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Abstract: Spectral graph theory is like a special tool for understanding graphs. It helps us find
patterns and connections in complex networks, using the magic of eigenvalues. Let G be the graph
and A(G) be its adjacency matrix, then G is singular if the determinant of the adjacency matrix A(G)

is 0, otherwise it is nonsingular. Within the realm of nonsingular graphs, there is the concept of
property R, where each eigenvalue’s reciprocal is also an eigenvalue of G. By introducing multiplicity
constraints on both eigenvalues and their reciprocals, it becomes property SR. Similarly, the world of
nonsingular graphs reveals property −R, where the negative reciprocal of each eigenvalue also finds
a place within the spectrum of G. Moreover, when the multiplicity of each eigenvalue and its negative
reciprocal is equal, this results in a graph with a property of −SR. Some classes of unweighted
nonbipartite graphs are already constructed in the literature with the help of the complete graph
Kn and a copy of the path graph P4 satisfying property R but not SR. This article takes this a step
further. The main aim is to construct several weighted classes of graphs which satisfy property R

but not SR. For this purpose, the weight functions are determined that enable these nonbipartite
graph classes to satisfy the −SR and R properties, even if the unweighted graph does not satisfy these
properties. Some examples are presented to support the investigated results. These examples explain
how certain weight functions make these special types of graphs meet the properties R or −SR, even
when the original graphs without weights do not meet these properties.

Keywords: weighted graphs; strong anti-reciprocal property; reciprocal property; nonbipartite
graphs

MSC: 05C50; 15A18

1. Introduction

Graph theory is like a special tool in mathematics that helps us to understand how
things are connected. Graph theory started with Königburg’s seven bridge problem [1]. It is
like a universal language for studying relationships between various things, like friendships
or the structure of molecules. It is kind of like drawing a map with dots and lines to
represent complicated systems. This helps us solve problems, make models of real-life
situations, and figure out how things are connected. Spectral graph theory [2] introduces a
special kind of wonder to graph theory. It takes us into the fascinating world of eigenvalues
and eigenvectors, where graphs share their mysteries through mathematical beauty. The
spectrum of a graph unveils its hidden patterns, helping us organize information, explore
connections, and understand how networks work. Spectral graph theory plays a crucial
role in the development of Graph Neural Networks (GNNs), a subfield of deep learning.
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GNNs have gained prominence in recent years for their ability to process data structured as
graphs, making them applicable to a wide range of domains, from social network analysis
to recommendation systems. Spectral graph theory provides the mathematical foundation
for understanding the propagation of information through graphs, which is essential in
GNNs [3]. While spectral methods are powerful, they can be computationally intensive,
especially for large graphs. Implementing these techniques in AI (artificial intelligence) and
ML (machine learning) applications might require significant computational resources.

Throughout the article, we consider simple connected graphs. Let G = (V,E) be a
simple connected graph with vertex set V(G) and edge set E(G), respectively. The adjacency
matrix of a graph G of order n is an n× n square symmetric matrix A(G) = [aij], whose
ijth entry is the number of edges between the vertices i and j. If two vertices are adjacent
in a graph G, they are called neighbors, so the neighborhood of a vertex v in a graph G is
denoted as NG(v) and is defined as

NG(v) = {u ∈ V(G)|(v, u) ∈ E(G)}.

The cardinality |NG(v)| is called the degree of vertex v and is denoted as dG(v). If dG(v) = 0,
then v is called an isolated vertex, and if the degree of a vertex v is 1 i.e., dG(v) = 1, then
that vertex is called a terminal vertex or pendant vertex. A vertex is called quasipendant if
it is adjacent to a pendant vertex (for notations, see reference [4]).

A weighted graph is one in which the edges are assigned weights. Weighted graphs
model road networks, flight connections, and shipping routes. They help optimize routes,
minimize costs, and manage the flow of goods and people efficiently. The shortest path
problem is one of the best real-life examples of weighted graphs. In social media and
sociology, weighted graphs represent relationships with varying strengths. They enable
the identification of influential individuals, community detection, and targeted advertis-
ing. Weighted graphs assist in personalized recommendations on platforms like Amazon
and Netflix. They enhance user experience by suggesting products or content based on
preferences and connections. In finance, these graphs model correlations between financial
instruments, helping with risk assessment, portfolio optimization, and market analysis.
Weighted graphs are used to represent protein interaction networks, metabolic pathways,
and genetic relationships. They aid in understanding complex biological systems and drug
discovery. Electrical power systems use weighted graphs to model energy distribution and
grid stability. They ensure efficient power flow and prevent blackouts.

Let G be a simple connected graph. Let Gw denote the weighted graph obtained from
G after applying the weight function w ∈ W(G) on the edge set of G, where W(G) is the
set of all positive weight functions defined on the edge set of G. The adjacency matrix of a
graph Gw of order n is defined as

A(Gw) = [aij] =


w(i, j), if (i, j) ∈ E(Gw)

0, otherwise.

A graph Gw is said to be non-singular if det(A(Gw)) 6= 0 and singular otherwise. The
eigenvalues of a graph Gw are the roots of the characteristic polynomial of its adjacency
matrix A(Gw); since A(Gw) is symmetric, all of its roots, or eigenvalues, are real. The set
consisting of all the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn of a graph Gw is called its spectrum.

