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Abstract: The method of Fractional Borel Summation is suggested in conjunction with self-similar
factor approximants. The method used for extrapolating asymptotic expansions at small variables
to large variables, including the variables tending to infinity, is described. The method is based on
the combination of optimized perturbation theory, self-similar approximation theory, and Borel-type
transformations. General Borel Fractional transformation of the original series is employed. The
transformed series is resummed in order to adhere to the asymptotic power laws. The starting point
is the formulation of dynamics in the approximations space by employing the notion of self-similarity.
The flow in the approximation space is controlled, and “deep” control is incorporated into the
definitions of the self-similar approximants. The class of self-similar approximations, satisfying,
by design, the power law behavior, such as the use of self-similar factor approximants, is chosen
for the reasons of transparency, explicitness, and convenience. A detailed comparison of different
methods is performed on a rather large set of examples, employing self-similar factor approximants,
self-similar iterated root approximants, as well as the approximation technique of self-similarly
modified Padé–Borel approximations.

Keywords: optimized perturbation theory; extrapolation of asymptotic series; fractional Borel-type
transforms; factor approximants; critical amplitudes
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1. Introduction

The problem of extrapolating asymptotic series derived for small variables to finite
and even very large values of variables is constantly met in various branches of science,
such as physics, chemistry, economics, applied mathematics, etc. Different approaches
have been suggested to cure this problem, e.g., Padé summation [1], Borel summation [2],
Shanks transformation [3], hypergeometric Meijer approximants [4,5], the renormalization
group [6,7], and others [8–14]. These techniques can provide good approximations for finite
variables, although they are not applicable for the case of variables tending to infinity.

In the present paper, we describe an original approach based on the transparent
physical notions of optimization and self-similarity combined with Borel-type summation.
The layout of the paper is as follows. In Section 2, we explain the main ideas: (i) how to
make a divergent asymptotic series convergent and how the convergence is optimized by
introducing control functions; (ii) how to transform a sequence of approximants into a
dynamical system leading to the property of self-similarity; (iii) that the solutions of the self-
similar equation of motion extrapolate the given asymptotic series serving as a boundary
condition into self-similar approximants that are valid for arbitrary values of variables.
In Section 3, we combine the self-similar approximants with Borel-type summation and
demonstrate the ways of introducing control functions or control parameters, defined by
the minimal difference and minimal derivative optimization conditions. Several admissible
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Borel-type transforms are discussed. In Section 4, we discuss the specifics of the critical
amplitude calculations. In Section 5, we illustrate the discussed methods by concrete
examples. Section 6 concludes the paper.

In our approach to the resummation problem, we are guided by the requirement for
the independence of observables from the approximations, transformations, parameters,
etc., introduced in the course of the analysis. Nature should not be aware of our difficulties
of understanding it. In turn, we should be respectful and introduce minimal necessary
assumptions about it. Since the description of the sought function is available to us only by
means of truncated series, we need to compensate for the lack of knowledge of the true
coefficients by adding some natural assumptions.

First, the initial truncated series is to be transformed so that, instead of the available
divergent truncated series, a supposedly better-behaving truncated series is considered.
Second, to the transformed series, we apply the so-called approximations with power law
behavior at infinity. At this step, we also reconstruct the behavior of the series. Third,
the guiding principle of self-similarity leads to self-similar roots and self-similar factor
approximants. Fourth, from a technical viewpoint, it is enormously helpful for the expres-
sions for the critical amplitudes to become explicit so that they can be factored into the
parts arising from the approximants and from the inverse transformation. Fifth, after an
optimization with the minimal difference and (or) minimal derivative conditions, we study
the numerical convergence of the sequences of approximations for the sought amplitudes.
Besides the numerical convergence, we are also guided, when appropriate, by the rigorous
results for the convergence of the diagonal Padé approximants obtained by Gonchar.

2. Optimization and Self-Similarity

In this section, we present the main ideas of the approach in order for the reader to
grasp the basis of the particular techniques that are used. The two pivotal points are the
notions of convergence optimization and self-similarity.

2.1. Asymptotic Series

The starting point of the consideration concerns the well-known fact that, in practical
applications, we often satisfy the necessity of solving problems by applying some kind
of perturbation theory, resulting in expansions to powers of a parameter or a variable.
Such expansions usually represent asymptotic series diverging for finite values of the
expansion variable.

To be specific, let us be interested in a real function f (x) of a real positive variable x,
defined by rather complicated equations that, because of their complexity, can be solved
only by means of a kind of perturbation theory. The latter would result in an expansion in
powers of asymptotically small x → 0:

f (x) ' fk(x) (x → 0), (1)

having the form of a truncated series

fk(x) = f0(x)
k

∑
n=0

anxn, (2)

where f0(x) is a known function. Our main concern is the summation of the power
expansion, because of which we shall concentrate on the expansion of the form

fk(x) =
k

∑
n=0

anxn. (3)

As is evident, the more general form (2) can be easily reduced to (3). In practically all
interesting problems, expression (3) represents an asymptotic series diverging for a finite
value of x. At the same time, the quantities of interest usually correspond to finite and
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sometimes to quite large values of the variable x. Moreover, in many cases, the most
interesting region is the region of very large x → ∞, where the sought function behaves
according to the power law

f (x) ' Bxβ (x → ∞). (4)

Thus, the principal problem is how it would be possible to reconstruct the large-variable
behavior of the sought function (4), knowing only the small-variable expansion (3)?

2.2. Control Functions

It seems clear that, in order to define an effective sum of the divergent series (3),
it is necessary to rearrange the divergent series into a convergent series. When one is
interested in rather large values of x, then one cannot resort to Padé approximants, since
for asymptotically large x values, the limit of a Padé approximant is proportional to xM−N ,
depending on which of the approximants from the Padé table is accepted. In that sense,
the large-variable behavior of Padé approximants is not defined, since xM−N can tend to
either +∞, −∞, or zero, depending on whether M > N, M < N, or M = N. This implies
that Padé approximants do not converge for large x → ∞.

To force a sequence to converge, it is necessary to introduce some quantities that regu-
late the convergence. Such quantities, governing the sequence convergence, can be named
control functions. The idea of introducing control functions so that the reorganized sequence
converges was advanced in Refs. [15,16]. Control functions are to be defined by optimization
conditions regulating the sequence convergence, so that the initial perturbation theory is
reorganized to an optimized perturbation theory yielding a converging sequence of optimized
approximants [15,16]. All mathematical details can be found in recent reviews [17,18].

The introduction of control functions uk transforms the initial sequence { fk(x)} into a
sequence {Fk(x, uk)}. The latter can be symbolically denoted as

Fk(x, uk) = R̂[ uk ] fk(x). (5)

This introduction can be conducted in several ways: by incorporating control functions
into an initial approximation of perturbation theory, through a change in variables, or
by a direct sequence transformation [17,18]. The derivation of equations defining control
functions starts with the Cauchy criterion of convergence. The criterion tells that a sequence
converges if and only if, for any ε > 0, there exists a number kε such that

| Fk+p(x, uk+p)− Fk(x, uk) | < ε, (6)

for all k > kε and p > 0.
From the Cauchy criterion, one can derive (see details in [17,18]) the optimization

conditions defining the control functions. One possibility is the minimal difference condition

Fk+p(x, u)− Fk(x, u) = 0 (p ≥ 1), (7)

whose simplest variant is

Fk+1(x, u)− Fk(x, u) = 0, u = uk(x). (8)

The other possibility is the minimal derivative condition

∂Fk(x, u)
∂u

= 0, u = uk(x). (9)

Several other representations of optimization conditions are admissible [17,18].
In some cases, control functions can be defined by the boundary conditions

R̂−1[ uk ]Fk(x, uk) ' fk(x) (x → 0), (10)
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implying asymptotic equivalence at a small variable of the renormalized and initial
terms of the approximations. The latter condition is also called the accuracy-through-
order procedure.

After the control functions uk(x) are found from the optimization conditions, the
optimized approximants read as

f opt
k (x) = R̂−1[ uk ]Fk(x, uk(x)). (11)

2.3. Self-Similar Relation

Self-similar relations are known to arise in renormalization group theory, where one
considers scaling with respect to spatial or momentum variables, as in the real-space
decimation procedure [19,20] or in quantum field theory [21,22]. Then, self-similar relations
connect characteristic quantities, such as effective Hamiltonians, Lagrangians, or correlation
functions, with different spatial or momentum scales. In that sense, renormalization groups
in statistical physics or quantum field theory provide relations between the characteristic
quantities with scaled variables.

