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Abstract: In the present manuscript, we design a fractional multi-order high-gain observer to estimate
temperature in a double pipe heat exchange process. For comparison purposes and since we want
to prove that when using our novel technique, the estimation is more robust than the classical
approach, we design a non-fractional high-gain observer, and then we compare the performance of
both observers. We consider three scenarios: The first one considers the estimation of the system states
by measuring only one output with no noise added on it and under ideal conditions. Second, we add
noise to the measured output and then reconstruct the system states, and, third, in addition to the
noise, we increase the gain parameter in both observers (non-fractional and fractional) due to the
fact that we want to prove that the robustness changes in this parameter. The results showed that,
using our approach, the estimated states can be recovered under noise circumstances in the measured
output and under parameter change in the observer, contrary to using classical (non-fractional)
observers where the states cannot be recovered. In all our tests, we used the normalized root-mean-
square, integral square error, and integral absolute error indices, resulting in a better performance
for our approach than that obtained using the classical approach. We concluded that our fractional
multi-order high-gain observer is more robust to input noise than the classical high-gain observer.

Keywords: fractional calculus; fractional derivative; Caputo derivative; fractional multi-order high-gain
observer; fractional high-gain observer; double pipe heat exchange

MSC: 26A33; 34A08; 34K37; 65L03

1. Introduction

Nowadays, heat exchangers find extensive utilization across diverse industrial and
engineering applications. Heat exchangers are devices designed to efficiently transfer heat
from one fluid to another without the fluids coming into direct contact [1]. A special kind
of heat exchanger called a double pipe heat exchanger (DPHE) has attracted significant
attention from researchers, engineers, and industries due to several advantages, such as
compact design, versatility, flexibility, modularity, easy cleaning and maintenance, and
cost-effectiveness [2]. DPHEs are commonly used for applications with low-to-medium
heat transfer requirements, such as small-scale heating and cooling systems, laboratory
experiments, and industrial processes. Due to their wide-ranging applications, extensive
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research on DPHEs has been conducted, with a primary focus on enhancing their efficiency
and performance [3]. In order to enhance the performance and efficiency of DPHEs,
monitoring and control systems are integrated.

Monitoring systems play a pivotal role by measuring various variables in DPHEs, sig-
nificantly contributing to the optimization of efficiency, maintenance of stability, assurance
of safety, and enhancement of adaptability to changing conditions [4]. Although monitoring
systems provide several advantages, sometimes it is impractical to use them due to factors
such as cost, accuracy, hardware sensor availability, issues related to signal interference, and
measurement noise [5]. The presence of measurement noise in a monitoring system may
result in diverse consequences, including inaccuracies in measurements [6], heightened
uncertainty, and the occurrence of faults [7,8]. Furthermore, in the context of a closed-loop
control system, the presence of measurement noise can significantly affect its performance.
This noise has the potential to introduce fluctuations in the feedback signals utilized by
the controller, consequently resulting in suboptimal or erratic control performance [9]. To
mitigate the effects of measurement noise in monitoring systems, several techniques have
been used, such as filtering algorithms [10], signal processing methods [11], and software
sensors [12]. Software sensors, commonly referred to as observers (or virtual sensors),
have emerged as a viable substitute for addressing the issue of measurement noise and the
unavailability of hardware sensors due to system configuration or cost. Different observers
have been used to estimate (predict) both state variables and parameters in DPHEs from
online or offline measurements [13]. Intelligent observers for performing estimation on heat
exchangers using fuzzy logic, genetic algorithms, and artificial neural networks (ANNs)
have been proposed in the literature [14]. In [15], the authors introduce a simple method to
predict the cold and hot fluid outlet temperatures in a counter-flow DPHE using fuzzy logic.
The nonlinear nature of the DPHE has given rise to nonlinear observers, such as extended
Kalman filters [16], sliding mode observers [17], and high-gain observers [18]. High-gain
observers (HGOs) have become a significant focus in the fields of state estimation and
output feedback control for nonlinear systems. In the absence of measurement noise, these
observers robustly estimate the states of the DPHEs, ensuring fast convergence [19]. Never-
theless, the HGO theory reveals a tradeoff between measurement noise sensitivity and the
speed of convergence in estimation. As the HGO gain increases, its bandwidth expands.
Consequently, with the escalating bandwidth, the HGO asymptotically approximates the
characteristics of a differentiator, amplifying the impact of measurement noise [20]. As fast
convergence is crucial in observer implementations, increased observer gain is necessary;
consequently, addressing the issue of noise sensitivity becomes imperative.

