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Abstract: In this paper, we study a simplified approach to determine the pricing formula for vul-
nerable options involving two correlated underlying assets. We utilize an intensity-based model to
describe the credit risk associated with these vulnerable options. Without the change of measure
technique, we derive pricing formulas for vulnerable options involving two underlying assets based
on the probabilistic approach. We provide closed-form pricing formulas for two specific types of
options: the vulnerable exchange option and the vulnerable foreign equity option. Finally, we present
numerical results to demonstrate the accuracy of our formulas using the Monte-Carlo method and
the effect of various parameters on the price of options.
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1. Introduction

The pricing problem of options with credit risk, also known as “vulnerable options”,
has been extensively studied by numerous researchers. Vulnerable options are financial
derivatives that take into account the credit risk of the counterparty. In general, two models
have been used to model credit risk are the structural model and the intensity-based model.
The structural model, proposed by Merton [1], Black and Cox [2] and Geske [3], depends
on the option issuer’s firm value process. A credit event occurs in the structural model
if the firm value process falls below the option issuer’s liability value at maturity. The
intensity-based model, initially developed by Jarrow and Turnbull [4], Lando [5] and Jarrow
and Yu [6], determines a credit event based on the jump of a Poisson process with a given
intensity. In other words, the event is triggered by the first jump of the process, and there is
no direct relationship between the option issuer’s value and the credit event.

The research on vulnerable options began primarily with a structural approach. As a
result, the structural model has been used in many studies in the past to model credit risk in
vulnerable option pricing. Credit events occur in the structural model when a firm’s asset
value falls below a specified threshold. Johnson and Stulz [7] were the first to introduce a
vulnerable European option pricing model in which the option is the counterparty’s sole
liability. Klein [8] extended the results of Johnson and Stulz [7] by allowing the option writer
to have other liabilities and providing a correlation between the underlying asset and the
counterparty’s asset. Liao and Huang [9] considered the option issuer’s potential default
during the remaining life of the option and developed pricing formulas for vulnerable
options with stochastic interest rate. Jeon and Kim [10] used the Mellin transform approach
to develop the works of [9] as two types of options. More recently, Wang [11], He et al. [12],
Kim et al. [13] and Jeon et al. [14] investigated the pricing of vulnerable options in the
presence of stochastic volatility affecting asset price processes. In addition, there have been
numerous research on vulnerable options with multi-assets [15–19].

We utilize an intensity-based model to capture credit risk for this study since it is
commonly used to evaluate the prices of credit derivatives such as credit default swaps
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(CDS) [20,21], defaultable bonds [22], total return swap (TRS) [23,24], and others. We
use an intensity-based model to investigate the pricing of vulnerable options with multi-
assets. There have recently been studies on vulnerable options within the framework of the
intensity-based model. Fard [25] derived a pricing formula for vulnerable option under a
generalized jump model and used an intensity-based model to account for counterparty
credit risk. Wang [26] applied Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH) model for the underlying asset process and an intensity-based model for counter-
party credit risk to obtain a solution for the price of vulnerable options under a discrete time
model. Koo and Kim [27] chose an intensity-based model to capture the option issuer’s
credit event and provided an explicit analytical valuation formula for a catastrophe put
option with default risk using the multidimensional Girsanov theorem. Moreover, Pasricha
and Goel [28] investigated a vulnerable power exchange option with two underlying assets
within an intensity-based model using a doubly stochastic Poisson process to model the
counterparty’s credit event and assuming correlation among the three underlying assets in
both the continuous and jump components. Wang [29] derived explicit pricing formula
for vulnerable Asian option within an intensity-based model when the underlying asset
process follows a two-factor stochastic volatility model.

We present a simple method for pricing vulnerable options with two underlying
assets within an intensity-based model in this paper,. Based on Fard’s model [25], we
assume that the default intensity process, which is correlated with the underlying assets,
follows a mean-reverting Ornstein-Uhlenbeck (OU) process. However, unlike Fard’s
approach, we do not use the change of measure technique. Instead, we provide a simplified
valuation method for pricing vulnerable options with correlated underlying assets that is
based on the probabilistic approach. Using this proposed method, we derive closed-form
pricing formulas for vulnerable exchange option and vulnerable foreign equity option in
particular. Furthermore, we examine the accuracy of the formulas using the Monte Carlo
(MC) simulation.

The rest of the paper is organized as follows. In Section 2, we introduce the underlying
assets for pricing vulnerable options, along with an intensity-based model to account for
credit risk. In Section 3, we provide the valuation formulas for vulnerable exchange options
and vulnerable foreign equity options. Additionally, we introduce the lemmas used in
option pricing. In Section 4, we carry out some numerical experiments to show the accuracy
of our formulas obtained in Section 3. Finally, in Section 5, we present concluding remarks.