The notion of self-similarity in approximation theory, introduced in Refs. [23,24], does
not concern a scaling of variables, but rather, the scaling of approximation orders. The
number labeling the approximation order plays the role of discrete time.

It seems natural then to construct a dynamical system in the space of approximations.
To this end, it is necessary to introduce an endomorphism into the approximation space.
Let us start with an initial approximation

f = F0(x, uk(x)), x = xk( f ), (12)

defining an expansion function xk( f ). Then, it is possible to define the approximation
function

yk( f ) = Fk(xk( f ), uk(xk( f ))). (13)

The approximation space is given by the closed linear envelope over all admissible approxi-
mation functions:

A = L{yk( f ) : k = 0, 1, 2, . . .}. (14)

This is similar to approximation spaces in approximation theory [25] or to phase spaces in
physics [26–28]. Thus, we obtain a dynamical system in discrete time, called the approxima-
tion cascade:

{yk( f ) : Z+ ×A 7−→ A}. (15)

The points of the cascade form the cascade trajectory.
The Cauchy criterion (6) now acquires the form

| yk+p( f )− yk( f ) | < ε. (16)

If control functions have been chosen so that the sequence of the optimized approximants
is convergent, then, in terms of dynamical theory, this implies the existence of a fixed
point, where

yk(y∗p( f )) = y∗p( f ). (17)

Conditions (16) and (17) lead [17,18,23,24] to the self-similar relation

yk+p( f ) = yk(yp( f )). (18)

Fixed-point solutions y∗k ( f ) to this equation, using the relation (13), give the self-similar
approximants f ∗k (x) = R̂−1[uk]y∗k (F0(x, uk(x))). The stability of the method can be checked
by investigating map multipliers, similarly to the stability analysis conducted in numerical
calculations [29,30].
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The self-similar relation (18) describes the motion of a dynamical system (cascade).
Generally, a dynamical system does not necessarily tend to a fixed point, but it can display
chaotic motion [31]. This is why the incorporation into the approximation cascade of control
functions, governing sequence convergence, is so important.

2.4. Self-Similar Root Approximants

Generally, the self-similar relation, depending on additional imposed constraints
playing the role of boundary conditions, can lead to different solutions. For instance,
when the fixed-point solution is required to satisfy the prescribed asymptotic expansions
at small as well as at large variables, we obtain [32] (see also [33,34]) the self-similar
root approximants

f ∗k (x) =
((

(1 + A1x)n1 + A2x2
)n2

+ . . . + Akxk
)nk

. (19)

When the large-variable behavior is in the form of the law

f (x) ' Bxβ (x → ∞), (20)

with the known power β, then we have

nj =
j + 1

j
(j = 1, 2, . . . , k− 1), nk =

β

k
, (21)

which results in the approximant

f ∗k (x) =
((

(1 + A1x)2 + A2x2
)3/2

+ . . . + Akxk
)β/k

. (22)

All control parameters Aj are uniquely defined by the asymptotic boundary condition

f ∗k (x) ' fk(x) (x → 0). (23)

The root approximant (22) at large x values behaves as

f ∗k (x) ' Bkxβ (x → ∞), (24)

which gives the amplitude

Bk =

(((
A2

1 + A2

)3/2
+ A3

)4/3
+ . . . + Ak

)β/k

. (25)

Below, we refer to the root approximants introduced above as iterated root approximants
or just as iterated roots.

2.5. Self-Similar Factor Approximants

Accepting the asymptotic expansion (3) as a boundary condition and representing this
expansion in the form

fk(x) =
k

∏
j=1

(1 + bjx)

yields [35,36] the fixed-point solution in the form of self-similar factor approximants

f ∗k (x) =
Nk

∏
j=1

(1 + Ajx)
nj , (26)
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where

Nk =

{
k/2, k = 2, 4, . . .

(k + 1)/2, k = 3, 5, . . .
. (27)

For odd k values, scaling relations [17] allow us to set A1 = 1. All other control parame-
ters Aj and nj are uniquely defined by the boundary condition requiring the asymptotic
expansion of f ∗k (x) at small x values to coincide with fk(x). The factor approximants
serve as a generalized representation of the products of functions [37,38]. It has been
shown that the self-similar factor approximants provide good accuracy for a wide class of
problems [35,36,39,40].

At large x values, the approximant (26) gives

f ∗k (x) ' Bkxβk (x → ∞), (28)

with the amplitude

Bk =
Nk

∏
j=1

A
nj
j (29)

and the large-variable exponent

βk =
Nk

∑
j=1

nj. (30)

It is appropriate to notice that Padé approximants are a particular kind of factor
approximants, where a portion of the powers equals +1 and the other portion is −1, so that

f ∗k (x) =
∏M

j=1(1 + Ajx)

∏N
j=1(1 + Ajx)

= PM/N(x).

2.6. Self-Similar Combined Approximants

It is possible to combine different types of approximants. Consider the situation when
one type of approximation better suits the small-variable limit, while the other type of
approximation is better in the description of the large-variable limit. For this purpose, one
can consider the first q terms of the expansion fk(x) with q < k,

fq(x) =
q

∑
n=0

anxn (q < k). (31)

When constructing a self-similar approximant f ∗q (x) on the basis of expansion (31), we
define the correcting ratio

Ck/q(x) ≡ fk(x)
f ∗q (x)

(32)

and expand it in powers of x to obtain

Ck/q(x) ' ∑k
n=0 anxn

∑
q
n=0 anxn

' 1 +
k

∑
n=q+1

anxn. (33)

On the basis of the latter expansion, we construct a self-similar approximant C∗k/q(x). The
final combined approximant is

f ∗k (x) = f ∗q (x)C∗k/q(x). (34)
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As has been mentioned above, Padé approximants are a particular kind of self-similar
approximant. So, for the correcting function C∗k/q(x), it is possible to take a Padé approxi-
mant PM/N(x) with M + N = k− q. In that case, the final approximant is

f ∗k (x) = f ∗q (x)PM/N(x). (35)

Of course, the necessary boundary conditions have to be preserved when choosing q, M,
and N.

3. Self-Similar Borel-Type Transforms

The convergence of series is known to be improved by resorting to Borel summa-
tion [2,41,42]. Borel, or Borel-type summation, can be combined by employing self-similar
approximants [43].

3.1. Self-Similar Borel Transform

The Borel transform for expansion (3) is

Bk(x) =
k

∑
n=0

an

n!
xn, (36)

with the inverse transformation

fk(x) =
∫ ∞

0
Bk(xt)e−t dt. (37)

The series (36) can be summed by employing self-similar approximants, obtaining a
self-similar Borel transform B∗k (x). Then, the inverse transformation (37) gives

f ∗k (x) =
∫ ∞

0
B∗k (xt)e−t dt. (38)

The most difficult problem is the study of the large-variable limit. Therefore, we
pay more attention to this limiting behavior. In the present case, by substituting the
large-variable form of the self-similar approximant,

B∗k (x) ' Ckxβk (x → ∞), (39)

into the integral (37), we obtain

f ∗k (x) ' Bkxβk (x → ∞), (40)

where the large-variable amplitude is

Bk = CkΓ(βk + 1). (41)

3.2. Self-Similar Borel–Leroy Transform

The Borel–Leroy transform reads as

Bk(x, λ) =
k

∑
n=0

anxn

Γ(n + λ + 1)
, (42)

where λ is a control parameter that has to be defined from optimization conditions, provid-
ing convergence to the sequence of approximants.

The inverse transformation is

fk(x) =
∫ ∞

0
Bk(xt, λ) tλe−t dt. (43)
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Constructing a self-similar approximation B∗k (x, λk) yields the self-similar optimized Borel–
Leroy approximant

f ∗k (x) =
∫ ∞

0
B∗k (xt, λ) tλe−t dt, (44)

where the control parameter λ = λk can be defined, e.g., from either the minimal difference
optimization condition (8) or the minimal derivative optimization condition (9) for the
large-variable amplitude.

