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Abstract: Over a field of characteristic p > 3, let KO(n, n + 1; t) denote the odd contact Lie super-
algebra. In this paper, the super-biderivations of odd Contact Lie superalgebra KO(n, n + 1; t) are
studied. Let TKO be a torus of KO(n, n + 1; t), which is an abelian subalgebra of KO(n, n + 1; t). By
applying the weight space decomposition approach of KO(n, n + 1; t) with respect to TKO, we show
that all skew-symmetric super-biderivations of KO(n, n + 1; t) are inner super-biderivations.
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1. Introduction

Over a field of characteristic p = 0, the theory of Lie superalgebras has had noticeable
development in recent years [1–5]. For example, one author classified the finite dimensional
simple Lie superalgebras and infinite-dimensional simple linearly compact Lie superalge-
bras [1,2]. Nevertheless, there is an open problem about the complete classification of the
finite-dimensional simple modular Lie superalgebras (i.e., Lie superalgebras over a field of
prime characteristic) [6]. In the last decade, there has been notable development in the study
of modular Lie superalgebras, especially in the structures and representations of simple
modular Lie superalgebras of Cartan type. The eight families of finite-dimensional simple
modular Lie superalgebras W, S, H, K, HO, KO, SHO, and SKO are discussed in [7–11]. The
superderivation algebras, second cohomologies, filtrations, and representations of the eight
families of finite-dimensional Cartan-type simple modular Lie superalgebras have also
been investigated (see [11–13], for example).

As is well known, the study of derivations is very active because of their importance in
Lie algebras and Lie superalgebras. With further research about the theory of derivations,
it is therefore natural to begin the investigations of biderivations and commuting maps
on Lie algebras [14–20]. The research of biderivations goes back to the investigation of
the commuting mapping in the associative ring, which showed that all biderivations on
commutative prime rings were inner [21]. In particular, the notations of super-biderivations
and skew-symmetric super-biderivations was introduced in [22,23]. The skew-symmetric
super-biderivations of any perfect and centerless Lie algebras or Lie superalgebras were
proved to be inner in [24]. Meanwhile, applications for and results on biderivations
and super-biderivations of simple Lie superalgebras arose in [25]. For example, based
on the theory related to super-biderivations, the authors obtained commutative post-Lie
superalgebra structures [26]. The skew-symmetric super-biderivations of generalized Witt
Lie superalgebra W(m, n; t) were proved to be inner in [27]. In [28], there were similar
results for contact Lie superalgebra K(m, n; t).

This paper is devoted to studying the super-biderivations of odd contact Lie super-
algebra KO(n, n + 1; t). And this essay is structured as follows. In Section 2, we review
the basic definitions concerning KO(n, n + 1; t). In Section 3, we get several useful conclu-
sions concerning the skew-symmetric super-biderivations on Lie superalgebras. We use
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the method of the weight space decomposition of KO(n, n + 1; t) with respect to TKO to
prove that all skew-symmetric super-biderivation of KO(n, n + 1; t) are inner in Section 4
(Theorem 1). Finally, we summarize the important findings in Section 5.

2. Preliminaries

The fundamental notations concerning the odd contact Lie superalgebras KO(n, n + 1; t)
are reviewed in this section [22].

F denotes an algebraically closed field of characteristic p > 3, and we all work on
field F. Let Z2 = {0̄, 1̄} be the additive group of modular 2. For a vector superspace
Q = Q0̄ ⊕Q1̄, the symbol d(x) = α means the parity of a homogeneous element x ∈ Qα,
α ∈ Z2. Let Q = ⊕i∈ZQi be a Z-graded vector space. Write Zd(x) = i for the Z-degree
of a Z-homogeneous element x ∈ Qi, i ∈ Z. Throughout this paper, we should mention
that once the symbol d(x) (Zd(x)) appears, it signifies that x is a Z2-homogeneous (Z-
homogeneous) element.

Let N be the set of positive integers and N0 be the set of non-negative integers. Given
n ∈ N, n > 2. For two n-tuple α = (α1, α2, · · · , αn) ∈ Nn

0 and β = (β1, β2, · · · , βn) ∈ Nn
0 , we

write (α
β)=∏ n

i=1(
αi
βi
). Over the field F, we call B(n) a divided power algebra with generators

{x(α) | α ∈ Nn
0}. For εi = (δi1, δi2, · · · , δin) ∈ Nn

0 , where δij is the Kronecker symbol, we
abbreviate x(εi) as xi, i = 1, 2, · · · , n. We call Λ(n + 1) the Grassmann superalgebra with
generators xi, i = n + 1, · · · , 2n + 1. Furthermore, we write Λ(n, n + 1) for the tensor
product B(n)⊗Λ(n + 1).

For g ∈ B(n) and f ∈ Λ(n + 1), we simply write g⊗ f as g f . The formulas hold for
Λ(n, n + 1) as follows:

x(α)x(β) =
( α + β

α

)
x(α+β), α, β ∈ Nn

0 ,

xixj = −xjxi, i, j ∈ {n + 1, · · · , 2n + 1},

x(α)xj = xjx(α), α ∈ Nn
0 , j ∈ {n + 1, · · · , 2n + 1}.