2. The Model

We assume that there are no arbitrage opportunities in the economy represented by a
filtered complete probability space (Ω,F , {F (t)}, Q) where Q is a risk-neutral probability
measure and {F (t)} satisfies the usual conditions. Under the measure Q, the dynamics of
two underlying assets are assumed to be

dS1(t) = rS1(t)dt + σ1S1(t)dW1(t),

dS2(t) = rS2(t)dt + σ2S2(t)dW2(t),

where r is a risk-free interest rate, σi, (i = 1, 2) is volatility, and W1(t) and W2(t) are the
correlated standard Brownian motions satisfying dW1(t)dW2(t) = ρ12dt. As in Fard [25],
we assume that the process of default intensity is given by

dλ(t) = a(b− λ(t))dt + σ3dW3(t),

where a, b and σ3 are positive constants and W3(t) is the standard Brownian motion satis-
fying dW1(t)dW3(t) = ρ13dt and dW2(t)dW3(t) = ρ23dt. With the process λ(t), the default
time τ of option issuer is defined by

P(τ > t) = EQ
[
e−
∫ t

0 λ(s)ds
]
, t ∈ [0, T],



Axioms 2023, 12, 1105 3 of 15

where T is the maturity and EQ[·] denotes the expectation under the measure Q. Define
FSi (t), (i = 1, 2) be the σ-field generated by the price processes of underlying asset
i, (i = 1, 2) such that FSi (t) = σ(Si(s), s ≤ t), (i = 1, 2). Similarly, the filtration
of the default intensity Fλ(t) and the filtration of the default time H(t) are defined as
Fλ(t) = σ(λ(s), s ≤ t) and H(t) = σ(1{τ≤s}, s ≤ t), respectively. Then, the enlarged
filtration F (t) is generated by F (t) = FS1(t) ∨ FS2(t) ∨ Fλ(t) ∨ H(t), where 1{} is the
indicator function.

Let w be the recovery rate of the vulnerable option. Then, based on the results of
Lando [5] and Fard [25], the price of vulnerable option with two underlying assets at time
0 in the intensity based model can be expressed as

C = e−rTEQ
[
w · h(S1(T), S2(T))1{τ≤T} + h(S1(T), S2(T))1{τ>T}|F (0)

]
= we−rTEQ[h(S1(T), S2(T))|F (0)]

+(1− w)e−rTEQ
[
e−
∫ T

0 λ(s)dsh(S1(T), S2(T))|F (0)
]
, (1)

where h(·, ·) denotes the payoff function of option and w is a constant satisfying 0 < w < 1.

3. The Valuation of Vulnerable Options with Two Underlying Assets

In this section, we present a simplified approach for pricing of vulnerable options with
two underlying assets based on Equation (1). The proposed approach provides the option
pricing formula without the method of changing measure. We now introduce the lemmas
to obtain the pricing formulas.

Lemma 1. Let X1 and X2 be random variables which have a bivariate normal distribution. Then,
for any constant k,

E[eX1 1{X2≥k}] = eE[X1]+
Var[X1 ]

2 N

(
Cov(X1, X2) + E[X2]− k√

Var[X2]

)
,

where Var is the variance operator, Cov is the covariance operator and N is the cumulative standard
normal distribution function.

Proof. For convenience, we write expectations and variances of random variables as

E[X1] = µ1, Var[X1] = σ2
1 , E[X2] = µ2, Var[X2] = σ2

2 ,

respectively.
By the conditional distribution of X1 given X2 and the moment generating functions

of normal variables, we have

E[eX1 1{X2≥k}] = E[E[eX1 |X2]1{X2≥k}]

= E[eµ1+ρ
σ1
σ2
(X2−µ2)+

1
2 σ2

1 (1−ρ2)1{X2≥k}]

= eµ1−ρ
σ1
σ2

µ2+
1
2 σ2

1 (1−ρ2)E[eρ
σ1
σ2

X2 1{X2≥k}],

where k is some constant and ρ is the correlation between X1 and X2. Then, by the change
of variable X2 = µ2 + σ2Z2, we have

E[eρ
σ1
σ2

X2 1{X2≥k}] = eρ
σ1
σ2

µ2 E[eρσ1Z2 1{Z2≥
k−µ2

σ2
}]

= eρ
σ1
σ2

µ2+
1
2 ρ2σ2

1

∫ ∞

k−µ2
σ2

e−
1
2 (Z2−ρσ1)

2

√
2π

dZ2.
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This completes the proof.

Lemma 2. Let X1, X2 and X3 be random variables which have a trivariate normal distribution.
Then,

E[e−X3 g(X1, X2)] = E[e−X3 ]E[g(X1 − Cov(X1, X3), X2 − Cov(X2, X3)],

for which the expectations exist for any function g(·, ·).

Proof. Let us define the function f̂ such that

f̂ (x1, x2) :=
∫ ∞

−∞
e−x3 f (x1, x2, x3)dx3,

where f is the joint density function of (X1, X2, X3). Then, we have

E
[
e−X3 g(X1, X2)

]
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−x3 g(x1, x2) f (x1, x2, x3)dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞
g(x1, x2) f̂ (x1, x2)dx1dx2.

