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Abstract: The paper shows that it is possible to construct quantum chromodynamics as a rigorous
theory on the basis of employment of hyperbolic unitary group SUh(3), which is a symmetry group
for the three-dimensional complex space of the hyperbolic type. Such an approach allows researchers
to discover a profound connection between conserved color charges of the quarks and the symmetries
of the hyperbolic three-dimensional complex space. Further, it allows a correct introduction of the
Hermitian operators to describe the eight gluons, which are carriers of strong interactions.
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1. Introduction

At the present time, it is commonly assumed that quantum chromodynamics (QCD)
is constructed on the basis of color group SU(3) [1–3]. Each quark may be in one of three
color states or is said to carry a color charge. Each color charge is expressed with a three-
dimensional unit vector. Vectors of various color charges are mutually orthogonal. Strong
interactions between quarks are performed as exchanges of color charges. The carriers
of colors are eight mass-less particles, called gluons, which carry a double color. Apart
from three color charges there are also three anti-charges or anti-colors. Immediately, one
is tempted to ask: what vectors describe the anti-color charges? Although the theory is
being extensively developed especially to fit recent experimental research [4–6], this basic
question has not yet received a clear answer. It is also unclear how eight gluons can be
described mathematically correctly in the framework of SU(3) group. The absence of an
adequate mathematical formalism leads to the necessity of introducing ad hoc rules, which
impose additional restrictions upon the possible variants of interaction of color charges
with gluons, as well as the interaction of gluons with each other. Furthermore, though QCD
successfully copes with the task of describing strong interactions; nevertheless, it remains a
phenomenological theory, per se.

In this paper, an attempt is made to underpin this theory with more rigorous mathe-
matical formalism, which stems from the idea of deep relationship between the symmetry
groups of physical space–time and the symmetry groups in elementary particle physics.
It is postulated that a symmetry group which should be set as the basis of the theory of
strong quark interactions must describe the symmetry of the real physical space–time or,
more precisely, must be a group of proper motions in this space. As a candidate for the
role of a real physical space–time in microcosm a six-dimensional pseudo-Riemanian space
is proposed. It has (3, 3) signature with tangential layer in the form of pseudo-Euclidean
six-dimensional space E3,3 [7,8].
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2. Pseudo-Euclidean Space E3,3 as the Image of the Three-Dimensional Hyperbolic
Space H3

In general case metric tensor g(x) depends on the coordinate in space. This depen-
dence produces the curvature of the space and is attributed to gravity by general relativity
theory. However, if some small neighborhood of point x does not contain gravitating
masses one can treat metric tensor as constant in this neighborhood and construct lin-
ear tangential space there. We assume that in the microcosm which is characterized by
spatial extent of order 10−12 cm and time extent of order 10−22 s the gravity effects can
be neglected and physical space–time is a six-dimensional pseudo-Euclidean space with
signature (3, 3). The coordinates of a point in the space are determined by three real valued
spatial coordinates x1, x2, x3 ∈ R and three real valued time coordinates t1, t2, t3 ∈ R. The
square of interval is given by

s2 = x2
1 + x2

2 + x2
3 − t2

1 − t2
2 − t2

3 . (1)

If we introduce the designations t1 = x4, t2 = x5, t3 = x6 and define the metric
ηkl of six-dimensional pseudo-Euclidean space E3,3 as ηkl = ±δkl , where the plus sign is
taken when k, l = 1, 2, 3 and the minus sign is taken when k, l = 4, 5, 6, then (1) may be
represented as

s2 = ηkl xkxl , k, l = 1, . . . , 6 . (2)

It is shown that the six-dimensional pseudo-Euclidean space E3,3 may be represented
as a three-dimensional complex hyperbolic space H3.

In order to introduce the concept of n-dimensional hyperbolic space Hn correctly, we
first define the algebra of hyperbolic numbers H as a two-dimensional R-module with pair
of generatrix {1, j} and table of multiplication [9]:

1 j
1 1 j
j j 1

(3)

The element h ∈ H will be written as h = 1 · x + j · t = x + tj, where x, t ∈ R, and j
is an imaginary unit in H. Real numbers <(h) = x and =(h) = t are called the real and
imaginary parts of hyperbolic number h, respectively. The involute operation of complex
conjugation is defined as: h = x + jt→ h = x− jt.