On the other hand, there is a mathematical area called fractional-order calculus (FOC)
which has been gaining attention in recent years because it deals with derivatives and
integrals of non-integer order [21]. FOC has been widely used to describe the behavior
of different systems in applications such as electrical engineering, chemical engineering,
control engineering, bioengineering, neuroscience, and so on [22,23]. The increasing in-
terest in FOC in dynamical systems is because it has been demonstrated that FOC can
model system properties that are intrinsically related to non-local behavior, such as the
memory effect [24]. These kinds of systems are also called non-Markov systems. Moreover,
several authors have demonstrated the effectiveness of FOC in the estimation of signals
in applications such as the design of fractional-order observers (FO-observers) [25–27]
and fractional-order controllers [28–30]. Some authors have proposed fractional-order
high-gain observers (FO-HGOs) to estimate system states, design controllers, synchronize
systems, signal processing, monitoring, and so on [31,32]. However, the study of fractional
multi-orders in an HGO has not been reported in the literature; some authors have studied
the behavior of fractional differential systems with multi-orders [33,34], along with the
numerical approximation of such systems [35]. We use previous results to extend the use
of fractional multi-order systems to the design of a high-gain observer. The utilization
of a fractional multi-order high-gain observer (FMO-HGO) in our study is considered a
novel approach for two principal reasons. Firstly, it introduces the concept of fractional
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multi-order calculus, enabling the more accurate modeling of non-integer order dynamics.
Secondly, the FMO-HGO exhibits reduced sensitivity to noise compared to the classical
(non-fractional) HGO, thereby enhancing the robustness and accuracy of state estimation,
particularly in the presence of measurement noise.

To validate the efficacy of the proposed FMO-HGO, we conducted an experimen-
tal configuration using a DPHE pilot plant RCT 100 operating in an open-loop system.
The experiment is focused on estimating the outlet temperatures with both integer and
fractional-order observers, utilizing measurements of both inlet and outlet temperatures.
To demonstrate the effectiveness of the proposed observer in reducing noise sensitivity, we
explored two scenarios, considering experimental data with noise and variations in the
observer’s gain. For the evaluation of the proposed FMO-HGO’s performance, we utilized
the integral square error (ISE) and integral absolute error (IAE) indices, along with the
normalized root-mean-square error (NRMSE) criterion.

The remainder of this manuscript is organized as follows. Section 2 presents the
fractional calculus definitions used in this work and the numerical algorithm used to solve
fractional-order differential equations. Section 3 describes the mathematical model of the
DPHE, and in Section 4 we present the development of the HGO and the FMO-HGO along
with the numerical solution for the FMO-HGO. In Section 5, we present the results of this
research. Finally, Section 6 shows the discussions and conclusions of this manuscript.

2. Fractional Calculus Definitions

Three of the most important definitions in fractional-order calculus (FOC) are the
Riemann–Liouville (RL), Grunwald–Letnikov (GL), and Caputo definitions [36]. These
definitions have been extended and used in several applications such as modeling, control,
and signal processing [37]. We first present the RL definition of a fractional-order integral.

Let f : [0, ∞)→ R be a continuous function. Then, the fractional RL integral defini-
tion is formulated as

RL
0 I β

t f (t) =
1

Γ(β)

dm

dtm

∫ t

0
f (η)(t− η)β−1dη, t > 0 (1)

where β > 0 is the fractional-order in the integral and it can be any real number, that is,
β ∈ R, Γ(·) denotes the Gamma function and it is defined as

Γ(z) =
∫ ∞

0
tz−1exp(−t)dt (2)

Note that, if β takes the value of one, then the RL integral is equal to the classical
integral definition. Now, assuming the same conditions for function f (t), the fractional RL
derivative of order α, with α > 0 and m = [α] + 1, is defined as

RL
0 Dα

t f (t) =
1

Γ(m− α)

dm

dtm

∫ t

0
f (η)(t− η)m−α−1dη, t > 0 (3)

note that, when α = 1, then the RL derivative is equal to the classical derivative definition.
Finally, we define the Caputo derivative of order α as

C
0 Dα

t f (t) =
1

Γ(m− α)

∫ t

0
f (m)(η)(t− η)m−α−1dη, t > 0 (4)

For the Caputo derivative, we have that when α = 1, we recover the classical derivative
definition.

Numerical Algorithms to Solve Fractional-Order Differential Equations

Solving a fractional-order differential equation can be difficult in most cases. However,
there are several numerical methods to solve these kinds of equations. In this work, we
use the Grunwald–Letnikov (GL) algorithm. This numerical method is based on the GL
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derivative, and it allows us to compute a numerical solution of fractional-order differential
equations. The GL algorithm is particularly useful when dealing with both RL and Caputo
derivatives. This algorithm has been widely employed for the numerical solution of
fractional-order differential equations, and several works have demonstrated its robustness
and performance [38].

The GL definition is formulated from the GL derivative, which is defined as follows

GL
0 Dq

t f (t) = lim
h→0

1
hq

t/h

∑
j=0

(−1)j
(

q
j

)
f (t− jh) (5)

where q is the order in the derivative and q ∈ R, j denotes the time increment. Note
that, in the first case when q ∈ [−1, 0), this is considered the fractional-order integral
and q ∈ (0, 1] is the fractional-order derivative; evidently, if q = 0, this means there is an
algebraic relation, thus no dynamics are presented. For the calculation of the binomial
coefficients, we use the relation between Euler’s Gamma function and factorial, that is(

q
j

)
=

Γ(q + 1)
Γ(j + 1)Γ(q− j + 1)

(6)

The GL definition allows to calculate the numerical solution of a fractional-order
differential equation as follows

GL
0 Dq

t f (t) = g( f (t)) (7)

The numerical solution is expressed as [39]

f (tk) = g( f (tk−1))hq −
k

∑
j=1

cq
j f
(

tk−j

)
(8)

cq
j =

(
1− 1 + q

j

)
cq

j−1 (9)

where h is the time step, the initial coefficient value is set to cq
0 = q, and the summation part

of the numerical solution is called the intrinsic memory trace.

