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Abstract: Firstly, a basic question to find the Laplace transform using the classical representation of
gamma function makes no sense because the singularity at the origin nurtures so rapidly that Γ(z)e−sz

cannot be integrated over positive real numbers. Secondly, Dirac delta function is a linear functional
under which every function f is mapped to f(0). This article combines both functions to solve the
problems that have remained unsolved for many years. For instance, it has been demonstrated that the
power law feature is ubiquitous in theory but challenging to observe in practice. Since the fractional
derivatives of the delta function are proportional to the power law, we express the gamma function
as a complex series of fractional derivatives of the delta function. Therefore, a unified approach is
used to obtain a large class of ordinary, fractional derivatives and integral transforms. All kinds of
q-derivatives of these transforms are also computed. The most general form of the fractional kinetic
integrodifferential equation available in the literature is solved using this particular representation.
We extend the models that were valid only for a class of locally integrable functions to a class of
singular (generalized) functions. Furthermore, we solve a singular fractional integral equation whose
coefficients have infinite number of singularities, being the poles of gamma function. It is interesting
to note that new solutions were obtained using generalized functions with complex coefficients.

Keywords: fractional Taylor series; H-function; singular integral equation; q-fractional derivatives

MSC: 33B15; 44A20; 33CXX

1. Introduction and Motivation

Gelfand and Shilov remarked that “If the coefficients of equations have singularities,
then new solutions may occur in generalized functions, while classical solutions may
disappear” ([1], Vol. I, p. 42, Remark 1). Since the gamma function has an unlimited
number of poles at negative integers containing 0. Therefore, it becomes more challenging
to solve differential and integral equations containing the gamma function. In general,
a function is typically thought of as being defined by a series, or an integral of a certain
variable, or in terms of those functions that we consider to be “elementary”. But the
function must be regarded as a distinct entity, and one that can be represented by a series
or an integral. When considering the theory of (special) functions, this point becomes
more significant. All special functions have more than one representation, such as a series
integral, an asymptotic representation, etc. For example, the integral representation ([2],
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Equation (1.1.1)) of the gamma function is defined in the positive half of the complex
plane as

Γ(ω) =
∫ ∞

0
tω−1e−tdt; (ω ∈ C;R(ω) > 0), (1)

and another representation ([2], Equation (1.1.4)) is as follows,

Γ(ω) =
∞

∑
k=0

(−1)k

k!
1

ω+ k
+
∫ ∞

1
tω−1e−tdt; (ω 6= 0,−1,−2, . . . . . .), (2)

and is defined in the whole complex plane except at negative integers including 0. Ad-
ditionally, there may be multiple integral or series representations of the same function,
which aid in differentiating the function in the various contexts. This is necessary in order
to use the function for purposes other than those for which it was formerly defined. By
doing so, one can also provide proofs of several known features that are simpler. Therefore,
a generalized representation of the gamma function [3] in terms of complex delta functions
is given by

Γ(x + ιy) = 2π
∞

∑
l=0

(−1)l

l!
δ(y− ι(x + l)), (3)

and was used to find its Laplace transform ([4], Equation (38)), which was not possible
using its known (old) representations. A complex delta function can be represented as a
Taylor series ([1], Vol. 1, p. 169, Equation (8)),

F
[
ext; y

]
= 2πδ(y− ιx) =

∞

∑
m=0

(−ιx)m

m!
δ(m)(y). (4)

More rigorously, a complex delta function is an element of a distribution space Z′ so
that for ∀g ∈ Z′ ([1], (pp. 159–160), Equation (4)) as well as ([5], p. 201, Equation (9)), we
have the Taylor series expansion,

g(ω+ b) =
∞

∑
m=0

g(m)(ω)
bm

m!
(ω, b ∈ C), (5)

and the corresponding fractional Taylor series is [6]

g(ω+ b) =
∞

∑
m=0

g(νm)(ω)
bνm

Γ(νm + 1)
; 0 < ν < 1. (6)

For further details of these distribution spaces, we suggest that an interested reader
should refer to a more recent reference [4], subsection 2.2. Moreover, for ν ∈ R+, a recently
discussed definition of the fractional derivatives of delta function is given by [7]

δ(ν)(ξ) ∗ χ(ξ) =
u∫

0−

dνδ(u− ξ)
dtν

χ(ξ)dξ =
1

Γ(−ν)

u∫
0−

χ(ξ)

(u− ξ)ν+1 dξ =
dνχ(u)

duν
, (7)

which is basically the extension and modification of the classical works by Gelfand and
Shilov [1]. Inspired by the study in [7], a non-integer-order distributional representa-
tion of the gamma function was discussed over a real domain [8]. In this article, we
also extend these results over the complex domain. It is clear that the delta function’s
Riemann–Liouville (R-L) and Caputo derivatives [9–11] are identical. For a more thor-
ough examination of such settings, the interested bibliophile can refer to [7–10] and their
related literature.