σ(Gw) = {(λi, mi); i = 1, · · · , n}

where mi is the multiplicity of each λi. The spectral radius of a finite graph is determined
by taking the largest absolute value within its graph spectrum. Spectral graph theory
explores the connection between a graph’s structural features and its eigenvalues. This
is highly relevant in various domains such as social network analysis, transportation
systems, communication networks, and even biological networks like protein–protein



Axioms 2023, 12, 1043 3 of 20

interaction networks. The insights gained from spectral graph theory can lead to more
efficient network designs, improved routing algorithms, and better decision-making in
network-related applications. Spectral clustering techniques based on spectral graph theory
are used for data partitioning and clustering. Spectral graph theory is also used for signal
processing on graphs. Community detection in complex networks, such as identifying
groups of individuals with shared interests in a social network, relies on spectral graph
theory. The eigenvalues of a graph provide insights into the graph’s topological attributes,
including its size, order, the count of triangles, the total number of closed walks of different
lengths, whether the graph is bipartite, and its regularity [2]. For example,

1. A graph is bipartite if and only if its spectrum is symmetric around zero, that is, for
each λ ∈ σ(G) there exists −λ ∈ σ(G), ∀λ ∈ σ(G) [2].

2. If λ2(G) = 0, then G is a complete multipartite graph.
3. If λ2(G) = −1, then G is a complete graph.

Several graph theoretic properties have been discussed in references [5–11]. In ref-
erence [12], the authors presented techniques from graph theory to assess the ranking
of substations within an electric power grid. It specifically applies spectral graph theory
and outlines various ranking algorithms. A novel mining algorithm rooted in spectral
graph theory was introduced in reference [13]. The algorithm initially constructed an
alarm association model using time series data. It then treated the alarms database as a
high-dimensional structure, considering alarms with shared characteristics as integral com-
ponents of this structure. Leveraging spectral graph theory, the algorithm uncovered the
underlying mapping of a low-dimensional structure embedded within a high-dimensional
space. The experimental results, based on both synthetic and real datasets, demonstrated
that this approach not only uncovered associations among alarms but also identified faults
in the telecommunications network through spectral graph transformations. Furthermore,
an innovative approach to create wavelet transforms for functions defined on the nodes
of any finite weighted graph was introduced in reference [14]. This approach was based
on defining scaling using the graph’s analogue of the Fourier domain, namely the spectral
decomposition of the discrete Laplacian graph.

In reference [15], the authors established the concept of a reciprocal eigenvalue prop-
erty (property R) for the nonsingular graphs. A nonsingular graph G holds property R if
the reciprocal of each eigenvalue is also an eigenvalue of G; in addition, if the multiplicity
constraint is applied on the eigenvalues and their reciprocals, then that graph G holds a
strong reciprocal eigenvalue property (property SR).

The anti-reciprocal eigenvalue property (property −R) of graphs was introduced by
Lagrange in reference [16]. A nonsingular graph G holds property −R if the negative
reciprocal of each eigenvalue is also an eigenvalue of G; in addition, if the multiplicity
constraint is applied on the eigenvalues and their negative reciprocals, then that graph G
holds a strong anti-reciprocal eigenvalue property (property −SR).

Nonsingular trees with property SR were studied in 1978 under the titles, symmetric
property [17] and property C [18]. Barik et al. renamed this property as “property SR” in
2006, and they also introduced property R. They demonstrated that these two features are
identical for nonsingular trees [19]. Moreover, in reference [20], it is proved that properties R
and SR are also equivalent for weighted trees and they continued studying the nonsingular
trees in two ways. Firstly, they studied the characterization of the set of all graphs whose
inverses are nonsingular trees. Secondly, they investigated the extent of property R for
weighted trees and characterized the property for all trees with eight vertices or more,
under specific conditions on the weights. The authors provided a subclass of connected
bipartite graphs with unique perfect matching, proving that it satisfies properties R and R

if appropriate limitations on the weight function are enforced [21]. However, the general
equivalence of these two properties for any nonsingular graph has not been established. In
reference [22], the authors established that these properties are not equivalent in general.
In reference [23], the structure of a unicyclic graph with property SR was examined. This
study revealed that “such a graph is typically bipartite and took on a corona structure,
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except when it had a girth of four”. In the exceptional case where it is not a corona, the
paper demonstrated that the graph could assume one of three distinct structures. The paper
also presented families of unicyclic graphs with property SR, each corresponding to one of
these specific structures.

For a connected bipartite graph G with a unique perfect matching M, the weighted
graph Gw satisfies property SR for all w ∈ W(G) if and only if G is a corona, according to
Bapat et al. [24].

J. D. Lagrange [16] studied property −SR for the zero-divisor graphs of finite commu-
tative rings with non-zero divisors for the first time in 2012. Hameed et al. [25] investigated
a family of graphs with unique perfect matching and diagonal entries of zero in the inverse
of their adjacency matrix. The authors showed that this family does not satisfy property
−SR, not even for a single weight function w.

Ahmad et al. [26] explored the property−SR for the class of connected simple weighted
graphs with unique perfect matching M, denoted by GM, in 2020. They demonstrated
that, G is a corona if and only if, the weighted graph Gw satisfies the property −SR for
any w ∈ W(G). They also investigated the property −SR for several non-corona graph
families [27], and Barik et al. [28] extended these families. They created the noncorona
graph classes by linking each vertex of a finite number of copies of corona cycles of varying
finite length to nondependent vertices of G in such a manner that no corona cycle is linked
to more than one quasipendant vertex. These families were later generalized for weighted
graphs in [29]. In reference [30], the authors investigated some families of graphs with
property −R but not −SR. Later on, signed graphs with property −SR were investigated
in reference [31]. In reference [32], the authors introduced a new family of graphs named
flabellum graphs and, with the help of this family, they constructed several families of
graphs with property −SR.