For k = {1, · · · , n + 1}, we set

Bk := {〈i1, i2, · · · , ik〉 | n + 1 ≤ i1 < i2 < · · · < ik ≤ 2n + 1}

and B := ∪n+1
k=0Bk, B̄ := {u ∈ B | 2n + 1 /∈ B}, where B0 = ∅. For u = 〈i1, i2, · · · , ik〉 ∈ Bk,

set |u| = k and

‖u‖ =
{

k, 2n + 1 /∈ Bk,
k + 1, 2n + 1 ∈ Bk,

and xu = xi1 xi2 · · · xik . It is obvious that {x(α)xu | α ∈ Nn
0 , u ∈ B} is an F-basis of

Λ(n, n + 1).
Obviously, Λ(n, n + 1) is an associative superalgebra with a Z-gradation:

Λ(n, n + 1) = Λ(n, n + 1)0̄ ⊕Λ(n, n + 1)1̄,

where Λ(n, n + 1)0̄ = B(n)⊗Λ(n + 1)0̄, Λ(n, n + 1)1̄ = B(n)⊗Λ(n + 1)1̄.
Let I0 := {1, 2, · · · , n}, I1 := {n + 1, n + 2, · · · , 2n + 1} and I := I0 ∪ I1. Put J1 :=

I1 \ {2n + 1}.
Let D1, D2, · · · , D2n+1 be the linear transformations of Λ(n, n + 1) such that

Di(x(α)xu) =

{
x(α−εi)xu, i ∈ I0,
x(α) · ∂xu/∂xi, i ∈ I1.
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Then it is easy to see that D1, D2, · · · , D2n+1 are derivations of the superalgebra
Λ(n, n + 1), and d(Di)=τ(i), where

τ(i) =

{
0̄, i ∈ I0,
1̄, i ∈ I1.

Let

W(n, n + 1) := {
2n+1

∑
i=1

aiDi | ai ∈ Λ(n, n + 1), i ∈ I}.

Then W(n, n + 1) is an infinite-dimension Lie superalgebra that is contained in
Der(Λ(n, n + 1)) and the following formula holds:

[aDi, bDj] = aDi(b)Dj − (−1)d(aDi)d(bDj)bDj(a)Di,

where a, b ∈ Λ(n, n + 1), i, j ∈ I.
Over the algebraically closed field F of characteristic p > 3, we choose two n-tuples

of positive integers t = (t1, t2, · · · , tn) ∈ Nn
0 and π = (π1, π2, · · · , πn) ∈ Nn

0 , where
πi = pti − 1 for all i ∈ I0.

Let

Λ(n, n + 1, t) := spanF{x
(α)xu | α ∈ A(n, t), u ∈ B},

where A(n, t) = {α = (α1, α2, · · · , αn) ∈ Nn
0 | 0 ≤ αi ≤ πi, i ∈ I0}.

Set

W(n, n + 1; t) := {
2n+1

∑
i=1

aiDi | ai ∈ Λ(n, n + 1; t), i ∈ I}.

Then W(n, n + 1; t) is a finite-dimensional simple Lie superalgebra. Note that
W(n, n + 1; t) possesses a Z-graded structure:

W(n, n + 1; t) = ⊕ξ−1
i=−1W(n, n + 1; t)i,

by letting W(n, n + 1; t)i := {x(α)xuDj | |α|+ |u| = i + 1, j ∈ I} and ξ := ∑n
i=1 πi + n + 1.

Put

i′ =

{
i + n, i ∈ I0,
i− n, i ∈ J1.

We define the linear operator TK : Λ(n, n + 1; t)→W(n, n + 1; t) as follows:

TK(a) :=
2n

∑
l=1

((−1)τ(l′)d(a)(Dl′(a)) + (−1)d(a)(D2n+1(a)xl))Dl + (
2n

∑
l=1

xl Dl(a)− 2a)D2n+1.

Put

KO(n, n + 1; t) := spanF{TK(a) | a ∈ Λ(n, n + 1; t)}.

For a, b ∈ Λ(n, n + 1; t), the formula holds:

[TK(a), TK(b)] = TK(〈a, b〉), (1)

where 〈a, b〉 := TK(a)(b)− (−1)d(a)2(D2n+1(a)(b)) is the Lie bracket in Λ(n, n + 1; t).
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Then it is easy to show that KO(n, n + 1; t) is a simple Lie superalgebra. And we
call KO(n, n + 1; t) the odd contact Lie superalgebra. Moreover, the principal Z-graded is
listed below:

KO(n, n + 1; t) = ⊕ξ−2
i=−2KO(n, n + 1; t)i,

where KO(n, n + 1; t)i = {TK(x(α)xu) | |α|+ ‖u‖ = i + 2}. In particular,

KO(n, n + 1; t)−2 = FTK(1).