If the scalar product of two elements h, g ∈ H is set as 〈h, g〉 = hg, then H is endowed
with the properties of one-dimensional hyperbolic space isomorphic to a two-dimensional
real pseudo-Euclidean space E1,1. The algebra of hyperbolic numbers H corresponds to
two-dimensional pseudo-Euclidean geometry, which represents a plane with pseudo-metric

ηij =

(
1 0
0 −1

)
. (4)

Commonly, the element norm is given as

‖h‖ =
√
〈h, h〉 =

√
h h . (5)

One can note that elements a± aj ∈ H have zero norm:

‖a± aj‖ =
√
(a± aj)(a∓ aj) =

√
a2 − a2 = 0 . (6)

Consequently, H contains nonzero divisors of zero, and (5) is a pseudonorm.
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This result can be generalized to an arbitrary n-dimensional hyperbolic space Hn. Let
~h = (h1, . . . , hn) ∈ Hn, ~g = (g1, . . . , gn) ∈ Hn, then their scalar product is defined as〈

~h,~g
〉
= h1g1 + · · ·+ hngn . (7)

The pseudo-norm of a vector is defined as ‖~h‖ =
√
〈h, h〉. The space Hn is isomorphic

to 2n-dimensional pseudo-Euclidean space En,n. The squared interval in the pseudo-
Euclidean space En,n

s2 = x2
1 + · · ·+ x2

n − t2
1 − · · · − t2

n (8)

can be expressed as a pseudo-norm in the form of (7) in hyperbolic space Hn, if we put
hk = xk + jtk, k = 1, . . . , n. Hence, the following equality takes place:

s2 =
〈
~h,~h

〉
. (9)

The group SO(n, n) of proper motions of the metric in space En,n is isomorphic to the
unitary hyperbolic group of proper transformations SUh(n) in space Hn, which keep the
pseudo-norm (7) invariant. For our purposes, it is sufficient to confine ourselves to the case
of H3 and its isomorphic space E3,3.

3. The Hyperbolic Color Group of Unitary Symmetry Uh3(1) and Its Representation

The metric of six-dimensional pseudo-Euclidean space E3,3 is invariant, relative to a
number of internal symmetry groups, which appear as a result of representing the pseudo-
Euclidean metric using hyperbolic numbers in space H3, according to (1), (2), (7), and (9).
Consider the identical representation of the unitary hyperbolic group Uh3(1), operating in
space H3. This is a three-parametric group of H-unitary matrices of the form

U =

 ejθ1 0 0
0 ejθ2 0
0 0 ejθ3

 , (10)

which keep the binomial form (7) invariant for n = 3.
The identical representation of the group Uh3(1) is reducible and can be expanded into

the direct sum of irreducible representations, which are given in invariant one-dimensional
sub-spaces H:

Uh3(1) = Uh(1)⊕Uh(1)⊕Uh(1) . (11)

The generators of this group induce three conservation laws. These laws are associated
with three color quantum characteristics of quarks, which are referred to as color charges.
They are usually named as red (R), green (G), and blue (B). Each quark may exist in one
of these color states. Each color charge of a quark is given by a three-dimensional vector
belonging to the space H3. Write down by definition

hR =

 1 + j
0
0

 , hG =

 0
1 + j

0

 , hB =

 0
0

1 + j

 . (12)

Along with the three color charges there are also three anti-color charges: anti-red R̃,
anti-green G̃ and anti-blue B̃. They can be given in the same space H3 as complex conjugate
vectors to respective colors:

hR̃ = hR =

 1− j
0
0

 , hG̃ = hG =

 0
1− j

0

 , hB̃ = hB =

 0
0

1− j

 . (13)

All norms of the vectors (12) and (13) are zero.
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4. Hyperbolic Unitary Group SUh(3) and Gluons