In [33], Barik et al. constructed some classes of unweighted nonbipartite graphs using
complete graph Kn and a copy of the path graph P4. These families of graphs satisfy
property R but not SR for simple weights 0 and 1. In this article, an investigation is carried
out to answer the following question: “what happens if we assign weight functions on edge
sets of these classes?” It is interesting to note that, under certain weights, these families of
graphs satisfy property −SR; however, if some of these weights are changed with specific
conditions, the same families of graphs satisfy property R but not SR.

2. Preliminaries

This section comprises the basic definitions and terminologies which will be used in
this article.

Definition 1. Let G1 and G2 be two connected graphs of order n and m, respectively. The corona
product G1 ◦ G2 is a graph formed by one copy of graph G1 and n-copies of G2 and by connecting
each vertex of the jth copy of G2 with the jth vertex of G1, for 1 ≤ j ≤ n. If G2 ∼= K1, then G1 ◦ K1
is a corona graph.

Definition 2. A polynomial f (x) = ∑n
i=0 aixi of degree n is called a palindromic polynomial if

ai = an−i and an anti-palindromic polynomial if ai = −an−i for i = 0, 1, · · · , n. Note that property
SR is satisfied by a polynomial f (x) if and only if it is either palindromic or anti-palindromic.

Lemma 1 (ref. [26]). A polynomial f (x) = ∑2n
i=0 aix

i satisfies property −SR if and only if

a2n−i =


ai, if i and n have the same parity,

−ai, otherwise.
, i = 0, 1, 2, · · · , 2n.
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Lemma 2 (ref. [34]). If A is a block matrix, i.e., A =

[
A11 A12
A21 A22

]
where A11 and A22 are square

matrices. Then,

det(A) =


det(A11)det(A22 − A21A

−1
11 A12), if A11 is invertible

det(A22)det(A11 − A12A
−1
22 A21). if A22 is invertible.

Lemma 3 (ref. [33]). Let A be an n× n matrix and 1 ≤ k < n. Then, for any constant c, det(A+[
cIk O
O O

]
) = |A|+ c ∑k

i=1 det(A[i])+ c2(k
2)∑k

i,j=1 det(A[i, j])+ · · ·+ ck(k
k)det(A[1, 2, · · · , k]).

Definition 3. Let A and B be two matrices of order n × m and p × q, respectively, then the
Kronecker product of A and B is denoted by A⊗ B, defined as

A⊗ B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

.

Observation 1 (ref. [33]). If S = [(x− 1
x −

4x+2
z(x) )In − (1 + 4x+2

z(x) )A(Kn)], then

det(S) =
y(x)n−1 φn(x)

z(x)xn

where, φn(x) = x4 − nx3 − (3n + 3)x2 − nx + 1 and

det(S[1, 2, · · · , k]) =
y(x)n−k−1φn−k(x)

z(x)xn−k ,

where S[1, 2, · · · , k] is the submatrix of the matrix S obtained after deleting rows and columns with
indices 1, 2, . . . , k.

3. Main Results

In a previous work by Barik et al. [33], specific classes of unweighted nonbipartite
graphs were created using a complete graph and a copy of the path graph. They investi-
gated how these families of graphs satisfy the property R but not SR. In this section, we aim
to determine the weight functions that enable these nonbipartite graph classes to satisfy
property −SR or property R. Consider the complete graph Kn and one copy of P2 with
vertex set V(P2) = {a, b}.

Definition 4 (ref. [33]). Let Vn, n ≥ 1 be the graph obtained using the corona Kn ◦ K1 and P2 ◦ K1
in such a way that each non pendant vertex of Kn ◦ K1 is joined with each vertex of P2 ◦ K1 by an
edge; the order of this graph is 2n + 4.

For example, V5 can be obtained from K5 and P2, as shown in Figure 1. In reference [33],
the authors proved that this graph is very close to satisfy property SR. We investigated how,
if we assign weights to some of the edges of the graph under specific conditions, then this
graph will satisfy property −SR.

Observations

1. The adjacency matrix of the path graph P4 or P2 ◦ K1 can be written as follows:
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A(P2 ◦ K1) = A(P4) =


0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

 =

[
A(P2) I2

I2 O

]
,

then, f (P4; x) = det(xI4 − A(P4)) = det(xI4 − A(P2 ◦ K1)) = x4 − 3x2 + 1 = y(x)z(x)
where y(x) = x2 + x− 1 and z(x) = x2 − x− 1.

2. LetM = [(x− 1
x −

10xw2

z(x) )In − (1 + 10xw2

z(x) )A(Kn)], then det(M) = y(x)n−1ψn(x)
z(x)xn where

ψn(x) = x4 − nx3 − 10nw2x2 + (n− 3)x2 + nx + 1.

3. Following the same logic as in (4), we can see that

detM[1, 2, · · · , k] =
y(x)n−k−1ψn−k(x)

z(x)xn−k .

Figure 1. K5 ◦ K1, P2 ◦ K1, and V5.

Definition 5. Let VWn be a weighted graph obtained from Vn (defined in Definition 4) by assigning
a weight function W to the edge set of Vn defined as,

W(v, u) =


1, if (v, u) ∈ {E(Kn ◦ K1) ∪ E(P2 ◦ K1)};
w, if v ∈ V(P2) & u ∈ V(Kn);
2w, if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(Kn).