This article is divided into the following sections: After a brief discussion of necessary
definitions in Section 1.1, we find a novel depiction of the gamma function over its complex
domain by making the use of non-integer derivatives of the delta function in Section 2. The
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complex portion contributes to the coefficients of this series representation, and fractional
derivatives are used for the real part. Therefore, a new representation is also applicable
to a class of functions whose fractional derivatives over the complex domain do not exist.
With novel applications for the theory of distributions, the convergence of a new series is
demonstrated. Highly nontrivial examples leading to the solution of a most general form of
the fractional integrodifferential equation are also discussed. Using the Fourier transform
of the gamma function, novel identities involving the gamma function are obtained using
multiple Erdélyi–Kober (E-K) fractional derivatives in Section 3.1 and their fractional
integral transforms in Section 3.2. In Section 3.3, the Laplace transform (LT) of the gamma
function is utilized to obtain the distributional solution of the singular fractional integral
problem in conjunction with the classical solution. By doing so, we obtain a large class
of integrals and derivatives in a uniform way, i.e., q-fractional derivatives using the new
representation are also computed in Section 3.4. Section 4 contains the conclusions of this
article and lead to the future directions of this study.

1.1. Preliminaries Related to Multiple Erdélyi–Kober (E-K) Fractional Operators

The generalized fractional operators of order δk are defined as follows ([12], p. 8,
Equation (18)),

I(γk),(δk)
(αk),n

f(z) =



f(z); (δk = 0)∫ 1
0 f(zσ)H

n,0

n,n

σ
∣∣∣∣∣∣
(
γk + δk − 1

αk
+ 1, 1

αk

)n

1(
γk − 1

αk
+ 1, 1

αk

)n

1

dσ;
(

∑
k
δk ≥ 0

)

= z−1
∫ z

0 f(ξ)Hn,0
n,n

ξ
z

∣∣∣∣∣∣
(
γk + δk − 1

αk
+ 1, 1

αk

)n

1(
γk − 1

αk
+ 1, 1

αk

)n

1

dξ;
(

∑
k
δk > 0

) (8)

where α′ks are arbitrary parameters, and γ′ks are used as weights. Then, Hn,0
n,n = 0; σ > 1 and

the corresponding derivatives of different orders (δn ≥ 0, . . . , δ1 ≥ 0) = δ are as defined in
([12], p. 9), refer also [13,14]. These are named as multiple E–K fractional and derivative
operators, respectively. One noteworthy aspect of these operators is their relationship with
a few popular fractional integrals, as listed in the Table 1 below.

Table 1. Diverse kernels of multiple Erdélyi–Kober (E-K) fractional operators and integral transforms
[14].

Cases of (8) Diverse Kernels of Non-Integer Transforms [12]

n = 3
Marichev–Saigo–Maeda (M-S-M)

(1 = α1 = α2 = α3 = α)

H3,0
3,3
( t

x
)
= G3,0

3,3

[
t
x

∣∣∣∣γ1
′ + γ2

′, ν− γ1,ν− γ2
γ1
′,γ2

′, ν− γ1 − γ2

]
= x−γ1

Γ(ν) (x− t)δ−1t−γ1
′
F3
(
γ1,γ1

′,γ2,γ2
′,ν; 1− t

x ; 1− x
t
)

n = 2
Saigo(

α1 = α2 = α > 0;σ = t
x ∧ σ = x

t
) H2,0

2,2

σ
∣∣∣∣∣∣
(
γ1 + ν1 + 1− 1

α , 1
α

)
,
(
γ2 + ν2 + 1− 1

α , 1
α

)(
γ1 + 1− 1

α , 1
α

)
,
(
γ2 + 1− 1

α , 1
α

)  = G2,0
2,2

[
σα
∣∣∣∣ γ1 + ν1,γ2 + ν2

γ1,γ2

]
= α

σαγ2 (1−σα)ν1+ν2−1

Γ(ν1+ν2) 2F1(ν2 − γ1 + γ2,ν1;ν1 + ν2; 1− σα)

n = 1
Erdélyi–Kober (E-K) H1,1

1,0

σ
∣∣∣∣∣∣
(
γ+ ν, 1

α

)(
γ, 1
α

)  = ασα−1G1,1
1,0

[
σα
∣∣∣∣γ+ νγ

]
= α

σα(γ+1)−1(1−σα)ν−1

Γ(ν)

n = 1
(
α = 1; t

x = σ; x
t = σ

)
Riemann–Liouville (R-L) H1,1

1,0

[
σ

∣∣∣∣(γ+ ν, 1)
(γ, 1)

]
= G1,1

1,0

[
t
x

∣∣∣∣γ+ νγ
]
= (x−t)ν−1tγ

Γ(ν)
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A variety of such significant transforms can also be found in [15,16]. The above
definitions involve the H-function [17,18] given by

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣(ai, Ai)(

bj, Bj
) ] = 1

2πi

∫
L

∏m
j=1 Γ

(
bj+Bjs

)
∏n

i=1 Γ
(
1− ai−Ais

)
∏

q
j=m+1 Γ

(
1− bj−Bjs

)
∏

p
i=n+1 Γ

(
ai+Ais

) z−sds,(
i = 1, · · · , p; 0 ≤ n ≤ p; j = 1, · · · , q; 1 ≤ m ≤ q; Ai > 0; Bj > 0; ai ∈ C; bj ∈ C

)
.

(9)

In this definition of the H-function, the singularities of
{

Γ
(
bj + Bjs

)}m
j=1 and{

Γ
(
1− ai −Ais

)}n
i=1 are kept separated using the contour L. If Ai = 1 = Bj, then, we have

the following relationship between H and G functions [17,18]:

Hm,n
p,q

[
z
∣∣∣∣(ai, 1)(

bj, 1
)] = Gm,n

p,q

[
z
∣∣∣∣ai
bj

]
. (10)

Furthermore, for AiεR+(i = 1, . . . , p); BjεR+(j = 1, . . . , q); and 1+∑
q
j=1 Bj−∑

p
i=1 Ai > 0,

the Fox–Wright function [18] is defined as follows:

pΨq

[
(ai, Ai)
(bj, Bj)

; z
]
=

∞

∑
m=0

∏
p
i=1 Γ(ai + Aim)zm

∏
q
j=1 Γ

(
(bj + Bjm

)
m!