3. The Notions of Super-Biderivation

The properties of super-biderivations on centerless super-Virasoro algebras were
introduced in [22]. Our aim in this section is to introduce a more-general definition
concerning super-biderivations of Lie superalgebras. In order to prove the main conclusions,
we need some preparations.

G denotes a Lie algebra over an arbitrary field. A linear mapping D : G → G is called
a derivation if the following axioms are satisfied:

D([x, y]) = [D(x), y] + [x, D(y)],

for all x, y ∈ G. And we say a bilinear map ψ : G × G −→ G is a biderivation if the
following axioms are satisfied:

ψ(x, [y, z]) = [ψ(x, y), z] + [y, ψ(x, z)],

ψ([x, y], z) = [ψ(x, z), y] + [x, ψ(y, z)],

for all x, y, z ∈ G. Meanwhile, we say a biderivation ψ is a skew-symmetric biderivation if
it satisfies

ψ(x, y) = −ψ(y, x)

for all x, y ∈ G. Specially, a bilinear map ψλ : G× G −→ G is an inner biderivation if it
satisfies ψλ(x, y) = λ[x, y] for all x, y ∈ G (see [22]).

L denotes a Lie superalgebra. Recall that a linear map D : L× L→ L is a superderiva-
tion of L if the following axiom is satisfied:

D([x, y]) = [D(x), y] + (−1)d(D)d(x)[x, D(y)],

for all x, y ∈ L. Meanwhile, we write Der0̄(L) (resp. Der1̄(L)) for the set of all superderiva-
tions of Z2-degree 0̄ (resp. 1̄ ) of L.

A Z2-homogeneous bilinear map ϕ with Z2-degree γ of L is a bilinear map such
that ϕ(Lα, Lβ) ⊂ Lα+β+γ for any α, β ∈ Z2. Specially, we say ϕ fits these criteria even if
d(ϕ) = γ = 0̄.

Definition 1. A bilinear mapping ϕ : L× L → L is a super-biderivation of L if the following
axioms are satisfied:

ϕ([x, y], z) = [x, ϕ(y, z)] + (−1)(d(z)+d(ϕ))d(y)[ϕ(x, z), y], (2)

ϕ(x, [y, z]) = [ϕ(x, y), z] + (−1)(d(x)+d(ϕ))d(y)[y, ϕ(x, z)], (3)

for all Z2-homogeneous elements x, y, z ∈ L.

And we say a biderivation ϕ is a skew-symmetric biderivation if it satisfies:

ϕ(x, y) = −(−1)d(x)d(y)+(d(x)+d(y))d(ϕ)ϕ(y, x)

for all x, y ∈ L.
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Denote by BDerγ(L) the set of all skew-symmetric super-biderivations of Z2-degree γ.
It is obvious that

BDer(L) = BDer0̄(L)⊕ BDer1̄(L).

Lemma 1. Let ϕλ : L× L→ L be a bilinear map with λ ∈ F. Then ϕλ is a skew-symmetric super-
biderivation on L if it satisfies ϕλ(x, y) = λ[x, y] for all x, y ∈ L. This class of super-biderivations
is called inner.

Proof. Obviously, it is easy to obtain that ϕλ is an even bilinear map, i.e., d(ϕλ) = 0. By
the skew-symmetry of Lie superalgebras , we have

ϕλ(x, y) = −(−1)d(x)d(y)+d(y)d(ϕλ)+d(x)d(ϕλ)ϕλ(y, x)

for any x, y ∈ L.
Due to the definition of graded Jacobi identity [[x, y], z] = [x, [y, z]] + (−1)d(z)d(y)[[x, z], y],

we have that

ϕλ([x, y], z) = [x, ϕλ(y, z)] + (−1)(d(z)+d(ϕλ))d(y)[ϕλ(x, z), y]

for any x, y, z ∈ L.
Similarly, it follows that

ϕλ(x, [y, z]) = [ϕλ(x, y), z] + (−1)(d(x)+d(ϕλ))d(y)[y, ϕλ(x, z)]

for any x, y, z ∈ L.

Lemma 2. Let ϕ be a skew-symmetric super-biderivation on L. Then for any x, y, u, v ∈ L, we have

[ϕ(x, y), [u, v]] = (−1)(d(y)+d(u))d(ϕ)[[x, y], ϕ(u, v)].

Proof. Due to Definition 1, there are two different ways to compute ϕ([x, u], [y, v]).
From Equation (2), we have

ϕ([x, u], [y, v]) = [x, ϕ(u, [y, v])] + (−1)(d(y)+d(v)+d(ϕ))d(u)[ϕ(x, [y, v]), u]

= [x, [ϕ(u, y), v]] + (−1)(d(u)+d(ϕ))d(y)[x, [y, ϕ(u, v)]]

+(−1)(d(y)+d(v)+d(ϕ))d(u)[[ϕ(x, y), v], u]

+(−1)(d(y)+d(v)+d(ϕ))d(u)+(d(x)+d(ϕ))d(y)[[y, ϕ(x, v)], u].