We now consider the moment generating function (MGF) of (X1, X2, X3). That is, MGF
of (X1, X2, X3) is given by φ(s, t, u) = E[esX1+tX2+uX3 ]. If g(x1, x2) = ex1+x2 , we can find
that

φ(s, t,−1) = E[esX1+tX2−X3 ] =
∫ ∞

−∞

∫ ∞

−∞
esx1+tx2 f̂ (x1, x2)dx1dx2.

Here, sX1 + tX2 − X3 has a normal distribution. It follows that

φ(s, t,−1)

= exp
(

sE[X1] + tE[X2]− E[X3] +
s2Var[X1]

2
+

t2Var[X2]

2
+

Var[X3]

2
+stCov[X1, X2]− tCov[X2, X3]− sCov[X1, X3])

= e−E[X3]+
Var[X3 ]

2

× exp
(

s(E[X1]− Cov[X1, X3]) +
s2Var[X1]

2

+t(E[X2]− Cov[X2, X3]) +
t2Var[X2]

2
+ stCov[X1, X2]

)
= E[e−X3 ]E[exp(s(X1 − Cov[X1, X3]) + t(X2 − Cov[X2, X3]))].

Since MGF uniquely determines the distribution, f̂ (x1, x2)/E[e−X3 ] becomes a density
function of (X1 − Cov[X1, X3], X2 − Cov[X2, X3]). Therefore, we conclude that

E
[
e−X3 g(X1, X2)

]
= E[e−X3 ]

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)

f̂ (x1, x2)

E[e−X3 ]
dx1dx2.

This completes the proof.

We investigate the pricing of vulnerable options with two underlying assets under
the intensity based model using Lemmas 1 and 2. Specifically, we deal with two kinds of
options: vulnerable foreign equity option and vulnerable exchange option, and derive the
closed-form pricing formulas of the options.
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3.1. Vulnerable Exchange Option

Margrabe [30] first derived the closed-form pricing formula of the european exchange
option which provides the option holder the right to exchange one risky asset for another.
Since its introduction by Margrabe [30], the option has become one of the most popular
exotic options in the over-the-counter (OTC) market. We assume that the dynamics of
underlying assets and default intensity follow the processes defined in the previous section.
From Equation (1), the vulnerable exchange option price at time 0 with maturity T is
given by

V(0) = (1− w)e−rTEQ
[
e−
∫ T

0 λ(s)ds(S1(T)− S2(T))+|F (0)
]

+we−rTEQ[(S1(T)− S2(T))+|F (0)
]

:= (1− w)e−rTV1 + we−rTV2. (2)

Then, using the Lemmas 1 and 2, we can derive the closed-form pricing formula of
vulnerable exchange option in the intensity based model.

Theorem 1. The price of vulnerable exchange option at time 0 is given by

V(0) = (1− w)Λ1

(
S1(0)e−

σ1σ3ρ13
a

∫ T
0 u(s,T,a)dsN(d1)− S2(0)e−

σ2σ3ρ23
a

∫ T
0 u(s,T,a)dsN(d2)

)
+w
(

S1(0)N(d̂1)− S2(0)N(d̂2)
)

, (3)

where

d1 =
ln
(

S1(0)
S2(0)

)
+ 1

2 σ2T +
(

σ2σ3ρ23−σ1σ3ρ13
a

) ∫ T
0 u(s, T, a)ds

σ
√

T
,

d2 = d1 − σ
√

T,

d̂1 =
ln
(

S1(0)
S2(0)

)
+ 1

2 σ2T

σ
√

T
,

d̂2 = d̂1 − σ
√

T,

Λ1 = exp

[
−bT − λ(0)− b

a
(1− e−aT) +

σ2
3

2a2

∫ T

0
u2(s, T, a)ds

]
,

u(s, T, a) = 1− e−a(T−s),

σ2 = σ2
1 + σ2

2 − 2ρ12σ1σ2.

Proof. Using Lemma 2, we can decompose V1 into two expectations as follows.

V1 = EQ
[
e−
∫ T

0 λ(s)ds(S1(T)− S2(T))+|F (0)
]

= e−bT− λ(0)−b
a (1−e−aT)EQ

[
e−X3 |F (0)

]
×EQ[g(X1 − Cov(X1, X3), X2 − Cov(X2, X3))|F (0)], (4)

where X1 = σ1W1(T), X2 = σ2W2(T), X3 = σ3
a
∫ T

0 u(s, T, a)dW3(s) and

g(x, y) = (S1(0)e(r−
1
2 σ2

1 )T+x − S2(0)e(r−
1
2 σ2

2 )T+y)+.