In the large-variable limit, the form

B∗k (x, λ) ' Ckxβk (x → ∞) (45)

results in the approximant (40) with the amplitude

Bk = CkΓ(βk + λk + 1). (46)

3.3. Self-Similar Iterated Borel Transform

The method used for the Borel and Borel–Leroy transforms can be repeated several
times, resulting in iterated transforms [9]. For example, after accomplishing the first step
and obtaining the transform

Bk1(x, λ(1)) =
k

∑
n=0

anxn

Γ(n + λ(1) + 1)
, (47)

it is straightforward to repeat the procedure to obtain the double Borel–Leroy transform

Bk2(x, λ(1), λ(2)) =
k

∑
n=0

anxn

Γ(n + λ(1) + 1)Γ(n + λ(2) + 1)
. (48)

After p iterations, one obtains

Bkp(x, λ(1), λ(2), . . . , λ(p)) =
k

∑
n=0

anxn

∏
p
j=1 Γ(n + λ(j) + 1)

. (49)

For simplicity, one assumes that the control parameters at different steps are the same, so
that λ(j) = λ, which gives

Bkp(x, λ) =
k

∑
n=0

anxn

Γp(n + λ + 1)
. (50)

The inverse transformation is

fk(x) =
∫ ∞

0
Bkp(xt1t2tp, λ)

p

∏
j=1

tλ
j e−tj dtj. (51)

By constructing a self-similar approximant B∗kp(x, λkp) on the basis of the p-iterated
transform (50), one obtains [44] the self-similar iterated approximants

f ∗kp(x) =
∫ ∞

0
B∗kp(xt1t2tp, λkp)

p

∏
j=1

t
λkp
j e−tj dtj, (52)

where the control parameters λkp are defined from the optimization conditions. For the
large-variable limit of the transform

B∗kp(x, λkp) ' Ckpxβkp (x → ∞), (53)
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the large-variable behavior of the sought function becomes

f ∗kp(x) ' Bkpxβkp (x → ∞), (54)

with the amplitude
Bkp = CkpΓp(βkp + λkp + 1). (55)

3.4. Self-Similar Mittag–Leffler Transform

A generalization of the Borel summation can be conducted by means of the Mittag–
Leffler [45] summation. By introducing the Mittag–Leffler transform

Mk(x, µ) =
k

∑
n=0

anxn

Γ(nµ + 1)
, (56)

the inverse transformation reads as

fk(x) =
∫ ∞

0
Mk(xtµ, µ)e−t dt. (57)

The series (56) can be represented by a self-similar approximant, giving M∗k (x, µk), where
the control parameter µk is found from the optimization conditions [46]. Then, the inverse
transformation yields the self-similar approximant

f ∗k (x) =
∫ ∞

0
M∗k (xtµ, µ)e−t dt. (58)

For large variables, the transform

M∗k (x, µ) ' Mkxβk (x → ∞) (59)

leads to large-variable behavior of the self-similar approximant

f ∗k (x) ' Bkxβk (x → ∞), (60)

with the amplitude
Bk = MkΓ(βkµk + 1). (61)

For the Mittag–Leffler transform, one can define iterated transforms, similarly to the
iterated Borel–Leroy transforms.

3.5. Self-Similar Modified Borel–Leroy Transform

The Borel–Leroy transform can be modified [47,48] to the form

Bk(x, λ, ν) = a0 +
k

∑
n=1

anxn

Γ(n + λ + 1)nν
, (62)

with the inverse transformation being

fk(x) =
∫ ∞

0
tλe−t

(
t

∂

∂t

)ν

Bk(xt, λ, ν) dt, (63)

in which ν is an integer, so that (
t

∂

∂t

)ν

xn = nνxn. (64)
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Constructing a self-similar transform B∗k (x, λk, ν), where λk is a control parameter,
gives [49] the inverse transformation

f ∗k (x) =
∫ ∞

0
tλk e−t

(
t

∂

∂t

)ν

B∗k (xt, λk, ν) dt. (65)

With the large-variable behavior of the transform

B∗k (xt, λk, ν) ' Ckxβk (x → ∞), (66)

the large-variable limit of the self-similar approximant (65) reads as shown in Equation (60)
with the amplitude

Bk = Ckβν
k Γ(βk + λk + 1). (67)

As is evident, setting λk = 0 leads to the modified Borel transform.

3.6. Self-Similar Fractional Iterated Transform

The modified Borel–Leroy transform shown in the previous section can be further
generalized in two aspects: First, it is straightforward to iterate it. And, second, it is possible
to treat the parameters ν as well as the iteration order p, not as integers, but as fractional
quantities [44,49].

Starting with the iterated modified Borel–Leroy transform

Bkp(x, λ, u) = a0 +
k

∑
n=1

anxn

[Γ(n + λ + 1)nu]p
, (68)

we have the inverse transformation

fkp(x) =
∫ ∞

0

p

∏
j=1

dtj tλ
j e−tj

(
tj

∂

∂tj

)u

Bkp(xt1t2 . . . tp, λ, u). (69)

Then, by constructing a self-similar approximant B∗kp(x, λkp, ukp), where λkp and ukp
and p = pk are control parameters, we obtain a self-similar fractional iterated transform

f ∗kp(x) =
∫ ∞

0

p

∏
j=1

dtj t
λkp
j e−tj

(
tj

∂

∂tj

)ukp

B∗kp(xt1t2 . . . tp, λkp, ukp). (70)

Strictly speaking, the differential operator in action (64) is defined only for the integer ν.
However, it is admissible to formally treat ν as an arbitrary real number u when it acts on
power law expressions, considering Equation (64) as a definition.

Then, for the large-variable behavior of the transform

B∗kp(x, λkp, ukp) ' Ckpxβkp (x → ∞), (71)

we find the large-variable limit for the sought function

f ∗kp(x) ' Bkpxβkp (x → ∞), (72)

in which the amplitude is

Bkp = Ckp

[
β

ukp
kp Γ(βkp + λkp + 1)

]p
. (73)

In this, and in the previous sections, the control parameters are defined by the op-
timization conditions, as discussed in Section 2.2, as the minimal difference or minimal
derivative conditions. In particular, when one is interested in the correct evaluation of the
large-variable amplitudes, these conditions should be used with respect to the amplitudes



Axioms 2023, 12, 1060 11 of 31

Bkp(u) considered as functions of the control parameters u. For brevity, here, we use a
single control parameter u, although there can be several of them. It is possible to use the
minimal difference condition in the form

Bk+1,p(u)− Bkp(u) = 0, u = ukp, (74)

or in the form
Bk,p+1(u)− Bkp(u) = 0, u = ukp. (75)

Otherwise, one can resort to the minimal derivative condition

∂Bkp(u)
∂u

= 0, u = ukp. (76)

For both conditions, the minimal difference and minimal derivative are equivalent.
Previously, in the paper [44], it was suggested that the number of iterations p should be

considered a continuous control parameter. The multidimensional integrals are relatively
easy to define for the integer p. Introducing a continuous p implies a smooth interpolation
between the values of the integrals for discrete p values. The approach is applicable only in
the limiting case of large x values.

While setting u = 0, the parameter p = pk can be found from the minimal derivative
condition as the unique solution to the equation

∂Bk(p)
∂p

= 0. (77)

Alternatively, we can solve the minimal difference equation

Bk+1(p)− Bk(p) = 0, (78)

with a positive integer k = 1, 2, 3, . . ..
For the special singular cases of β = −1,−2 . . ., one can study the inverse quantity.

One of the main advantages of the method involving the combination of the methodology
shown in Section 2.6 and the Borel-light summation shown in Section 4.3 is that they
do not involve any explicit singular terms. This property allows one to avoid an extra
transformation and allows one to work with the original truncations directly. In such cases,
one is bound to the optimizations with marginal amplitudes, since the complete expression
for the amplitudes involves singularities.

4. Critical Amplitudes from Fractional Iterations

Consider the case where one has to find explicitly a real, sign-definite, positive-valued
function f (x) of a real variable x. In addition, the function possesses the power law
asymptotic behavior (4). The critical exponent β > 0 is known. The case of a negative β
will be considered by studying the inverse of f (x). Let us find the amplitude B.

We consider the case where it is impossible to find the sought function f (x) explicitly
and exactly from some given equations. We show that it is possible to reconstruct the
large-variable amplitudes from the given truncated asymptotic expansions given in the
form (3).

Several methods of finding effective sums of the truncated series (1)–(3) exist, based
on the ideas of Borel, Mittag–Leffler, and Hardy [9,44,46,50–56]. The well-known method is
that of Padé [57–59]. The hypergeometric approximants [60–63] can be employed instead of
the Padé approximants. More complex are the hypergeometric Meijer approximants [62,63].