As given above, the unitary hyperbolic group (11) keeps the metric (1) of pseudo-
Euclidean space E3,3 invariant and can be used to represent the quarks’ color and anti-color
as (12) and (13). Interactions between colored quarks take place by exchanging the colors.
The exchange of color is brought about by eight gluons. Considering that the color quantum
characteristic of quarks is directly related to hyperbolic symmetry group Uh3(1) of the
pseudo-Euclidean space E3,3, it is natural to try to describe the gluons carriers of color
charge with the help of more general hyperbolic unitary group. The elements of this group
are transformations of space-preserving metric. Consider the special hyperbolic unitary
group SUh(3). It can be represented as a group of three-dimensional unimodular matrices,
which have eight independent parameters. Elements U ∈ SUh(3) keep the quadratic form

h1h1 + h2h2 + h3h3 (14)

invariant in the three-dimensional hyperbolic space H3, h1, h2, h3 ∈ H. The Lie algebra
of SUh(3) is assigned by eight generators, which are represented in the form of matrices
similar to those introduced by Gell-Mann [10]: λm, m = 1, . . . , 8:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −j 0
j 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −j
0 0 0
j 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −j
0 j 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(15)

Matrices (15) differ from original Gell-Mann ones only by substitution of hyperbolic
imaginary unit j instead of imaginary unit i. Generators (15) satisfy the following commu-
tation relations: [

λk
2

,
λl
2

]
= j fklm

λm

2
, (16)

where the form coefficients take the values

f123 = f132 = 1 ,

f147 = f257 = f246 = f367 = f651 = f516 = f435 = f615 = f376 = f453 =
1
2

,

f174 = f275 = f264 = −1
2

,

f678 = f458 =

√
3

2
.

(17)

From (17) it follows that f123, f156, f367, f345, f458, and f678 are anti-symmetrical in the
first and second indexes and symmetrical in the second and third indexes, f147, f257, f246
are anti-symmetrical in all indexes.

The triplet (R, G, B) of color charges of a quark is the fundamental representation of
the group SUh(3). Let us introduce the following designations:

Fm =
1
2

λm , m = 1, . . . , 8 ,

U± = F1 ∓ jF2 , V± = F4 ∓ jF5 , W± = F6 ∓ jF7 .
(18)
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Furthermore, explicitly in matrix form:

U+ =

 0 1 0
0 0 0
0 0 0

 , V+ =

 0 0 1
0 0 0
0 0 0

 , W+ =

 0 0 0
0 0 1
0 0 0

 ,

U− =

 0 0 0
1 0 0
0 0 0

 , V− =

 0 0 0
0 0 0
1 0 0

 , W− =

 0 0 0
0 0 0
0 1 0

 .

(19)

Then, the following relations hold true:

U+hG = hR , U−hR = hG , U+hG̃ = hR̃ , U−hR̃ = hG̃ ,

V+hB = hR , V−hR = hB , V+hB̃ = hR̃ , V−hR̃ = hB̃ ,

W+hB = hG , W−hG = hB , W+hB̃ = hG̃ , W−hG̃ = hB̃ .

(20)

This can be represented in the form of diagrams (Figure 1).

hG hR

hB

U+

U−

W+
W− V− V+

hG̃ hR̃

hB̃

U+

U−

W+
W− V− V+

Figure 1. Diagrams of operators (18) acting on quarks (12).

Operators of “creation” and “annihilation” of the type (18) are not Hermitian and
therefore cannot describe the real particles-carriers of a color charge. Apart from these,
we introduce Hermitian operators, which define six two-color gluons ∆GR̃, ∆G̃R, ∆BR̃, ∆B̃R,
∆BG̃, ∆B̃G.

∆GR̃ = F1 + F2 , ∆G̃R = F1 − F2 ,

∆BR̃ = F4 + F5 , ∆B̃R = F4 − F5 ,

∆BG̃ = F6 + F7 , ∆B̃G = F6 − F7 .