For example, VW5 , as shown in Figure 2, has the following weight function

W(v, u) =


1, if (v, u) ∈ {E(K5 ◦ K1) ∪ E(P2 ◦ K1)};
5.5, if v ∈ V(P2) & u ∈ V(K5), (red edges);
2(5.5), if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(K5), (blue edges).
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Figure 2. VW5 .

Theorem 1. The graph VWn , as defined in Definition 5, satisfies property −SR.

Proof. The adjacency matrix of the graph VWn can be written as,

A(VWn ) =


A(P2) I2 wJ2,n O2,n

I2 O2 2wJ2,n O2,n
wJn,2 2wJn,2 A(Kn) In
On,2 On,2 In On


Thus,

f (VWn ; x) = det
(

xI2 − A(P2) −I2
−I2 xI2

)
· det

([
xIn − A(Kn) −In
−In xIn

]
−
[
−wJn,2 −2wJn,2

On,2 On,2

]

(xI4 − A(P2 ◦ K1))
−1
[
−wJn,2 On,2
−2wJn,2 On,2

])
= f (P2 ◦ K1; x)det

([
xIn − A(Kn) −In
−In xIn

]
− 10xw2

x2 − x− 1

[
Jn On

On On

])
= (x2 + x− 1)n(x4 − nx3 − (10nw2 + n− 3)x2 + nx + 1).

Since the polynomials (x2 + x− 1)n and x4 − nx3 − (10nw2 + n− 3)x2 + nx + 1 satisfy property −SR
from Lemma 1, thus VWn satisfies property −SR.

Remark 1. Let V(P2) = {a, b}. The weighted graph in Definition 5 can be further generalized by
assigning the following weight function:

~W(v, u) =


1, if (v, u) ∈ {E(Kn ◦ K1)− E(Kn) ∪ E(P2 ◦ K1)};
wi, if (vi, ui) ∈ E(Kn), i = 1, · · · , n;
w̃1, if v ∈ V(Kn) & u = a;
w̃2, if v ∈ V(Kn) & u = b;
w̃1 + w̃2, if v ∈ V(Kn) & u ∈ {V(P2 ◦ K1)− V(P2)}.

It can be shown that V~Wn satisfies property −SR using a similar argument as in Theorem 1.

Definition 6. Consider the graph Vn, as defined above. Let v1, . . . , vk, 1 ≤ k ≤ n be k quasipen-
dant vertices in Vn. Let BẄ

n(k) be the graph obtained from Vn (defined in Definition 4), by attaching
a copy of P4 at each quasipendant vertex vi, i = 1, . . . , k of Vn in such a way that each nonpendant
vertex of P4 is attached to vi by an edge. Assign the weight function Ẅ on the edge set of BẄ

n(k)
defined as

Ẅ(v, u) =
{

1, if (v, u) ∈ {E(Vn) ∪ E(P4)};
w, if v and u are quasipendant vertices of Vn and P4, respectively.



Axioms 2023, 12, 1043 8 of 20

Thus, the order of the graph BẄ
n(k) is 2n + 4 + 4k. For example, BẄ

4(3) as shown in Figure 3,
which is obtained from V4 and three copies of P4, where

Ẅ(v, u) =
{

1, if (v, u) ∈ {E(V4) ∪ E(P4)};
5, if v and u are quasipendant vertices of V4 and P4, respectively (i.e., Pink edges).

Figure 3. V4, 3 copies of P4 and BẄ
4(3).

Theorem 2. The graph BẄ
n(k), as defined in Definition 6, satisfies property R but not SR for k = n.

Proof. The adjacency matrix of A(Vn) can be written as

A(Vn) =

 A(P4) J4,n O4,n
Jn,4 A(Kn) In

On,4 In On

.

Let B1 =
[

O4 H1
4,n O4,n

]
, B2 =

[
O4 H2

4,n O4,n
]

and Bk =
[

O4 Hk
4,n O4,n

]
where

H1
4,n =


w 0 0 · · · 0
w 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0

,H2
4,n =


0 w 0 · · · 0
0 w 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
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andHn
4,n =


0 0 0 · · · w
0 0 0 · · · w
0 0 0 · · · 0
0 0 0 · · · 0

.

Thus, the adjacency matrix of BẄ
n(k) can be written as

A(BẄ
n(k)) =


A(Vn) Bt

1 Bt
2 · · · Bt

k
B1 A(P4) O4 · · · O4
B2 O4 A(P4) · · · O4
...

...
...

...
...

Bk O4 O4 · · · A(P4)


Then,

f (BẄ
n(k); x) = ( f (P4; x))kdet(xI2n+4 − A(Vn)

−
[
Bt

1 Bt
2 · · · Bt

k
]
(Ik ⊗ (xI4 − A(P4))

−1


B1
B2
...
Bk

)

= ( f (P4; x))kdet(xI2n+4 − A(Vn)−
2xw2

z(x)

 O4 O O
O Ik O
O O O2n−k

)

= ( f (P4; x))kdet


xI4 − A(P4) −J4,n O4, n

−Jn,4 xIn − A(Kn)− 2xw2

z(x)

[
Ik Ok
O On−k

]
−In

On,4 −In xIn



= ( f (P4; x))k+1det(

 xIn − A(Kn)− 2xw2

z(x)

[
Ik Ok
O On−k

]
−In

−In xIn


−
[
−Jn,4
On,4

]
(xI4 − A(P4))

−1[ −J4,n O4,n
]
)

= ( f (P4; x))k+1det

 xIn − A(Kn)− 2xw2

z(x)

[
Ik Ok
O On−k

]
−In

−In xIn


−4x + 2

z(x)