3. Mathematical Model of a Double Pipe Heat Exchanger (DPHE)

A heat exchanger is a device that facilitates the transfer of heat from one fluid to
another. Heat exchangers are commonly used in various industrial processes such as power
generation, oil refining, chemical processing, refrigeration, and air conditioning. Heat
exchangers play a crucial role in improving energy efficiency, reducing operational costs,
and controlling temperature in various processes by efficiently transferring heat between
different fluids [40].

The basic structure of a heat exchanger consists of two main channels or passages for
hot and cold fluids. These channels can be arranged in various ways, such as parallel-flow,
counterflow, or crossflow configurations. The dividing wall between the two channels is
typically made of a thermally conductive material, such as metal [41].

As we mentioned earlier, in this paper we focus on a special type of heat exchanger
known as a double pipe heat exchanger (DPHE) or concentric tube heat exchanger. DPHEs
are relatively simple in design and construction, making them cost-effective and easy to
maintain. DPHEs find applications in various industries where heat transfer between
two fluids is required, such as the chemical industry, pharmaceutical industry, oil and gas
industry, etc. [42].

A DPHE is formed by two pipes or tubes arranged in a concentric manner, as shown in
Figure 1. The inner tube carries the hot fluid, while the outer tube carries the cold fluid. The
two fluids flow in a counter-flow or parallel-flow arrangement depending on the design.
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The counter-flow configuration of heat exchangers offers several advantages, like a more
efficient heat transfer rate per unit surface area, reduced thermal stress, and flexibility
in fluid compatibility, making it a preferred choice in many industrial and commercial
applications [43].
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Figure 1. Architecture of a double pipe heat exchanger (DPHE).

The mathematical model of the DPHE is derived based on the following assumptions:

• The thermophysical properties of the fluids are constant.
• The overall heat transfer coefficient remains constant and uniform along the axial

direction.
• The process is adiabatic, meaning there is no heat exchange with the surrounding

environment.
• The fluids are incompressible and monophasic.
• The walls do not store energy.
• The volume in the tubes is constant.

Based on the above assumptions and by applying an energy balance law to the DPHE
cell, the lumped parameter representation of the DPHE model is as follows:

.
Tco(t) = 2

Vc

[
UAc
cpcρc

∆T(t) + (Tci(t)− Tco(t))vc(t)
]
,

.
Tho(t) = 2

Vh

[
UAh
cphρh

∆T(t) + (Thi(t)− Tho(t))vh(t)
]
.

(10)

The variables and parameters of the model in Equation (10) are described in Table 1.
∆T(t) represents the logarithmic mean temperature difference (LMTD), which is a function
of both outlet temperatures, Tco(t) and Tho(t). The LMDT among the fluids is commonly
expressed as

∆T(t) =
∆T2(t)− ∆T1(t)

ln(∆T2(t)/∆T1(t))
. (11)

Table 1. Description of the variables and parameters of the DPHE model.

Notation Description Notation Description

Tci Inlet temperature on the cold side. cph Specific heat on the hot side.

Thi Inlet temperature on the hot side. ρc Density of the cold fluid.

Tco Outlet temperature on the cold side. ρh Density of the hot fluid.

Tho Outlet temperature on the hot side. Vc Volume on the cold side.

U Heat transfer coefficient. Vh Volume on the hot side.

Ac Shell side area. vc Flow rate on the cold side.
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Table 1. Cont.

Notation Description Notation Description

Ah Tube side area. vh Flow rate on the hot side.

cpc Specific heat on the cold side. - -

The temperature difference between each terminal side of the heat exchanger is
given as

∆T1(t) =
[

Thi(t)− Tco(t) if φ = 1
Thi(t)− Tci(t) if φ = −1

]
, (12)

and

∆T2(t) =
[

Tho(t)− Tci(t) if φ = 1
Tho(t)− Tco(t) if φ = −1

]
, (13)

where the parameter φ is defined as follows:

φ =

[
1 if counter− flow
−1 if parallel− flow

]
. (14)

In the special case when ∆T1(t) = ∆T2(t), the expression in Equation (11) reduces to
an indeterminate form. This situation is especially problematic in the counter-flow case. In
order to avoid such situation, the LMTD is redefined as

∆Tm(t) =
[

∆T(t) if ∆T1(t) 6= ∆T2(t)
∆T1(t) = ∆T2(t) if ∆T1(t) = ∆T2(t)

]
. (15)

4. High-Gain Observer (HGO) Design

A high-gain observer (HGO) is a particular type of observer used to estimate the states
of nonlinear dynamical systems when the available measurements are limited. It offers
several advantages, such as fast convergence, insensitivity to initial conditions, simple
implementation, and robustness [44]. HGOs are designed to be robust against uncertainties
and disturbances in nonlinear systems. They can handle parameter variations and modeling
errors, making them suitable for applications where accurate modeling of the system is
difficult to obtain [45].

