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Abstract: The paper introduces a new two-level time-mesh difference scheme for solving the sym-
metric regularized long wave equation. The scheme consists of three steps. A coarse time-mesh and a
fine time-mesh are defined, and the equation is solved using an existing nonlinear scheme on the
coarse time-mesh. Lagrange’s linear interpolation formula is employed to obtain all preliminary
solutions on the fine time-mesh. Based on the preliminary solutions, Taylor’s formula is utilized to
construct a linear system for the equation on the fine time-mesh. The convergence and stability of the
scheme is analyzed, providing the convergence rates of O(τ2

F + τ4
C + h4) in the discrete L∞-norm for

u(x, t) and in the discrete L2-norm for ρ(x, t). Numerical simulation results show that the proposed
scheme achieves equivalent error levels and convergence rates to the nonlinear scheme, while also
reducing CPU time by over half, which indicates that the new method is more efficient. Furthermore,
compared to the earlier time two-mesh method developed by the authors, the proposed scheme
significantly reduces the error between the numerical and exact solutions, which means that the
proposed scheme is more accurate. Additionally, the effectiveness of the new scheme is discussed in
terms of the corresponding conservation laws and long-time simulations.

Keywords: SRLW equation; finite difference; second-order; two-level time-mesh; convergence analysis

MSC: 65M06

1. Introduction

In this paper, the following initial boundary value problem of the symmetric regular-
ized long wave (SRLW) Equation [1] is considered:

ut + ρx + uux − uxxt = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

ρt + ux = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

u(xL, t) = u(xR, t) = 0, ρ(xL, t) = ρ(xR, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), xL ≤ x ≤ xR,

(1)

where u(x, t) and ρ(x, t) are the fluid velocity and the density, respectively.
The SRLW equation is a partial differential equation that takes into account the effects of

dispersion and nonlinearity utilized to depict a range of physical phenomena such as nonlinear
optics, fluid dynamics, and quantum mechanics. In nonlinear optics, it is employed to study
the propagation of optical pulses in materials with nonlinear properties. In fluid dynamics,
it is used to model the behavior of shallow water waves and to study wave interactions in
coastal regions. In quantum mechanics, it is applied to describe the dynamics of Bose–Einstein
condensates and other quantum systems. Currently, many researchers have employed various
methods to obtain exact traveling and solitary wave solutions for the SRLW equation, such
as the exp-function method [2], (G′/G)-expansion method [3], Lie symmetry approach [4],
analytical method [5], sine–cosine method [6], etc.
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Significant achievements have also been made in the research of numerical solutions
for the SRLW equation. Guo [7] conducted a study on the existence, uniqueness, and
regularity of numerical solutions for the periodic initial value problem of the generalized
SRLW equation using the spectral method. Zheng et al. [8] proposed a Fourier pseu-
dospectral method with a restraint operator for the SRLW equation that demonstrated
stability and optimal error estimates. Shang et al. [9] analyzed a Chebyshev pseudospectral
scheme for multi-dimensional generalized SRLW equations. Fang et al. [10] studied the
presence of global attractors of the SRLW equation. Wang et al. [11] investigated a coupled
two-level and nonlinear-implicit finite difference method for solving the SRLW equation,
achieving second-order accuracy in both space and time. Bai et al. [12] studied a finite
difference scheme with two layers for the SRLW equation, which is a conservative scheme
and converges with an order of O(τ + h2) in the L∞ norm for u and in the L2 norm for ρ.
Xu et al. [13] solved a dissipative SRLW equation containing a damping term using a mixed
finite element method. Yimnet et al. [14] introduced a novel finite difference method in
which a new average difference technique with four levels is employed to solve the u inde-
pendently from the ρ of the SRLW equation. In order to achieve better solving results, many
researchers have constructed difference schemes with higher convergence orders. Nie [15]
constructed a decoupled finite difference scheme with fourth-order accuracy for solving
the SRLW equation. Hu et al. [16] introduced a novel conservative Crank–Nicolson finite
difference scheme for the SRLW equation. This scheme achieves an accuracy of O(τ2 + h4)
without refined mesh. Kerdboon et al. [17] proposed a three-point compact difference
scheme for the SRLW equation. He et al. [18] presented a compact difference scheme with
four time-levels for the SRLW equation. The scheme is constructed for the SRLW equation
with a sole nonlinear velocity term and exhibits a high accuracy of O(τ2 + h4). However,
most of the high convergence accuracy scheme deal with the points near the boundary
via the use of ghost points or fictitious points. Li et al. [19] proposed a compact scheme
for the SRLW equation that avoids the use of ghost points by utilizing inverse compact
operators. He et al. [20] also proposed a novel conservative three-point linearized compact
difference scheme to handle the challenges posed by discrete boundaries and nonlinear
terms in solving SRLW equations.

The combination of the time two-mesh (TT-M) technique [21–27] with other numerical
methods also can improve the efficiency of solving nonlinear partial differential equations.
Liu et al. [21] investigated a finite element method with the TT-M technique, which was
successfully applied to solve the fractional water wave model and other fractional models.
Afterward, other authors [22–26] used the TT-M method to study the numerical solutions
for the partial differential equations such as the Allen–Cahn model, Sobolev model and the
nonlinear Schrödinger equation. Gao et al. [27] introduced a TT-M finite difference scheme
for the SRLW equation, achieving first-order accuracy in time and second-order accuracy in
space. However, the error in the numerical solutions of the scheme increases rapidly over a
long time period, making it hard to simulate the long-time behavior of Equation (1).

To improve the efficiency and accuracy of numerical schemes for the SRLW equation, in
this paper, we construct a second-order two-level time-mesh finite difference scheme based
on the nonlinear scheme in [16]. As a result, the proposed scheme achieves a convergence
rate of O(τ2

F + τ4
C + h4) in the discrete L∞-norm for u(x, t) and in the discrete L2-norm for

ρ(x, t). The proposed scheme has several advantages: (i) Combined with the two level
time-mesh technique, the scheme utilizes the nonlinear scheme on a coarse time-mesh
and then constructs a linear difference system on a fine time-mesh, which more efficiently
solves the SRLW equation than the nonlinear scheme in [16]; (ii) The new scheme obtains
a high accuracy in solving the SRLW equation. The proposed scheme has a second-order
convergence rate in time and a fourth-order convergence rate in space, which is higher
than that of the scheme in [27]; (iii) The convergence and stability of the scheme have
been verified through detailed proofs. Theoretical analysis of the scheme is more intricate
compared to existing TT-M methods since a function with three variables is used in the
process of the linear system construction.
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The rest of this article is structured as follows: Section 2 introduces the notations and
lemmas. Following that, Section 3 outlines the construction of the two-level time-mesh finite
difference numerical scheme. In Section 4, we delve into the convergence and stability of the
scheme. Next, Section 5 offers numerical results to test the theoretical findings, computational
efficiency, and accuracy of the scheme. Finally, in Section 6, we conclude the paper.

2. Some Notations and Lemmas

For time and space intervals (0, T] and [xL, xR], let tn = nτ, (n = 1, 2, . . . , [T/τ] = N)
be the time-level and xj = xL + jh, (j = 0, 1, 2, . . . , xR−xL

h = J) be the space mesh point,
where τ and h represent time and space step sizes.