. (11)

It has the following relationship with the hypergeometric function [2,19]:

pΨq

[
(ai, 1)
(bj, 1); z

]
= pFq

(
ai; bj; z

)
.
Γ(ai)

Γ
(
bj
) ;
(
ai > 0; i = 1, . . . .p; bj /∈ Z−0 ; j = 1, . . . .q

)
. (12)

The generalized Mittag–Leffler function [19,20] is given by

Eγα,β(z) =
1

Γ(γ) 1Ψ1

[
(γ, 1)
(β,α)

; z
]
=

∞

∑
k=0

(γ)kzk

k!Γ(αk + β)
;α,β,γεC,R(α) > 0, (13)

where (γ)k are Pochhammer symbols given by

(γ)k =
Γ(γ+ k)

Γ(γ)
=

{
1 (k = 0,)

γ(γ+ 1) . . . (γ+ n− 1) (k ∈ Cr {0}; k = n ∈ N;γ ∈ C). (14)

Further special cases of (13) are as follows:

E1
α,β(z) = E

α,β(z) = 1Ψ1

[
(1, 1)
(β,α)

; z
]
=

∞

∑
k=0

zk

Γ(αk + β)
;E1
α,1(z) = E

α
(z) = 1Ψ1

[
(1, 1)
(1,α)

; z
]
=

∞

∑
k=0

zk

Γ(αk + 1)
. (15)

Unless otherwise mentioned during this research, the conditions of the parameters
shall be deemed normal as specified in Section 1.

2. Complex Generalized Representation of the Gamma Function and Its Convergence

This section presents a complex generalized Taylor series of the gamma function
denoted by Γν(x + ιy), where ν is the fractional parameter as defined in Equation (6) in
the form of non-integer derivatives of delta function. The major objective is to use the
fractional operator to present a basic special function in the form of a generalized function.
To model and solve the most general form of the fractional kinetic equation, a fractional
generalization of the differential operators was necessary, which can assist to explain why
this conclusion can only be accomplished by using fractional derivatives.
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Proposition 1. A subsequent complex generalized representation is computed for the gamma function.

Γν(x + ιy) = 2π
∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(mν+ 1)
δ(νm)(y). (16)

Proof. This is obtained by using Equation (6) in Equation (3) for the complex delta function
being an element of Z′. �

Remark 1. The delta function is used in an infinite series in this gamma function exemplification,
which is only correct when it is specified in the sense of distributions (generalized functions). A
subsequent theorem implies the interesting fact that the representation (16) acts as a distribution
over a specific set of functions with fractional derivatives.

Theorem 1. Let I denote a set of functions that have well-defined non-integer derivatives, then
prove that the series representation (16) acts as a distribution over this set of functions.

Proof. First, one may consider the subsequent inner product of the complex generalized
representation of the gamma function (16) as well as a suitable liner combination of testing
functions, χ1(y),χ2(y)εI, and c1, c2 > 0,

〈Γν(x + ιy), c1χ1(y) + c2χ2(y)〉 = 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) δ(νm)(y) ∗ (c1χ1(y) + c2χ2(y))

= c1Γν(x + ιy) ∗ χ1(y) + c2Γν(x + ιy) ∗ χ2(y).
(17)

It demonstrates that this novel representation of the gamma function behaves as a lin-
ear operator over I. Next, one may consider a random sequence I ⊃

{
χµ

(νm)(y)}∞
µ=1

converging to zero and then consider the following convolution product,

⇒
{
〈Γν(x + ιy) ∗ χµ(y)〉

}∞
µ=1 = 2π

∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) {δ(νm)(y) ∗ χµ(y)}∞
µ=1

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) χµ
(νm)(y),

(18)

and we can show that {〈δ(νm)(y) ∗ χµ(y)〉}∞
µ=1 converges to zero. This implies that the

complex generalized representation of the gamma function Γν(x + ιy) acts as a linear as
well as a continuous operator over I. Therefore, we consider the following equation,

sum over the coefficients =
∞

∑
l=0

(−1)l

l!
Eν

(
(−ι(x + l))ν) = ∞

∑
l=0

(−1)l

l! 1Ψ1

[
(1, 1)
(1, ν)

; (−ι(x + l))ν
]

(19)

where χµ(νm)(y) ∈ I exists and is well defined, showing that Γν(x + ιy) ∗ χµ(y) converges
for ∀χ(y)εI using the famous Abel theorem. �

One should note that, by making the use of (7) and (16) for any function χ(y)εI, we
obtain the following:

〈Γν(x + ιy),χ(y)〉 = 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) δ(νm)(y) ∗ χ(y)

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) χ(νm)(y).
(20)

The existing literature contains a wide range of non-integer-order operators, and even
for the computation of very fundamental functions, a thorough comprehension of the
selected operator is necessary (refer [21] and the bibliography cited therein).
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Example 1. For example, using the non-integer-order derivative in the Caputo sense [21] of ecy,
we obtain

Γν(x + ιy)∗ecy = 2π
∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)
dνm

dyνm (ecy) =
2π
yν

∞

∑
l,m=0

(−1)l((−ι(x + l))νcy)m

l!Γ(νm + 1)
E1,m−ν+1(cy), (21)

and using the Grünwald–Letnikov derivative [21], νm
GLD ecy = cνm ecy in (20), the new identity

obtained is as follows:

Γν(x + ιy) ∗ ecy = 2π
∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)
cνmecy = 2πecy

∞

∑
l=0

(−1)l

l!
Eν(−ιc(x + l))ν.