Bear in mind that we are interested in accurate analytical calculation of the amplitude
B in the expression (4) [64–66]. To this end, we need, of course, to find effective sums
for (1)–(3), at least in a general form. The specifics of our techniques and the general
knowledge of the large-x asymptotic behavior (4) are sufficient in order to find an analytic
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expression for the amplitudes and to proceed by applying the minimal difference and
minimal derivative conditions given by Equations (74)–(78).

Let us briefly recapitulate the main tenets of Section 3.6 needed for the following
applications to concrete problems. First, we set all λkp values to zero. This simplification
brings us back to a manageable number of control parameters. Below, we consider u, which
is the order of the operator in (69), as a continuous control parameter. It is possible to define
the multidimensional integrals required for calculating the critical amplitudes for integers
p. Introducing continuous p values means a smooth interpolation between the values of
the integral for discrete p values [44,49]. The number of iterations p can also be regarded
as a continuous control parameter [44]. The parameters ν and p ought to be found from
the optimization conditions. The general-type optimization conditions are the minimal
difference and minimal derivative conditions (74)–(76), expressed as the conditions for the
critical amplitudes. The conditions are equivalent and both are applied below.

We expect that the solution to the optimization problem exists and is unique. There
are three main realizations of the Fractional Borel Summation with factor approximants
described in Section 2.5. Often, we simply use the term “Borel summation with factor
approximants”, but specify the optimization techniques applied in each particular case.
Below we use the following three methods of finding the critical amplitudes.

• The first method is based on introducing the fractional order u of the differentiation
operator. The parameter has to be found from the optimization procedure, while p is
fixed. The optimization procedure, where only the parameter u is considered and p is
fixed, is called Fractional Borel Summation with u-optimization [49].

• The second method is based on the optimization of the other parameter p, where the
number of iterations extends to arbitrary real numbers from the original integers (see
Section 3.3 and the paper [44]). This has to be found from p-optimization, while u is
fixed. The optimization procedure where only the parameter p is considered and u
is fixed is called Fractional Borel Summation with p-optimization [49]. The optimiza-
tion is performed according to formulas analogous to (74)–(76) with straightforward
replacement of the parameter u by the parameter p.

• The third method, Fractional Borel-light or self-similar combined approximants is
explained in great detail in Sections 2.6 and 4.3. The method was suggested in the
paper [49], following the main ideas expressed earlier in [43,46]. It is based on opti-
mization with minimal derivative or minimal difference conditions of the amplitude
Bkp (or with the marginal amplitudes Ckp), either with respect to the fractional u or
fractional p, with subsequent correction of the marginal amplitudes with the diagonal
Padé approximants [1,43,46,49].

We employ some useful formulas for the factor approximants given above in the
general form in Section 3.6. These are adjusted to the calculations of the amplitudes in
Section 4.1. We also employ the iterated roots explained in Sections 2.4, and diagonal Padé
approximants for odd and even number of the terms k in the truncations [58].

Factor approximants have the advantage of generality, since the case of β = 0 is
included into the consideration automatically, unlike the case of iterated roots, where such
a case should be treated individually. On the other hand, iterated roots are very user-
friendly and can be treated analytically in rather high orders. The problem of optimization
can be formulated with rather high orders of the perturbation theory, while for the factors,
only low-order optimizations can be treated analytically.

The diagonal Padé approximants are routinely extendable to very high orders. Frac-
tional Borel Summation with iterated roots was previously considered in detail [49], while
the diagonal, odd, and even Padé approximants are discussed in [58].

For completeness and convenience, below, we give some formulas that are required
for actual computations of the critical amplitudes when the index β is known. Two types of
approximants are discussed in this context, since the iterated roots, presented in Section 2.4,
are well adapted to the calculation of the critical amplitudes and do not require any
specific adjustments.
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4.1. Critical Amplitudes from Factors and Padé Approximants

It is both convenient and natural to extrapolate the asymptotic series with power law
behavior (4) by means of the self-similar factor approximants [35,36]. Let us fix the inner
sum of the parameters nj in the Formula (26) to the known index β, so that

β =
Nk

∑
j=1

nj (79)

in all orders. Then, the critical amplitudes can be found by extrapolating the series (1)–(3)
to the form (26). Here

Nk =

{
k/2 + 1, k = 2, 4, 6, . . .
k/2 + 1/2, k = 1, 3, 5, . . .

. (80)

At large x values, the factor approximants behave as

f ∗k (x) ' Bkxβ (x → ∞), (81)

and the amplitude is given by the Formula (29). For the even orders k, one of the Aj values
can be set to one. Such a restriction does not change the critical index and only influences
the value of the amplitude. From a technical standpoint, it is rather difficult to optimize
factor-based methods in high orders, although lower orders can easily be optimized.

4.2. Modified Padé Approximations

Alternatively, in place of the factors, one can apply the well-known Padé approx-
imants Pn/m [9]. The Padé approximants can be adapted to calculate the amplitudes
at infinity in the expression (4) by means of some transformations. In the case of odd
k = 1, 3 . . ., one should study the following transformed series for the sought function f (x),
T(x) = f (x)−1/β. The following modified Padé approximants

Pn,n+1(x) = (PadeApproximant[T[x], n, n + 1])−β, (82)

are defined for even cases, where n = 0, 1 . . . , nmax is a non-negative integer.
In the odd case, (2n + 1)max = k. The approximants (82) do comply with the power

law (4) at x → ∞. One can relatively easily find the sequence of approximations

Bn = lim
x→∞

(xPadeApproximant[T[x], n, n + 1])−β, (83)

for the amplitudes. In the case of even k = 2, 4, . . ., the following modified-even Padé
approximants

Pn,n(x) = K(x)× (PadeApproximant[G[x], n, n]), (84)

are defined [58]. Here, the corrector

K(x) = (PadeApproximant[T[x], 0, 1])−β, (85)

was introduced to ensure the correct asymptotic behavior [58]. Also, G(x) = f (x)
K(x) represents

the transformed truncated series, which can be approached again with the diagonal Padé
approximants. More details on the application of the modified Padé approximants for the
Borel summation can be found in [58].

The amplitudes sought at infinity can be found as follows:

Bn = B0 × lim
x→∞

(PadeApproximant[G[x], n, n]) (86)
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with
B0 = lim

x→∞

(
K(x)x−β

)
.

Here, n = 1, 2 . . . , nmax, is a positive integer. In the even case, nmax = k/2. It is not
impossible but is very difficult from a technical standpoint to optimize Padé-based methods,
especially at very high orders.

The methods of the factor, root, and Padé approximants can be applied individually
or together in some hybrid form to calculate the marginal amplitude C appearing in the
course of the Borel transformation. All of the mentioned approximations can be applied
directly to the series (1)–(3) under the asymptotic condition (1) and produce the estimates
for the sought amplitude B. Only the iterated roots shown in Section 3.3 are seamlessly
defined for all k values. The other two approximations use two different definitions for the
odd and even cases.

4.3. Critical Amplitudes from Hybrids of Factors and Padé Approximations

The sought function can be reconstructed from the transform f ∗i (x) directly with the
help of corrected Padé approximants, following the general idea of the papers [43,46].
Such a hybrid approach, coined before Borel-light [49], is particularly useful when the
integral transformation cannot be applied because of singularities in the transformational
Γ-functions or when an explicit formula and not only numerical values are required. In
fact, we are dealing with the whole table of approximate values

f ∗n,i(x) ' Pn/n(x) f ∗i (x), (87)

with i = 1, 2 . . . k [49], while n = 1, 2 . . . k/2 for even k, and n = 1, 2 . . . (k− 1)/2 for odd k.
Formula (34) is built only on the diagonal sequences in adherence with [67].

Of course, when only the single approximant f ∗q (x) of the order q with q < k is
employed, and only the highest possible order diagonal Padé approximant is considered,
we return to the particular case of the scheme outlined in Section 2.6. On the other hand,
when n is fixed and i is varied in the Formula (87), we are dealing with a different sequence
of approximations from that described in Section 2.6. The whole (almost) table (87) was
employed in the paper [49].

Since, at x → ∞, f ∗i (x, u) ' Ci(u)xβ, the sought amplitude is approximated by the
table of values expressed by means of the hybrid formula

B∗n,i(ui) = Pn/n(∞) Ci(ui) . (88)

The parameter u = ui is found from the optimization conditions. Such conditions are
analogous to the Equations (74)–(76) [49] but have to be applied properly to the marginal
amplitudes Ci(ui).

5. Examples

In the following sections, we are primarily concerned with the comparison of different
factor-based approximations with root-based [49] and Padé-based approaches [58,68].