Let Z0
h = {un = (un

j ) | un
−1 = un

0 = un
J = un

J+1 = 0, j = −1, 0, 1, . . . , J, J + 1} be the
space of mesh functions, where j = −1 and J + 1 are ghost points. The following notations
will be used in this paper:

(
un

j

)
x
=

un
j+1 − un

j

h
,
(

un
j

)
x̄
=

un
j − un

j−1

h
,
(

un
j

)
x̂
=

un
j+1 − un

j−1

2h
,

(
un

j

)
ẍ
=

un
j+2 − un

j−2

4h
,
(

un
j

)
t
=

un+1
j − un

j

τ
, un+ 1

2
j =

un+1
j + un

j

2
,

M is used to denote a general positive constant, which may have different values in
different locations.

We define the discrete inner product and norms with respect to any pair of mesh
functions un, wn ∈ Z0

h as follows:

(un, wn) = h
J−1

∑
j=1

un
j wn

j , ‖un‖ =
√
(un, un), ‖un‖∞ = max

1≤j≤J−1
|un

j |.

Lemma 1 (See [16]). For a mesh function un ∈ Z0
h, by Cauchy–Schwarz inequality, we have

‖un
ẍ‖

2 6 ‖un
x̂‖

2 6 ‖un
x‖

2.

Lemma 2 (See [18]). If un, wn ∈ Z0
h are two mesh functions, we have

(un
x , wn) = −(un, wn

x̄) = −(un, wn
x), (un

xx̄, wn) = −(un
x , wn

x), (un
x̂ , wn) = −(un, wn

x̂).

Furthermore,
(un

xx̄, un) = −‖un
x‖2, ‖un

x̂‖ ≤ ‖un
x‖ = ‖un

x̄‖.

Lemma 3 (See [26]). Assume that a sequence of non-negative real numbers
{

aj
}∞

j=0 satisfying

an+1 ≤ α + β
n

∑
j=0

ajτ, n ≥ 0,

has the inequality an+1 ≤ (α + τβa0)eβ(n+1)τ, where α ≥ 0, β and τ are positive constants.

Lemma 4 (See [28]). For a mesh function un ∈ Z0
h, there exists constants C1 and C2, such that

‖un‖∞ ≤ C1‖un‖+ C2‖un
x‖.

3. Construction of Two-Level Time-Mesh Difference Scheme

This article is inspired by the approach presented in [16], which involves a nonlinear
implementation and requires a significant amount of CPU time. To address the problem,
this study constructed a numerical difference scheme by incorporating the two-level time-
mesh technique for the SRLW equation.
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Prior to introducing the proposed scheme, we define the coarse time-mesh and the
fine time-mesh. First, the time interval (0, T] is equally divided into P small time intervals.
This divided time-mesh is called a coarse time-mesh. Secondly, each small time interval is
further partitioned into s(2 ≤ s ∈ Z+) intervals. The mesh after this second segmentation is
called a fine time-mesh. The coarse time-mesh has the time levels tks = kτC(k = 0, 1, . . . , P)
and 0 = t0 < ts < t2s < . . . < tPs = T, and the fine time-mesh has the time levels
tn = nτF(n = 0, 1, 2, . . . , Ps = N) and 0 = t0 < t1 < t2 < . . . < tN = T, where τC = sτF
and τF are the coarse and fine time step size, respectively. The combination of above two
different time-meshes is referred to as a two-level time-mesh.

The two-level time-mesh difference scheme for the SRLW equation is presented as
follows. Let uks

C,j = u(xj, tks), ρks
C,j = ρ(xj, tks) be the numerical solutions on the coarse

time-mesh, then we calculate the uks
C,j and ρks

C,j by the following nonlinear scheme in [16],

(uks
C,j)t −

4
3
(uks

C,j)xx̄t +
1
3
(uks

C,j)x̂x̂t +
4
3
(ρ

ks+ 1
2

C,j )x̂ −
1
3
(ρ

ks+ 1
2

C,j )ẍ

+
4
9
{uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ + [(uks+ 1

2
C,j )2]x̂} −

1
9
{uks+ 1

2
C,j (uks+ 1

2
C,j )ẍ + [(uks+ 1

2
C,j )2]ẍ} = 0,

(2)

(ρks
C,j)t +

4
3
(uks+ 1

2
C,j )x̂ −

1
3
(uks+ 1

2
C,j )ẍ = 0, (3)

uks
C,0 = uks

C,J = 0, ρks
C,0 = ρks

C,J = 0, 1 ≤ k ≤ P,

u0
C,j = u0(xL + jh), ρ0

C,j = ρ0(xL + jh), 1 ≤ j ≤ J − 1,

where uks+ 1
2

C,j = 1
2 (u

(k+1)s
C,j + uks

C,j), ρ
ks+ 1

2
C,j = 1

2 (ρ
(k+1)s
C,j + ρks

C,j).

Then, using the solutions uks
C and ρks

C obtained at time levels tks from the initial step,
we employ Lagrange’s linear interpolation formula to calculate uks−l

C , ρks−l
C at time levels

tks−l(l = s− 1, s− 2, . . . , 2, 1 and k = 1, 2, . . . , P) and have

uks−l
C =

tks−l − tks
t(k−1)s − tks

u(k−1)s
C +

tks−l − t(k−1)s

tks − t(k−1)s
uks

C =
l
s

u(k−1)s
C + (1− l

s
)uks

C , (4)

ρks−l
C =

tks−1 − tks
t(k−1)s − tks

ρ
(k−1)s
C +

tks−1 − t(k−1)s

tks − t(k−1)s
ρks

C =
l
s

ρ
(k−1)s
C + (1− l

s
)ρks

C . (5)

By following the previous two steps, we obtain all the numerical solutions un
C,j and ρn

C
(n = 1, 2, . . . , Ps = N, j = 1, 2, . . . , J − 1) on the fine time-mesh. It is important to note that
the numerical solutions un

C,j and ρn
C are only preliminary solutions and not the ultimate

numerical solutions we aim to achieve for the SRLW equation.

Remark 1. The solutions ρn
C are not essential for the subsequent step but are used for convergence

and stability analysis of the proposed scheme.

Next, we design a linear system on the fine time-mesh to obtain the final numerical
solutions for the SRLW equation. Let un

F,j = u(xj, tn), ρn
F,j = ρ(xj, tn) be the numerical

solutions on the fine time-mesh, then similar to Equations (2) and (3), we obtain

(un
F,j)t −

4
3
(un

F,j)xx̄t +
1
3
(un

F,j)x̂x̂t +
4
3
(ρ

n+ 1
2

F,j )x̂ −
1
3
(ρ

n+ 1
2

F,j )ẍ

+
4
9
{un+ 1

2
F,j (un+ 1

2
F,j )x̂ + [(un+ 1

2
F,j )2]x̂} −

1
9
{un+ 1

2
F,j (un+ 1

2
F,j )ẍ + [(un+ 1

2
F,j )2]ẍ} = 0,

(6)

(ρn
F,j)t +

4
3
(un+ 1

2
F,j )x̂ −

1
3
(un+ 1

2
F,j )ẍ = 0, (7)
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However, as we know, Equation (6) is still a nonlinear scheme. In order to construct
the linear system, we use Taylor’s formula to linearize the nonlinear terms of Equation (6)
as follows. Using the notations in Section 2, we have