(22)

Next, we consider the following examples for the Riemann–Liouville (R-L) fractional
derivative of the Hurwitz–Lerch zeta function [22] and the Mittag–Leffler function [23].

Example 2. Consider χ(y) = yνmΦ(y, s, a), then RL
0 Dνm

y χ(y) = Γ(νm + 1)Φ∗νm+1(y, s, a),
and Φ, Φ∗ denote the Hurwitz–Lerch zeta and the generalized Hurwitz–Lerch zeta functions [22].
Using (7) and (16) for these functions, we obtain the following:

yνmΦ(y, s, a) ∗ Γν(x + ιy) = 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1)
dνm

dyνm (yνmΦ(y, s, a))

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νmΦ∗νm+1(y,s,a)
l! .

(23)

Example 3. Consider χ(y) = yνmEα,β(y), then RL
0 Dνm

y χ(y) = Γ(νm + 1)Eρ
α,β(y), where

Eρ
α,β(y) denotes the Mittag–Leffler function ([23], Equation (12)). Using (7) and (16) for this

function, we obtain the following:

yνmEα,β(y) ∗ Γν(x + ιy) = 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1)
dνm

dyνm (yνmEα,β(y))

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νmEνm+1
α,β (y)

l! .
(24)

In the same way, more novel and innovative results can be calculated that are valu-
able in solving the several problems arising in fractional calculus that are also proposed
in [24]. For instance, many different types of fractional-order kinetic equations have been
employed recently, particularly in the modelling and analysis of several significant physics
and astrophysics problems [25,26]. Such kinetic equations combined by the notion of
Continuous-Time Random Walk (CTRW) has led to an apparent increase in the popularity
of kinetic equations of the fractional order [27,28]. These equations are currently being
utilized to decipher the diffusion in porous media, the relaxation and response in complex
systems, anomalous diffusion, so on and so forth. This section is concluded considering
the subsequent general non-integer kinetic integrodifferential equation discussed in [24].

If c, d, and η are constants, and f is a locally integrable function, then we have

c(Da,b
0+X)(t)− X0f(t) = d

(
Iλ0+X

)
(t), (25)

with an initial condition of (
I(1−b)(1−a)
0+ X

)
(0+) = η. (26)
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Here, we apply this general form of a new fractional representation (16) to obtain the
solution ([24], Equation (5.9)–(5.10)), by extending the general result from locally integrable
functions to a class of singular distributions,

X(t) =
∞
∑

k=0

( d
c )

k

Γ(c+k(λ+c))yc+k(λ+c)−1 ∗
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) δ(νm)(y)

+η
∞
∑

k=0

( d
c )

k

Γ(c−d(1−c)+k(λ+c))yc−d(1−c)+k(λ+c)−1,
(27)

and from this equation, we obtain

X(t) = X0
c

∞
∑

k=0

( d
c )

k

Γ(a+k(λ+a))

∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) ya+k(λ+a)−1 ∗ δ(νm)(y)

+η
∞
∑

k=0

( d
c )

k

Γ(a−b(1−a)+k(λ+a))ya−b(1−a)+k(λ+a)−1 ; c 6= 0,
(28)

and using (7), the required solution is

X(t) = X0
c

∞
∑

k,l,m=0

( d
c )

k
Γ(νm−(c+k(ν+c)−1))yc+k(λ+c)−1−νm(−1)l(−ι(x+l))νm

Γ(a+k(λ+a))Γ(−(a+k(λ+a)−1))l!Γ(νm+1)

+η
∞
∑

k=0

( d
c )

k

Γ(a−d(1−a)+k(λ+a))ya−b(1−a)+k(λ+a)−1; c 6= 0.
(29)

3. Fourier Transform of Gamma Function Using New Representation and Multiple
Erdélyi–Kober (E-K) Fractional Operators with Application in Recently
Popular Transforms

This section contains new non-integer formulae involving the gamma function by
distributing it into two subsections.

Fourier transformations are significant to solve many physical problems. Here, we
compute them for the new fractional representation (16) using the following equation
explored in [7]

F{δ(ν)(t);ω} = (ιω)ν. (30)

Hence, we obtain

F (Γν(x + ιy); ω) = F
(

2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) δ(νm)(y); ω

)
= 2π

∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) F
(

δ(νm)(y); ω
)

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1) (ιω)νm = 2π
∞
∑

l=0

(−1)l

l! Eν((x + l)ω)ν,

(31)

where Eν denotes the Mittag–Leffler function. Considering ν = 1 in (31), the equation
obtained is as follows:

F (Γ(x + ιy);ω) = 2π
∞

∑
l,m=0

(−1)l(−ι(x + l))m

l!m!
(ιω)m = 2π

∞

∑
l=0

(−1)l

l!
exω+lω = 2πexωexp(−eω). (32)

3.1. Multiple Erdélyi–Kober (E-K) Fractional Derivatives with Application in Recently
Popular Transforms

The following result stated in [12], Theorem 4, is significant to simplify the complicated
forms involving ratios of the gamma function:
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D(γk)
n
1 ,(δk)