The principal challenge associated with HGOs lies in their sensitivity to measurement
noise. HGOs are designed to provide rapid and accurate estimates of the state variables
in a dynamic system. However, their reliance on high gains to achieve fast convergence
makes them inherently susceptible to measurement noise. When noise affects the measure-
ments, the observer’s elevated gains can inadvertently magnify the noise signals, leading
to inaccurate state estimates and potential instability [46]. Striking a balance between
achieving fast convergence and mitigating the adverse effects of noise amplification is a
critical consideration in the application of HGOs.

The design of the HGO involves selecting an appropriate gain value (also called a
high-gain term) and incorporating it into the observer’s dynamics. The specific design and
implementation details may vary depending on the characteristics of the system observed
and the control objectives.

In our study, the design methodology of the HGO is primarily rooted in the principles
outlined in reference [47]; however, it is essential to acknowledge that the origin and
foundational concepts of this approach can be traced back to reference [48]. Furthermore,
for a comprehensive understanding and a broader perspective on well-structured design
methodologies, additional valuable insights can be gleaned from references [49,50]. These
sources contribute to the overall framework and knowledge base, providing a solid context
for the design methodology applied in our study.
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The design methodology considers the special class of nonlinear systems represented
in the form of affine in control, given by

.
x(t) = f (x(t)) +

m
∑

i=1
gi(x(t))ui(t),

y(t) = h(x(t)),
(16)

where x ∈ Rn×n, u ∈ Rm, y ∈ Rp, f : Rn → Rn , g : Rn → Rn , and h : Rn → Rp .
Under the assumption that the nonlinear system given in Equation (16) is observable,

it is possible to find a diffeomorphism defined as

z(t) = Φ(x(t)) =


h(x(t))

L f h(x(t))
...

Ln−1
f h(x(t))

, (17)

where L f h(·) represents the Lie derivative operator given by

L f h(x(t)) =
n

∑
i=1

∂h(x(t))
∂xi(t)

fi(x(t)). (18)

By applying the coordinate transformation z(t) = Φ(x(t)) to the system in Equation (16),
the nonlinear system takes the particular triangular form given by:

.
z(t) = Az(t) + Ψ(z(t)) +

m
∑

i=0
ϑi(z(t))ui(t),

y(t) = Cz(t),
(19)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

, (20)

Ψ(z(t)) =


0
...

0
Ln−1

f h(x(t))

, (21)

C =
[
1 0 · · · 0

]
, (22)

and the function ϑ(z(t)) is defined as:

ϑ(z(t)) =


ϑ1(z(t))

ϑ2(z(t))
...

ϑn(z(t))

 =


ϑ1(z1(t))

ϑ2(z1(t), z2(t))
...

ϑ1(z1(t), . . . , zn−1(t))

 (23)

An HGO for the nonlinear system represented in Equation (19) takes the form:

.
ẑ(t) = Aẑ(t) + Ψ(ẑ(t)) +

m
∑

i=0
ϑi(ẑ(t))ui(t)

−S−1
θ CT(Cẑ(t)− y(t)),

(24)
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where Sθ ∈ Rn×n is a symmetric positive-defined matrix which is the solution of the
Lyapunov equation

θSθ + ATSθ + Sθ A = CTC. (25)

The elements of Sθ are defined as:

(Sθ)ij =
Sij

θi−j−1 with 1 ≤ i, j ≤ n. (26)

To the special case of a second-order system, the matrix Sθ takes the form

Sθ =

[
1
θ − 1

θ2

− 1
θ2 − 1

θ3

]
, (27)

where the parameter θ represents the observer’s gain, which determines the rate of the
convergence of the estimation. The gain is selected based on the experience of the designer
and should be satisfied that θ > 0.

Since the coordinates transformation ẑ(t) = Φ(x̂(t)) is a diffeomorphism, by applying
the inverse transformation x̂(t) = Φ−1(ẑ(t)) to the HGO given in Equation (24), it is
possible to obtain the structure of the HGO in the original coordinates as

.
x̂(t) = f (x̂(t)) +

m

∑
i=1

gi(x̂(t))ui(t)−
[

∂Φ(x̂(t))
∂(x̂(t))

]−1
SθCT [Cx̂(t)− y(t)], (28)

where ∂Φ(x̂(t))
∂(x̂(t)) is the Jacobian matrix of the Φ(x̂(t)).