(21)

These operators in explicit form are

∆GR̃ =
1
2

 0 1− j 0
1 + j 0 0

0 0 0

 , ∆G̃R =
1
2

 0 1 + j 0
1− j 0 0

0 0 0

 ,

∆R̃B =
1
2

 0 0 1− j
0 0 0

1 + j 0 0

 , ∆RB̃ =
1
2

 0 0 1 + j
0 0 0

1− j 0 0

 ,

∆BG̃ =
1
2

 0 0 0
0 0 1− j
0 1 + j 0

 , ∆B̃G =
1
2

 0 0 0
0 0 1 + j
0 1− j 0

 .

(22)
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Two more gluons ∆RR̃−GG̃ and ∆RR̃+GG̃−2BB̃ are given by the following Hermitian
operators. We traditionally write them as ∆3 and ∆8 for brevity:

∆3 = ∆RR̃−GG̃ =
√

2F3 =
1√
2

 1 0 0
0 −1 0
0 0 0

 ,

∆8 = ∆RR̃+GG̃−2BB̃ =
√

2F8 =
1√
6

 1 0 0
0 1 0
0 0 −2

 .

(23)

The particles (22) and (23) are the quanta of the color field binding the quarks in the
nucleons.

5. Rules to Determine the Permissible Types of Interactions between Color Quarks

A general scheme of interactions between quarks can be depicted by a Feynman
diagram, a sample of which is given in Figure 2.

X

Z

∆

Y

W

Figure 2. General scheme of quark interaction.

Straight lines with letters X, Y, Z, and W define quarks, a coiled line and the letter ∆
define a gluon. Usually [11] two quarks in the bottom are considered as income and two
ones in top as result of interaction. Thus, the interaction depicted in Figure 2 can be written
as X +Y → Z+W. Lines of quarks are directed. Arrows pointing upwards (in the direction
of reaction) denote quarks. Arrows pointing downwards (inverted direction of reaction)
denote antiquarks, which can be treated as quarks moving back in time. So, according to
this scheme, X, Z in the reaction X + Y → Z + W are quarks and Y, W are antiquarks. An
essential rule here is that any gluon should contain color and anti-color. While drawing
diagrams, this means that for each color unit traveling from left to right there should be a
color unit moving in opposite direction. Figure 3 depicts the feasible schemes.

X X

YY

∆XỸ

I

X

X

Y

Y

∆XỸ

II

X

X Y

Y

∆XX̃,YỸ

IIIa

X

X

Y

Y

∆XX̃,YỸ

IIIb

Figure 3. Feasible schemes of quark interaction.
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Consider the scheme I from Figure 3, where X 6= Y and X, Y = {R, G, B}. Let X = R,
Y = G. This gives the reaction R + R̃→ G + G̃, and the scheme I is customized to the one
in Figure 4.

R R

GG

∆RG̃

Figure 4. Interaction R + R̃→ G + G̃.

In the left node the reaction hR → hG takes place. It can be written in matrix form as

1
2

 0 1− j 0
1 + j 0 0

0 0 0

 1 + j
0
0

 =

 0
1 + j

0

 , (24)

and in compact operator form as ∆R̃GhR = hG. The color coupling at this node is the
coefficient at the right side of (24): c1 = 1.

Right node contains the reaction transforming anti-red quark to anti-green one: hR̃ →
hG̃. This is achieved by an antigluon, which is expressed by a conjugate matrix:

1
2

 0 1 + j 0
1− j 0 0

0 0 0

 1− j
0
0

 =

 0
1− j

0

 . (25)

In compact form it is ∆RG̃hR̃ = hG̃. The color coupling at this node is c2 = 1.
In QCD the magnitude of strong coupling in an exchange of a gluon between two color

charges is proportional to the product of color couplings c1 and c2, which are calculated
at the vertices of the quark–gluon interaction [11]. To calculate color multipliers let us
consider all possible exchange processes between color charges with the participation of
one out of eight gluons, which are described by (22) and (23). For the various color charges
R, G, B there occur the following exchange processes, effected with the aid of gluons of
type (22):

∆R̃GhR = hG , ∆RG̃hG = hR ,

∆BR̃hR = hB , ∆B̃RhB = hR ,

∆G̃BhG = hB , ∆GB̃hB = hG .