According to Equation (3), one gets

ϕ([x, u], [y, v]) = [ϕ([x, u], y), v] + (−1)(d(x)+d(u)+d(ϕ))d(y)[y, ϕ([x, u], v)]

= [[x, ϕ(u, y)], v] + (−1)(d(y)+d(ϕ))d(u)[[ϕ(x, y), u], v]

+(−1)(d(x)+d(u)+d(ϕ))d(y)[y, [x, ϕ(u, v)]]

+(−1)(d(x)+d(u)+d(ϕ))d(y)+(d(v)+d(ϕ))d(u)[y, [ϕ(x, v), u]].

Comparing the two sides of the above two equations, we have that

[ϕ(x, y), [u, v]]− (−1)(d(y)+d(u))d(ϕ)[[x, y], ϕ(u, v)]

= (−1)d(v)d(u)+d(y)d(v)+d(y)d(u)([ϕ(x, v), [u, y]]− (−1)(d(v)+d(u))d(ϕ)[[x, v], ϕ(u, y)]).

And we set

f (x, y; u, v) = [ϕ(x, y), [u, v]]− (−1)(d(y)+d(u))d(ϕ)[[x, y], ϕ(u, v)],
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f (x, v; u, y) = [ϕ(x, v), [u, y]]− (−1)(d(v)+d(u))d(ϕ)[[x, v], ϕ(u, y)].

According to the above equation, it can be easily seen that

f (x, y; u, v) = (−1)d(y)d(u)+d(v)d(u)+d(y)d(v) f (x, v; u, y).

On the one hand, one goes

f (x, y; u, v) = −(−1)d(u)d(v) f (x, y; v, u)

= −(−1)d(u)d(v)(−1)d(u)d(v)+d(y)d(v)+d(u)d(y) f (x, u; v, y)

= (−1)d(u)d(y) f (x, u; y, v).

On the other hand, it is easy to see that

f (x, y; u, v) = (−1)d(u)d(v)+d(y)d(v)+d(u)d(y) f (x, v; u, y)

= −(−1)d(u)d(y)(−1)d(u)d(v)+d(y)d(v)+d(u)d(y) f (x, v; y, u)

= −(−1)d(u)d(y) f (x, u; y, v).

Hence, we get
f (x, y; u, v) = − f (x, y; u, v).

Due to char(F) 6= 2, we have that f (x, y; u, v) = 0. Furthermore, we obtain

[ϕ(x, y), [u, v]] = (−1)(d(y)+d(u))d(ϕ)[[x, y], ϕ(u, v)].

Lemma 3. If d(x) + d(y) = 0̄ for any x, y ∈ L, then we have

[ϕ(x, y), [x, y]] = 0.

Proof. By Lemma 2, it is easily seen that

[ϕ(x, y), [x, y]] = (−1)(d(y)+d(x))d(ϕ)[[x, y], ϕ(x, y)].

Since d(x) + d(y) = 0̄, we have

[ϕ(x, y), [x, y]] = [[x, y], ϕ(x, y)]

= −[ϕ(x, y), [x, y]].

Thus, we obtain [ϕ(x, y), [x, y]] = 0.

Lemma 4. Let CL([L, L]) be the centralizer of [L, L]. If [x, y] = 0, then we have ϕ(x, y) ∈
CL([L, L]).

Proof. If [x, y] = 0, for any u, v ∈ L, we obtain

[ϕ(x, y), [u, v]] = −(−1)(d(y)+d(u))d(ϕ)[[x, y], ϕ[u, v]] = 0.

So we get ϕ(x, y) ∈ CL([L, L]).

4. Skew-Symmetric Super-Biderivations of KO(n, n + 1; t)

In this section, we prove that all skew-symmetric super-biderivations of KO(n, n+ 1; t)
are inner. For simplicity, we write KO for KO(n, n + 1; t). In order to prove the main theory,
we need some preparations.
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Set TKO = spanF{TK(xixi′ ) | i ∈ I0}. It is easy to see that TKO is an abelian subalgebra
of KO. From Equation (1), for all TK(x(α)xu) ∈ KO, we have

[TK(xixi′ ), TK(x(α)xu)] = (δ(i′∈u) − αi)TK(x(α)xu), (4)

where

δ(P) =

{
1, P is ture,
0, P is false.

For fixed α ∈ Nn and u ∈ B, we define a linear function (α + 〈u〉) : TKO → F by means of

(α + 〈u〉)TK(xixi′ ) = δ(i′∈u) − αi.

Therefore, KO has a weight-space decomposition with respect to TKO:

KO = ⊕
(α+〈u〉)

KO(α+〈u〉),

where

KO(α+〈u〉) = spanF{TK(x(β)xv) ∈ KO | [TK(xixi′ ), TK(x(β)xv)]

= (δ(i′∈u) − αi)TK(x(β)xv), ∀ TK(xixi′ ) ∈ TKO, i ∈ I0}.