Since our study focuses on the use of fractional-order representation of the HGO pre-
sented in Equation (28), we use the fractional-order operator and the FMO-HGO results as

C
0 Dα

t x̂(t) = f (x̂(t)) +
m

∑
i=1

gi(x̂(t))ui(t)−
[

∂Φ(x̂(t))
∂(x̂(t))

]−1
SθCT [Cx̂(t)− y(t)]. (29)

4.1. Numerical Example

We use the mathematical model of the counter-flow DPHE in a more compact form as[ .
Tco(t).
Tho(t)

]
=

[
kc∆Tm(t)
kh∆Tm(t)

]
+

[
2

Vc (Tci − Tco(t))
2

Vh
(Thi − Tho(t))

][
vc(t)
vh(t)

]
,

y(t) = Tco(t),

(30)

with kc =
2UAc

cpcρcVc
and kh = − 2UAh

cphρhVh
, which turn out to have the special form suggested in

Equation (16), rewritten here for convenience

.
x(t) = f (x(t)) +

m
∑

i=1
gi(x(t))ui(t),

y(t) = h(x(t)),
(31)

where x(t) = [Tco, Tho]
T , y(t) = Tco(t), u(t) = [vc(t), vh(t)]

T , C = [1 0], h(x(t)) = Tco,

f (x(t)) = [kc∆Tm(t), kh∆Tm(t)]
T , and g(x(t)) =

[
2

Vc (Tci − Tco(t)), 2
Vh
(Thi − Tho(t))

]T
.
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It is important to note that we have assumed that Tco is unique temperature measured.
Therefore, the methodology design of the HGO can be applied directly to the model of the
DPHE as follows[ .

T̂co(t).
T̂ho(t)

]
=

[
kc∆T̂m(t)
kh∆T̂m(t)

]
+

[
2

Vc
(
Tci(t)− T̂co(t)

)
2

Vh

(
Thi(t)− T̂ho(t)

) ][ vc(t)
vh(t)

]
+
[

∂Φ(x̂(t))
∂(x̂(t))

]−1
[

2θ
θ2

]
[Cx̂(t)− y(t)],

ŷ(t) = T̂co(t),

(32)

where Φ(x̂(t)) =
[

h(x̂(t)
L f h(x̂(t))

]
=

[
T̂co(t)

kc∆T̂m(t)

]
.

4.2. Fractional-Order Representation

We extend the concept of the HGO given in Equation (32) using fractional-order repre-
sentation. Since we want to prove the effectiveness and robustness that this representation
provides, we introduce the fractional-order operator in the sense of Caputo C

0 Dαi
t to each

differential equation of the HGO with i = 1, 2. Our approach stands out since now we
have another degree of freedom in the system, which allows us to estimate each state
with a different order. Then, the fractional-order representation of the HGO (referred to as
FMO-HGO) results in[ C

0 Dα1
t T̂co(t)

C
0 Dα2

t T̂ho(t)

]
=

[
kc∆T̂m(t)
kh∆T̂m(t)

]
+

[
2

Vc
(
Tci(t)− T̂co(t)

)
2

Vh

(
Thi(t)− T̂ho(t)

) ][ vc(t)
vh(t)

]
+
[

∂Φ(x̂(t))
∂(x̂(t))

]−1
[

2θ
θ2

]
[Cx̂(t)− y(t)],

ŷ(t) = T̂co(t).

(33)

Note that, from Equation (33), α1 and α2 are que orders in the observer and both
can be different. When both are equal to 1, we recover the classical case (Equation (32));
we call this new approach a fractional multi-order system (FMOS). As we mentioned
before, the system dynamics can be expressed with different orders in each fractional-order
equation (Equation (33)), which results in a more general representation of the system. In
the following sections, we show that this property allows us to expand the robustness of
the system to noise and to induce a change in the observer gain parameter.

4.3. Numerical Solution of the FMO-HGO

We use Equations (8) and (9) to compute the numerical solution of the FMO-HGO
expressed in Equation (33), and the solutions results in

T̂co(tk) =

[
kc∆T̂m +

2
Vc
(
Tci − T̂co

)
vc + 2θ

(
T̂co − Tco

)]
hα1 −

k

∑
j=1

cα1
j T̂co

(
tk−j

)
(34)

T̂ho(tk) =

[
kh∆T̂m +

2
Vh

(
Thi − T̂ho

)
vh + ϕ(tk)

(
T̂co − Tco

)]
hα2 −

k

∑
j=1

cα2
j T̂ho

(
tk−j

)

cαi
j =

(
1− 1 + αi

j

)
cαi

j−1 (35)

where i = 1, 2 and ϕ(tk) are the computation of
[

∂Φ(x̂(t))
∂(x̂(t))

]−1
. The coefficients in Equation (35)

are initiated as cα1
0 = α1 and cα2

0 = α2. We performed this numerical solution using MATLAB
2017a; for all the simulations, we selected the time step h = 0.01, α1 = 0.98, and α2 = 0.55.
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5. Results
5.1. Experiment Configuration