5.1. Quantum Quartic Oscillator

For the quantum anharmonic oscillator [69], perturbation theory yields a rather long
expansion for the ground-state energy

Ek(g) =
k

∑
n=0

angn.

Here, the parameter g ≥ 0 measures a deviation of the anharmonic potential from the
quantum harmonic oscillations. The coefficients an are rapidly growing in magnitude.
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Their concrete values are known for very high orders and can be retrieved from [69]. The
strong-coupling limit for g→ ∞,

E(g) ' Bgβ (89)

is also known, and the parameters are B = 0.667986 and β = 1/3.
Factor approximants, when applied to the truncation Ek(g), give the following se-

quence of approximate amplitudes:

B2 = 0.678929, B3 = 0.750032, B4 = 0.702102, B5 = 0.724883,

B6 = 0.706184, B7 = 0.712144, B8 = 0.706593, B9 = 0.704931.

Borel factor approximants with u = 0 and p = 1 give

B∗2 = 0.708098, B∗3 = 0.742158, B∗4 = 0.689432, B∗5 = 0.688555,

B∗7 = 0.672477, B∗8 = 0.679915, B∗9 = 0.677194.

Complex values are omitted here and in what follows.
The results produced by the following Borel-light approximations with a fixed marginal

amplitude and varying correcting terms,

B∗2,7(1) = P2/2(∞) C7(1) = 0.626631, B∗3,7(1) = P3/3(∞) C7(1) = 0.687644,

B∗4,7(1) = P4/4(∞) C7(1) = 0.690745, B∗5,7(1) = P5/5(∞) C7(1) = 0.690887,

are slightly worse.
The best results are found for rather high orders with the following Borel-light approx-

imations with varying marginal amplitudes and correcting terms of the same order,

B∗13,2(1) = P13/13(∞) C2(1) = 0.69341,

B∗13,4(1) = P13/13(∞) C4(1) = 0.68615,

B∗13,5(1) = P13/13(∞) C5(1) = 0.68766,

B∗13,7(1) = P13/13(∞) C7(1) = 0.67907,

B∗13,8(1) = P13/13(∞) C8(1) = 0.68904,

B∗13,9(1) = P13/13(∞) C9(1) = 0.67397.

Bear in mind that, for the factor approximants, the optimization problems can be
solved analytically only for low orders. Only the minimal derivative problem possesses a
unique solution. The results of optimization, such as the optimal control parameters, can
be used as inputs to construct the sequence of Borel-light approximations. But, even in
these cases, the results appear not to be better than those given by the factor approximants
by themselves. However, such a strategy can be useful for some other problems and is
exploited below.

Various other methods are considered as well. They give even more reasonable results,
as shown in Table 1.

The best result is marked in bold in Table 1.
It is achieved in the ninth order of perturbation theory with the Fractional Borel

Summation with iterated roots [49]. An even better result, B = 0.669356, is found with the
same method in the 10th order [49].

The method of Corrected Padé approximants needs more terms to obtain the same
accuracy [70] but is able to easily scan very high orders [70]. But, already in the 10th order,
it gives a reasonable estimate, B = 0.655086.
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Table 1. Critical amplitude for the one-dimensional quartic oscillator.

Quartic Oscillator Amplitude

Factor approximants 0.704931

Borel with factors 0.677194

Borel-light with factors 0.690887

Exact 0.667986

Fractional Borel with roots [49] 0.670902

Borel with roots [49] 0.682494

Even Padé–Borel [58] 0.679037

Odd Padé–Borel [58] 0.67926

Even Padé [58] 0.709572

Odd Padé [58] 0.712286

5.2. Schwinger Model: Energy Gap

Let us consider the energy gap between the lowest and second excited states of the
scalar boson for the massive Schwinger model in Hamiltonian lattice theory [71,72].

The energy gap ∆(z) between the two states at small z values can be represented (in
low orders), according to the paper [72], as

2∆(z) ' 1 + 6z− 26z2 + 190.6666666667z3 − 1756.666666667z4 + 18048.33650794z5, (90)

with the variable z = (1/ga)4. Here, g stands for a coupling parameter and a is the lattice
spacing. The coefficients an are known up to the 13th order and can be found in [72].

In the continuous limit, ∆(z) follows the power law [72]

∆(z) ' Bzβ (z→ ∞), (91)

where B = 1.1284 and β = 1/4.
Factor approximants, when applied to the original expansion, give the following

sequence:
B2 = 1.58276, B3 = 1.574592, B5 = 1.45957, B7 = 1.36643,

B8 = 1.05181, B9 = 1.3421,

with a reasonable value given by B8. The complex values are omitted again here and below.
Borel factor approximants, calculated with u = 0 and p = 1, give the following

sequence:
B∗2 = 2.02627, B∗3 = 1.59039, B∗4 = 1.55169, B∗5 = 1.58126,

B∗6 = 1.62346, B∗7 = 1.59431, B∗8 = 1.05511,

with a reasonable result that is very similar to the previous result B8.
The most consistent results are found by applying the Borel-light approximations with

a fixed marginal amplitude and varying correcting terms,

B∗4,2(1) = P4/4(∞) C2(1) = 1.32253,

B∗5,2(1) = P5/5(∞) C2(1) = 1.05724,

B∗6,2(1) = P6/6(∞) C2(1) = 1.15488.

The last two terms can be considered lower and upper bounds, respectively.
As mentioned previously, the optimization problem with factor approximants can

be solved analytically for low orders only. The optimization results, such as those for the
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optimal control parameters, can be used to construct the sequence of Borel-light approxi-
mations. Such a strategy appears to be useful, as shown below. Indeed, the application of
fractional Borel u-optimization with factor approximants for p = 1, 2 amounts to solving
the equation

B3,2(u)− B3,1(u) = 0.

It brings a sensible result for the sought amplitude B = 1.21118 with the control parameter
u = u3 = 0.286426.

The Borel-light approximations with the same marginal amplitude and varying cor-
recting terms give even better results:

B∗4,3(u3) = P4/4(∞) C3(u3) = 1.18766,

B∗5,3(u3) = P5/5(∞) C3(u3) = 1.22814,

B∗6,3(u3) = P6/6(∞) C3(u3) = 1.18951.

Different resummation methods give the results presented in Table 2. The method of
Fractional Borel-light summation with iterated roots [49] also gives a rather good result:
B = B6,10 = 1.1452. It is rather close to the value B = 1.14(3) obtained with finite-lattice
calculations. Bear in mind that different advanced series methods give B = 1.25(15) [72].

Table 2. Schwinger model—gap.

Schwinger Model Gap

Factor approximants, 8th order 1.0518

Factor approximants, 9th order 1.3421

Borel with factors 1.0551

Borel-light with factors 1.1549

Borel-light with factors, u-optimal 1.1895

Exact 1.1284

Borel with roots (average) [44] 1.1224

Odd Padé, 11th order [58] 1.2266

Corrected Padé approximants [70] 1.2468

Borel-light with roots [49] 1.1452

The best result is marked in bold in Table 2.

5.3. Schwinger Model: Critical Amplitude

The ground-state energy E of the Schwinger model is given by the very short truncated
series [72–78],

E(x) ' 0.5642− 0.219x + 0.1907x2 (x → 0). (92)

The large-x behavior is also known. It is expressed in the form shown in (4),

E(x) ' Bxβ (x → ∞),

with B = 0.6418, β = −1/3. Sometimes, an addition of one more trial term with a3 = 0
may help to improve the results.

Because of the negative β, we work with the inverse truncations when using u-optimization.
The problem appears to be quite difficult for the factor approximations, i.e., the factor
approximant of the second order gives only B ≈ 0.5456. The application of fractional
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Borel u-optimization with the factor approximants for k = 3, p = 1, 2 amounts to solving
the equation

B3,2(u)− B3,1(u) = 0.

It brings, after the inversion, a very good result for the sought amplitude

B = 0.642257

with the uniquely determined control parameter u = u3 = 0.0961685. The result is the
best among all of the results represented in Table 3. It is even better than the result found
from the self-similar root approximants, which explicitly employs the known subcritical
index [79].