Not specifically, φ denotes a Z2-homogeneous skew-symmetric super-biderivation on
KO in the proof below.

Lemma 5. If [x, y] = 0 for x, y ∈ KO, we have φ(x, y) = 0.

Proof. By applying Lemma 4, we obtain that φ(x, y) ∈ C(KO). As KO is a simple Lie
superalgebra, φ(x, y) = 0.

Lemma 6. For TK(xixi′ ) and TK(x(α)xu), we have

φ(TK(xixi′ ), TK(x(α)xu)) ∈ KO(α+〈u〉).

Proof. By applying Lemma 5, it is obvious that φ(TK(xixi′ ), TK(xjxj′ )) = 0 for any i, j ∈ I0

from [TK(xixi′ ), TK(xjxj′ )] = 0. Note that d(TK(xl xl′ )) = 0̄ for all i ∈ I0. For TK(x(α)xu) ∈
KO, one gets

(−1)(d(φ)+d(TK(xixi′
)))d(TK(xl xl′

))
[TK(xl xl′ ), φ(TK(xixi′ ), TK(x(α)xu))]

= φ(TK(xixi′ ), [TK(xl xl′ ), TK(x(α)xu)])− [φ(TK(xixi′ ), TK(xl xl′ )), TK(x(α)xu)]

= (δ(l′∈u) − αl)φ(TK(xixi′ ), TK(x(α)xu)).

Lemma 7. Let i, j ∈ I0, i 6= j. Then the statements below hold:

(i)KO(εi)
= KO(εi+〈2n+1〉) = ∑

0≤α≤π,u∈B
FTK(( ∏

l∈I0\{i},h
′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xu); (5)

(ii)KO(〈i′〉) = KO(〈i′〉+〈2n+1〉) = ∑
0≤α≤π,u∈B

FTK(( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))xi′x

u); (6)

(iii)KO(εi+〈j′〉) = ∑
0≤α≤π,u∈B

F(TK(( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xj′x

u), (7)
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where α
q̄
l denotes some integer, and α

q̄
l ≡ q (mod p).

Proof. (i) We may choose a fixed element i ∈ I0. By applying (1), we can directly obtain that

[TK(xl xl′ ), TK(x(εi))] = −δliTK(x(εi)),

for any l ∈ I0. From Equation (4), we get

δ(l′∈u) − αl = −δli,

for any l ∈ I0. If l ∈ I0\{i}, then δ(l′∈u) − αl ≡ 0 (mod p). If l = i, it is easy to see that
δ(i′∈u) − αi ≡ −1 (mod p). Then we obtain the desired result.

(ii) We also choose a fixed element i′ ∈ J1. A straightforward computation proves that

[TK(xl xl′ ), TK(xi′)] = δl′i′TK(xi′),

for any l ∈ I0. Equation (4) then yields

δ(l′∈u) − αl = δl′i′ ,

for any l ∈ I0. If l ∈ I0\{i}, it is easily seen that δ(l′∈u) − αl ≡ 0 (mod p). If l = i, we have
that δ(i′∈u) − αi ≡ 1 (mod p). Then the assertion follows.

(iii) The proof is similar to (i) and (ii).

Lemma 8. For any i ∈ I\{2n + 1}, λi ∈ F, we have

φ(TK(xixi′ ), TK(xi)) = λi[TK(xixi′ ), TK(xi)],

where λi depends on i.

Proof. (i) For i′ ∈ J1, according to Equality (6), one may assume that

φ(TK(xixi′ ), TK(xi′)) = ∑
0≤α≤π,u∈B

c(α, u, i′)TK(( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))xi′x

u),

where c(α, u, i′) ∈ F. By Lemma 5, we have that

0 = (−1)(d(φ)+d(TK(xixi′
)))d(TK(1))(φ(TK(xixi′ ), [TK(1), TK(xi′)])

−[φ(TK(xixi′ ), TK(1)), TK(xi′)])

= [TK(1), φ(TK(xixi′ ), TK(xi′))]

= [TK(1), ∑
0≤α≤π,u∈B

c(α, u, i′)TK(( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))xi′x

u)]

= ∑
0≤α≤π,u∈B

c(α, u, i′)TK(〈1, ( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))xi′x

u〉).

So we can conclude that c(α, u, i′) = 0 if 2n + 1 ∈ u. Then, we may suppose that

φ(TK(xixi′ ), TK(xi′)) = ∑
0≤α≤π,u∈B̄

c(α, u, i′)TK(( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))xi′x

u).
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Putting k ∈ I\{i, i
′}, we obtain

0 = (−1)(d(φ)+d(TK(xixi′
)))d(TK(xk))(φ(TK(xixi′ ), [TK(xk), TK(xi′)])

−[φ(TK(xixi′ ), TK(xk)), TK(xi′)])

= [TK(xk), φ(TK(xixi′ ), TK(xi′))]

= [TK(xk), ∑
0≤α≤π,u∈B̄

c(α, u, i′)TK(( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))xi′x

u)]

= ∑
0≤α≤π,u∈B̄

c(α, u, i′)TK(〈xk, ( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))xi′x

u〉),

where c(α, u, i′) ∈ F. Hence, c(α, u, i′) = 0 if k
′ ∈ u or α0̄

k′
> 0 by calculating the above

equation. Therefore, we assume that

φ(TK(xixi′ ), TK(xi′)) = ∑
0≤α≤π

c(α, i′)TK(x(α
0̄
i εi)xi′).