[
Jn O
O O

])

= xn( f (P4; x)k+1)det(xIn − A(Kn)−
2xw2

z(x)

[
Ik O
O On−k

]
− 4x + 2

z(x)
Jn −

1
x

In)

= xn( f (P4; x)k+1)det((x− 1
x
− 4x + 2

z(x)
)In − (1 +

4x + 2
z(x)

)A(Kn)−
2xw2

z(x)

[
Ik O
O On−k

]
)

= xn( f (P4; x)k+1)det(S− 2xw2

z(x)

[
Ik O
O On−k

]
),

from Lemma 3 and Observation 1, we have

= xn f (P4; x)k+1[
y(x)n−1

z(x)
φn(x)

xn −
(

k
1

)
2xw2

z(x)
y(x)n−2

z(x)
φn−1(x)

xn−1 +

(
k
2

)
(2xw2)2

z(x)2
y(x)n−3

z(x)
φn−2(x)

xn−2 − · · · ]

= xn(y(x)z(x))k+1[
y(x)n−k−1

xnz(x)k+1 (
k

∑
i=0

)(−1)i(w2)i2i
(

k
i

)
x2i(y(x)z(x))k−iφn−i(x)]
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= (x2 + x− 1)n(
k

∑
i=0

(−1)i(w2)i2i
(

k
i

)
x2i(x4 − 3x2 + 1)k−iφn−i(x)).

Since ∑k
i=0(−1)i(w2)i2i(k

i)x2i(x4− 3x2 + 1)k−iφn−i(x) is palindromic and the power of x2 + x−
1 is greater than the power of x2 − x− 1. Thus, BẄ

n(k) for k = n, satisfies property R but not SR.

Remark 2. If the k copies of P4 in Definition 6 are named as Pi
4, for i = 1, · · · , k. The weighted

graph BẄ
n(k) can be further generalized by assigning the following weight function:

Ẅ
′
(v, u) =

{
1, if (v, u) ∈ {E(Vn) ∪ E(Pi

4), i = 1, · · · , k};
wi, if vi and ui are quasipendant vertices of Vn and Pi

4, i = 1, · · · , k, respectively.

Then, it can be shown that BẄ
′

n (k) satisfies property R but not SR using a similar argument as in
Theorem 2.

Definition 7. Consider the graph Vn defined in Definition 4. Take k ≥ 2 copies of P4, namely
Pi

4, i = 1, · · · , k and attach nonpendant vertices of all these copies to one quasipendant vertex of
Vn. Now, a weighted graph DW̌

n(k) can be obtained from this graph by assigning a weight function W̌

to the edge set as follows:

W̌(v, u) =
{

1, if (v, u) ∈ {E(Vn) ∪ E(Pi
4), i = 1, · · · , k};

wi, if v and ui’s are quasipendant vertices of Vn and Pi
4, i = 1, · · · , k, respectively.

For example, DW̌
3(2), which is obtained from one copy of V4 and two copies of P4, namely P1

4 and
P2

4, as shown in Figure 4, where the weights are assigned to the red and blue edges, respectively,
according to the following weight function.

W̌(v, u) =


1, if (v, u) ∈ {E(V4) ∪ E(Pi

4), i = 1, 2};
w1 = 2, if v and u1

1, u1
2 are the quasipendant vertices of V4 and P1

4 (i.e., red edges);
w2 = 3, if v and u2

1, u2
2 are quasipendant vertices of V4 and P2

4 (i.e., blue edges);

Theorem 3. The graph DW̌
n(k), as defined in Definition 7, satisfies property R but not SR.

Proof. The adjacency matrix of DW̌
n(k) can be written as

A(DW̌
n(k)) =



A(P4) J4,n O4,n O4 · · · O4
Jn,4 A(Kn) In w1Fn,4 · · · wkFn,4

On,4 In On On,4 · · · On,4
O4 w1F4,n O4,n A(P4) · · · O4
...

...
...

...
. . .

...
O4 wkF4,n O4,n O4 · · · A(P4)


,

where Fn,4 =


1 1 0 0
0 0 0 0
0 0 0 0
...

...
...

...
0 0 0 0

. Thus,

f (DW̌
n(k); x) = ( f (P4; x))kdet

 xI4 − A(P4) −J4,n O4,n
−Jn,4 xIn − A(Kn) −In
On,4 −In On



−

 O4 · · · O4
w1Fn,4 · · · wkFn,4

O4 · · · O4

(Ik ⊗ (xI4 − A(P4))
−1

 O4 w1F4,n O4
...

...
...

O4 wkF4,n O4
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= ( f (P4; x))kdet(xI2n+4 − A(Vn)−
2x

z(x)

k

∑
i=1

w2
i

 O4 O O
O enet

n O
O O On

)

= ( f (P4; x))kdet

 xI4 − A(P4) J4,n O4,n
Jn,4 xIn − A(Kn)− 2x

z(x) ∑k
i=1 w

2
i En −In

On,4 −In xIn

,

where En = enet
n, then

f (DW̌
n(k); x) = ( f (P4; x))k+1det

([
xIn − A(Kn)− 2x

z(x) ∑k
i=1 w

2
i En −In

−In xIn

]

−
[

Jn,4
On,4

]
(xI4 − A(P4))

−1[ J4,n O4,n
]
)

= ( f (P4; x))k+1det

([
xIn − A(Kn)− 2x

z(x) ∑k
i=1 w

2
i En −In

−In xIn

]

−4x + 2
z(x)

[
Jn O
O O

])