In order to validate the performance of the proposed FMO-HGO, we set up the
experiment shown in Figure 2. For this experiment, we utilized the DPHE pilot plant
RCT 100, operating under the conditions specified in Table 2. We selected as inputs to the
observers (both integer and fractional HGOs) the inlet temperature data on the hot side
shown in Figure 3, the inlet temperature on the cold side, which was fixed to 26.5 ◦C, and
the data measurement of the outlet temperature on the cold side. Additionally, we assumed
that the process operates with a constant heat transfer coefficient, U. The experiment
involves estimating the outlet temperatures in the cold as well as hot sides using both
integer and fractional-order observers from the measurements of the inlet temperatures
on the hot side Thi and the outlet temperature on the cold side Tco. The initial conditions
of the DPHE were Tco = 36.10 ◦C and Tho = 55.9 ◦C. The observer initial conditions were
selected to be quite different from the initial conditions of the process, and the observer
gains were tuned at θ = 1. We performed all our tests using a personal computer with 8 GB
of RAM and an Intel Core i5 processor of eighth generation. The numerical complexity of
the simulation yields on the fact that, since there is a memory trace associated with each
derivative, this memory impacts the computational resources because it turns bigger in size
when the time increases. The memory trace is the summation part of Equation (34), and
the numerical simulation represents a matrix that is growing in each time step, meaning
that when time increases, the computational resources start to be limited. Evidently, if
we want to implement the FMO-HGO in a different device, such as a microcontroller
or microprocessor, we need to take the numerical complexity into account. Fortunately,
nowadays, these types of devices have all the computational and memory resources to
perform our FMO-HGO without any problem.
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Figure 2. DPHE experiment setup to validate the observers (FMO-HGO and HGO).

Table 2. Physical data for the DPHE pilot plant RCT 100.

Parameter Value Parameter Value

Tci 26.5 ◦C cph 4179 J/(Kg K)

Thi 60.55 ◦C ρc 991.8 Kg/m3

Tco 36.10 ◦C ρh 983.3 Kg/m3

Tho 55.9 ◦C Vc 1.3499 × 10−4 m3

U 1050 J/(m2 ◦C s) Vh 1.5512 × 10−5 m3
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Table 2. Cont.

Parameter Value Parameter Value

Ac 0.0154 m2 vc 6.6667 × 10−6 m3/s

Ah 0.0124 m2 vh 1.6667 × 10−6 m3/s

cpc 4174 J/(Kg ◦C) - -
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5.2. Performance Analyses of the Proposed FMO-HGO

We systematically analyze the performance of the FMO-HGO in different scenarios.
First, we conduct a test under ideal conditions, that is, where there is no noise in the
measured signal (Tco) and no change in the observer gain parameter (θ). In the second
case, we added noise to the measured signal. Finally, the third case considers a scenario
in which the observer gain parameter is compromised; additionally, the noise added to
the measured signal remains the same as in the second case. All our tests were conducted
using real data collected from a DPHE process in which non-ideal circumstances occurred.
This allows us to prove that the fractional-order dynamics considered in the observer can
model real-world processes more accurately than using classical calculus.

5.2.1. Case 1. Estimation Test under Ideal Conditions

In all our tests, we estimate the outlet temperatures in both the cold as well as hot
sides, Tco and Tho, solely by measuring Tco. The data depict the behavior of the outlet
temperature on the cold side Tco and the outlet temperature on the hot side Tho; for different
values of inlet temperature on the hot side Thi (the input to the DPHE), all our experiments
consider this Thi profile, see Figure 3. We estimate both outlet temperatures, Tco and Tho,
using the FMO-HGO designed in this paper, and for comparative purposes, we also use
the non-fractional HGO. We show that the FMO-HGO has a better performance than the
non-fractional HGO in this case. To quantitatively prove that the performance is better
in the fractional-order observer than in the integer (classical) order observer, we use the
integral square error (ISE) and integral absolute error (IAE) indices, defined as

ISE =
∫ T0

0 e2(t)dt,

IAE =
∫ T0

0 |e(t)|dt.
(36)

We decided to use the ISE and IAE indices in order to determinate the robustness of
the FMO-HGO and the HGO. The ISE and IAE indices provide a quantitative analysis of
the performance in both observers (classical and fractional), that is, a lower value in both
indices means a better and robust signal estimation.
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Also, to measure how much better the FMO-HGO is at reproducing output measure-
ments, the normalized root-mean-square error (NRMSE) criterion is used, which provides
a percentage value representing the fit. This criterion is defined as

FIT =
‖Dm(:, i)− De(:, i)‖

‖Dm(:, i)−mean(Dm(:, i))‖ , (37)

where Dm represents the data measurements of the process, De represents the data esti-
mated for the observer, and i represents the number of samples. The use of the FIT criterion
allows us to determinate the accuracy of the estimated signals, which means that the larger
the value of FIT, the more accurate the measured signal is.