Since d(TK(xixi′ )) + d(TK(xi′)) = 0̄ for any i ∈ I0 and Lemma 2, we have that

0 = [φ(TK(xixi′ ), TK(xi′)), [TK(xixi′ ), TK(xi′)]]

= [[TK(xixi′ ), TK(xi′)], φ(TK(xixi′ ), TK(xi′))]

= [TK(xi′), ∑
0≤α≤π

c(α, i′)TK(x(α
0̄
i εi)xi′)]

= ∑
0≤α≤π

c(α, i′)TK(〈xi′ , x(α
0̄
i εi)xi′〉).

Based on computing the above equation, we deduce that c(α, i′) = 0 if α0̄
i > 0. Then,

we suppose that
φ(TK(xixi′ ), TK(xi′)) = c(i′)TK(xi′).

Put λi′ := −c(i′). By the discussions above, for any i ∈ I0, one gets

φ(TK(xixi′ ), TK(xi′)) = λi′ [TK(xixi′ ), TK(xi′)],

where λi′ is dependent on i′.
(ii) According to Equality (5), for i ∈ I0, we may assume that

φ(TK(xixi′ ), TK(xi)) = ∑
0≤α≤π,u∈B

c(α, u, i)TK(( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xu),

where c(α, u, i) ∈ F. By Lemma 5, it is easily seen that

0 = (−1)(d(φ)+d(TK(xixi′
)))d(TK(1))(φ(TK(xixi′ ), [TK(1), TK(xi)])

−[φ(TK(xixi′ ), TK(1)), TK(xi)])

= [TK(1), φ(TK(xixi′ ), TK(xi))]

= [TK(1), ∑
0≤α≤π,u∈B

c(α, u, i)TK(( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xu)]

= ∑
0≤α≤π,u∈B

c(α, u, i)TK(〈1, ( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xu〉).
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A simple calculation shows that c(α, u, i) = 0 if 2n + 1 ∈ u. Then, we may assume that

φ(TK(xixi′ ), TK(xi)) = ∑
0≤α≤π,u∈B̄

c(α, u, i)TK(( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xu).

Setting k ∈ I\{i, i′}, one gets

0 = (−1)(d(φ)+d(TK(xixi′
)))d(TK(xk))(φ(TK(xixi′ ), [TK(xk), TK(xi)])

−[φ(TK(xixi′ ), TK(xk)), TK(xi)])

= [TK(xk), φ(TK(xixi′ ), TK(xi))]

= [TK(xk), ∑
0≤α≤π,u∈B̄

c(α, u, i)TK(( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xu)]

= ∑
0≤α≤π,u∈B̄

c(α, u, i)TK(〈xk, ( ∏
l∈I0,h′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xu〉).

By calculating the above equation, we have c(α, u, i) = 0 if α0̄
k′ > 0 or k′ ∈ u. Then, we

can suppose that

φ(TK(xixi′ ), TK(xi)) = ∑
0≤α≤π,u∈{i′}

c(α, u, i)TK(( ∏
h′∈u

x(εh))x(α
1̄
i εi)xu).

By Lemma 2, we have

λi′TK(1) = [φ(TK(xixi′ ), TK(xi′)), [TK(xixi′ ), TK(xi)]]

= [[TK(xixi′ ), TH(xi′)], φ(TK(xixi′ , TH(xi))]

= [TK(xi′), ∑
0≤α≤π,u∈{i′}

c(α, u, i)TK(( ∏
h′∈u

x(εh))x(α
1̄
i εi)xu)]

= ∑
0≤α≤π,u∈{i′}

c(α, u, i)TK(〈xi′ , ( ∏
h′∈u

x(εh))x(α
1̄
i εi)xu〉).

Based on computing the above equation, we obtain that c(α, u, i) = 0 if i′ ∈ u or
αi

1̄ > 1. Then, we assume that

φ(TK(xixi′ ), TK(xi)) = c(i)TK(xi).

Put λi := −c(i). By the discussions above, for any i ∈ I0, we conclude that

φ(TK(xixi′ ), TK(xi)) = λi[TK(xixi′ ), TK(xi)],

where λi depends on i. And our assertion is affirmed.

Lemma 9. All Z2-homogeneous skew-symmetric super-biderivations of KO are even.

Proof. Due to Lemma 8, all Z2-homogeneous skew-symmetric super-biderivations of
KO are even mapping. Since φ(TK(xixi′ ), TK(xi)) and [TK(xixi′ ), TK(xi)] have the same
Z2-degree, the Z2-degree of φ is even.