Using the Ito isometry, we find that the random variable X3 is normally distributed

with mean 0 and variance σ2
3

a2

∫ T
0 u2(s, T, a)ds. Then, the first expectation in Equation (4)

can be calculated easily. Next, let us consider the second expectation in Equation (4). The
expectation can be represented by
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EQ[g(X1 − Cov(X1, X3), X2 − Cov(X2, X3))|F (0)]

= S1(0)e(r−
1
2 σ2

1 )T−
σ1σ3ρ13

a
∫ T

0 u(s,T,a)ds

×EQ
[
eX1 1{S1(T)e−Cov(X1,X3)>S2(T)e−Cov(X2,X3)}|F (0)

]
−S2(0)e(r−

1
2 σ2

2 )T−
σ2σ3ρ23

a
∫ T

0 u(s,T,a)ds

×EQ
[
eX2 1{S1(T)e−Cov(X1,X3)>S2(T)e−Cov(X2,X3)}|F (0)

]
. (5)

X1 − X2 is normally distributed with mean 0 and variance σ2T. Then, by applying
Lemma 1, we can calculate two expectations in Equation (5).

EQ
[
eXi 1{S1(T)e−Cov(X1,X3)>S2(T)e−Cov(X2,X3)}|F (0)

]
= e

σ2
i
2 TN(di), f or i = 1, 2.

This completes the formula for V1. Finally, since V2 is Margrabe’s formula which is
well known, we can obtain the pricing formula for vulnerable exchange option.

Remark 1. Theorem 1 is also applicable to the vulnerable european options in the intensity based
model. The vulnerable european call option price can be obtained by setting strike K = S2(0)erT

and σ2 = 0.

3.2. Vulnerable Foreign Equity Option

Foreign equity options are contingent claims where the payoffs are determined by
underlying assets in one currency, but the actual payoff is converted to another currency
at maturity. Following Kwok [31], there are four types of foreign equity options. Among
them, we consider a foreign equity option call stuck in domestic currency in this paper.

Let S f (t) and Sd(t) be the asset price in foreign currency and the asset price in domestic
currency, respectively. We denote the exchange rate specified in domestic currency per
unit of the foreign currency at time t by Y(t), so that the relation between S f (t) and
Sd(t) is formulated as Sd(t) = Y(t)S f (t). We also assume that rd and r f are the domestic
and foreign risk-free interest rates, respectively. As shown by Kwok and Wong [32] and
Martzoukos [33], under risk-neutral probability measure Q, the price processes for S f (t)
and Sd(t) are given by

dSd(t) = (rd − q)Sd(t)dt + σ1Sd(t)dW1(t),

dS f (t) = (r f − q− ρ12σ1σ2)S f (t)dt + σ1S f (t)dW1(t),

where q is the dividend of the asset, σ1 is the volatility of the asset and W1(t) is the standard
Brownian motion, respectively. Also, the exchange rate process Y(t) is given by

dY(t) = (rd − r f )Y(t)dt + σ2Y(t)dW2(t),

where σ2 is the volatility of exchange rate and W2(t) is the standard Brownian motion
satisfying dW1(t)dW2(t) = ρ12dt under the measure Q. Then, with the process of default
intensity λ(t) defined in the previous section, a vulnerable foreign equity option call price
in domestic currency at time 0 with domestic strike K and maturity T is given by

C(0) = (1− w)e−rdTEQ
[
e−
∫ T

0 λ(s)ds(Y(T)S f (T)− K)+|F (0)
]

+we−rdTEQ
[
(Y(T)S f (T)− K)+|F (0)

]
:= (1− w)e−rdTC1 + we−rdTC2. (6)
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We present the closed-form pricing formula of vulnerable foreign equity option in the
the following theorem.

Theorem 2. The price of vulnerable foreign equity option at time 0 is given by

C(0) = (1− w)Λ1

×
(

Y(0)S f (0)e
(−q+ 1

2 σ2
f )T−

(
σ2σ3ρ23+σ1σ3ρ13

a

) ∫ T
0 u(s,T,a)dsN(d1)− Ke−rdTN(d2)

)
+w
(

Y(0)S f (0)e−qTN(d̂1)− Ke−rdTN(d̂2)
)

, (7)

where u(s, T, a) and Λ1 are defined in Theorem 1, and

d1 =
ln
(Y(0)S f (0)

K

)
+
(

rd − q + 1
2 σ2

f

)
T −

(
σ2σ3ρ23+σ1σ3ρ13

a

) ∫ T
0 u(s, T, a)ds

σf
√

T
,

d̂1 =
ln
(Y(0)S f (0)

K

)
+
(

rd − q + 1
2 σ2

f

)
T

σf
√

T
,

d2 = d1 − σf
√

T,

d̂2 = d̂1 − σf
√

T,

σ2
f = σ2

1 + σ2
2 + 2ρ12σ1σ2.