4
9
{un+ 1

2
F,j (un+ 1

2
F,j )x̂ + [(un+ 1

2
F,j )2]x̂} −

1
9
{un+ 1

2
F,j (un+ 1

2
F,j )ẍ + [(un+ 1

2
F,j )2]ẍ}

=
2

9h
{un+ 1

2
F,j (un+ 1

2
F,j+1 − un+ 1

2
F,j−1) + (un+ 1

2
F,j+1)

2 − (un+ 1
2

F,j−1)
2}

− 1
36h
{un+ 1

2
F,j (un+ 1

2
F,j+2 − un+ 1

2
F,j−2) + (un+ 1

2
F,j+2)

2 − (un+ 1
2

F,j−2)
2}

=
2

9h
f (un+ 1

2
F,j−1, un+ 1

2
F,j , un+ 1

2
F,j+1)−

1
36h

f (un+ 1
2

F,j−2, un+ 1
2

F,j , un+ 1
2

F,j+2)

(8)

where f (x, y, z) = (z − x)y + z2 − x2. Then, the Taylor’s formula expansion is used to

linearize the first part of Equation (8) at point (un+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1) and the second part of

Equation (8) at point (un+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2), respectively, to obtain

f (un+ 1
2

F,j−1, un+ 1
2

F,j , un+ 1
2

F,j+1)

≈ f (un+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1) + fx(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j−1 − un+ 1
2

C,j−1)

+ fy(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j − un+ 1
2

C,j ) + fz(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j+1 − un+ 1
2

C,j+1)

(9)

and

f (un+ 1
2

F,j−2, un+ 1
2

F,j , un+ 1
2

F,j+2)

≈ f (un+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2) + fx(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2)(u

n+ 1
2

F,j−2 − un+ 1
2

C,j−2)

+ fy(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2)(u

n+ 1
2

F,j − un+ 1
2

C,j ) + fz(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2)(u

n+ 1
2

F,j+2 − un+ 1
2

C,j+2)

(10)

Substituting Equations (8)–(10) into Equation (6) and denoting f j = f (un+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1),

fx,j = fx(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1), fy,j = fy(u

n+ 1
2

C,j−1, un+ 1
2

C,j , un+ 1
2

C,j+1), fz,j = fz(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1),

f̃ j = f (un+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2), f̃x,j = fx(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2), f̃y,j = fy(u

n+ 1
2

C,j−2, un+ 1
2

C,j , un+ 1
2

C,j+2),

f̃z,j = fz(u
n+ 1

2
C,j−2, un+ 1

2
C,j , un+ 1

2
C,j+2), we construct a novel linear difference scheme that achieves

a second-order convergence rate in time and a fourth-order convergence rate in space on
the fine time-mesh as follows:

(un
F,j)t −

4
3
(un

F,j)xx̄t +
1
3
(un

F,j)x̂x̂t +
4
3
(ρ

n+ 1
2

F,j )x̂ −
1
3
(ρ

n+ 1
2

F,j )ẍ

+
2

9h
{ f j + fx,j · (u

n+ 1
2

F,j−1 − un+ 1
2

C,j−1) + fy,j · (u
n+ 1

2
F,j − un+ 1

2
C,j )

+ fz,j · (u
n+ 1

2
F,j+1 − un+ 1

2
C,j+1)} −

1
36h
{ f̃ j + f̃x,j · (u

n+ 1
2

F,j−2 − un+ 1
2

C,j−2)

+ f̃y,j · (u
n+ 1

2
F,j − un+ 1

2
C,j ) + f̃z,j · (u

n+ 1
2

F,j+2 − un+ 1
2

C,j+2)} = 0,

(11)

(ρn
F,j)t +

4
3
(un+ 1

2
F,j )x̂ −

1
3
(un+ 1

2
F,j )ẍ = 0, (12)

un
F,0 = un

F,J = 0, ρn
F,0 = ρn

F,J = 0, 1 ≤ n ≤ N,

u0
F,j = u0(xL + jh), ρ0

F,j = ρ0(xL + jh), 1 ≤ j ≤ J − 1,
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where
fx(x, y, z) = −y− 2x, fy(x, y, z) = z− x, fz(x, y, z) = y + 2z

are the three partial derivatives of f (x, y, z) with respect to x, y, z. The benefit of our method
is that we avoid having to solve nonlinear equations at many time levels, and that instead,
solve a much less expensive linear system.

Remark 2. From Equation (11), one knows that the values un
F, un

C, un+1
C are utilized to obtain the

un+1
F . However, similar to the Gauss–Seidel method applied to linear systems, our scheme has been

modified by using un
F obtained from the previous time level instead of un

C in the calculation process
to enhance the accuracy of the numerical solutions un+1

F .

Remark 3. The nonlinear system (2)–(3) is solved by Newton’s method and when |un(k+1)
F,j −

un(k)
F,j | < 10−10, iteration stops, where k is the number of iterations. The linear system (11)–(12) is

computed by a direct solver.

4. The Convergence and Stability Analysis of the Scheme

In this section, we focus on conducting a convergence and stability analysis of
scheme (2)–(5) on the coarse time-mesh and scheme (11)–(12) on the fine time-mesh. Let
vn

j = u(xj, tn), ϕn
j = ρ(xj, tn) be the exact solutions of problem (1), then the truncation

errors of the difference scheme (2)–(3) are obtained as follows:

Erks
C,j = (vks

j )t −
4
3
(vks

j )xx̄t +
1
3
(vks

j )x̂x̂t +
4
3
(ϕ

ks+ 1
2

j )x̂ −
1
3
(ϕ

ks+ 1
2

j )ẍ

+
4
9
{vks+ 1

2
j (vks+ 1

2
j )x̂ + [(vks+ 1

2
j )2]x̂} −

1
9
{vks+ 1

2
j (vks+ 1

2
j )ẍ + [(vks+ 1

2
j )2]ẍ},

(13)

Esks
C,j = (ϕks

j )t +
4
3
(vks+ 1

2
j )x̂ −

1
3
(vks+ 1

2
j )ẍ, (14)

vks
0 = vks

J = 0, ϕks
0 = ϕks

J = 0, 1 ≤ k ≤ P,

v0
j = v0(xL + jh), ϕ0

j = ϕ0(xL + jh), 1 ≤ j ≤ J − 1.

By Taylor series expansion, we conclude

Erks
C,j = (ut + ρx + uux − uxxt)(xj ,tks)

+ O(τ2
C + h4),

Esks
C,j = (ρt + ux)(xj ,tks)

+ O(τ2
C + h4).

Theorem 1. Suppose that u0
C ∈ H1

0 [xL, xR], ρ0
C ∈ L2[xL, xR], then the solutions of difference

scheme (2)–(5) converge to the solutions of problem (1) with an order of (τ2
C + h4) by the L∞ norm

for un
C and by the L2 norm for ρn

C.