(βk),n

{
zc

pΨq

[
(ai,νi)

p
1

(bj,βj)
q
1
;µzµ

]}
= zc

p+nΨq+n

(ai,νi)
p
1 ,
(
γk + δk + 1 + c

βk
, 1
βk

)n

1

(bj,βj)
q
1
,
(
γk + 1 + c

βk
, 1
βk

)n

1

;µzµ

. (33)

We use it to obtain the closed form of multiple Erdélyi–Kober derivatives by the
means of the complex generalized representation of the gamma function that is formulated
as follows:

D(γi)
n
1 ,(δi)

(βi),n

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ−1

∞

∑
l=0

(−1)l

l! nΨn+1

 −
(
γi + δi + 1 + µ

βi
, νβi

)n

1

(1,ν)
(
γi + 1 + µ

βi
, νβi

)n

1

∣∣∣∣∣∣(−(x + l)ω)ν

. (34)

Further important cases of this result are listed in the following Table 2.

Table 2. Non-integer-order derivatives containing the Fourier transformation of the gamma function.

n = 3 M-S-M non-integer-order derivatives

Dγ1,γ1
′ ,γ2,γ2

′ ,δ
0+

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωδ+µ−γ1−γ1

′−1

∞
∑

l=0

(−1)l

l! 2Ψ3

[
− (µ,ν) (µ− γ2 + γ1,ν) (µ+ γ1+γ1

′+γ2
′ − δ,ν)

(1,ν) (µ− γ2,ν) (µ− δ+ γ1 ++γ2
′,ν) (µ− δ+ γ1

′ + γ1,ν)

∣∣∣∣(−(x + l)ω)ν
]

Dγ1,γ1
′ ,γ2,γ2

′ ,δ
−

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωδ+µ−γ1−γ1

′−1
∞
∑

l=0

(−1)l

l!

2Ψ3

[
− (1− µ+γ2

′,−ν) (1+γ2
′ − µ− γ2 + γ1,−ν) (1− µ− γ1−γ1

′ + δ,−ν)
(1,−ν) (1− µ,−ν) (1− µ−γ1

′+γ2
′,−ν) (1− µ+ δ− γ1

′ − γ1 − γ2,−ν)

∣∣∣∣(−(x + l)ω)ν
]

n = 2 Saigo fractional-order derivatives

Dγ1,γ2,δ
0+

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ−γ1−1

∞
∑

l=0

(−1)l

l!

1Ψ2

[
− (µ,ν) (µ+ δ+ γ2 + γ1,ν)

(1,ν) (µ+ γ2,ν) (µ+ δ,ν)

∣∣∣∣(−(x + l)ω)ν
]

Dγ1,γ2,δ
−

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ−γ1−1

∞
∑

l=0

(−1)l

l!

1Ψ2

[
− (1− µ− γ2,−ν) (1− µ+ δ+ γ1,−ν)

(1,−ν) (1− µ+ δ− γ2,−ν) (1− µ,−ν)

∣∣∣∣(−(x + l)ω)ν
]

n = 1 E-K fractional-order derivatives

Dγ,δ
0+
(
ωµ−1F (Γν(x + ιy);ω)

)
=

2πωµ−γ1−1
∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (γ+ δ+ µ, 1)

(1,ν) (γ+ µ, 1)

∣∣∣∣(−(x + l)ω)ν
]

Dγ,δ
−
(
ωµ−1F (Γν(x + ιy); ω)

)
=

2πωµ−1
∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (1− µ+ γ+ δ,−ν)

(1,−ν) (1− µ+ γ,−ν)

∣∣∣∣(−(x + l)ω)ν
]

n = 1 R-L fractional derivatives

Dδ0+
(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ−1

∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (µ,ν)

(1,ν) (µ− δ,ν)

∣∣∣∣(−(x + l)ω)ν
]

Dδ−
(
ωµ−1F (Γν(x + ιy); ω)

)
=

2πωµ−1
∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (δ− λ + 1,−ν)

(1,−ν) (1− λ,−ν)

∣∣∣∣(−ω(x + l))ν

]

If ν = 1, then the above table yields further novel results.
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3.2. Multiple Erdélyi–Kober (E-K) Fractional Integrals with Application in Recently
Popular Transforms

The following action of the Erdélyi–Kober (E-K) fractional transform ([12], p. 9,
Equation (27)) is significant for this research to obtain various results that are depicted in
Table 3:

I(γi),(δi)
(βi),n

{zp} =
n

∏
i=1

Γ
(

γi + 1 + p
βi

)
Γ
(

γi + δi + 1 + p
βi

) zp; ([−βi(1 + γi)] < p; δi ≥ 0; i = 1, . . . , n). (35)

Table 3. Non-integer-order integrals containing the Fourier transformation of the gamma function.

n = 3 M-S-M fractional integrals

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0+

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πsδ−γ1−γ1

′

∞
∑

l=0

(−1)l

l! 3Ψ4

[
− (µ,ν) (µ+ δ− γ1 − γ1

′ − γ2,ν) (µ+ γ2
′ − γ1

′,ν)
(1,ν) (µ+ γ2

′,ν) (µ+ δ− γ1 − γ1
′,ν) (µ+ δ− γ1

′ − γ2,ν)

∣∣∣∣(−(x + l)ω)ν
]

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0−

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωδ+µ−γ1−γ1

′−1
∞
∑

l=0

(−1)l

l! 3Ψ4[
− (1− ν− δ+ γ1 + γ1

′,−ν) (1− µ+ γ1 + γ2
′ − δ,−ν) (1− µ− γ1,−ν)