(26)

For the various anti-color charges R̃, G̃, B̃ similar exchange processes take place, also
brought about with gluons (22):

∆RG̃hR̃ = hG̃ , ∆R̃GhG̃ = hR̃ ,

∆B̃RhR̃ = hB̃ , ∆BR̃hB̃ = hR̃ ,

∆GB̃hG̃ = hB̃ , ∆G̃BhB̃ = hG̃ .

(27)

The color coefficients in the above exchange processes appear as multipliers in the
right-hand parts of the relations (26) and (27). Here, they all turn out to be equal to unit, i.e.,
c1 = c2 = 1. There are, in total, six variants of implementation of the scheme I, X 6= Y. They
are depicted in Figure 5. The scheme I is not considered for X = Y, this case if deferred to
the scheme IIIa.
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R R

GG

∆RG̃

c1 = c2 = 1

G G

RR

∆GR̃

c1 = c2 = 1

G G

BB

∆GB̃

c1 = c2 = 1

B B

GG

∆BG̃

c1 = c2 = 1

B B

RR

∆BR̃

c1 = c2 = 1

R R

BB

∆RB̃

c1 = c2 = 1

Figure 5. Process of exchange between color and same anti-color charges (scheme I).

Consider the scheme II with X 6= Y and X, Y = {R, G, B}. Reactions from (26)
run in both nodes of the Feynman diagram and gluons (22) are involved. Coupling
coefficients are also all equal to unit. Three possible implementations are given in Figure 6.
Implementations for X, Y = {R̃, G̃, B̃}, and X 6= Y are just the same as in Figure 6 with
arrows going down and gluons replaced by antiparticles (conjugated matrices).

R

R

G

G

∆RG̃

c1 = c2 = 1

G

G

B

B

∆GB̃

c1 = c2 = 1

B

B

R

R

∆BR̃

c1 = c2 = 1

Figure 6. Process of exchange between color and other color charges (scheme II).

The scheme II is not considered for X = Y, this case if deferred to the scheme IIIb.
Now, consider the schemes IIIa and IIIb. They involve gluons (23) rather than (22).

For these processes the following relations hold:

∆3hR =
1√
2

hR , ∆3hG =
−1√

2
hG ,

∆8hR =
1√
6

hR , ∆8hG =
1√
6

hG , ∆8hB =
−2√

6
hB .

(28)

For anti-color charges analogously:

∆3hR̃ =
1√
2

hR̃ , ∆3hG̃ =
−1√

2
hG̃ ,

∆8hR̃ =
1√
6

hR̃ , ∆8hG̃ =
1√
6

hG̃ , ∆8hB̃ =
−2√

6
hB̃ .

(29)

Implementations of the scheme IIIa with X = Y are given in Figure 7, and for X 6= Y
they are presented in Figure 8.
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R

R R̃

R̃

∆3

c1 = c2 = 1√
2

G

G G̃

G̃

∆3

c1 = c2 = −1√
2

R

R R̃

R̃

∆8

c1 = c2 = 1√
6

G

G G̃

G̃

∆8

c1 = c2 = 1√
6

B

B B̃

B̃

∆8

c1 = c2 = −2√
6

Figure 7. Process of exchange between color and same anti-color charges (scheme IIIa, X = Y).

R

R G̃

G̃

∆3

c1 = 1√
2

, c2 = −1√
2

R

R G̃

G̃

∆8

c1 = c2 = 1√
6

R

R B̃

B̃

∆8

c1 = 1√
6

, c2 = −2√
6

G

G B̃

B̃

∆8

c1 = 1√
6

, c2 = −2√
6

Figure 8. Process of exchange between color and different anti-color charges (scheme IIIa, X 6= Y).

Implementations of the scheme IIIb are alike to that of IIIa, except gluon stands in the
right part of the diagrams, thus the arrows at the right part go in reverse direction. Due to
the symmetry of (23) matrices, this does not change the coupling coefficients.