Proof. Similar to Theorem 1, applying Lemma 2, we can rewrite C1 as

C1 = EQ
[
e−
∫ T

0 λ(s)ds(Y(T)S f (T)− K)+|F (0)
]

= e−bT− λ(0)−b
a (1−e−aT)EQ

[
e−X3 |F (0)

]
×EQ[g(X1 − Cov(X1, X3), X2 − Cov(X2, X3))|F (0)], (8)

where X1 = σ1W1(T), X2 = σ2W2(T), X3 = σ3
a
∫ T

0 u(s, T, a)dW3(s), and

g(x, y) = (Y(0)S f (0)e
(rd−q− 1

2 σ2
f )T+x+y − K)+.

The first expectation in Equation (8) can be calculated easily, and the second expecta-
tion can be represented by

EQ[g(X1 − Cov(X1, X3), X2 − Cov(X2, X3))|F (0)]

= Y(0)S f (0)e
(rd−q− 1

2 σ2
f )T−

(
σ2σ3ρ23+σ1σ3ρ13

a

) ∫ T
0 u(s,T,a)ds

×EQ

eX1+X2 1
{Y(T)S f (T)e

−
(

σ2σ3ρ23+σ1σ3ρ13
a

) ∫ T
0 u(s,T,a)ds

>K}
|F (0)


−KEQ

1
{Y(T)S f (T)e

−
(

σ2σ3ρ23+σ1σ3ρ13
a

) ∫ T
0 u(s,T,a)ds

>K}
|F (0)

. (9)
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Since X1 + X2 is normally distributed with mean 0 and variance σ2
f T, the second

expectation in Equation (9) is

EQ

1
{Y(T)S f (T)e

−
(

σ2σ3ρ23+σ1σ3ρ13
a

) ∫ T
0 u(s,T,a)ds

>K}
|F (0)


= PQ

(
Y(T)S f (T) > Ke

(
σ2σ3ρ23+σ1σ3ρ13

a

) ∫ T
0 u(s,T,a)ds|F (0)

)
= PQ(−X1 − X2

< ln

(
Y(0)S f (0)

K

)
+

(
rd − q +

1
2

σ2
f

)
T −

(
σ2σ3ρ23 + σ1σ3ρ13

a

) ∫ T

0
u(s, T, a)ds

)
= N(d2).

In Equation (9), the expectations can be calculated using Lemma 1. Moreover, C2 can
be calculated easily without the use of Lemma 2. Finally, we obtain the pricing formula
combining above results .

Remark 2. As in Fard [25], the pricing formulas in Theorems 1 and 2 can be derived using the
change of measure method. However, in the intensity based model, the approach based on Lemma 1
and Lemma 2 is simpler for pricing vulnerable options with two underlying assets.

4. Numerical Experiments

In this section, we present numerical experiments that demonstrate the impact of
significant parameters on the option price and verify the accuracy of our pricing formulas.
We specifically compare the pricing formula values with the option values generated using
the Monte Carlo (MC) simulation method, and we provide graphs for illustrating the
sensitivity analysis of parameters on the vulnerable options.

4.1. Monte Carlo Simulation

In this subsection, we show the accuracy of our approach by comparing the values by
the pricing formulas in the previous section and those MC simulations with 20,000 sample
paths and 500 time steps.

Using the Euler discretization, the sample paths of the processes for vulnerable ex-
change option are given by

ln S1(t + ∆t) = ln S1(t) + (r− 0.5σ2
1 )∆t + σ1

√
∆tε1,

ln S2(t + ∆t) = ln S2(t) + (r− 0.5σ2
2 )∆t + σ2

√
∆t(ρ12ε1 +

√
1− ρ2

12ε2),

λ(t + ∆t) = λ(t) + a(b− λ(t))∆t + σ3
√

∆t(ρ13ε1 + ρ̂23ε2 +
√

1− ρ2
13 − ρ̂23

2ε3),

where ∆t = 1/1000, ρ̂23 = (ρ23 − ρ12ρ13)/
√

1− ρ2
12, and ε1, ε2, ε3 are identical and in-

dependent samples from the standard normal distribution with mean 0 and variance
1. The experiments’ default parameters for the vulnerable exchange option price are
S1(0) = S2(0) = 100, r = 0.03, T = 1, λ(0) = 0.45, σ1 = 0.18, σ2 = 0.12, σ3 = 0.25, ρ12 =
ρ13 = ρ23 = 1, a = 0.06, b = 1.5 and w = 0.75.

The values V(0) by Theorem 1 and the values using MC method are shown in Table 1.
The values of ‘R-err’ in Table 1 are the relative error between values by the pricing formulas
and values by the MC method defined by

R-err ,
∣∣∣∣Value by formula − Value by MC

Value by formula

∣∣∣∣.
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The results in Table 1 demonstrate that our option pricing formula is accurate. Fur-
thermore, we find that experiments with the proposed pricing formula take less than 0.1 s
on average while the Monte Carlo simulations take almost 20 s on average.