A u-optimal Borel-light technique with factors applied to the inverse quantities gives
the inverse amplitude

B∗2,3(uk) = P2,2(∞) C3(u3),

and the total critical amplitude B after inversion equals 0.5827.
For p-optimization with u = 0, the parameter p = p3 is found from the minimal

derivative condition as the unique solution to the equation

∂B3(p)
∂p

= 0,

with p = p3 = 0.897973 and B = B3 = 0.637067.
As expected, the results found with optimizations and presented above represent an

improvement over the non-optimized Borel factor techniques corresponding to u = 0 and
p = 1, which also produce the very reasonable B ≈ 0.6351.

The results of calculations by various methods are shown in Table 3.

Table 3. Schwinger model: amplitude.

Schwinger Amplitude

Factor approximant, second order 0.5456

Factor approximant, third order complex

Fractional Borel with factors, (p = 1, 2), u-optimal 0.6423

Borel with factors (u = 0, p = 1) 0.6351

Fractional Borel with factors, p-optimal, min.derivative 0.6371

Fractional Borel with factors, p-optimal, min.difference 0.5639

Borel-light with factors, u-optimal 0.5827

Exact 0.6418

Fractional Borel with roots [49] 0.6672

Odd Padé–Borel [58] 0.6122

Borel with roots [49] 0.6562

Iterated root, second order 0.5523

Odd Padé [58] 0.5344

The best result is marked in bold in Table 3.
It is worth stressing that it is always useful to attack the problem using several

methods.
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5.4. Anomalous Dimension

Consider the cusp anomalous dimension Ω(g) of a light-like Wilson loop in the
n = 4 supersymmetric Yang–Mills theory [79,80]. It depends only on the variable x = g2

expressed though the coupling g. The problem can be written down in terms of the function
f (x) = Ω(x)

x . The latter function has the following weak-coupling expansion,

f (x) ' 4− 13.1595x + 95.2444x2 − 937.431x3, x → 0.

In the strong-coupling limit, f (x) takes the form shown in (4),

f (x) ' Bxβ, x → ∞,

with B = 2 and β = −1/2.
Direct application of the factor approximants in the second order gives B ≈ 2.1307,

while in the third order, it gives B ≈ 1.8389. The Borel summation with factor approximants
in the second order gives B ≈ 1.8798 and is better than the direct factor approximation. In
the third order, the Borel summation with factors gives complex results.

Neither of the optimization types brings a unique solution. The best result, B ≈ 2.0233,
is found with p-optimization with u = 0,

B3(p)− B2(p) = 0,

with the optimum obtained at p = p2 ≈ 0.43297.
The Borel-light technique, when applied to inverse quantities, gives the inverse amplitude

B∗2,2(p2) = P2/2(∞) C2(p2),

and the total critical amplitude after inversion is B = 1.92018.
The result B ≈ 2.1115 is found for the u-optimization

B3,1(u)− B2,1(u) = 0,

with the optimal value u = u2 ≈ 0.263034.
The fractional Borel technique with iterated roots [49] gives a unique solution B = 1.90291

in the case of the u-optimization problem.
Some results obtained by different methods are shown in Table 4. The best result,

B = 2.0118, is obtained from the methodology described above in Section 3.2.

Table 4. Cusp.

Cusp Amplitude

Factor approximant, second order 2.1307

Factor approximant, third order 1.8389

Borel with factors, second order 1.8798

Borel with factors, third order complex

Borel-light with factors, p-optimal 1.9202

Exact 2

Fractional Borel with roots [49] 1.9029

Odd Padé [58] 1.7973

Optimal Borel–Leroy [46] 2.0118

Borel with roots [49] 2.4416

Iterated Roots 1.6977
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The best result is marked in bold in Table 4.

5.5. Two-Dimensional Polymer: Swelling

For a two-dimensional polymer one can theoretically study the so-called swelling fac-
tor Υ [81]. For Υ, perturbation theory yields expansions in the powers of the dimensionless
coupling parameter g. The swelling factor can be represented as the following truncation,

Υ(g) ' 1 +
1
2

g− 0.12154525 g2 + 0.02663136 g3 − 0.13223603 g4 (g→ 0). (93)

As g→ ∞, the swelling factor is expressed in the form of (4), i.e.,

Υ(g) ' Bgβ.

Here, the critical index β = 1/2 is exact [82,83]. As for the amplitude B, one can only say
that it is of the order of unity.

Indeed, factor approximants and Borel factor techniques all give results close to
unity. For p-optimization with u = 0, the parameter p can be found from the minimal
derivative condition

∂B3(p)
∂p

= 0,

with p = p3 = 0.414668 and B = B3 = 0.982576. A much lower result, B ≈ 0.82498, is
found with u-optimization,

B3,2(u)− B3,1(u) = 0,

with the unique optimum located at u = u3 ≈ 0.443811. The Borel-light summation
technique fails to produce a holomorphic diagonal Padé approximation.

The results are presented in Table 5. Most of the methods give results that are close to
the conjectured value of unity. Even Padé approximants, factor approximants, and Borel
summation with factors all give values close to one.

Table 5. Two-dimensional polymer.

2D Polymer Critical Amplitude

Factor approximant, third order 1.0004

Factor approximant, fourth order 1.00006

Borel with factors, third order, (p = 1, u = 0) 1.00734

Borel with factors, fourth order, (p = 1, u = 0) 0.97209

Fractional Borel with factors, min. derivative, p-optimal 0.98258

“Exact” conjectured 1

Fractional Borel with roots [49] 0.970678

Even Padé [58] 1.00002

Even Padé–Borel [58] 0.977767

Borel with roots [49] 0.9696

Iterated Roots 0.970718

The best result is marked in bold in Table 5.

5.6. Three-Dimensional Polymer: Swelling

For a three-dimensional polymer, one can find the swelling factor Υ(g) [81,84], in the
form of a truncated series of the type (3),

Υ(g) ' 1 +
4
3

g− 2.075385396 g2 + 6.296879676 g3 − 25.05725072 g4 (g→ 0). (94)
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The expansion (94) can be extended to the sixth order [81,84]. The strong-coupling behavior
of the expansion factor is expressed in the form of (4),

Υ(g) ' Bgβ (g→ ∞).

with B ≈ 1.531, and β ≈ 0.3544.
Factor approximants give the following sequence:

B2 = 1.50647, B3 = 1.54784, B4 = 1.53523, B5 = 1.53983, B6 = 1.53701.

Borel factor approximants give the sequence

B∗2 = 1.60365, B∗3 = 1.55123, B∗4 = 1.51916, B∗5 = 1.53117, B∗6 = 1.53992 .

For p-optimization with u = 0, the parameter p = p3 can be found from the condition
∂B3(p)

∂p = 0. The unique solution to the latter equation, p = p3 = 0.358042, is found and the
critical amplitude is B = B3 = 1.53441.

The Borel-light technique gives

B∗2,3(p3) = P2/2(∞) C3(p3) = 1.53998,

B∗3,3(p3) = P3/3(∞) C3(p3) = 1.54002.

A much lower result, B = 1.17626, is found with u-optimization,

B3,1(u)− B2,1(u),

with the optimal value u = u2 = 0.369247. However, the Borel-light technique gives

B∗2,3(u2) = P2/2(∞) C3(u2) = 1.47006,

B∗3,3(u2) = P3/3(∞) C3(u2) = 1.53475,

and the latter estimate for the critical amplitude is rather good.
The results are shown in Table 6.

Table 6. Three-dimensional polymer.

3D Polymer Critical Amplitude

Factor approximant, fifth order 1.5398

Factor approximant, sixth order 1.537

Borel factors, fifth order 1.5312

Borel factors, sixth order 1.5399

Borel-light with factors, sixth order, p-optimal 1.54

Borel-light with factors, sixth order, u-optimal 1.5348

“Exact ” numerical [84] 1.5309

Fractional Borel with roots [49] 1.53523

Even Padé, sixth order [58] 1.54022

Even Padé–Borel [58] 1.53296

Odd Padé, fifth order [58] 1.54089

Odd Padé–Borel [58] 1.52996

Iterated Roots, sixth order 1.53611

Borel with roots 1.52718
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The best result is marked in bold in Table 6.
The fractional p-optimal Borel technique with roots [49] gives a fairly reasonable value,

B = 1.53523. Consistent results have also been found with the Padé–Borel techniques
shown in the paper [58].

5.7. One-Dimensional Quantum Nonlinear Model

The ground-state energy of the Bose-condensed atoms in a harmonic trap can be
expressed in terms of the function f (g), which can be expanded with a dimensionless
coupling parameter g. For the fifth order, f5(g) = 1 + ∑5

n=1 anzn, where all an values can
be found in the paper [85]. The coefficients rapidly decay by the absolute value. The
strong-coupling limit is given in the form (4), f (g) ' 3

2 g2/3.
Factor approximants give the following, apparently convergent, sequence for the

amplitude:
B2 = 1.46572, B3 = 1.49615, B4 = 1.49306, B5 = 1.49188.