= xn( f (P4; x)k+1)det(xIn − A(Kn)−
2x

z(x)

k

∑
i=1

w2
i En −

4x + 2
z(x)

Jn −
1
x

In),

Using observation (4) and (5)

= xn( f (P4; x)k+1)det((x− 1
x
− 4x + 2

z(x)
)In − (1 +

4x + 2
z(x)

)A(Kn)−
2x

z(x)

k

∑
i=1

w2
i En)

= xn( f (P4; x)k+1)det(S− 2x
z(x)

k

∑
i=1

w2
i En)

= (x2 + x− 1)n+k−1(x2 − x− 1)k−1h(x),

where h(x) = x8−nx7− (3n+ 6+ 2 ∑k
i=1 w

2
i )x6 +(2n+(2n− 2)∑k

i=1 w
2
i )x5 +(9n+ 11+ 6n ∑k

i=1 w
2
i )

x4 + (2n + (2n − 2)∑k
i=1 w

2
i )x3 − (3n + 6 + 2 ∑k

i=1 w
2
i )x2 − nx + 1 is a palindromic polynomial

which satisfies property SR. Moreover, the multiplicities of roots differ due to the polynomials
(x2 + x− 1)n+k−1 and (x2 − x− 1)k−1. We can see that DW̌

n(k) satisfies property R but not SR.

Figure 4. Weighted DW̌
3(2), where the blue edges are assigned weight 3, and the red edges are assigned

weight 2.
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Now, the following question arises: ‘is it possible to assign weights to some edges
so that the classes defined in Definitions 6 and 7 satisfy property −SR?’ To answer this
question, we assign weights to some particular edges and, consequently, the families of
nonbipartite weighted graphs with property −SR are given in Definitions 8 and 9. We recall
that the graph Vn is obtained using the coronas Kn ◦ K1 and P2 ◦ K1 in such a way that each
non-pendant vertex of Kn ◦ K1 is joined with each vertex of P2 ◦ K1 by an edge.

Definition 8. Consider the graph BẄ
n(k), as defined in Definition 6. A new weighted graph BW

n (k)
can be obtained if we replace the weight function Ẅ by W, defined as

W(v, u) =


w, if v ∈ V(P2) & u ∈ V(Kn);
2w, if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(Kn);
1, otherwise,

where P2 and Kn are the graphs used in the construction of Vn. For example, BW
4 (3), as shown in

Figure 5, where

W(v, u) =


9, if v ∈ V(P2) & u ∈ V(K4), (i.e., blue edges);
2(9), if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(K4), (i.e., green edges);
1, otherwise.

Figure 5. BW
4 (3) and DW

4 (2).
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Definition 9. We now introduce the graph DW
n (k) obtained from DW̌

n(k) by changing weight
function W̌ to W , defined as

W (v, u) =


w, if v ∈ V(P2) & u ∈ V(Kn);
2w, if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(Kn);
1, otherwise,

where P2 and Kn are the graphs used in the construction of Vn. For example, DW
4 (2), as shown in

Figure 5, with weight function

W (v, u) =


7.5, if v ∈ V(P2) & u ∈ V(K4), (i.e., blue edges);
2(7.5), if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(K4), (i.e., green edges);
1, otherwise.

Theorem 4. The graph BW
n (k), defined in Definition 8, satisfies property −SR.

Proof. Recall that,

A(VWn ) =


A(P2) I2 wJ2,n O2,n

I2 O2 2wJ2,n O2,n
wJn,2 2wJn,2 A(Kn) In
On,2 On,2 In On

.

Let C1 =
[

O4 N 1
4,n O4,n

]
, C2 =

[
O4 N 2

4,n O4,n
]

and Ck =
[

O4 N k
4,n O4,n

]
,

where N 1
4,n =


1 0 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0

, N 2
4,n =


0 1 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0

 and

N n
4,n =


0 0 0 · · · 1
0 0 0 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0

. Thus, the adjacency matrix of BW
n (k) can be written as,

A(BW
n (k)) =


A(VWn ) Ct

1 Ct
2 · · · Ct

k
C1 A(P4) O4 · · · O4
C2 O4 A(P4) · · · O4
...

...
...

. . .
...

Ck O4 O4 · · · A(P4)

.

Then, the characteristic polynomial of BW
n (k) is

f (BW
n (k); x) = ( f (P4; x))kdet(xI2n+4

−A(VWn )−
[
Ct

1 Ct
2 · · · Ct

k
]
(Ik ⊗ (xI4 − A(P4)))

−1


C1
C2
...
Ck

)

= ( f (P4; x))kdet(xI2n+4 − A(VWn )−
2x

z(x)


O2 O O O
O O2 O O
O O Ik O
O O O O2n−k

)
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= ( f (P4; x))kdet


xI2 − A(P2) −I2 −wJ2,n O2,n
−I2 xI2 −2wJ2,n O2,n

−wJn,2 −2wJn,2 xIn − A(Kn)− 2x
z(x)

[
Ik Ok
O O2n−k

]
−In

On,2 On,2 −In xIn



= ( f (P4; x))k+1det

 xIn − A(Kn)− 2x
z(x)

[
Ik Ok
O O2n−k

]
−In

−In xIn


−
[
−wJn,2 −2wJn,2

On,2 On,2

]
(xI4 − A(P2 ◦ K1))

−1
[
−wJ2,n O2,n
−2wJ2,n O2,n

])

= ( f (P4; x))k+1det

 xIn − A(Kn)− 2x
z(x)