Proof of Theorem 1. Denote eks
C,j = vks

j − uks
C,j, ηks

C,j = ϕks
j − ρks

C,j, 1 ≤ j ≤ J − 1, 1 ≤ k ≤ P.
Subtracting Equation (2) from Equation (13), we obtain

Erks
C,j = (eks

C,j)t −
4
3
(eks

C,j)xx̄t +
1
3
(eks

C,j)x̂x̂t +
4
3
(η

ks+ 1
2

C,j )x̂ −
1
3
(η

ks+ 1
2

C,j )ẍ

+
4
9
{vks+ 1

2
j (vks+ 1

2
j )x̂ + [(vks+ 1

2
j )2]x̂} −

4
9
{uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ + [(uks+ 1

2
C,j )2]x̂}

− 1
9
{vks+ 1

2
j (vks+ 1

2
j )ẍ + [(vks+ 1

2
j )2]ẍ}+

1
9
{uks+ 1

2
C,j (uks+ 1

2
C,j )ẍ + [(uks+ 1

2
C,j )2]ẍ}.

(15)
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Subtracting Equation (3) from Equation (14), we obtain

Esks
C,j = (ηks

C,j)t +
4
3
(eks+ 1

2
C,j )x̂ −

1
3
(eks+ 1

2
C,j )ẍ, (16)

e0
C,j = 0, η0

C,j = 0,

uks
0 = uks

J = 0, ρks
0 = ρks

J = 0.

The following validation of the theorem consists of two situations: (i) We first prove
the situation of n = ks(k = 1, 2, . . . , P); please refer to the references [16,27] for the proof of
this part. In the end, we obtain

‖en
C‖ ≤ O(τ2

C + h4), ‖en
C,x‖ ≤ O(τ2

C + h4), ‖ηn
C‖ ≤ O(τ2

C + h4). (17)

From Lemma 4, we have

‖en
C‖∞ ≤ O(τ2

C + h4); (18)

(ii) Next, we prove the situation of n = ks − l(l = s − 1, s − 2, . . . , 2, 1 and
k = 1, 2, . . . , P). We use Lagrange’s interpolation formula and obtain

vks−l =
tks−l − tks

t(k−1)s − tks
v(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
vks

=
l
s

v(k−1)s + (1− l
s
)vks +

v′′(θ1)

2
(t− t(k−1)s)(t− tks), θ1 ∈ (t(k−1)s, tks),

(19)

ϕks−l =
tks−l − tks

t(k−1)s − tks
ϕ(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
ϕks

=
l
s

ϕ(k−1)s + (1− l
s
)ϕks +

ϕ′′(θ2)

2
(t− t(k−1)s)(t− tks), θ2 ∈ (t(k−1)s, tks).

(20)

Subtracting Equation (4) from Equation (19), we obtain

vks−l − uks−l
C =

l
s
(v(k−1)s − u(k−1)s

C ) + (1− l
s
)(vks − uks

C )

+
v′′(θ1)

2
(t− t(k−1)s)(t− tks).

Subtracting Equation (5) from Equation (20), we obtain

ϕks−l − ρks−l
C =

l
s
(ϕ(k−1)s − ρ

(k−1)s
C ) + (1− l

s
)(ϕks − ρks

C )

+
ϕ′′(θ2)

2
(t− t(k−1)s)(t− tks).

From the triangle inequality and the results (17) and (18), we conclude

‖eks−l
C ‖ ≤ O(τ2

C + h4), ‖eks−l
C,x ‖ ≤ O(τ2

C + h4), ‖ηks−l
C ‖ ≤ O(τ2

C + h4), (21)

and
‖eks−l

C ‖∞ ≤ O(τ2
C + h4). (22)

We derive the result of Theorem 1 by combining the two above-mentioned cases.

Theorem 2. Suppose that u0
C ∈ H1

0 [xL, xR], ρ0
C ∈ L2[xL, xR], then the solutions of difference

scheme (2)–(5) are stable by the L∞ norm for un
C and by the L2 norm for ρn

C.



Axioms 2023, 12, 1057 8 of 19

Proof of Theorem 2. The theorem can be proved in the same way as that used to prove
Theorem 1.

Next, we analyze the convergence and stability of linear system (11) and (12) on
the fine time-mesh. For simplification, we further denote fxx,j = fxx(ξ j−1, ε j, δj+1), fyy,j =

fyy(ξ j−1, ε j, δj+1), fzz,j = fzz(ξ j−1, ε j, δj+1), f̃xx,j = fxx(ξ̃ j−2, ε̃ j, δ̃j+2),
f̃yy,j = fyy(ξ̃ j−2, ε̃ j, δ̃j+2), f̃zz,j = fzz(ξ̃ j−2, ε̃ j, δ̃j+2), fxy,j = fxy(ξ j−1, ε j, δj+1),
fxz,j = fxz(ξ j−1, ε j, δj+1), fyz,j = fyz(ξ j−1, ε j, δj+1), f̃xy,j = fxy(ξ̃ j−2, ε̃ j, δ̃j+2),
f̃xz,j = fxz(ξ̃ j−2, ε̃ j, δ̃j+2), f̃yz,j = fyz(ξ̃ j−2, ε̃ j, δ̃j+2), where fxx(x, y, z) = −2, fyy(x, y, z) = 0,
fzz(x, y, z) = 2, fxy(x, y, z) = −1, fxz(x, y, z) = 0, fyz(x, y, z) = 1 are the second-order
partial derivatives of f (x, y, z), ξ j−1 ∈ (vn

j−1, un
C,j−1), ε j ∈ (vn

j , un
C,j), δj+1 ∈ (vn

j+1, un
C,j+1),

ξ̃ j−2 ∈ (vn
j−2, un

C,j−2), ε̃ j ∈ (vn
j , un

C,j), δ̃j+2 ∈ (vn
j+2, un

C,j+2), then the truncation errors of the
scheme (11)–(12) are obtained as follows:

Ern
F,j = (vn

j )t −
4
3
(vn

j )xx̄t +
1
3
(vn

j )x̂x̂t +
4
3
(ϕ

n+ 1
2

j )x̂ −
1
3
(ϕ

n+ 1
2

j )ẍ

+
2

9h
{ f j + fx,j · (v

n+ 1
2

j−1 − un+ 1
2

C,j−1) + fy,j · (v
n+ 1

2
j − un+ 1

2
C,j ) + fz,j · (v

n+ 1
2

j+1 − un+ 1
2

C,j+1)

+
1
2

fxx,j · (v
n+ 1

2
j−1 − un+ 1

2
C,j−1)

2 +
1
2

fyy,j · (v
n+ 1

2
j − un+ 1

2
C,j )2 +

1
2

fzz,j · (v
n+ 1

2
j+1 − un+ 1

2
C,j+1)

2

+ fxy,j · (v
n+ 1

2
j−1 − un+ 1

2
C,j−1)(v

n+ 1
2

j − un+ 1
2

C,j ) + fxz,j · (v
n+ 1

2
j−1 − un+ 1

2
C,j−1)(v

n+ 1
2

j+1 − un+ 1
2

C,j+1)

+ fyz,j · (v
n+ 1

2
j − un+ 1

2
C,j )(vn+ 1

2
j+1 − un+ 1

2
C,j+1)}

− 1
36h
{ f̃ j + f̃x,j · (v

n+ 1
2

j−2 − un+ 1
2

C,j−2) + f̃y,j · (v
n+ 1

2
j − un+ 1

2
C,j ) + f̃z,j · (v

n+ 1
2

j+2 − un+ 1
2

C,j+2)

+
1
2

f̃xx,j · (v
n+ 1

2
j−2 − un+ 1

2
C,j−2)

2 +
1
2

f̃yy,j · (v
n+ 1

2
j − un+ 1

2
C,j )2 +

1
2

f̃zz,j · (v
n+ 1

2
j+2 − un+ 1

2
C,j+2)

2

+ f̃xy,j · (v
n+ 1

2
j−2 − un+ 1

2
C,j−2)(v

n+ 1
2

j − un+ 1
2

C,j ) + f̃xz,j · (v
n+ 1

2
j−2 − un+ 1

2
C,j−2)(v

n+ 1
2

j+2 − un+ 1
2

C,j+2)

+ f̃yz,j · (v
n+ 1

2
j − un+ 1

2
C,j )(vn+ 1

2
j+2 − un+ 1

2
C,j+2)},

(23)

Esn
F,j = (ϕn

j )t +
4
3
(vn+ 1

2
j )x̂ −

1
3
(vn+ 1

2
j )ẍ, (24)

vn
0 = vn

J = 0, ϕn
0 = ϕn

J = 0, 1 ≤ n ≤ N,

v0
j = v0(xL + jh), ϕ0

j = ϕ0(xL + jh), 1 ≤ j ≤ J − 1.