6. Color Factors

Color factors of interactions between quarks are calculated [11,12] as

CF =
1
2

∣∣∣∣∣∑α

(c1c2)α

∣∣∣∣∣ , (30)

where α enumerates all possible channels of reaction. According to this, Table 1 can be
drawn for the symmetric case.
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Table 1. Color factors.

Interaction Scheme Gluon c1 c2

CF for
Antiquarks

(13)

CF for
Antiquarks

(31)

R–R
IIIb ∆3

1√
2

1√
2

1
3

1
3

IIIb ∆8
1√
6

1√
6

R–G

II ∆RG̃ 1 1 1
3

1
3

IIIb ∆3
1√
2

−1√
2

IIIb ∆8
1√
6

1√
6

R–B
II ∆RB̃ 1 1 1

3
1
3

IIIb ∆8
1√
6

−2√
6

R–R̃

I ∆RG̃ 1 1 4
3

1
3

I ∆RB̃ 1 1
IIIa ∆3

1√
2

1√
2

IIIa ∆8
1√
6

1√
6

R–G̃
IIIa ∆3

1√
2

−1√
2

1
6

1
6

IIIa ∆8
1√
6

1√
6

R–B̃ IIIa ∆8
1√
6

−2√
6

1
6

1
6

B–B IIIb ∆8
−2√

6
−2√

6
1
3

1
3

B–B̃

I ∆BR̃ 1 1 4
3

1
3

I ∆BG̃ 1 1
IIIa ∆8

−2√
6

−2√
6

Any other interaction is same or similar to one of the above. For instance, G–R is same
as R–G, B–R̃ is similar (by complex conjugation of its parts) to B̃–R and therefore to R–B̃.

To sum up, all interactions between quarks (of same or different color) have CF = 1/3;
interactions between quarks and antiquark of same color have CF = 4/3.

7. Alternative Antiquark Representation

There can be alternative way of introducing the antiquarks. Instead of conjugation
as in (13) one may consider defining antiquark as a vector negative to the corresponding
quark:

hR̃ = −hR =

 −1− j
0
0

 , hG̃ = −hG =

 0
−1− j

0

 , hB̃ = −hB =

 0
0

−1− j

 . (31)

In this representation, a contradiction appears in the scheme I. For instance, consider
the interaction R + R̃ → G + G̃ depicted by Figure 4. The left node does not contain
antiquarks and presents the reaction hR → hG (24) as before. However the reaction
∆RG̃hR̃ = hG̃ in the right node with antiquarks (31) becomes

1
2

 0 1 + j 0
1− j 0 0

0 0 0

 −1− j
0
0

 = 0 . (32)

Thus, the color factor is equal to zero and the reaction is not permitted. This is true for
all reactions of scheme I as long as antiquarks are expressed as (31). Scheme II does not
include quark and antiquark together, schemes III are constructed for symmetric gluons (23),
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so these schemes hold, and only scheme I should be excluded. As a result, the interactions
between quark and antiquark of same color get CF = 1/3, making a uniform color factor in
most of QCD reactions in bi-quark and tri-quark particles (mesons and barions); see the
last column of Table 1.

8. Permissible Types of Interactions between Gluon Pairs

The distinguishing feature of the QCD theory is that the gluons themselves carry a
color charge and therefore may not only participate in exchange processes between quarks
but interact with each other as well. However not any two gluons may enter an interaction,
resulting in emerging of the third gluon. So, it is necessary to examine these processes in
more detail. Each gluon is described by Hermitian operator of type (22) or (23). When two
arbitrary chosen gluons α and β given by operators ∆α and ∆β, respectively, interact, they
produce the third gluon γ, which is described by the Hermitian operator ∆γ.

Although both ∆α and ∆β are Hermitian operators, their simple product ∆α∆β may be
not. Otherwise, this introduces non-equality of the two interacting gluons. The simplest
way to derive a resulting gluon is to take it as the anti-commutator:

c∆γ = ∆α∆β + ∆β∆α , (33)

where c is the color coefficient calculated at the interaction vertex. It turns out that, for any
gluons ∆α and ∆β, the left side of (33) takes the form (22), or (23), or is zero. The latter case
means the reaction is not permitted (or the coefficient c = 0).