Table 2 provides comparison of vulnerable foreign equity option values calculated
through our formula given in Theorem 2 and values obtained through the MC method. The
processes of the vulnerable foreign equity option are discretized similarly to the processes
of vulnerable exchange option. Table 2 shows the accuracy of our formula, as expected.
The experiments’ default parameters for the vulnerable foreign equity option price are
S f (0) = 100, K = 100, Y(0) = 1.1, rd = r f = 0.03, T = 1, q = 0, λ(0) = 0.45, σ1 = 0.18,
σ2 = 0.12, σ3 = 0.25, ρ12 = ρ13 = ρ23 = 1, a = 0.06, b = 1.5 and w = 0.75.

Table 1. Price of vulnerable exchange option. All experiments are conducted using the MATLAB.

Vulnerable Exchange Option

S1(0) S2(0) w Price V(0) Monte Carlo R-Err

100 60 0.25 27.763 28.185 1.52 × 10−2

0.5 31.842 31.496 1.08 × 10−2

0.75 35.921 35.908 3.53 × 10−4

80 0.25 13.716 13.738 1.67 × 10−3

0.5 15.811 15.801 6.01 × 10−4

0.75 17.905 17.974 3.89 × 10−3

100 0.25 1.519 1.545 1.71 × 10−2

0.5 1.811 1.839 1.54 × 10−2

0.75 2.102 2.117 7.37 × 10−3

Av. run time (s) 0.031 18.1211

Table 2. Price of vulnerable foreign equity option. All experiments are conducted using the MATLAB.

Vulnerable Foreign Equity Option

S f (0) K w Price C(0) Monte Carlo R-Err

100 60 0.25 37.211 37.067 3.87 × 10−3

0.5 42.120 42.454 7.93 × 10−3

0.75 47.019 46.960 1.24 × 10−3

80 0.25 24.480 24.418 2.53 × 10−3

0.5 27.665 27.677 4.39 × 10−4

0.75 30.849 30.850 1.929 × 10−5

100 0.25 14.332 14.344 8.50 × 10−4

0.5 16.179 16.159 1.21 × 10−3

0.75 18.028 17.984 2.41 × 10−3

Av. run time (s) 0.030 18.2574

4.2. Numerical Examples

Figures 1–6 illustrate the vulnerable exchange option prices in the intensity-based
model to investigate the impact of various parameters. Figures 1 and 2 present the option
prices against maturity T for three recovery rate parameters w = 0.5, 0.75, 1 and initial
intensity parameters λ(0) = 0.5, 1.5, 2.5. From Figures 1 and 2, we observe that option
price increases when the maturity increases. As expected, in Figure 1, we can find that a
lager value of w corresponds a higher price of option. We also find that option the prices
decrease with an increase in λ(0) in Figure 2. Figure 3 displays option prices against
volatility σ1 of underlying asset S1(t) for three maturities T = 0.5, 1, 1.5. From Figure 3, we
observe that option prices increase for σ1 > 1.2, but decrease for σ1 < 1.2 for all maturity.
In Figure 4, we report option prices against volatility σ3 of intensity process. Since the
probability of default increases as σ3 increases, the prices decrease with an increase in σ3.
Figures 5 and 6 show the option prices against the correlations ρ12 and ρ13 respectively and
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for three recovery rate parameters. We observe that the option prices decrease when the
correlation ρ12 increases. This is because two underlying assets S1(t) and S2(t) move in the
same direction for positive correlation. Different from Figure 5, the price is constant for
w = 1. This is due to the fact that the correlation ρ13 does not have any role because credit
risk does not occur when w = 1. If w 6= 1, the prices decrease as ρ13 increases.

Figures 7–12 illustrate the vulnerable foreign equity option prices in the intensity-
based model to investigate the impact of various parameters. In most of the Figures, except
for Figure 9, we can see that the behaviors of foreign equity option prices are similar to
the behaviors of exchange option prices for same parameters. In contrast to Figure 3, in
Figure 9, as σ1 x increases, the option prices also increase continuously. This is due to the
difference in the structure of the payoff function.
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Figure 1. Price of vulnerable exchange option against T for recovery rates w = 0.5, 0.75, 1.
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Figure 2. Price of vulnerable exchange option against T for initial intensities λ(0) = 0.5, 1.5, 2.5.
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Figure 3. Price of vulnerable exchange option against σ1 for maturities T = 0.5, 1, 1.5.
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Figure 4. Price of vulnerable exchange option against σ3 for maturities T = 0.5, 1, 1.5.
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Figure 5. Price of vulnerable exchange option against ρ12 for recovery rates w = 0.5, 0.75, 1.
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Figure 6. Price of vulnerable exchange option against ρ13 for recovery rates w = 0.5, 0.75, 1.