(1,−ν) (1− µ,−ν) (1− µ+ γ1 + γ1
′ + γ2 + γ2

′ − δ,−ν) (1− µ+ γ1 − γ2,−ν)

∣∣∣∣(−(x + l)ω)ν
]

n = 2 Saigo fractional integrals

Iγ1,γ2,δ
0+

(
ωµ−1F (Γν(x + ιy); ω)

)
=

2πωλ−γ1−1
∞
∑

l=0

(−1)l

l! 2Ψ3

[
− (λ, ν) (λ + γ2 − γ1, ν)

(1, ν) (λ− γ2, ν) (λ + δ + γ2, ν)

∣∣∣∣(−(x + l)ω)ν
]

Iγ1,γ2,δ
−

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωλ−γ1−1

∞
∑

l=0

(−1)l

l! 2Ψ3

[
− (γ1 − µ + 1,−ν) (γ2 − µ + 1,−α)

(1,−ν) (1− µ,−ν) (γ1 + γ2 + δ− µ + 1,−ν)

∣∣∣∣(−(x + l)ω)ν
]

n = 1 E-K fractional integrals

Iγ,δ
0+
(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ−1

∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (µ + γ, ν)

(1, ν) (µ + γ + δ, ν)

∣∣∣∣(−(x + l)ω)ν
]

Iγ,δ
0−
(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ−1

∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (γ− µ + 1,−ν)

(1,−ν) (γ + δ− µ + 1,−α)

∣∣∣∣(−(x + l)ω)ν
]

n = 1 R-L fractional integrals

Iδ0+
(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ+δ−1

∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (µ,ν)

(1,ν) (δ+ µ,ν)

∣∣∣∣(−(x + l)ω)ν
]

Iδ0+
(
ωµ−1F (Γν(x + ιy); s)

)
= 2πωµ+δ−1

∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (µ,ν)

(1,ν) (δ+ µ,ν)

∣∣∣∣(−(x + l)ω)ν
]

Iδ−
(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ+δ−1

∞
∑

l=0

(−1)l

l! 1Ψ2

[
− (1− δ− µ,−ν)

(1,−ν) (1− µ,−ν)

∣∣∣∣(−(x + l)ω)ν
]

Theorem 2. The closed form of multiple Erdélyi–Kober (E-K) fractional integral transforms
involving the gamma function is given by

I(γi),(δi)
(βi),n

(
ωµ−1F (Γν(x + ιy); ω)

)
= 2πωµ−1

∞
∑

l=0

(−1)l

l! nΨn+1

 −
(
γi + 1− 1−µ

βi
, ν
βi

)n

1

(1,ν)
(
γi + δi + 1− 1−µ

βi
, ν
βi

)n

1

∣∣∣∣∣∣((x + l)ω)ν


([−βi(1 + γi)] < νn + µ− 1; δi ≥ 0; i = 1, . . . , n).

(36)

Proof. Let us first consider

I(γi),(δi)
(βi),n

(
ωµ−1F (Γν(x + ιy); ω)

)
= I(γi),(δi)

(βi),n

(
∞

∑
l,m=0

(−1)l(x + l)νm

l!Γ(νm + 1)
ωνm+µ−1

)
, (37)
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and then, by interchanging the summation and integration, we obtain

I(γi),(δi)
(βi),n

(F (Γν(x + ιy); ω)) = 2π
∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)
I(γi),(δi)
(βi),n

(
ωνm+µ−1

)
, (38)

and then, we obtain to the following equation using (35),

I(γi),(δi)
(βi),n

(F (Γν(x + ιy); ω)) = 2π
∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)

n

∏
i=1

Γ
(
γi + 1 + νm+µ−1

βi

)
Γ
(
γi + δi + 1 + νm+µ−1

βi

)ωνm, (39)

which after replacing the summation index m by n and using Equation (11), leads to the
essential compact form. �

Further important special cases are listed in the following Table 3.
If ν = 1, then the above table yields further novel results. Consequently, it validates

that the outcomes of the new fractional representation are consistent with the current
findings. Based on this, we move forward and extract the distributional solution of the
singular fractional integral equation, which is only possible because of this fractional
distributional representation.

3.3. Solution of a Singular Fractional Integral Equation including the Fractional Derivatives of the
Delta Function

The Laplace transformation of the fractional derivatives of the Dirac delta function is
given below, as computed in [7],

L
{
δ(ν)(t); s

}
= sν (40)

and therefore, by using the above equation in (16), we obtain

L(Γν(x + ιy); s) = 2π
∞

∑
l,m=0

(−1)l(−ι(x + l))m

l!m!
sνm = 2π

∞

∑
l=0

(−1)l

l!
Eν
(
(−ι(x + l)s)ν

)
. (41)

Considering ν = 1 in (41), we obtain

L(Γ(x + ιy); s) = 2πe−ιxsexp
(
−e−ιs

)
. (42)

The basic kinetic equation, p(Xt)−d(Xt) =
dX(t)

dt ; Xt(t∗) = X(t− t∗); t∗ > 0, to analyse
the reaction rate X(t) in terms of production p(X) and destruction d(X) was formulated
in [25] by Haubold and Mathai. Then, disregarding the variation in species and position,
we obtain dXk

dt = −akXk(t), Xk(t = 0) = X0, where Xk = Xk(t) is the count of the density of
species k. At that point, we integrate it by dropping the subscript k, to obtain X(t)− X0 =
−aI−1

0+X(t). Hence, the corresponding fractional kinetic equation formulated by the means
of the R-L fractional integral is X(t)− X0 = −aλ Iλ