Theorem 3. Suppose that u0
F ∈ H1

0 [xL, xR], ρ0
F ∈ L2[xL, xR], then the solutions of difference

scheme (11)–(12) converge to the solutions of problem (1) with an order of (τ2
F + τ4

C + h4) by the
L∞ norm for un

F and by the L2 norm for ρn
F.

Proof of Theorem 3. Denote en
F,j = vn

j − un
F,j, ηn

F,j = ϕn
j − ρn

F,j, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,
Subtracting Equation (11) from Equation (23), we obtain

Ern
F,j = (en

F,j)t −
4
3
(en

F,j)xx̄t +
1
3
(en

F,j)x̂x̂t +
4
3
(η

n+ 1
2

F,j )x̂ −
1
3
(η

n+ 1
2

F,j )ẍ

+
2

9h
{ fx,j · e

n+ 1
2

F,j−1 + fy,j · e
n+ 1

2
F,j + fz,j · e

n+ 1
2

F,j+1 + Q1}

− 1
36h
{ f̃x,j · e

n+ 1
2

F,j−2 + f̃y,j · e
n+ 1

2
F,j + f̃z,j · e

n+ 1
2

F,j+2 + Q2},

(25)

where
Q1 = −(en+ 1

2
C,j−1)

2 + (en+ 1
2

C,j+1)
2 − (en+ 1

2
C,j−1)(e

n+ 1
2

C,j ) + (en+ 1
2

C,j )(en+ 1
2

C,j+1),
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Q2 = −(en+ 1
2

C,j−2)
2 + (en+ 1

2
C,j+2)

2 − (en+ 1
2

C,j−2)(e
n+ 1

2
C,j ) + (en+ 1

2
C,j )(en+ 1

2
C,j+2).

Subtracting Equation (12) from Equation (24), we have

Esn
F,j = (ηn

F,j)t +
4
3
(en+ 1

2
F,j )x̂ −

1
3
(en+ 1

2
F,j )ẍ. (26)

Taking the inner product (·, ·) on both sides of Equation (25) with 2en+ 1
2

F , we have

(Ern
F, 2en+ 1

2
F ) = (en

F,t, 2en+ 1
2

F )− 4
3
(en

F,xx̄t, 2en+ 1
2

F ) +
1
3
(en

F,x̂x̂t, 2en+ 1
2

F ) +
8
3
(η

n+ 1
2

F,x̂ , en+ 1
2

F )

− 2
3
(η

n+ 1
2

F,ẍ , en+ 1
2

F ) +
4
9

J−1

∑
j=1

( fx,j · e
n+ 1

2
F,j−1 + fy,j · e

n+ 1
2

F,j + fz,j · e
n+ 1

2
F,j+1 + Q1)e

n+ 1
2

F,j

− 1
18

J−1

∑
j=1

( f̃x,j · e
n+ 1

2
F,j−2 + f̃y,j · e

n+ 1
2

F,j + f̃z,j · e
n+ 1

2
F,j+2 + Q2)e

n+ 1
2

F,j .

(27)

Notice that
(en

F,t, 2en+ 1
2

F ) =
1
τF

(‖en+1
F ‖2 − ‖en

F‖2), (28)

(en
F,xx̄t, 2en+ 1

2
F ) = − 1

τF
(‖en+1

F,x ‖
2 − ‖en

F,x‖2), (29)

(en
F,x̂xt, 2en+ 1

2
F ) = − 1

τF
(‖en+1

F,x̂ ‖
2 − ‖en

F,x̂‖2), (30)

(η
n+ 1

2
F,x̂ , en+ 1

2
F ) = −(ηn+ 1

2
F , en+ 1

2
F,x̂ ), (31)

(η
n+ 1

2
F,ẍ , en+ 1

2
F ) = −(ηn+ 1

2
F , en+ 1

2
F,ẍ ), (32)

(Ern
F, 2en+ 1

2
F ) ≤ ‖Ern

F‖2 + ‖en+1
F ‖2 + ‖en

F‖2. (33)

Furthermore, from Lemmas 1 and 2, Lemma 4.2 in [16], and the Cauchy–Schwarz
inequality, we have

J−1

∑
j=1

( fx,j · e
n+ 1

2
F,j−1 + fy,j · e

n+ 1
2

F,j + fz,j · e
n+ 1

2
F,j+1)e

n+ 1
2

F,j

= h
J−1

∑
j=1

[− fx,j · (e
n+ 1

2
F,j )x̄ +

3
h

fy,j · e
n+ 1

2
F,j + fz,j · (e

n+ 1
2

F,j )x]e
n+ 1

2
F,j

= −( fx · e
n+ 1

2
F,x̄ , en+ 1

2
F ) +

3
h
( fy · e

n+ 1
2

F , en+ 1
2

F ) + ( fz · e
n+ 1

2
F,x , en+ 1

2
F )

≤ M(‖en+ 1
2

F,x ‖
2 + ‖en+ 1

2
F ‖2),

(34)