0.5 1 1.5 2

T

14

16

18

20

22

24

26

28

P
ri
c
e
 C

(0
)

 w=0.5

 w=0.75

 w=1

Figure 7. Price of vulnerable foreign equity option against T for recovery rates w = 0.5, 0.75, 1.
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Figure 8. Price of vulnerable foreign equity option against T for initial intensities λ(0) = 0.5, 1.5, 2.5.
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Figure 9. Price of vulnerable foreign equity option against σ1 for maturities T = 0.5, 1, 1.5.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

3

12

13

14

15

16

17

18

19

20

21

P
ri
c
e
 C

(0
)

 T=0.5

 T=1

 T=1.5

Figure 10. Price of vulnerable foreign equity option against σ3 for maturities T = 0.5, 1, 1.5.
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Figure 11. Price of vulnerable foreign equity option against ρ12 for recovery rates w = 0.5, 0.75, 1.
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Figure 12. Price of vulnerable foreign equity option against ρ13 for recovery rates w = 0.5, 0.75, 1.

5. Concluding Remarks

In this paper, we investigate a simple approach for pricing vulnerable options with
two correlated underlying assets in an intensity-based model. The mean-reverting OU
process, which is correlated with the underlying assets, is used to model credit risk. We
obtain option pricing formulas using the properties of three random variables without
changing the measure. The approach presented in this study is easily expanded to more
general vulnerable options in the intensity-based model. We derive closed-form pricing
formulas for two types of options with two underlying assets using the proposed approach:
exchange option and and foreign equity option. Finally, we provide numerical results using
the MC simulation method to show the accuracy of our option pricing formula and graphs
to illustrate the impacts of different parameters on option price.

This study employs the mean-reverting OU process for stochastic intensity based on
Fard’s model [25], however it has a limitation: the intensity cannot be negative mathe-
matically, but the mean-reverting OU process for intensity can have negative values. To
overcome this problem, stochastic intensity models that do not allow negative values, such
as the CIR model, should be used to vulnerable option pricing in the intensity-based model.
This will be studied further in the future via the change of measure method.
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National University of Science and Technology).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Merton, R.C. On the pricing of corporate debt: The risk structure of interest rates. J. Financ. 1974, 29, 449–470.
2. Black, F.; Cox, J.C. Valuing corporate securities: Some effects of bond indenture provisions. J. Financ. 1976, 31, 351–367. [CrossRef]
3. Geske, R. The valuation of corporate liabilities as compound options. J. Financ. Quant. Anal. 1977, 12, 541–552. [CrossRef]
4. Jarrow, R.; Turnbull, S. Pricing options on financial securities subject to default risk. J. Financ. 1995, 50, 53–86. [CrossRef]
5. Lando, D. On Cox processes and credit risky securities. Rev. Deriv. Res. 1998, 2, 99–120. [CrossRef]
6. Jarrow, R.A.; Yu, F. Counterparty risk and the pricing of defaultable securities. J. Financ. 2001, 56, 1765–1799. [CrossRef]
7. Johnson, H.; Stulz, R. The pricing of options with default risk. J. Financ. 1987, 42, 267–280. [CrossRef]
8. Klein, P. Pricing Black-Scholes options with correlated credit risk. J. Bank. Financ. 1996, 20, 1211–1229. [CrossRef]
9. Liao, S.L.; Huang, H.H. Pricing Black–Scholes options with correlated interest rate risk and credit risk: An extension. Quant.

Financ. 2005, 5, 443–457. [CrossRef]
10. Jeon, J.; Kim, G. Pricing of vulnerable options with early counterparty credit risk. N. Am. J. Econ. Financ. 2019, 47, 645–656.

[CrossRef]
11. Wang, X. Analytical valuation of Asian options with counterparty risk under stochastic volatility models. J. Futur. Mark. 2020,

40, 410–429. [CrossRef]

http://doi.org/10.1111/j.1540-6261.1976.tb01891.x
http://dx.doi.org/10.2307/2330330
http://dx.doi.org/10.1111/j.1540-6261.1995.tb05167.x
http://dx.doi.org/10.1007/BF01531332
http://dx.doi.org/10.1111/0022-1082.00389
http://dx.doi.org/10.1111/j.1540-6261.1987.tb02567.x
http://dx.doi.org/10.1016/0378-4266(95)00052-6
http://dx.doi.org/10.1080/14697680500362718
http://dx.doi.org/10.1016/j.najef.2018.07.001
http://dx.doi.org/10.1002/fut.22064


Axioms 2023, 12, 1105 15 of 15

12. He, W.H.; Wu, C.; Gu, J.W.; Ching, W.K.; Wong, C.W. Pricing vulnerable options under a jump-diffusion model with fast
mean-reverting stochastic volatility. J. Ind. Manag. Optim. 2022, 18, 2077–2094. [CrossRef]

13. Kim, D.; Choi, S.Y.; Yoon, J.H. Pricing of vulnerable options under hybrid stochastic and local volatility. Chaos Solitons Fractals
2021, 146, 110846. [CrossRef]

14. Jeon, J.; Huh, J.; Kim, G. An analytical approach to the pricing of an exchange option with default risk under a stochastic volatility
model. Adv. Contin. Discret. Model. 2023, 2023, 37. [CrossRef]