0+X(t), λ > 0, where a is the fixed value.
It leads to the non-integer-order integral equation [25–28], i.e., X(t)− f(t)X0 = −aλIλ

0+X(t),
involving an integrable function f(t). According to the discussion presented in [25], we
obtain the subsequent non-integer singular integral equation by considering f (ω) = Γν(ω)
and X = Xν in the above equation:

Xν(ω)− X0Γν(ω) = −dλIλ
0+Xν(ω); λ > 0; 0 < λ < 1. (43)

In the classical sense, Equation (43) is a singular integral equation containing infinitely
many singularities at negative integers; ω = −n = {0,−1,−2, . . . ..} (consider (2)), when
the fractional parameter ν = 1. Due to this distributional representation, we can use the
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Laplace transform, Xν(s) = L[Xν(t) : s] =
∫ ∞

0 e−stX(t)dt;R(s) > 0, for Equation (43) to
obtain the following:

L{Xν(x + ιy); s} − X0L{Γν(x + ιy); s} = L
{
−dλIλ

0+Xν(x + ιy); s
}

. (44)

It leads to the subsequent result by considering Equation (41),

Xν(s) = 2πX0

∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)
sνm −

( s
d

)−λ
Xν(s), (45)

where L
{

Iλ0+Xν(ω); s
}
= s−λXν(s), and we obtain

Xν(s)
[

1 +
( s

d

)−λ]
= 2πX0

∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(δm + 1)
sλm. (46)

From the above discussion, we obtain the subsequent expression:

Xν(s) = 2πX0

∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)
sνm

∞

∑
n=0

[
−
( s

d

)−λ]n
. (47)

Case 1: Moreover, we assume that λn− νm > 0; λ > 0, and we use L−1{s−λ; ω
}
= ωλ−1

Γ(ω)

to obtain the following solution:

Xν(t) = 2πX0

∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)
t−νm−1 ×

∞

∑
n=0

(−dλtλ)
n

Γ(λn−νm)
(48)

Xν(t) =
2πX0

t

∞

∑
l,m=0

(−1)l(− ι(x+l)
t )

νm

l!Γ(νm + 1)
Eλ,−νm

(
−dλtλ

)
.

Case 2: By considering [7], Equation (30), for λ ∈ R+, we obtain

δ(ν)(t) =
1

Γ(−λ)tλ+1 = L−1
{

sλ; t
}

, (49)

and

L−1
{

sνm−λn; t
}
=

1
Γ(λn)

dνm

dtνm (tλn−1) =
1

Γ(−νm + λn)tνm−λn+1 ; νm− λn ∈ R+. (50)

The following solution is then obtained by utilizing Equation (49)–(50) in Equation (47):

Xν(t) = 2πX0

∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)
tνm−1 ×

∞

∑
n=0

(−dλtλ)
n

Γ(νm−λn)
(51)

Xν(t) =
2πX0

t

∞

∑
l,m=0

(−1)l(− ι(x+l)
t )

νm

l!Γ(νm + 1)
E−λ,νm

(
−dλtλ

)
.

Case 3: Using the generalized form of [7], Equation (30), i.e., L−1{sνm−λn; t
}
= δ(νm−λn)(t),

in (47), we obtain the following solution in terms of the non-integer derivatives of the
delta function:

Xν(t) = 2πX0

∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)

∞

∑
n=0

(−d)λnδ(νm−λn)(t). (52)
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This is a generalized (distributional) solution and using Equation (7), and we obtain

Xν(ξ) ∗ χ(ξ) = 2πX0

∞

∑
l,m=0

(−1)l(−ι(x + l))νm

l!Γ(νm + 1)

∞

∑
n=0

(−d)λnχ(νm−λn)(t). (53)

This generalized solution is valid only if the non-integer derivatives χ(νm−λn)(ξ)
exist and are well defined. This was not achievable using the classical gamma function
representations. If χ(ξ) = ξµ;µ > 0, then χ(νm−λn)(ξ) =

Γ(νm−λn−µ)
Γ(−µ) ξ−νm+λn+µ leads to

Xν(ξ) ∗ χ(ξ) =
2πX0ξ

µ

Γ(−µ)
∞

∑
l,m=0

(−1)l

l!

(
−dλ

tµ

)m

1Ψ1

[
(λn− µ,ν)

(1,ν)
; (−ι(x + l)t)ν

]
, (54)

and, for ν = 1, one can obtain the following:

Xν(ξ) ∗ χ(ξ) = 2πX0tµ
Γ(−µ)

∞
∑

l,m=0

(−1)l

l!

(
−dλ

tµ

)m

1Ψ1

[
(λn− µ,ν)

(1,ν)
; (−ι(x + l)t)ν

]
= 2πX0tµ

Γ(−µ)
∞
∑

m=0

(
−dλ

tµ

)m

1Ψ1

[
(λn− µ, 1)

(1, 1)
;−e−ι(x+l)t

]
.

(55)

Remark 2. It is worth noting that a conventional solution approach is used. X(t) is gener-
ally expressed in the form of the Mittag–Leffler function, and the similar fact is obvious in
case of the above solution. Consequently, the following sum is obtained for the coefficients in
Equations (48), (51), and (52):

Cx
ν(t) =

∞

∑
l,m=0

(−1)l(− ι(x+l)
t )

νm

l!Γ(νm + 1)
=

∞

∑
l=0

(−1)l

l!
Eν

(
−ι(x + l)

t

)ν
. (56)

This sum is finite and well defined. Similarly,

lim
t→∞

Cx
ν(t) =

∞

∑
l=0

(−1)l

l!
Eν(0).