J−1

∑
j=1

Q1en+ 1
2

F,j = 2h
J−1

∑
j=1

(en+ 1
2

C,j )2
x̂en+ 1

2
F,j + 2h

J−1

∑
j=1

(en+ 1
2

C,j )x̂en+ 1
2

C,j en+ 1
2

F,j

= 2((en+ 1
2

C )2
x̂, en+ 1

2
F ) + 2(en+ 1

2
C,x̂ en+ 1

2
C , en+ 1

2
F )

≤ M(‖en+ 1
2

C ‖2
∞‖e

n+ 1
2

C ‖2 + ‖en+ 1
2

C ‖2
∞‖e

n+ 1
2

C,x ‖
2 + ‖en+ 1

2
F,x ‖

2 + ‖en+ 1
2

F ‖2),

(35)
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J−1

∑
j=1

( f̃x,j · e
n+ 1

2
F,j−2 + f̃y,j · e

n+ 1
2

F,j + f̃z,j · e
n+ 1

2
F,j+2)e

n+ 1
2

F,j

= h
J−1

∑
j=1

[− f̃x,j · (e
n+ 1

2
F,j−1)x̄ + f̃z,j · (e

n+ 1
2

F,j+1)x]e
n+ 1

2
F,j

+
J−1

∑
j=1

( f̃x,j · e
n+ 1

2
F,j−1 + f̃y,j · e

n+ 1
2

F,j + f̃z,j · e
n+ 1

2
F,j+1)e

n+ 1
2

F,j

= h2
J+1

∑
j=1

f̃x,j · (e
n+ 1

2
F,j )x̄x̄en+ 1

2
F,j − h

J−1

∑
j=1

f̃x,j · (e
n+ 1

2
F,j )x̄en+ 1

2
F,j + h2

J−1

∑
j=1

f̃z,j · (e
n+ 1

2
F,j )xxen+ 1

2
F,j

+ h
J−1

∑
j=1

f̃z,j · (e
n+ 1

2
F,j )xen+ 1

2
F,j − ( f̃x · e

n+ 1
2

F,x̄ , en+ 1
2

F ) +
3
h
( f̃y · e

n+ 1
2

F , en+ 1
2

F ) + ( f̃z · e
n+ 1

2
F,x , en+ 1

2
F )

= h( f̃x · e
n+ 1

2
F, 1

2
en+ 1

2
F ) + h( f̃z · e

n+ 1
2

F,xx , en+ 1
2

F )− 2( f̃x · e
n+ 1

2
F,x̄ , en+ 1

2
F )

+
3
h
( f̃y · e

n+ 1
2

F , en+ 1
2

F ) + 2( f̃z · e
n+ 1

2
F,x , en+ 1

2
F )

≤ M(‖en+ 1
2

F,x ‖
2 + ‖en+ 1

2
F ‖2),

(36)

J−1

∑
j=1

Q2en+ 1
2

F,j = 4h
J−1

∑
j=1

(en+ 1
2

C,j )2
ẍen+ 1

2
F,j + 4h

J−1

∑
j=1

(en+ 1
2

C,j )ẍen+ 1
2

C,j en+ 1
2

F,j

= 4((en+ 1
2

C )2
ẍ,, en+ 1

2
F ) + 4(en+ 1

2
C,ẍ en+ 1

2
C , en+ 1

2
F )

≤ M(‖en+ 1
2

C ‖2
∞‖e

n+ 1
2

C ‖2 + ‖en+ 1
2

C ‖2
∞‖e

n+ 1
2

C,x ‖
2 + ‖en+ 1

2
F,x ‖

2 + ‖en+ 1
2

F ‖2).

(37)

Substituting Equations (28)–(37) into Equation (27), then

‖en+1
F ‖2 +

4
3
‖en+1

F,x ‖
2 − 1

3
‖en+1

F,x̂ ‖
2 − 8τF

3
(η

n+ 1
2

F , en+ 1
2

F,x̂ ) +
2τF
3

(η
n+ 1

2
F , en+ 1

2
F,ẍ )

≤ ‖en
F‖2 +

4
3
‖en

F,x‖2 − 1
3
‖en

F,x̂‖2 + MτF(‖en+1
F ‖2 + ‖en

F‖2 + ‖en+1
F,x ‖

2 + ‖en
F,x‖2)

+ MτF(‖e
n+ 1

2
C ‖2

∞‖e
n+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖e
n+ 1

2
C,x ‖

2) + τF‖Ern
F‖2.

(38)

Taking the inner product (·, ·) on both sides of Equation (26) with 2η
n+ 1

2
F , we obtain

(Esn
F,j, 2η

n+ 1
2

F ) = (ηn
F,t, 2η

n+ 1
2

F ) +
8
3
(en+ 1

2
F,x̂ , η

n+ 1
2

F )− 2
3
(en+ 1

2
F,ẍ , η

n+ 1
2

F ). (39)

We also have
(ηn

F,t, 2η
n+ 1

2
F ) =

1
τF

(‖ηn+1
F ‖2 − ‖ηn

F‖
2), (40)

(Esn
F,j, 2η

n+ 1
2

F ) ≤ ‖Esn
F‖2 + ‖ηn+1

F ‖2 + ‖ηn
F‖2. (41)

Substituting Equations (40) and (41) into Equation (39), then

‖ηn+1
F ‖2 +

8τF
3

(en+ 1
2

F,x̂ , η
n+ 1

2
F )− 2τF

3
(en+ 1

2
F,ẍ , η

n+ 1
2

F )

≤ ‖ηn
F‖2 + MτF(‖ηn+1

F ‖2 + ‖ηn
F‖2) + τF‖Esn

F‖2.
(42)
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Adding Equations (38) and (42), we have

‖en+1
F ‖2 +

4
3
‖en+1

F,x ‖
2 − 1

3
‖en+1

F,x̂ ‖
2 + ‖ηn+1

F ‖2

≤ ‖en
F‖2 +

4
3
‖en

F,x‖2 − 1
3
‖en

F,x̂‖2 + ‖ηn
F‖2

+ MτF(‖en+1
F ‖2 + ‖en

F‖2 + ‖en+1
F,x ‖

2 + ‖en
F,x‖2 + ‖ηn+1

F ‖2 + ‖ηn
F‖2)

+ MτF(‖e
n+ 1

2
C ‖2

∞‖e
n+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖e
n+ 1

2
C,x ‖

2) + τF‖Ern
F‖2 + τF‖Esn

F‖2.

(43)

Let Bn
F = ‖en

F‖2 + 4
3‖en

F,x‖2 − 1
3‖en

F,x̂‖2 + ‖ηn
F‖2, then

Bn+1
F − Bn

F ≤ MτF(Bn+1
F + Bn

F) + MτF(‖e
n+ 1

2
C ‖2

∞‖e
n+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖e
n+ 1

2
C,x ‖

2)

+τF‖Ern
F‖2 + τF‖Esn

F‖2.

By using the result of the Theorem 1, we obtain

(1−MτF)(Bn+1
F − Bn

F) ≤ 2MτFBn
F + MτF(τ

4
F + τ8

C + h8).

Choosing τF to be sufficiently small such that (1−MτF) > λ > 0, then

Bn+1
F − Bn

F ≤ MτF(τ
4
F + τ8

C + h8) + MτFBn
F. (44)

Summing the inequalities in Equation (44) from 0 to N − 1 , we obtain

BN
F ≤ B0

F + M(τ4
F + τ8

C + h8) + MτF

N−1

∑
n=0

Bn
F.

From Lemma 3, we have

BN
F ≤ [B0

F + M(τ4
F + τ8

C + h8)]eMNτF . (45)

Using the initial and boundary conditions, we get following results from Equation (45)

‖en
F‖ ≤ O(τ2

F + τ4
C + h4), ‖en

F,x‖ ≤ O(τ2
F + τ4

C + h4), ‖ηn
F‖ < O(τ2

F + τ4
C + h4).

Using Lemma 4, this leads to

‖en
F‖∞ ≤ O(τ2

F + τ4
C + h4).

This completes the proof of the Theorem.

Theorem 4. Suppose that u0
F ∈ H1

0 [xL, xR], ρ0
F ∈ L2[xL, xR], then the solutions of difference

scheme (11)–(12) are stable by the L∞ norm for un
F and by the L2 norm for ρn

F.

Proof of Theorem 4. The way used to prove Theorem 3 can also be applied to demonstrate
the validity of this theorem.

5. Numerical Simulation Results

In this section, we conducted several numerical simulations of the proposed scheme
for solving the SRLW equation. On the one hand, we present the computational efficiency
and numerical accuracy of the proposed scheme and compare the obtained results with
the nonlinear scheme in [16] and the TT-M difference scheme in [27], respectively. On the
other hand, we focus on the conservation laws and the long-time behavior simulation of the
proposed scheme. All simulations are implemented on a personal computer running Windows
10 with an Intel(R) i7-10710U 1.61 GHz CPU and 16 GB of memory using Matlab R2019b.
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For all experiments, we selected the following domains and parameters: −50 ≤ x ≤ 50,
0 < t ≤ 10, and s = 4, m = 1.5. The SRLW equation possesses the following
solitary wave solution

u(x, t) =
3(m2 − 1)

m
sech2(

√
m2 − 1

4v2 (x−mt)),

ρ(x, t) =
3(m2 − 1)

m2 sech2(

√
m2 − 1

4m2 (x−mt)),

and

u0(x) =
5
2

sech2
√

5
6

x, ρ0(x) =
5
3

sech2
√

5
6

x.