Borel factor approximants give the sequence

B∗2 = 1.52317, B∗3 = 1.6084, B∗4 = 1.59098, B∗5 = 1.42684,

which defines the upper and lower bounds.
For p-optimization with u = 0, the parameter p = p3 can be found as the unique

solution to the equation
∂B3(p)

∂p
= 0,

with p = p3 = −0.605018 and B = B3 = 1.47151. The Borel-light technique gives

B∗2,3(p3) = P2/2(∞) C3(p3),

leading to fairly reasonable numbers, B = 1.49291, for the the critical amplitude.
A lower value, B ≈ 1.42983, is found with u-optimization from the equation

B3,2(u)− B3,1(u) = 0,

with the optimal value u = u3 ≈ 0.653582. The Borel-light technique gives

B∗2,3(u3) = P2/2(∞) C3(u3),

and the critical amplitude,
B = B∗2,3(u3) = 1.50763,

is very good.
The results are presented in Table 7. Almost all of them have a good level of accuracy.

Table 7. Non-linear quantum model.

1d Non-Linear Model Amplitude

Factor approximant, 4th order 1.4931

Factor approximant, 5th order 1.4919

Borel factors, 4th order 1.591

Borel factors, 5th order 1.4268

Borel-light with factors, 4th order, p-optimal 1.4922

Borel-light with factors, 4th order, u-optimal 1.5076

Exact 3/2
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Table 7. Cont.

1d Non-Linear Model Amplitude

Fractional Borel with roots [49] 1.4759

Odd Padé [58] 1.4923

Even Padé [58] 1.4918

Borel with roots [49] 1.3851

Iterated roots 1.448

The best result is marked in bold in Table 7.
Particularly good results are obtained with the Fractional Borel-light optimal tech-

niques. The Padé techniques described in the paper [58] also give good results, improving
the techniques of iterated roots.

5.8. Three-Dimensional Harmonic Trap

The ground-state energy E of the trapped Bose condensate in the three-dimensional
case was investigated in the paper [86]. The energy can be approximated by the follow-
ing truncation

E(c) ' 3
2
+

1
2

c− 3
16

c2 +
9

64
c3 − 35

256
c4 (c→ 0), (95)

with the “trapping” parameter c.
For a very strong parameter c, the energy behaves as the power law

E(c) ' Bcβ (c→ ∞), (96)

And, the critical parameters B = 5
4 , β = 2/5 [86] are known.

Factor approximation in the second order fails, while in the higher-order factor, the
approximants give reasonably good results. However, the Borel summation with the factor
approximants in the second order works very well, with B ≈ 1.25983.

The use of fractional Borel u-optimization with the factor approximants for k = 3,
p = 1, 2 amounts to solving the equation

B3,2(u)− B3,1(u) = 0.

It gives an amplitude of B = 1.15323 with the control parameter u = u3 = 0.160358. The
corrected Borel-light technique gives the amplitude

B∗2,3(u3) = P2/2(∞) C3(u3),

and the total critical amplitude
B = 1.2561,

is the best among all estimates.
The result, B ≈ 1.2911, is found with p-optimization with u = 0, which amounts to

solving the equation
B3(p)− B2(p) = 0.

The optimum is found for p = p2 = 0.705782. The Borel-light technique gives the amplitude

B∗2,2(p2) = P2/2(∞) C2(p2),

and the total critical amplitude, B = 1.28598, is quite reasonable. The results from the
calculations using different methods are presented in Table 8. All of them give close and
rather accurate values.
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Table 8. Trap.

3d Trap Amplitude

Factor approximant, third order 1.30227

Factor approximant, fourth order 1.2848

Borel with factors, second order 1.2598

Borel with factors, third order 1.2916

Borel with factors, fourth order 1.2858

Fractional Borel with factors, min.diff. p-optimal 1.2911

Borel-light with factors, u-optimal 1.2561

Borel-light with factors, p-optimal 1.286

Exact 5/4

Fractional Borel with roots [49] 1.2852

Even Padé [58] 1.28211

Even Padé–Borel [58] 1.2855

Borel with roots [49] 1.28492

Iterated roots 1.2739

The best result is marked in bold in Table 8.
In both cases of trapped Bose condensates discussed above, the methods based on the

idea of corrected Borel-factor-light approximants work well. They give numbers that are
better than those of the Padé techniques or those of methodologies based on iterated roots.

5.9. Bose Temperature Shift

The ideal Bose gas is unstable below the condensation temperature T0 [86]. Atomic
interactions induce the shift ∆Tc ≡ Tc − T0 to the realistic Tc of a non-ideal Bose system.
The shift is characterized by the ratio ∆Tc

T0
' c1γ, for the asymptotically small gas parameter

γ→ 0.
Monte Carlo simulations [87–89] suggest that

c1 = 1.3.± 0.05. (97)

In order to calculate c1 theoretically, it has been suggested that one should first calculate an
auxiliary function c1(g) [90–92]. Then, one can find c1 as follows:

c1 = lim
g→∞

c1(g) ≡ B. (98)

The latter limit is found from the expansion over an effective coupling parameter,

c1(g) '= 0.223286g +−0.0661032g2 + 0.026446g3 − 0.0129177g4 + 0.00729073g5. (99)

In the fourth order of factor approximants, we find c1 ≈ 1.1, which is much smaller
than that expected from the simulations.

In what follows, we work with the original c1(g). For instance, in p-optimization with
u = 0, we can set, by analogy with Equation (78),

C3(p)− C2(p) = 0. (100)

The latter equation gives the optimal solution p = p2 = 0.41657. Using the Borel-light
technique with the optimal p2, we have a good result

B = B∗2,2(p2) = P2/2(∞) C2(p2) = 1.28421.
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Even by just setting p = 1, u = 0, we arrive at

B = B∗2,2(1) = P2/2(∞) C2(1) = 1.17351 .

The application of fractional Borel u-optimization with factor approximants amounts to
solving the equation

C3,1(u)− C2,1(u) = 0, (101)

which is written in analogy with (75). It gives the control parameter u = u2 = −0.4351064.
The correction with the Borel-light technique gives the amplitude

B∗2,2(u2) = P2/2(∞)C2(u2),

where C2(u2) ≡ C2,1(u2), and the sought amplitude is B = B∗2,2 = 1.27224.
Note that there is another solution to the equation (101), u2 = −0.56557, and it gives

B∗2,2 = 1.28553. The latter result appears to be identical to the results of Modified Even Padé
summation [58]. The two solutions are very similar to each other, and the non-uniqueness
in such a case does not pose a serious problem.

Various results are shown in Table 9.

Table 9. Shift of the Bose–Einstein condensation temperature and analogous models.

Bose Condensate Parameter c1

Factor approximant, third order 1.0248

Factor approximant, fourth order 1.0959

Borel with factors, second order 0.8165

Borel-light with factors, p-optimal 1.2842

Borel-light with factors, u-optimal 1.2722

“Exact” Monte Carlo 1.3 ± 0.05

Fractional Borel-light with roots [49] 1.2498

Modified Even Padé [58] 1.2885

Corrected Padé [70] 1.386

Odd Padé [58] 0.985

The best result is marked in bold in Table 9.
In the case of the Bose temperature shift, the Borel-light method, based on the idea of

corrected Borel-type approximants, optimization, and correction with Padé approximations
works well. The Padé method modified for an even number of terms in the expansion gives
a result that is close to the latter, even without optimization or Borel transformation. But, it
should be noted here that the even approximation is close in spirit to the general idea of
the corrected approximants, as described in the Section 2.6 and in the paper [70].

Accurate results for the sought parameter are also found with optimal generalized
Borel summation with iterated roots, c1 = 1.339 [44]; with the optimal Mittag–Leffler
summation with iterated roots with c1 = 1.3397 [46]; and with the corrected iterated roots,
c1 = 1.3092 (see [49], and references therein). Kastening [90–92], using the optimized
variational perturbation theory, estimated c1 as 1.27± 0.11.

5.10. Fermi Gas: Unitary Limit

The ground-state energy E of a dilute Fermi gas can be obtained from perturbation
theory [93], so that

E(g) ' a0 + a1g + a2g2 + a3g3 + a4g4, (102)
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with the coefficients

a0 =
3

10
, a1 = − 1

3π
, a2 = 0.055661,

a3 = −0.00914, a4 = −0.018604.