[
Ik Ok
O O2n−k

]
−In

−In xIn

 − 10xw2

z(x)

[
Jn O
O O

])

= xn( f (P4; x)k+1)det(xIn − A(Kn)−
2x

z(x)

[
Ik O
O O2n−k

]
− 10xw2

z(x)
Jn −

1
x

In)

using observations (4) and (5)

= xn( f (P4; x)k+1)det((x− 1
x
− 10xw2

z(x)
)In − (1 +

10xw2

z(x)
)A(Kn)−

2x
z(x)

[
Ik O
O O2n−k

]
)

= xn( f (P4; x)k+1)det(M− 2x
z(x)

[
Ik O
O O2n−k

]
)

= xn( f (P4; x)k+1)[
y(x)n−1

z(x)
ψn(x)

xn −
(

k
1

)
2x

z(x)
y(x)n−2

z(x)
ψn−1(x)

xn−1 +

(
k
2

)
(2x)2

z(x)2
y(x)n−3

z(x)
ψn−2(x)

xn−2 −· · · ]

= xn(y(x)z(x))k+1[
y(x)n−k−1

xnz(x)k+1 (
k

∑
i=0

)(−1)i2i
(

k
i

)
x2i(y(x)z(x))k−iψn−i(x)]

= (x2 + x− 1)n(
k

∑
i=0

(−1)i2i
(

k
i

)
x2i(x4 − 3x2 + 1)k−iψn−i(x))

where ψn−i(x) = x4− (n− i)x3− (10(n− i)w2 + (n− i− 3))x2 + (n− i)x + 1 satisfies property−SR
from Lemma 1. Thus, the graph BW

n (k) satisfies property −SR.

Theorem 5. The graph DW
n (k), as defined in Definition 9, satisfies property −SR for k ≥ 2.

Proof. Remember that, A(VWn ) =


A(P2) I2 wJ2,n O2,n

I2 O2 2wJ2,n O2,n
wJn,2 2wJn,2 A(Kn) In
On,2 On,2 In On

 and

Let C1 =
[

O4 L1
4,n O4,n

]
, C2 =

[
O4 L2

4,n O4,n

]
and Ck =

[
O4 Lk

4,n O4,n

]

where, Li
4,n =


1 0 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0

 for i = 1, · · · , k.
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Thus, A(DW
n (k)) =


A(VWn ) Ct

1 Ct
2 · · · Ct

k
C1 A(P4) O4 · · · O4
C2 O4 A(P4) · · · O4
...

...
...

. . .
...

Ck O4 O4 · · · A(P4)

.

Then, using direct calculations, the characteristic polynomial of DW
n (k) can be written as

f (DW
n (k); x) = ( f (P4; x))kdet(xI2n+4 − A(VWn )

−
[
Ct

1 Ct
2 · · · Ct

k
]
(Ik ⊗ (xI4 − A(P4)))

−1


C1
C2
...
Ck

)

= ( f (P4; x))kdet(xI2n+4 − A(VWn )− k
2x

z(x)

 O4 O O
O enet

n O
O O On

), enet
n = En

= ( f (P4; x))kdet


xI2 − A(P2) −I2 −wJ2,n O2,n
−I2 xI2 −2wJ2,n O2,n
−wJn,2 −2wJn,2 xIn − A(Kn)− k 2x

z(x)En −In

On,2 On,2 −In xIn


= ( f (P4; x))k+1det

([
xIn − A(Kn)− k 2x

z(x)En −In

−In xIn

]

−
[
−wJn,2 −2wJn,2

On,2 On,2

]
(xI4 − A(P4))

−1
[
−wJ2,n O2,n
−2wJ2,n O2,n

])

= ( f (P4; x))k+1det

([
xIn − A(Kn)− k 2x

z(x) −In

−In xIn

]
− 10xw2

z(x)

[
Jn O
O O

])

= xn( f (P4; x)k+1)det[xIn − A(Kn)− k
2x

z(x)
En −

10xw2

z(x)
Jn −

1
x

In]

using observations (4) and (5)

f (DW
n (k)) = xn( f (P4; x)k+1)det((x− 1

x
− 10xw2

z(x)
)In − (1 +

10xw2

z(x)
)A(Kn)−

2x
z(x)

En)

= (x2 + x− 1)n+k−1(x2 − x− 1)k−1h(x), where

h(x) = x8 − nx7 − (10nw2 + 2k + 6− n)x6 + (4n + 2(n− 1)k)x5 + (20(n− 1)kw2 + 30nw2 + 2(4−
n)k + 11− 3n)x4 + (4n + 2(n− 1)k)x3 − (10nw2 + 2k + 6− n)x2 + nx + 1.
We see that DW

n (k) satisfies property −SR from Lemma 1.

Example 1. Consider the graph VW5 , as shown in Figure 2. The weight function W defined on the
edge set of VWn is

W(v, u) =


1, if (v, u) ∈ {E(K5 ◦ K1) ∪ E(P2 ◦ K1)};
5.5, if v ∈ V(P2) & u ∈ V(K5);
2(5.5), if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(K5).

The red edges are assigned weight 5.5, the blue edges are assigned weight 11, and all the remaining
edges are assigned weight 1. The spectrum of VW5 is shown in Table 1. We can easily see that this
graph satisfies property −SR.
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Table 1. Eigenvalues of VW5 with reciprocals and multiplicities.