To begin with, consider the permissible variants of interaction of two gluons out of six
from the set (22). Here, 15 variants are possible and only six of them may take place in real
interactions. They are shown in Figure 9.

∆B̃G

∆B̃R ∆GR̃
C = 1

∆BG̃

∆G̃R ∆BR̃
C = 1

∆GR̃

∆BR̃ ∆B̃G
C = 1

∆G̃R

∆BG̃ ∆B̃R
C = 1

∆BR̃

∆GR̃ ∆BG̃
C = 1

∆B̃R

∆B̃G ∆G̃R
C = 1

Figure 9. Exchange processes between gluons of type (22).

Make sure that this is possible with the sample of interacting (B̃R) and (GR̃) gluons.
From (33) it follows that

∆B̃G =
{

∆B̃R · ∆GR̃

}
= ∆B̃R · ∆GR̃ + ∆GR̃ · ∆B̃R . (34)
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Consider now all the possible variants of a single interaction of gluon type (22) with
gluons from (23). From (33) we obtain six possible variants of interaction:

−1√
6

∆BG̃ =
{

∆BR̃ · ∆8
}

,
−1√

6
∆B̃R =

{
∆B̃R · ∆8

}
,

−1√
6

∆BG̃ =
{

∆BG̃ · ∆8
}

,
−1√

6
∆B̃G =

{
∆B̃G · ∆8

}
,

1√
6

∆GR̃ =
{

∆GR̃ · ∆8
}

,
1√
6

∆G̃R =
{

∆G̃R · ∆8
}

.

(35)

These interactions may be represented with diagrams in Figure 10.

∆BR̃

∆BR̃ ∆8
C = −1√

6

∆B̃R

∆B̃R ∆8
C = −1√

6

∆BG̃

∆BG̃ ∆8
C = −1√

6

∆B̃G

∆B̃G ∆8
C = −1√

6

∆GR̃

∆GR̃ ∆8
C = 1√

6

∆G̃R

∆G̃R ∆8
C = 1√

6

Figure 10. Processes of interaction between gluons of type (22) and (23).

It should be noted that gluons of type (22) do not interact with the gluon ∆3. This
gluon may only interact with ∆8:

1√
3

∆3 = {∆3 · ∆8} , (36)

that is shown in Figure 11.

∆3

∆3 ∆8
C = 1√

3

Figure 11. Interaction of the gluons ∆3 and ∆8.

Thus, we have considered all possible variants of one-time interaction of the eight
gluons with each other and we have found the color coefficients corresponding to these
interactions. This result enables regular manner construction of all permissible interactions
of eight gluons with arbitrary multiplicity.
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9. Conclusions

It is shown that, in contrast to the currently accepted approach, it is more natural to
construct the theory of quantum chromodynamics on the basis of the SUh(3) group. This
is the group of proper motions of the pseudo-Euclidean six-dimensional space E3,3 or its
isomorphic hyperbolic three-dimensional space, H3. This result is an indirect confirmation
of the hypothesis that in microcosm our real physical space–time turns out to be the six-
dimensional pseudo-Euclidean space E3,3. Furthermore, this supports the hypothesis of
relationship between geometrical properties of the physical space–time with conserved
physical quantum characteristics of elementary particles, particularly quarks.

The application of this theory is limited to the case of highly symmetrical six-dimensional
space E3,3 containing three temporal dimensions. We suppose it exists in the microcosm
of the scale below 10−22cm, where strong interactions govern. In the bigger scale two of
temporal dimensions are compacted [7] and the space degrades to our usual E3,1. This
scale can be associated with the scale of quark confinement. The transform from E3,3 to
E3,1 presumably occurs due to the curvature of space. The mathematics foundation here is
to be studied.

There is a lot of potential to develop a six-dimensional theory, per se. Minkowski
space E3,1 and its four-vector induce Poincare group of isometries, which correspond to
the conservation laws. Analogously, the space E3,3 produces six-vector and a bigger group
of isometries with additional conservation laws. Exploration of these laws started in the
present work and in [8] is to be continued.
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