The effective coupling parameter g ≡ |kFas| is simply related to the Fermi wave number kF
and the atomic scattering length as. The limit of very large effective coupling g is called the
unitary Fermi gas [94]. Monte Carlo simulations for the case of g→ ∞ [95,96] yield

E(∞) = 0.1116. (103)

The experimental value [95,97]
E(∞) = 0.1128,

is rather close to the Monte Carlo results.
Factor approximants in the third and fourth orders give rather high estimates for

E(∞), as shown in Table 10, while Borel summation with factor approximants gives rather
low estimates.

Table 10. Fermi gas energy in the unitary limit.

Fermi Gas Unitary Limit

Factor approximant, third order 0.174

Factor approximant, fourth order 0.1644

Borel factors, fourth order 0.0898

Borel-light with factors, p-optimal, min.diff. 0.1125

Borel-light with factors, p-optimal, min.deriv. 0.1293

“Exact” Monte Carlo [95,96] 0.1116

Borel-factor-light, Mittag–Leffler [46] 0.1193

Generalized Borel-light with roots [49] 0.1193

Fractional Borel-light with roots [49] 0.1256

Borel with roots [49] 0.1329

Diagonal Padé 0.1705

The best result is marked in bold in Table 10.
None of the methods, including those using optimizations, bring accurate solutions.

u-Optimization gives B ≈ 0.178 with or without correction terms. The result B ≈ 0.272375
is found with p-optimization by means of the equation

B3(p)− B2(p) = 0, u = 0,

with the optimum at p = p2 = −3.313127. However, the Borel-light techniques give a
holomorphic correcting approximant with the value of the amplitude in the sixth order
being

B = B∗3,2(p2) = P3/3(∞) C2(p2) = 0.11253.

The corresponding approximant

f ∗3,2(g) ' P3,3(g) f ∗2 (g)



Axioms 2023, 12, 1060 27 of 31

that leads to a very accurate estimate is shown below:

f ∗3,2(g) =
0.0182215 + 0.226078g + 0.656425g2 + 0.123943g3

0.0607385 + 0.753593g + 2.28882g2 + g3
(1 + g)0.0438025

(1 + 9.07436g)0.0438025 .

The lower-order approximants, f ∗1,2(g), f ∗2,2(g), appear to be non-holomorphic.
From p-optimization with the minimal derivative condition

∂B3(p)
∂p

= 0,

we find p = p3 = −3.1325. The Borel-light technique then gives a reasonable estimate for
the amplitude

B = B∗3,3(p3) = P3/3(∞) C3(p3) = 0.1293.

We conclude that the Borel-light methods based on Borel summation with optimization
and subsequent correction with Padé approximations work well for the problem of a unitary
limit, approaching the quality of Monte Carlo and experimental results.

6. In Lieu of Conclusions

For the first time, Fractional Borel Summation was applied in conjunction with self-
similar factor approximants. This is the main distinction from the method developed
in [49] in conjunction with the so-called self-similar iterated root approximants. It was
found that the technique of Fractional Borel Summation can be most conveniently applied
in hybrid form. Such hybrid approximants emerge when the Borel-transformed factor
approximations are complemented multiplicatively with Padé approximants to satisfy
the original expansions asymptotically. A detailed comparison of different methods is
performed on a large set of examples, including the approximation techniques of self-
similarly modified Padé-Borel approximations. Such a comparison clearly emphasizes the
strong points of each of the techniques.

We confirm that the quality of the analytical reconstructions can match the quality of
heavy numerical work. Analytical results are often very similar to the exact numerical data.
They follow after a sequence of a few analytical steps, and the most difficult part of solving
transcendental equations is performed numerically with any desired accuracy.

The discussed approach to the resummation of the asymptotic series is multi-leveled.
General Borel Fractional transformation of the original series was introduced. The found
transformed series should be resummed in order to adhere to the asymptotic power laws.
One starts with the formulation of dynamics in the approximations space. To this end,
self-similarity is employed. The flow in the approximation space should be controlled,
and “deep” control is incorporated into the definitions of the self-similar approximants.
Certain classes of self-similar approximants satisfying the power law behavior by design,
such as root and factor self-similar approximants, are chosen for reasons of transparency,
explicitness, and convenience. We also employ properly modified (taking account of
power law behavior) Padé approximants by noting that they can be viewed as a particular
case of factor approximants. The asymptotic power law properties of the approximations
follow directly from the ways in which controls are introduced into the approximation
dynamics. The second level of controls concerns the dynamics of Borel-type approximations
that emerge after an inverse transformation is accomplished back to the original space of
approximations. Self-similarity of the approximants allows us to find the dependencies
of the sought critical properties explicitly. The second level of control is then performed
by applying the minimal difference and minimal derivative conditions with respect to the
parameters that are explicit in the original Borel Fractional transformation.

The main methods compared in the paper each have their own merits. Different meth-
ods, based on Padé approximants [58], can be useful as benchmarks for the evaluation of
the results. The standard scheme of odd Padé approximants is not competitive with respect
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to the other considered methods. Of course, this statement concerns only the physical
problems considered above. However, the methods based on Padé approximants are indis-
pensable for computations with very long expansions. For shorter expansions, the other
methods discussed in the paper should be used. But, in many cases of such expansions, the
diagonal Padé approximants reappear in combination with factors and roots. Such hybrid
forms of corrected approximants, when the approximations of different types are applied
consequentially, are very useful for the practical purpose of accurate summation.

In conclusion, we recapitulate the main steps of the multi-level methodology devel-
oped in the present paper.

1. The initial truncated series (2) is transformed into the form of a new, supposedly better
behaving series. The chosen transformation is the Fractional Iterated Transform (see
Section 3.6). At this stage, the control parameters are introduced. They have to be
found at the final optimization step.

2. To arrive to the correct asymptotic behavior at infinity, the transformed series is
approximated by the class of approximants with power law behavior (4) at infinity. At
this step, we reconstruct the coefficients for an arbitrary n.

3. When the guiding principle of self-similarity, described in Section refself, is applied
together with the so-called algebraic transformation of the original series [32], we
arrive at two types of approximants with the desired property at infinity. These are
the self-similar roots discussed in Section 2.4 and the self-similar factor approximants
described in the Sections 2.5 and 4.1.

4. In the limit of a large x, the expressions for the critical amplitudes become explicit
and factorize into the parts emerging from the self-similar approximants applied to
the transformed series and from the Γ-functional terms emerging from the inverse
transformation, being dependent on the type of transformation.

5. The application of self-similar iterated roots was considered previously [49]. Now, after
the optimization with the minimal difference and (or) minimal derivative conditions
described in Sections 2.2 and 3.6, we resort to the best known (to us) guiding principle
for numerical convergence of the sequences of the approximations for the sought quantities.
The uniqueness of the solution for the given class of approximants is achieved due to
careful selection of the transformation to the original truncated series.

6. In the current paper, we employ the self-similar factor approximants together with
the most convenient technically and theoretically sound method of so-called hybrid
techniques (see Sections 2.6 and 4.3). Typically, in low orders of the perturbation
theory, an optimized factor approximant has to be found. To return to the original
series, we restore the factors in the form of the diagonal Padé approximants. Besides
numerical convergence, we are also guided by the Gonchar results on the convergence
of the diagonal Padé approximants [67]. Such a selection leads, by design, to a unique
limit that can be found numerically as the approximation for the sought quantity.

The Fractional Borel Summation with iterated roots can be successfully applied for
various problems [49], although it is not always the best method. Iterated roots can
be exceptionally helpful for problems which appear to be indeterminate and those that
are poorly treatable from the standpoint of the Padé approximations [49] and the factor
approximations. The cases with fast-growing and rapidly diminishing by magnitude
coefficients an are better treated by means of Borel summations with iterated roots. The
cases with slowly diminishing by magnitude coefficients an are best approximated by Borel
summations with factors. Fractional Borel Summation with factor approximants in its
different realizations can be successfully applied to various problems of the types discussed
above. In addition, it is shown to be the best method, or very close to it, for about half of
the problems considered in the paper, much more often than the other methods discussed
above. Thus, the techniques based on factors are most useful in the context of finding the
best method for the particular problems. One can say that the factor approximants are
a sharper tool than the iterated roots, but the iterated roots are useful for a wider range
of applications.
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