In Figure 4A, we present the estimation of Tho and Tco using the integer order HGO;
we can see the system’s behavior (real data) and the observer’s estimation. In Figure 4B,
the same scenario is depicted, but this time using the fractional-order HGO; note that the
FMO-HGO can estimate more accurately both states, Tco and Tho, than the integer order
HGO. As shown in Figure 4B, the fractional orders employed were α1 = 0.95 and α2 = 0.55
for Tco and Tho, respectively. This case does not involve the addition of noise or any change
in the observer parameters. Moreover, in Figure 4A, we can see that the FIT for Tco and Tho
is 88.79% and 68.44%, respectively; in contrast, in Figure 4B, the FIT for Tco and Tho is 88.89%
and 83.08%, respectively. Figure 5A–D show that ISE and IAE have a better performance in
the fractional observer than in the classical one. In general, for this case, we can conclude
that the FMO-HGO has a better performance that the classical HGO. In the coming tests, we
evaluate both observers under real-world conditions, that is, considering a noise which is
added to the measured output and a parameter change in both observers; these conditions
will allow us to show that the FMO-HGO is more robust than the classical HGO.
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Figure 4. Validation of the estimated outlet temperatures using experimental data under ideal condi-
tions. (A) Estimated outlet temperatures using the classical HGO. (B) Estimated outlet temperatures
using the proposed FMO-HGO.
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Figure 5. Performance indices of the estimated outlet temperatures using experimental data under
ideal conditions. (A) Integral square error using the classical HGO. (B) Integral square error using
the FMO-HGO. (C) Integral absolute error using the classical HGO. (D) Integral absolute error using
the FMO-HGO.

5.2.2. Case 2. Estimation Test under Noise Conditions in the Measurable Variable

This test consisted of the estimation of Tco and Tho as in Case 1, but now in this
scenario, the measured signal has a gaussian noise which affects the signals reconstruction
of the observer for both outputs. Our results show that by using the FMO-HGO, we can
reconstruct both signals more accurately than in the classical HGO, where the reconstruction
under this scenario is not warranted. In Figure 6A, we show the performance of the classical
observer; note that for Tco and Tho , the FIT is 88.79% and 68.44%, respectively. On the other
hand, the FMO-HGO performance shown in Figure 6B proves that by using different values
in each order of the observer, we can recover both signals better than the classical HGO
case. The FIT for both signals is above 83%; specifically, for Tco it is 88.79%, and for Tho it is
88.89%. It is evident that by using multi-order in the observer, we can recover both signals
better than the classical case. Moreover, our analysis proves that the ISE and IAE show a
better performance for the fractional-order observer than for the classical order observer
since the values for both indices are lower in the fractional case than in the classical case
(see Figure 7A–D).

Axioms 2023, 12, x FOR PEER REVIEW 14 of 20 
 

 
Figure 6. Validation of the estimated outlet temperatures using noisy experimental data. (A) Esti-
mated outlet temperatures using the classical HGO. (B) Estimated outlet temperatures using the 
proposed FMO-HGO. 

 
Figure 7. Performance indices of the estimated outlet temperatures using noisy experimental data. 
(A) Integral square error using the classical HGO. (B) Integral square error using the FMO-HGO. 
(C) Integral absolute error using the classical HGO. (D) Integral absolute error using the FMO-HGO. 

5.2.3. Case 3. Estimation Test Involving Noise Conditions in the Measurable Variable and 
a Change in the Observer Gains 

Finally, in this case we evaluate the performance of both the integer and fractional-
order HGOs, considering that the data measurement of the outlet temperature 𝑇௖௢ is con-
taminated with noise and the gain of the observers was selected with a high value at θ = 
4. One reason to increase the gain of the observers is that the rate of convergence is directly 
influenced by the gain of the observer. However, one drawback of this practice is that the 
observer becomes more susceptible to noise. Therefore, with this test we demonstrate that 

Figure 6. Validation of the estimated outlet temperatures using noisy experimental data. (A) Esti-
mated outlet temperatures using the classical HGO. (B) Estimated outlet temperatures using the
proposed FMO-HGO.
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5.2.3. Case 3. Estimation Test Involving Noise Conditions in the Measurable Variable and a
Change in the Observer Gains

Finally, in this case we evaluate the performance of both the integer and fractional-
order HGOs, considering that the data measurement of the outlet temperature Tco is
contaminated with noise and the gain of the observers was selected with a high value at
θ = 4. One reason to increase the gain of the observers is that the rate of convergence is di-
rectly influenced by the gain of the observer. However, one drawback of this practice is that
the observer becomes more susceptible to noise. Therefore, with this test we demonstrate
that the FMO-HGO has better robustness properties to noise than the classical (integer
order) HGO when a change in the observer parameter occurs.

Figure 8 shows a comparison between the estimated outlet temperatures against the
experimental data outlet temperatures. Figure 8A corresponds to the estimated outlet
temperature using the integer order HGO, while Figure 8B corresponds to the estimated
outlet temperature using the FMO-HGO. The results of the estimated outlet temperature
on the hot side show that both integer and fractional HGOs predict values close to the
experiment data Tho, with an FIT of 70.8043% and 70.6554%, respectively. These results
indicated that there is no difference in the performance estimation of the outlet tempera-
ture on the hot side when using both integer and fractional-order HGOs. However, the
outstanding finding of the results is that the estimated outlet temperature on the cold
side for the FMO-HGO predicts values closer to the experiment data Tco than the integer
order HGO, with an FIT of 80.3936% and 67.1523%, respectively. Therefore, the FIT of the
proposed FMO-HGO shown is better than the FIT of the classical (integer order) HGO.