Lemma 10. For TK(xixj′ ), i, j ∈ I0, i 6= j, we have

φ(TK(xixi′ ), TK(xixj′ )) = λi′ [TK(xixi′ ), TK(xixj′ )],

where λi′ ∈ F.
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Proof. By virtue of Equality (7), we may assume that

φ(TK(xixi′ ), TK(xixj′ )) = ∑
0≤α≤π,u∈B

c(α, u, i, j′)TK(( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xj′ x

u).

It is easily seen that

0 = φ(TK(xixi′ ), [TK(1), TK(xixj′)])− [φ(TK(xixi′ ), TK(1)), TK(xixj′)]

= [TK(1), φ(TK(xixi′ ), TK(xixj′))]

= [TK(1), ∑
0≤α≤π,u∈B

c(α, u, i, j′)TK(( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xj′x

u)]

= ∑
0≤α≤π,u∈B

c(α, u, i, j′)TK(〈1, ( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xj′x

u〉).

By a direct computation, we have that c(α, u, i, j′) = 0 if 2n + 1 ∈ u. Then, we may
assume that

φ(TK(xixi′ ), TK(xixj′ )) = ∑
0≤α≤π,u∈B̄

c(α, u, i, j′)TK(( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xj′ x

u).

By Lemma 5, for k ∈ I\{i, j, i
′
, j
′}, one gets

0 = φ(TK(xixi′ ), [TK(xk), TK(xixj′ )])− [φ(TK(xixi′ ), TK(xk)), TK(xixj′ )]

= [TK(xk), φ(TK(xixi′ ), TK(xixj′ ))]

= [TK(xk), ∑
0≤α≤π,u∈B̄

c(α, u, i, j′)TK(( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xj′x

u)]

= ∑
0≤α≤π,u∈B̄

c(α, u, i, j′)TK(〈xk, ( ∏
l∈I0\{i},h

′∈u

x(α
0̄
l ε l)x(εh))x(α

1̄
i εi)xj′ x

u〉).

Hence, c(α, u, i, j) = 0 if α0̄
k′
> 0 or k′ ∈ u by calculating the equation above. Then, we

assume that

φ(TK(xixi′ ), TK(xixj′ )) = ∑
0≤α≤π,u∈{i′}

c(α, i, j′)TK(( ∏
h′∈u

x(εh))x(α
1̄
i εi)x(α

0̄
j ε j)xj′x

u).

By Lemmas 2 and 10, we have

λi′TK(xj′ ) = [λi′ [TK(xixi′ ), TK(xi′ )], [TK(xixi′ ), TK(xixj′ )]]

= [φ(TK(xixi′ ), TK(xi′ )), [TK(xixi′ ), TK(xixj′ )]]

= [[TK(xixi′ ), TK(xi′ )], φ(TK(xixi′ ), TK(xixj′ ))]

= [TK(xi′ ), ∑
0≤α≤π,u∈{i′}

c(α, i, j′)TK(( ∏
h′∈u

x(εh))x(α
1̄
i εi)x(α

0̄
j ε j)xj′x

u)]

= ∑
0≤α≤π,u∈{i′}

c(α, i, j′)TK(〈xi′ , ( ∏
h′∈u

x(εh))x(α
1̄
i εi)x(α

0̄
j ε j)xj′x

u〉).

Based on computing the above equation, we have that c(α, i, j) = 0 if αi
1̄ > 1, αj

0̄ > 0
or i′ ∈ u. So we suppose that

φ(TK(xixi′ ), TK(xixj′ )) = −c(i, j′)TK(xixj′ ).
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By Lemmas 2 and 8, we have

λi′TK(xj′ ) = [λi′ [TK(xixi′ ), TK(xi′ )], [TK(xixi′ ), TH(xixj′ )]]

= [φ(TK(xixi′ ), TK(xi′ )), [TK(xixi′ ), TK(xixj′ )]]

= [[TK(xixi′ ), TK(xi′ )], φ(TK(xixi′ ), TK(xixj′ ))]

= c(i, j′)TK(〈xi′ , xixj′〉).

Thus, we conclude that

φ(TK(xixi′ ), TK(xi)) = λi′ [TK(xixi′ ), TK(xixj′ )].

Remark 1. For i, j ∈ I0, i 6= j, we have λ1 = · · · = λn = · · · = λ2n. Due to Lemmas 8 and 10,
one gets

0 = [φ(TK(xjxj′ ), TK(xj)), [TK(xixi′ ), TK(xixj′ )]]

−[[TK(xjxj′ ), TK(xj)], φ(TK(xixi′ ), TK(xixj′ ))]

= (λj − λi′)TK(xi).