The error and convergence rate of the numerical solutions with respect to the exact
velocity v and density ϕ are defined as follows:

e(h, τ) = ‖vn − un‖∞, η(h, τ) = ‖ϕn − ρn‖,

uRatex = log2

(
e(2h, 4τ)

e(h, τ)

)
, ρRatex = log2

(
η(2h, 4τ)

η(h, τ)

)
,

uRatet = log2

(
e(2h, 2τ)

e(h, τ)

)
, ρRatet = log2

(
η(2h, 2τ)

η(h, τ)

)
.

First, we verify that the proposed scheme can achieve second-order convergence in
time and fourth-order convergence in space. To do so, we obtain the errors between the
numerical and exact solution at t = 10 with various time and space steps. The convergence
rates and CPU times determined by both the nonlinear scheme in [16] and the proposed
scheme are summarized in Tables 1 and 2. From the results presented the tables, we can
see that: (i) the errors provided by the proposed scheme are nearly identical to those
obtained from the nonlinear scheme; (ii) Both schemes exhibit approximately second-order
convergence in time when h = τF and fourth-order convergence in space when τF = h2.
These results verify the analysis results stated in Theorem 3; however, (iii) The proposed
scheme is significantly more cost-effective than the nonlinear scheme. In other words,
the CPU time required by the proposed scheme is approximately half that needed by the
nonlinear scheme. The results in Tables 1 and 2 clearly demonstrate that a significant
improvement has been achieved by proposed scheme compared to the nonlinear scheme
in [16].

Table 1. The errors and convergence rates with τF = h2.

Nonlinear Scheme [16]

(h, τF) e(h, τF) uRatex η(h, τF) ρRatex CPU(s)(
1
2 , 1

4

)
6.0793× 10−2 — 8.4371× 10−2 — 1.83(

1
4 , 1

16

)
3.9382× 10−3 3.9482 5.4315× 10−3 3.9573 17.30(

1
8 , 1

64

)
2.4688× 10−4 3.9956 3.4032× 10−4 3.9963 283.50(

1
16 , 1

256

)
1.5452× 10−5 3.9979 2.1277× 10−5 3.9995 5664.93

Proposed Scheme

(h, τF) e(h, τF) uRatex η(h, τF) ρRatex CPU(s)(
1
2 , 1

4

)
7.5147× 10−2 — 1.0501× 10−1 — 1.00(

1
4 , 1

16

)
3.9370× 10−3 4.2545 5.5879× 10−3 4.2320 9.57(

1
8 , 1

64

)
2.4687× 10−4 3.9952 3.4096× 10−4 4.0346 142.86(

1
16 , 1

256

)
1.5452× 10−5 3.9978 2.1279× 10−5 4.0021 2956.44
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Table 2. The errors and convergence rates with h = τF.

Nonlinear Scheme [16]

(h, τF) e(h, τF) uRatet η(h, τF) ρRatet CPU(s)(
1
4 , 1

4

)
5.5120× 10−2 — 7.6668× 10−2 — 6.47(

1
8 , 1

8

)
1.3991× 10−2 1.9780 1.9390× 10−2 1.9833 62.37(

1
16 , 1

16

)
3.5125× 10−3 1.9939 4.8616× 10−3 1.9958 459.76(

1
32 , 1

32

)
8.7882× 10−4 1.9988 1.2162× 10−3 1.9990 5357.84

Proposed Scheme

(h, τF) e(h, τF) uRatet η(h, τF) ρRatet CPU(s)(
1
4 , 1

4

)
7.2702× 10−2 — 9.8577× 10−2 — 3.06(

1
8 , 1

8

)
1.4349× 10−2 2.3410 2.1666× 10−2 2.1858 23.59(

1
16 , 1

16

)
3.5100× 10−3 2.0314 5.0243× 10−3 2.1084 206.61(

1
32 , 1

32

)
8.7874× 10−4 1.9979 1.2267× 10−3 2.0341 2472.98

The three-dimensional plots of the numerical solutions of u(x, t) and ρ(x, t) for prob-
lem (1) using the proposed scheme by taking h = 1/8 and τF = 1/64 are presented in
Figure 1. These visualizations provide insights into the evolution of wave propagation
over the time interval [0, 10]. Additionally, Figure 2 shows the exact and numerical so-
lutions of u(x, t) and ρ(x, t) with h = 1/8 and τF = 1/64 at t = 10 obtained from the
proposed scheme. A comparison clearly illustrates a remarkable agreement between our
numerical solutions and the exact solution. Moreover, Figure 3 displays the computational
times (CPU times) required by the nonlinear scheme in [16] and the proposed scheme for
different choices of τF = h2 and h = τF. Notably, our proposed scheme demonstrates a
large reduction in computation time. In conclusion, in contrast to the nonlinear method
presented in [16], the proposed scheme not only preserves nearly the same accuracy and
convergence rate as the nonlinear scheme but also substantially decreases the CPU time
needed to obtain numerical solutions.

(a) (b)

Figure 1. Three−dimensional plots of u(x, t) (a) and ρ(x, t) (b) with h = 1/8, τF = 1/64.
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Figure 2. Exact and numerical solution of u(x, t) (a) and ρ(x, t) (b) at t = 10 with h = 1/8, τF = 1/64.

100

101

102

103

104

 

 

C
PU

 ti
m

e 
(s

)

(h, )

 Nonlinear scheme
 Present scheme

(1/16,1/256)(1/8,1/64)(1/4,1/16)(1/2,1/4)

(a)

100

101

102

103

104

(h, )
(1/32,1/32)(1/16,1/16)(1/8,1/8)

 

 

C
PU

 ti
m

e 
(s

)

 Nonlinear scheme
 Present scheme

(1/4,1/4)

(b)

Figure 3. Comparison of CPU times with τF = h2 (a) and h = τF (b).

Next, we compare the accuracy of two schemes for the SRLW equation: the previous
TT-M scheme in [27] and the proposed scheme. The former scheme exhibits first-order
convergence in time and second-order convergence in space. Under the same temporal
and spatial domain conditions as in this article, we use the previous TT-M scheme to
calculate the errors of u(x, t) and ρ(x, t) as well as the CPU time for different time and space
steps. The resulting data are presented in Table 3. By comparing the errors and CPU times
presented in Tables 1–3, it is evident that the proposed scheme exhibits significantly lower
CPU time requirements compared to that of the previous TT-M scheme under similar error
value. This indicates that the computational efficiency of the proposed scheme is higher
than that of the previous TT-M scheme. Figures 4 and 5 illustrate the error comparison
between the two methods with h = 1/8, τF = 1/64 and h = 1/16, τF = 1/16, respectively.
The results show that the errors in numerical solutions of u(x, t) and ρ(x, t) obtained from
the proposed scheme are considerably smaller than the errors provided by the previous
TT-M scheme, which implies that our proposed method has superior accuracy than the
previous TT-M scheme for solving the SRLW equation.