(λ, m) (41.4952, 1) (0.02739, 1) (0.61803, 5)

(− 1
λ , m) (−0.02409, 1) (−36.509, 1) (−1.6180, 5)

Example 2. Consider the graph BẄ
5(5). It is obtained from one copy of V5 and f ive copies of P4

according to Definition 6. The following weight function is applied on the graph BẄ
5(5):

Ẅ(v, u) =
{

1, if (v, u) ∈ {E(V5) ∪ E(P4)};
7, if v and u are quasipendant vertices of V5 and P4, respectively.

All the blue edges are assigned weight 7, as shown in Figure 6. The spectrum of BẄ
5(5) is shown in

Table 2. We can easily see that BẄ
5(5) satisfies property R but not SR.

Figure 6. BẄ
5(5) and BW

5 (5).

Table 2. Eigenvalues of BẄ
5(5) with reciprocals and multiplicities.

(λ, m) (13.573, 1) (−0.11724, 1) (0.0995, 4) (−0.0995, 4) (0.61803, 6) (−0.61803, 1)

( 1
λ , m) (0.073675, 1) (−8.5295, 1) (10.049, 4) (−10.049, 4) (1.61803, 1) (−1.61803, 6)
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In the graph BẄ
5(5), if we change the weight function Ẅ to W (according to the Definition 8),

then

W(v, u) =


3.5, if v ∈ V(P2) & u ∈ V(K5), (red edges);
2(3.5), if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(K5), (blue edges);
1, otherwise.

The graph BW
5 (5) with a weight function is shown in Figure 6. In Table 3, the spectrum of the

weighted graph BW
5 (5) is given.

Table 3. Eigenvalues of BW
5 (5) with negative reciprocals and multiplicities.

(λ, m) (−22.379, 1) (−2.1889, 4) (−1.6180, 6) (−0.6180, 1) (−0.45685, 4) (−0.3653, 1)

(− 1
λ , m) (0.04468, 1) (0.45685, 4) (0.6180, 6) (1.6180, 1) (2.1889, 4) (27.371, 1)

Example 3. Consider the graph DW̌
5(3), as shown in Figure 7. This graph is obtained from one

copy of V5 and three copies of P4 (namely P1
4, P2

4 and P3
4) according to Definition 7. The weight

function applied to the graph DW̌
5(3) is as follows:

W̌(v, u) =


1, if (v, u) ∈ {E(V5) ∪ E(Pi

4), i = 1, 2, 3};
w1 = 7, if v and u are quasipendant vertices of V5 and P1

4, respectively;
w2 = 10, if v and u are quasipendant vertices of V5 and P2

4, respectively;
w3 = 15, if v and u are quasipendant vertices of V5 and P3

4, respectively.

Here, the weights w1, w2, and w3 are assigned to the purple, blue, and red edges, respectively. The
spectrum of DW̌

5(3) is given in Table 4. We can easily see that DW̌
5(3) satisfies property R.

Figure 7. DW̌
3(3) and DW

3 (3).
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Table 4. Eigenvalues of DW̌
5(3) with reciprocals and multiplicities.

(λ, m) (0.03562, 1) (0.15698, 1) (−0.03701, 1) (−0.47436, 1) (1.61803, 2) (−0.61803, 2)

( 1
λ , m) (28.071, 1) (6.3702, 1) (−27.014, 1) (−2.1081, 1) (0.61803, 7) (−1.61803, 7)

In the graph DW̌
5(3), if we change weight function W̌ to W according to Definition 9, then the

resulting graph is named DW
5 (3), as shown in Figure 7. The weight function of DW

5 (3) follows:

W (v, u) =


5, if v ∈ V(P2) & u ∈ V(K5), (red edges);
2(5), if v ∈ {V(P2 ◦ K1)− V(P2)} & u ∈ V(K5), (blue edges);
1, otherwise.

Table 5 shows the spectrum of DW
5 (3); it can be seen that it satisfies property −SR.

Table 5. Eigenvalues of CW
5 (3) with reciprocals and multiplicities.

(λ, m) (0.030363, 1) (0.36120, 1) (2.7686, 1) (1.618, 2) (37.931, 1) (0.618, 7)
(− 1

λ , m) (−32.935, 1) (−2.7685, 1) (−0.3612, 1) (−0.618, 2) (−0.02636, 1) (−1.618, 7)

4. Applicability of Graphs with Properties −SR and SR

The energy of a graph is defined as the sum of the absolute eigenvalues of a graph.
Graph energy provides valuable insights into the topological properties of a graph. It
quantifies the structural characteristics and complexity of a graph, making it a useful tool
for studying network connectivity and architecture. Different types of graphs, such as trees,
cycles, and complete graphs, have distinct energy values. This enables the classification
of graphs based on their energy levels, aiding in graph theory research. In the field of
chemical graph theory, graph energy is used to analyze molecular structures. It is employed
to predict molecular stability, reactivity, and other chemical properties, contributing to drug
discovery and materials science. A graph satisfying properties −SR and SR can be helpful
in estimating the bounds for the energy of graphs because the spectrum of graphs having
these properties can be split into two disjoint sets, such that one set contains half of the
eigenvalues and the other set contains their reciprocals with the same multiplicity.

5. Conclusions

In this article, the influence of weight functions on the eigenvalue properties of graphs
has been demonstrated. By applying specific weight functions to a family of graphs that is
very close to satisfy property SR, a family of graphs with property−SR has been established.
Additionally, by introducing weight functions to families that already satisfy the property R

but not SR, it has been shown that, with appropriate limits on weights, the same families of
graphs can satisfy R (but not SR) and property −SR, respectively. These findings contribute
to our understanding of eigenvalue properties and open avenues for further exploration in
graph theory and related applications.
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