Thus, we deduce that λi′ = λj for i, j ∈ I0, i 6= j. Set λ := λ1 = · · · = λn = · · · = λ2n. By a
direct computation, we can conclude that

φ(TK(xixi′ ), TK(xi)) = λ[TK(xixi′ ), TK(xi)],

φ(TK(xixi′ ), TK(xi′)) = λ[TK(xixi′ ), TK(xi′)],

φ(TK(xixi′ ), TK(xixj′ )) = λ[TK(xixi′ ), TK(xixj′ )],

where λ is dependent on neither i nor j.

Lemma 11. For any TK(x(εi)x2n+1), i ∈ I0, we have that

φ(TK(xixi′ ), TK(x(εi)x2n+1)) = λ[TK(xixi′ ), TK(x(εi)x2n+1)],

Proof. By Lemmas 2 and 5, and Remark 1, for i ∈ I0, we have

[φ(TK(xkxk′ ), TK(xk′)), [TK(xixi′ ), TK(x(εi)x2n+1)]]

−[[TK(xkxk′ ), TK(xk′)], φ(TK(xixi′ ), TK(x(εi)x2n+1))]

= [λ[TK(xkxk′ ), TK(xk′)], [TK(xixi′ ), TK(x(εi)x2n+1)]]

−[[TK(xkxk′ ), TK(xk′)], φ(TK(xixi′ ), TK(x(εi)x2n+1))]

= [TK(xk′), φ(TK(xixi′ ), TK(x(εi)x2n+1))− λ[TK(xixi′ ), TK(x(εi)x2n+1)]]

= 0.

Since CKO(KO−1) = KO−2 = FTK(1), one gets

φ(TK(xixi′ ), TK(x(εi)x2n+1)) = λ[TK(xixi′ ), TK(x(εi))x2n+1] + bTK(1),

where b ∈ F. By virtue of Lemma 7, it follows that KO−2 ∩ KO(εi+〈2n+1〉) = 0. So we obtain
b = 0. Furthermore, we conclude that

φ(TK(xixi′ ), TK(x(εi)x2n+1)) = λ[TK(xixi′ ), TK(x(εi)x2n+1)].
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Theorem 1. Let KO be the odd contact Lie superalgebra over an algebraically closed field of
characteristic p > 3. Then, we have

BDer(KO) = IBDer(KO).

Proof. By Lemma 2 and Remark 1, it is follows that

0 = [φ(TK(xixi′ ), TK(xi)), [TK(x(ι)xs), TK(x(κ)xt)]]

−[[TK(xixi′ ), TK(xi)], φ(TK(x(ι)xs), TK(x(κ)xt))]

= [[TK(xixi′ ), TK(xi)], λ[TK(x(ι)xs), TK(x(κ)xt)]]

−[[TK(xixi′ ), TK(xi)], φ(TK(x(ι)xs), TK(x(κ)xt))]

= [TK(xi), λ[TK(x(ι)xs), TK(x(κ)xt)]− φ(TK(x(ι)xs), TK(x(κ)xt))]

for any TK(x(ι)xs), TK(x(κ)xt) ∈ KO.
Because of CKO(KO−1) = KO−2 = FTK(1), we have

φ(TK(x(ι)xs), TK(x(κ)xt)) = λ[TK(x(ι)xs), TK(x(κ)xt)] + bTK(1).

Due to Lemmas 2 and 11, it is easily seen that

0 = [φ(TK(x(ι)xs), TK(x(κ)xt)), [TK(xixi′), TK(xix2n+1)]]

−[[TK(x(ι)xs), TK(x(κ)xt)], φ(TK(xixi′ ), TK(xix2n+1))]

= [λ[TK(x(ι)xs), TK(x(κ)xt)] + bTK(1), [TK(xixi′ ), TK(xix2n+1)]]

−[[TK(x(ι)xs), TK(x(κ)xt)], λ[TK(xixi′ ), TK(xix2n+1)]]

= [λ[TK(x(ι)xs), TK(x(κ)xt)] + bTK(1)

−λ[TK(x(ι)xs), TK(x(κ)xt)], [TK(xixi′ ), TK(xix2n+1)]]

= [bTK(1), TK(xix2n+1)]

= (−1)τ(i)2bTK(xi).

Since TK(xi) 6= 0, we obtain b = 0. Furthermore, we conclude that

φ(TK(x(ι)xs), TK(x(κ)xt)) = λ[TK(x(ι)xs), TK(x(κ)xt)]

for any TK(x(ι)xs), TK(x(κ)xt)) ∈ KO. Therefore, we prove that φ is an inner super-
biderivation.

5. Conclusions

In this section, we summarize the important findings.
Firstly, Definition 1 and Lemmas 2 and 3 are a more-general definition and properties

for skew-symmetric super-biderivations. Meanwhile, they are very helpful tools to prove
all skew-symmetric super-biderivations of KO are inner super-biderivations.

Thereafter, we obtain the weight space decomposition with respect to TKO. Lemmas 7–9
and Remark 1 show that λ is dependent on neither i nor j. Thus, we obtain Lemma 11.

Lastly, we prove that all skew-symmetric super-biderivations of KO(n, n + 1; t) are
inner super-biderivations (Theorem 1) by the results above.
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