Furthermore, based on Tables 1–3, we present the errors of u(x, t) and ρ(x, t) versus
the CPU time using the three numerical schemes (i.e., nonlinear scheme, previous TT-M
scheme and proposed scheme) in Figure 6. Figure 6 plots the errors versus the CPU time
under τF = h2 and h = τF, respectively. From the figure, one can see that the cost of
the previous TT-M scheme is the most expensive; the cost of the proposed scheme is the
cheapest; and the cost of the nonlinear scheme is more expensive than that provided by the
proposed scheme.
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Table 3. The errors and CPU times of the previous TT-M scheme with various time and space steps.

Previous TT-M Scheme [27]

(h, τF) e(h, τF) η(h, τF) CPU(s)(
1
2 , 1

4

)
7.7523× 10−1 7.6225× 10−1 0.18(

1
4 , 1

16

)
1.7627× 10−1 1.7062× 10−1 1.90(

1
8 , 1

64

)
4.2888× 10−2 4.1560× 10−2 26.32(

1
16 , 1

256

)
1.0658× 10−2 1.0324× 10−2 366.92(

1
4 , 1

4

)
8.9609× 10−1 8.2590× 10−1 1.01(

1
8 , 1

8

)
4.1952× 10−1 3.9001× 10−1 5.40(

1
16 , 1

16

)
2.0123× 10−1 1.8915× 10−1 31.49(

1
32 , 1

32

)
9.8428× 10−2 9.3111× 10−2 240.06
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Figure 4. Comparison of e(h, τF) (a) and η(h, τF) (b) with h = 1/8, τF = 1/64.
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Figure 5. Comparison of e(h, τF) (a) and η(h, τF) (b) with h = 1/16, τF = 1/16.
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Figure 6. The numerical error versus the CPU time using the three different numerical schemes with
τF = h2 (a) and h = τF (b).

Next, we consider the three conservation laws of the SRLW Equation (1), namely:

Q1(t) =
∫ ∞

−∞
u(x, t)dx, Q2(t) =

∫ ∞

−∞
ρ(x, t)dx, E(t) = ‖u‖2 + ‖ux‖2 + ‖ρ‖2.

Subsequently, by utilizing discretized formulations, we are able to evaluate three
approximate conservative quantities as follows:

Q1 = h
J−1

∑
j=1

un
j , Q2 = h

J−1

∑
j=1

ρn
j , E = h

J−1

∑
j=1

(un
j )

2 +
1
h

J−1

∑
j=1

(un
j+1 − un

j )
2 + h

J−1

∑
j=1

(ρn
j )

2,

where n = 0, 1, 2, . . . , N.
The values of these three quantities under different time and spatial steps are recorded

in Tables 4–6. Tables 4 and 5 demonstrate that the discrete masses Q1 and Q2 remain
well-preserved at various times, regardless of the time and space steps. From the results
presented in Table 6, for the case where the grid spacing is h = 1/2 and the time step is
τF = 1/4, it can be observed that the discrete energy E undergoes a slight change over time.
However, as the spatial and temporal step sizes become smaller, the tables show that our
proposed scheme preserves the two discrete masses well and almost maintains discrete
energy when the time and space steps are made smaller.

Table 4. Discrete mass Q1 under different mesh steps h and τF at various times.

Present Scheme (
1
2 , 1

4

) (
1
4 , 1

16

) (
1
8 , 1

64

) (
1

16 , 1
256

)
t = 0 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 2 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 4 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 6 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 8 13.4164078649 13.4164078649 13.4164078649 13.4164078649
t = 10 13.4164078648 13.4164078648 13.4164078648 13.4164078648
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Table 5. Discrete mass Q2 under different mesh steps h and τF at various times.

Present Scheme (
1
2 , 1

4

) (
1
4 , 1

16

) (
1
8 , 1

64

) (
1

16 , 1
256

)
t = 0 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 2 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 4 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 6 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 8 8.9442719099 8.9442719099 8.9442719099 8.9442719099
t = 10 8.9442719099 8.9442719099 8.9442719099 8.9442719099

Table 6. Discrete energy E under different mesh steps h and τF at various times.

Present Scheme (
1
2 , 1

4

) (
1
4 , 1

16

) (
1
8 , 1

64

) (
1

16 , 1
256

)
t = 0 34.7628720201 34.7781529556 34.7819964190 34.7829587447
t = 2 34.7647712611 34.7781634038 34.7819965109 34.7829587460
t = 4 34.7537001446 34.7780876049 34.7819962655 34.7829587461
t = 6 34.7185711285 34.7778355542 34.7819952701 34.7829587428
t = 8 34.6591320134 34.7773916731 34.7819934746 34.7829587360
t = 10 34.5775373861 34.7767645581 34.7819909256 34.7829587262

Finally, we present the long-time behavior of the u(x, t) and ρ(x, t) using the proposed
scheme with the parameter xL = −40, xR = 160, T = 80, h = 1/8, τF = 1/64. The
waveforms of u(x, t) and ρ(x, t) at t = 0, 40, and 80 obtained from the present scheme are
illustrated in Figure 7. From the figure, it is evident that the waveforms at three different
time instances are nearly identical. This observation strongly indicates the high accuracy
of our proposed scheme. The long-time errors in u(x, t) and ρ(x, t) over the time interval
[0, 80] are presented in Figure 8. Although the errors of the proposed scheme increase over
time, the rate of growth is relatively slow, which also indicates the high effectiveness of the
proposed scheme.
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Figure 7. Long−time behavior of u(x, t) (a) and ρ(x, t) (b) under mesh steps with h = 1/8, τF = 1/64.
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Figure 8. Errors in long-time behavior of u(x, t) and ρ(x, t) with h = 1/8, τF = 1/64.

6. Conclusions

In this paper, based on a two-level time-mesh technique, a novel finite difference
scheme with a second-order convergence rate in time and a fourth-order convergence
rate in space is developed for effectively solving the SRLW Equation (Equation (1)). The
proposed scheme is nonlinear on the coarse time-mesh and linear on the fine time-mesh to
make it easier to implement. The proposed scheme offers several advantages over existing
methods, including improved efficiency and accuracy. We performed a convergence and
stability analysis of the proposed scheme; compared to the nonlinear scheme in [16], the
proposed scheme not only maintains the same errors and convergence rates as the nonlinear
scheme but can also save in computational time, which makes the proposed scheme a
valuable tool for practical applications. Moreover, a comparison of the errors obtained
using the previous TT-M difference scheme in [27] and the proposed scheme is presented.
The results indicate that our proposed scheme exhibits significantly smaller errors than
the previous TT-M scheme. The higher accuracy of our scheme ensures stable and reliable
solutions throughout the simulation. We also plotted the errors against the CPU time for
three methods and found that our proposed scheme is the cheapest of the three schemes
in the comparison in terms of CPU time. Finally, the discrete conservation laws were
investigated and the long-time simulations that demonstrate the waveform’s preservation
were conducted to illustrate the effectiveness of the proposed scheme. Overall, the proposed
numerical scheme for the SRLW equation is more accurate and efficient than other earlier
schemes in the literature. The new difference scheme presents an important advancement
in numerical methods for solving the SRLW equation. However, as shown in Figure 8,
one of the shortcomings of our scheme is that the error will become large over a very
long simulation time. This will be addressed and enhanced through the use of alternative
methods in our future work.
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