Additionally to the FIT criteria, we use the ISE and IAE indices to show that under both
data, noisy conditions and a change in the observer gain, the FMO-HGO presents a better
performance. Figure 9A,B show the ISE index behavior for the integer and FMO-HGOs.
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No significant difference in the performance of the estimation of the outlet temperature
Tho with both observers is observed. However, the improvement in the estimate of the
outlet temperature Tco with the FMO-HGO is evident. A similar situation with the IAE
index is shown in Figure 9C,D. Overall, these results provide a better understanding on
how accurately and robust the FMO-HGO is against the HGO; although no significant
difference occurred in the estimation of Tho, this was due to the outstanding results of Tco,
where the ISE and IAE indices are much lower. Previous results allow us to conclude that
the FMO-HGO is more accurate and robust than the HGO.
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using the FMO-HGO. (C) Integral absolute error using the classical HGO. (D) Integral absolute error
using the FMO-HGO.
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In summary, we present in Table 3 a comparison between the classical HGO and
the FMP-HGO performance under the three scenarios. In Case 1, both observers have a
good estimation for Tco; however, the FMO-HGO provides a better estimation of Tho; this
accuracy is evident when we computed the FIT, which is above 83%. The ISE and IAE
indices’ final values are lower for the FMO-HGO than for the HGO for both estimated
temperatures. We obtained a similar result for Case 2: the FIT computed for the FMO-HGO
is better than the FIT in the HGO on both temperatures, but it outstands in Tho; in addition,
the ISE and IAE final values are lower in the fractional case than in the classical case.
This test allows us to determinate that the FMO-HGO is more robust than the classical
HGO under noise circumstances. Finally, Case 3 has a similar FIT in Tco temperature, but
this is better in Tho, where the FIT is above 80%; the ISE and IAE indices show a better
performance in the fractional case than in the classical case. Previous results demonstrate
that the FMO-HGO is more robust than the classical HGO under noise perturbation and
parameter change circumstances. We want to emphasize that we tested both observers
under the same circumstances in all cases.

Table 3. FIT, ISE, and IAE analysis between the experiment data and estimated temperatures with
the integer order HGO and the FMO-HGO.

Experiment Normalized Root-Mean-Square Error FIT Integral Square Error
ISE

Integral Absolute Error
IAE

Case Tco Tho Tco Tho Tco Tho

HGO FMO-HGO HGO FMO-HGO HGO FMO-HGO HGO FMO-HGO HGO FMO-HGO HGO FMO-HGO

1 88.79% 88.89% 68.44% 83.08% 6.28 6.10 134 38.51 20.16 19.01 76.65 30.45

2 70.71% 71.12% 68.22% 82.82% 42.28 41.04 135.8 39.67 56.6 55.0 78.28 31.48

3 75.80% 75.65% 67.15% 80.39% 28.84 28.12 144.8 51.22 43.93 42.85 83.47 42.79

6. Conclusions and Discussions

In this paper, we designed a novel fractional multi-order high-gain observer (FMO-
HGO) to estimate outlet temperatures in a DPHE process. We systematically validated the
performance of the proposed FMO-HGO; we performed several comparisons between the
experimental data and the estimated outlet temperatures using both the FMO-HGO and
the classical HGO. The results showed that under ideal conditions (without noisy data and
a conservative value in the observer gain), both the FMO-GHO and classical HGO exhibit
a similar performance. However, when a gaussian noise of 10% was added to the outlet
temperature on the cold side Tco, the performance of the proposed FMO-HGO was shown
to be better. We concluded that fractional derivative allows us to mitigate the noise effects
in the measured signal, which implies that fractional derivative plays a noise filtering role.
Additionally, when the observer gain was set up to a high value, the better performance
of the FMO-HGO was more evident. The FIT criterion, as well as both the ISE and IAE
indices, were used to demonstrate the better performance of the FMO-HGO.

It is notable that the FMO-HGO provides a better performance due to its intrinsic
memory associated with the fractional derivative. It has been demonstrated that this
characteristic allows us to predict future system behavior and, hence, the system is more
robust to change in terms of parameters and noise [30]. As we expected, fractional-order
calculus (FOC) provides robustness to the HGO, which in real conditions can guarantee
a better estimation than using the non-fractional (classical) HGO. In addition, since we
are using the new concept of introducing fractional multi-order in each system equation,
this allowed us to expand the degrees of freedom in the system, and we can adjust each
equation according to its dynamics. In summary, our work opens a new approach in signal
analysis and estimation, which may contribute to a deeper understanding of real complex
data of an exchange heat process. For future works, we suspect that this approach can
be expanded to other systems with non-Markov behavior in applications such as signal
processing, fractional-order synchronization, fractional-order control design, and fault and
diagnose estimation. We believe that our approach (fractional-order) can provide a better
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performance than the classical approach (non-fractional) to such disciplines since we have
proved that fractional-order calculus can model non-local phenomena due the intrinsic
memory associated with the fractional derivative kernel and its natural property of noise
filtering. Finally, we are interested in the study of using different fractional-order calculus
definitions in these disciplines.
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