15. Kim, G. Valuation of Exchange Option with Credit Risk in a Hybrid Model. Mathematics 2020, 8, 2091. [CrossRef]
16. Wang, X. Valuing vulnerable options with two underlying assets. Appl. Econ. Lett. 2020, 27, 1699–1706. [CrossRef]
17. Kim, D.; Yoon, J.H.; Kim, G. Closed-form pricing formula for foreign equity option with credit risk. Adv. Differ. Equations 2021,

2021, 1–17. [CrossRef]
18. Jeon, J.; Kim, G. Power Exchange Option with a Hybrid Credit Risk under Jump-Diffusion Model. Mathematics 2021, 10, 53.

[CrossRef]
19. Dong, Z.; Tang, D.; Wang, X. Pricing vulnerable basket spread options with liquidity risk. Rev. Deriv. Res. 2023, 26, 23–50.

[CrossRef]
20. Jamshidian, F. Valuation of credit default swaps and swaptions. Financ. Stochastics 2004, 8, 343–371. [CrossRef]
21. Leung, S.Y.; Kwok, Y.K. Credit default swap valuation with counterparty risk. Kyoto Econ. Rev. 2005, 74, 25–45.
22. Zhang, J.; Bi, X.; Li, R.; Zhang, S. Pricing credit derivatives under fractional stochastic interest rate models with jumps. J. Syst. Sci.

Complex. 2017, 30, 645–659. [CrossRef]
23. Wang, A.; Ye, Z. Total return swap valuation with counterparty risk and interest rate risk. Abstr. Appl. Anal. 2014, 12, 412890.

[CrossRef]
24. Wang, A. The pricing of total return swap under default contagion models with jump-diffusion interest rate risk. Indian J. Pure

Appl. Math. 2020, 51, 361–373. [CrossRef]
25. Fard, F.A. Analytical pricing of vulnerable options under a generalized jump–diffusion model. Insur. Math. Econ. 2015, 60, 19–28.

[CrossRef]
26. Wang, X. Analytical valuation of vulnerable options in a discrete-time framework. Probab. Eng. Informational Sci. 2017, 31, 100–120.

[CrossRef]
27. Koo, E.; Kim, G. Explicit formula for the valuation of catastrophe put option with exponential jump and default risk. Chaos

Solitons Fractals 2017, 101, 1–7. [CrossRef]
28. Pasricha, P.; Goel, A. Pricing vulnerable power exchange options in an intensity based framework. J. Comput. Appl. Math. 2019,

355, 106–115. [CrossRef]
29. Wang, X. Analytical valuation of vulnerable European and Asian options in intensity-based models. J. Comput. Appl. Math. 2021,

393, 113412. [CrossRef]
30. Margrabe, W. The value of an option to exchange one asset for another. J. Financ. 1978, 33, 177–186. [CrossRef]
31. Kwok, Y.K. Mathematical Models of Financial Derivatives; Springer: Berlin, Germany, 2008.
32. Kwok, Y.K.; Wong, H.Y. Currency-translated foreign equity options with path dependent features and their multi-asset extensions.

Int. J. Theor. Appl. Financ. 2000, 3, 257–278. [CrossRef]
33. Martzoukos, S.H. Contingent claims on foreign assets following jump-diffusion processes. Rev. Deriv. Res. 2003, 6, 27–45.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3934/jimo.2021057
http://dx.doi.org/10.1016/j.chaos.2021.110846
http://dx.doi.org/10.1186/s13662-023-03783-3
http://dx.doi.org/10.3390/math8112091
http://dx.doi.org/10.1080/13504851.2020.1713980
http://dx.doi.org/10.1186/s13662-021-03486-7
http://dx.doi.org/10.3390/math10010053
http://dx.doi.org/10.1007/s11147-022-09192-0
http://dx.doi.org/10.1007/s00780-004-0122-y
http://dx.doi.org/10.1007/s11424-017-5126-8
http://dx.doi.org/10.1155/2014/412890
http://dx.doi.org/10.1007/s13226-020-0405-9
http://dx.doi.org/10.1016/j.insmatheco.2014.10.007
http://dx.doi.org/10.1017/S0269964816000292
http://dx.doi.org/10.1016/j.chaos.2017.05.012
http://dx.doi.org/10.1016/j.cam.2019.01.019
http://dx.doi.org/10.1016/j.cam.2021.113412
http://dx.doi.org/10.1111/j.1540-6261.1978.tb03397.x
http://dx.doi.org/10.1142/S0219024900000127
http://dx.doi.org/10.1023/A:1022822004204

	Introduction
	The Model
	The Valuation of Vulnerable Options with Two Underlying Assets
	Vulnerable Exchange Option
	Vulnerable Foreign Equity Option

	Numerical Experiments
	Monte Carlo Simulation
	Numerical Examples

	Concluding Remarks
	References