Furthermore, the stimulating special cases of these solutions can be computed for the
non-fractional case when ν = 1.

3.4. New q-Fractional Derivatives Involving Different Functions

A branch of mathematics called quantum calculus, commonly referred to as q-calculus,
studies calculus without the concept of limits. Results of q-calculus can be linked to Euler’s
research. The concepts of the definite q-integrals and the q-derivatives were initially intro-
duced by Jackson. Numerous branches of mathematics, including orthogonal polynomials,
hypergeometric functions, number theory, and combinatorics, as well as physics subjects
including mechanics, relativity theory, and quantum theory, have found use for quantum
calculus [29].

We can obtain a number of q-fractional derivatives and integrals involving the Laplace
and Fourier transforms of the new representation by using [29,30](

d
dz

)
q
sνm = [νm]qsνm−1, (57)
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i.e., by making the use of (41) and (42), we obtain(
d
dz

)
q
e−ιxsexp(−e−ιs) = 2π

∞
∑

l,m=0

(−1)l(−ι(x+l))m

l!m!

(
d
dz

)
q
(s)m

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm [νm]q(s)
m(n−1)

l!m! ,
(58)

and(
d
dz

)
q
L(Γν(x + ιy); s) = 2π

∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1)

(
d
dz

)
q
(s)νm

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm [νm]q(s)
νm−1

l!Γ(νm+1) = 2π
(

d
dz

)
q

∞
∑

l=0

(−1)l

l! Eν(ι(x + l)ω)ν,
(59)

and the corresponding fractional q-derivatives are

RL
0 Dα

q (L(Γν(x + ιy); s)) = 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1)
RL
0 Dα

q (s)
νm

= 2π
sα

∞
∑

l,m=0

(−1)l Γq(νm+1)
l!Γ(νm+1)Γq(νm−α+1) (−ι(x + l)s)νm

= 2πRL
0 Dα

q

(
∞
∑

l=0

(−1)l

l! Eν(ι(x + l)ω)ν
)

,

(60)

as well as the corresponding fractional q-integrals are

RL
0 Iα

q (L(Γν(x + ιy); s)) = 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1)
RL
0 Iα

q (L(Γν(x + ιy); s))

= 2π
∞
∑

l,m=0

(−1)l(−ι(x+l))νm

l!Γ(νm+1)
RL
0 Iα

q (s)
νm

= 2π
sα

∞
∑

l,m=0

(−1)l Γq(νm+1)
l!Γ(νm+1)Γq(νm+α+1) (−ι(x + l)s)νm = 2πRL

0 Iα
q

(
∞
∑

l=0

(−1)l

l! Eν(ι(x + l)ω)ν
) (61)

Continuing in this manner, it is reasonable to apply the results for the solution of
q-fractional integrodifferential equations. For example,

(
d
dz

)
q
F (Γν(x + ιy); ω) = 2π

∞

∑
l,m=0

(−1)l((x + l))νm

l!Γ(νm + 1)

(
d
dz

)
q
(ω)

νm
=

2π

ω

∞

∑
l,m=0

(−1)l(ω(x + l))νm[νm]q
l!Γ(νm + 1)

,

and the corresponding fractional q-derivatives are

RL
0 Dα

q F(Γν(x + ιy); ω) = 2π
∞
∑

l,m=0

(−1)l((x+l))νm

l!Γ(νm+1)
RL
0 Dα

q (ω)
νm

= 2π
ωα

∞
∑

l,m=0

(−1)l(ω(x+l))νmΓq(νm+1)
l!Γ(νm+1)Γq(νm−α+1) ,

as well as the corresponding fractional q-integrals are

RL
0 Iα

q F (Γν(x + ιy); ω) = 2π
∞

∑
l,m=0

(−1)l((x + l))νm

l!Γ(νm + 1)
RL
0 Iα

q (ω)
νm

=
2π

ωα

∞

∑
l,m=0

(−1)l(ω(x + l))νmΓq(νm + 1)
l!Γ(νm + 1)Γq(νm + α + 1)

.

4. Conclusions

We obtained a new representation of the gamma function over its complex domain in
terms of the fractional derivatives of the delta function. The complex portion contributes to
the coefficients of this series representation, and the fractional derivatives are used for the
real part. Therefore, the new representation is also applicable to a class of functions whose
fractional derivatives over the complex domain do not exist. Highly nontrivial examples,
leading to the solution of the most general form of the fractional integrodifferential equation,
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are also discussed. Using the Fourier transform of the gamma function, novel identities
containing the gamma function are obtained using multiple Erdélyi–Kober (E-K) fractional
derivatives, and their fractional integral transforms are computed. Besides the conventional
solution of the singular fractional integral equation, the generalized solution is also obtained
using the non-integer derivatives of the delta function. By doing so, we obtain a large
class of integrals and derivatives in a uniform way, i.e., q-fractional derivatives using the
new representation are also computed. It demonstrates how the employed approach may
enhance the upcoming applications of the delta function in big data, machine learning,
and artificial intelligence [31]. We conclude that this work is more fruitful over the others
presented in [32] and the references provided therein, because those contain only the
delta function, but here, we use the fractional derivatives of the Dirac delta function.
This study sheds more light on the potential of the new representations developed in the
references [32–34] and their related works, to achieve a broader applicability compared to
other results, for example, refer [35–37].
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