1(z)− p∗(z)‖ ≤
[

m(t0)k(t0) + (t0k(t0) + E1)N
]
‖qn(z)− p∗(z)‖. (11)

Substituting (10) into (11):

‖pn+1(z)− p∗(z)‖ ≤
[

m(t0)k(t0) + (t0k(t0) + E1)N
]2[

(1− rn) + rn
{

m(t0)k(t0)

+ (t0k(t0) + E1)N
}]
‖pn(z)− p∗(z)‖.

(12)

Applying assumption χ:

m(t0)k(t0) + (t0k(t0) + E1)N < 1,

which implies also that [
m(t0)k(t0) + (t0k(t0) + E1)N

]2

< 1,

then, we have Equation (12) as

‖pn+1(z)− p∗(z)‖ ≤
[
(1− rn) + rn{m(t0)k(t0) + (t0k(t0) + E1)N}

]
‖pn(z)− p∗(z)‖

=

[
1− rn

(
1− {m(t0)k(t0) + (t0k(t0) + E1)N}

)]
‖pn(z)− p∗(z)‖

∴ ‖pn+1(z)− p∗(z)‖ ≤
[

1− rn

(
1− {m(t0)k(t0) + (t0k(t0) + E1)N}

)]
‖pn(z)− p∗(z)‖.

Thus, it follows by induction that we have

‖pn+1(z)− p∗(z)‖ ≤ ‖p0(z)− p∗(z)‖ ×
n

∏
k=0
{1− rk

(
1−

[
{m(t0)k(t0) + (t0k(t0) + E1)N}

])
}. (13)
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Since rk ∈ (0, 1) for all k ∈ N, using assumption (χ) gives

1− rk

(
1−

[
{m(t0)k(t0) + (t0k(t0) + E1)N}

])
< 1.

Accepting the fact that exp(−y) ≥ 1− y , ∀ y ∈ (0, 1), where Equation (13) can be written as

‖pn+1(z)− p∗(z)‖ ≤ ‖p0(z)− p∗(z)‖ exp−
(

1−
[
{m(t0)K(t0) + (t0k(t0) + E1)N}

]) n

∑
k=0

rk

taking the limn→∞ of both sides, it yields limn→∞‖pn(z)− p∗(z)‖ = 0, implying pn(z)→
p∗(z).

Hence, the sequence pn generated by F∗ iterative scheme (5) converges strongly to the
unique solution of integral Equation (7).

4. Numerical Examples

Example 1. Let Y = R = (−∞, ∞) be a Banach space with usual norm and C = [0, ∞). Let
R(H) =

[
0, 2

3
)
. The map H : C → C is a self-mapping defined by

Hx =
x

3(1 + x)

for all x ∈ C. We can easily verify that H is a strongly pseudocontractive mapping and has a fixed
point p = 0. Now, we choose rn = 0.85 and sn = 0.15 with the initial guess p0 = 5.

From Table 1, we observe that the numerical results for F∗ iterative scheme (5) converge
strongly and faster to zero at the sixth iteration when compared to the normal-S iterative
scheme, which is the closest and converges among the other iterative schemes presented
for the Volterra integral equation. Hence, the F∗ iterative scheme converges faster and
better than the other iterative schemes existing in the literature. We present a graphical
representation of our result in Figure 1.

Table 1. Comparison of different iterative schemes for Example 1.

Iter No. F∗ Picard Mann Ishikawa Normal-S S

1 5 5 5 5 5 5
2 0.0473333 0.2777778 0.9861111 0.2714574 0.1655010 0.9797900
3 0.0021545 0.0724638 0.2885927 0.0657739 0.0203615 0.2777725
4 0.0001035 0.0225225 0.1067441 0.0188694 0.0028783 0.0977829
5 0.0000050 0.0073421 0.0433388 0.0056526 0.0004148 0.0374809
6 0.0000000 0.0024295 0.0182701 0.0017147 0.0000602 0.0148500
7 0.0000000 0.0008079 0.0078242 0.0005221 0.0000099 0.0059613
8 0.0000000 0.0002691 0.0033733 0.0001592 0.0000015 0.0024057
9 0.0000000 0.0000897 0.0014586 0.0000485 0.0000000 0.0009729

10 0.0000000 0.0000299 0.0006315 0.0000148 0.0000000 0.0003938
11 0.0000000 0.0000100 0.0002735 0.0000045 0.0000000 0.0001595
12 0.0000000 0.0000033 0.0001185 0.0000014 0.0000000 0.0000646
13 0.0000000 0.0000011 0.0000513 0.0000000 0.0000000 0.0000262
14 0.0000000 0.0000000 0.0000222 0.0000000 0.0000000 0.0000106
15 0.0000000 0.0000000 0.0000096 0.0000000 0.0000000 0.0000043
16 0.0000000 0.0000000 0.0000018 0.0000000 0.0000000 0.0000017
17 0.0000000 0.0000000 0.0000010 0.0000000 0.0000000 0.0000000
18 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
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Figure 1. Figure to compare different iterative schemes for Example 1. Pn are the values obtained
during the iteration as n increases.

Example 2. Let Y = R be a Banach space with usual norm and C = [0, ∞). Let R(H) =
[
0, 6

7
)
.

The map H : C → C is a self-mapping defined by

Hx =
x

7(1 + x)

for all x ∈ C. We can easily verify that H is a strongly pseudocontractive mapping and has a fixed
point p = 0. Now, we choose rn = 0.85 and sn = 0.15, with the initial guess p0 = 5.

From Table 2, we observe that the numerical results for F∗ iterative scheme (5) converge
strongly and faster to zero at the fourth iteration when compared to the normal-S iterative
scheme, which converges at the seventh iteration and is the closest to our algorithm among
the other iterative schemes in the literature. We present a graphical representation of our
result in Figure 2.

Table 2. Comparison of different iterative schemes for Example 2.

Iter No. F∗ Picard Mann Ishikawa Normal-S S

1 5 5 5 5 5 5
2 0.0088054 0.1190476 0.8511905 0.1162349 0.0656867 0.8483777
3 0.0000484 0.0151976 0.1835123 0.0133737 0.0024346 0.1785341
4 0.0000002 0.0021386 0.0463552 0.0016812 0.0000942 0.0430757
5 0.0000000 0.0003049 0.0033292 0.0002136 0.0000037 0.0108503
6 0.0000000 0.0000435 0.0009023 0.0000272 0.0000001 0.0027646
7 0.0000000 0.0000062 0.0002448 0.0000035 0.0000000 0.0007065
8 0.0000000 0.0000001 0.0000664 0.0000004 0.0000000 0.0000180
9 0.0000000 0.0000000 0.0000180 0.0000000 0.0000000 0.0000462

10 0.0000000 0.0000000 0.0000050 0.0000000 0.0000000 0.0000118
11 0.0000000 0.0000000 0.0000013 0.0000000 0.0000000 0.0000030
12 0.0000000 0.0000000 0.0000003 0.0000000 0.0000000 0.0000007
13 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
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Figure 2. Figure to compare different iterative schemes for Example 2. Pn are the values obtained
during the iteration as n increases.

5. Conclusions

The historical development and application of pseudocontractive mapping with fixed
point theory were extensively discussed in [21] and are a major subject of this work. In this
paper, we investigated the convergence of an F∗ iterative scheme for a strongly pseudocon-
tractive mapping on a uniformly convex Banach space. Using numerical examples, it has
been found that the approach converges more quickly than the Picard, Mann, Ishikawa, S,
normal-S iterative schemes for a strongly pseudocontractive mapping. This research work
has studied the use of all of the generalized classes of strongly pseudocontractive mappings.
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