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Abstract: This paper investigates the capability of undirected graphs (UGs) to represent a set of
Conditional Independence (CI) statements derived from a given probability distribution of a random
vector. While it is established that certain axioms can govern this set, providing sufficient conditions
for UGs to capture specific CI statements, our focus is on covariance and concentration graphs.
These remain the only known families of UGs capable of describing CI statements. We explore
the issue of complete representation of CI statements through their corresponding covariance and
concentration graphs. Two parameters are defined, one each from the covariance and concentration
graphs, to determine the limitations concerning the cardinality of the conditioning subset that the
graph can represent. We establish a relationship between these parameters and the cardinality of the
separators in each graph, providing a straightforward computational method to evaluate them. In
conclusion, we enhance the aforementioned procedure and introduce criteria to ascertain, without
additional computations, whether the graphs can fully represent a given set of CI statements. We
demonstrate that either the concentration or the covariance graph forms a cycle, and when considered
in conjunction, they can represent the entire relation. These criteria also enable us, in specific cases, to
deduce the covariance graph from the concentration graph and vice versa.
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1. Introduction

In the realm of statistics and graphical estimation, conditional independence is funda-
mental in simplifying complex multivariate relationships and plays a crucial role in the
construction and interpretation of graphical models, including Bayesian networks and
Markov random fields. These models, which are pivotal in fields such as bioinformatics,
epidemiology, and machine learning, leverage conditional independence to efficiently
represent variable dependencies, thus enabling a more intuitive understanding of the
underlying data structure and facilitating model simplification by reducing the number of
parameters required (see [1–3]). This approach is particularly valuable in high-dimensional
data analysis for identifying relevant variables and constructing sparse models, essential for
effective prediction and inference. In the estimation of these models, learning conditional in-
dependence relationships directly from data is a key aspect, especially in high-dimensional
settings with complex mean structures and random effects, where constraint-based methods
are employed to estimate these relationships and form Bayesian networks [4]. The use of
Bayesian networks in analyzing gene expression data underscores the connection between
these networks and the concept of direct causal influence, characterized by probabilities
and conditional independence statements [5]. Furthermore, in epidemiology, Bayesian
network modeling is recognized as a well-suited approach for studying messy and highly
correlated datasets typical in systems epidemiology, while the application of probabilistic
graphical models, such as conditional random fields, hypergraph convolution networks,
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and large margin models, highlights the prevalence of these methods in learning with
graphical structure [6–8].

This paper uses undirected graphs as a mathematical framework for representing sets
of Conditional Independence (CI) statements. These graphs, commonly called graphical
models, have been extensively studied in [9–11]. A central question in this field is whether
a simple mathematical surrogate, like a graph, can effectively represent most of the CI
statements associated with a random vector without requiring additional computations.
Given the simplicity and mathematical rigor of graphs (see [12]), they appear to be suitable
candidates for this role.

Graphical models are constructed according to specific rules, associating them with
a probability distribution. These models are derived from a subset of the CI statements
and can subsequently be used to infer additional CI statements within the distribution. To
formalize this, consider a finite set V and denote uv as the pair (u, v) of two elements in
V = V ×V \ {(u, u) ∈ V ×V; u ∈ V}.

Given a random vector XV = (Xv, v ∈ V)′ indexed by V and associated with a
probability distribution P, we can define an undirected graph G = (V, E) based on P and a
fixed family P of subsets of V. Here, V serves as the set of vertices, and the set of edges E
is a subset of V as defined in Equation (1).

E ⊆ V = V ×V \ {(u, u) ∈ V ×V; u ∈ V} (1)

The graph G satisfies the following condition:

uv 6∈ E ⇐⇒ ∃ S ∈ P such that u⊥⊥ v | S (2)

Here, u⊥⊥ v | S is shorthand for the statement “ Xu is independent of Xv given the
random vector XS indexed by S, i.e., XS = (Xs, s ∈ S)′”. When this property (2) is met, we
say that P is pairwise Markov to G according to P .

This paper focuses on two well-known types of undirected graphical models. The
first type is the concentration graph, denoted by G = (V, E), which is constructed from
P when the family P = P|V|−2 = {S ⊆ V such that |S| = |V| − 2}. The second type is
the covariance graph, denoted by H = (V, F), and is constructed from P when the family
P = P0 = {∅}.

Under certain conditions satisfied by the probability distribution P [10,13–15], both
types of graphs can be used to infer a wide range of CI statements, although not exhaustively.
Specifically, for a triplet (A, B, C) of pairwise disjoint subsets of V, if A is separated from B
by C in G, then A ⊥⊥ B | C. In this context, P is said to be globally Markov to G.

To formalize, consider the following sets of triplets (A, B, S) of pairwise disjoint subsets
of V:

S(G) = {(A, B, S) | S separates A and B in G}

and
C(P) = {(A, B, S) | A ⊥⊥ B | S}.

P is globally Markov to G if and only if S(G) ⊆ C(P).
Similarly, for the covariance graph H, if A and B are separated by V \ (A ∪ B ∪ C) in

H, then A ⊥⊥ B | C in P (see [15–17]). In this case, P is also considered globally Markov to
H. Therefore, consider the following set:

S(H) = {(A, B, S) | V \ (A ∪ B ∪ S) separates A and B in H},

P is globally Markov to H if and only if S(H) ⊆ C(P).
In this paper, we aim to identify the families of probability distributions that the

concentration and covariance graphs can fully represent. The central question is to ascertain
the conditions on P such that

C(P) = S(G) ∪ S(H) (3)
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where G and H are the concentration and covariance graphs associated with P, respectively.
It has been previously established in [18] that when the CI statements are fully captured

by the concentration graph, i.e., S(G) = C(P), the covariance graph must be a union of
complete connected graphs. In such cases, P is said to be faithful to its concentration graph.
Conversely, using a dual argument, it was shown that if the covariance graph can fully
represent the CI statements, i.e., S(H) = C(P), then the concentration graph must also be a
union of complete connected graphs. Under these conditions, P is faithful to its covariance
graph (see [19]).

In [19], the authors provided a sufficient condition for P to be faithful to its concen-
tration graph. They demonstrated that if all connected components of a concentration
graph are trees and P satisfies certain conditions, then the graph can fully represent the CI
statements. This result holds when all connected components of the covariance graph are
also trees. In the Gaussian case, it was further established in [20] and generalized in [17]
that these graphs represent all sets of CI statements.

In this paper, we investigate whether the concentration and covariance graphs, when
considered together, can fully describe a set of Conditional Independence (CI) statements.
We introduce the term CC-faithful to describe a probability distribution P that can be
completely represented by these graphs when considered in tandem. While it is unlikely
that this holds universally, we aim to identify necessary conditions for P to be CC-faithful.

Our first main result reveals that the conditions depend on the size of the separators
in both the covariance and concentration graphs. We then proceed to identify families of
probability distributions that are CC-faithful, working within a general framework that
utilizes the set of relations previously defined in [14,21].

We show that the study of CI statements can be restricted to those of the form u ⊥⊥ v | S,
where u, v ∈ V and S ⊆ V \ {u, v}. These CI statements, denoted by (uv |S), are termed
couples. We then consider the set of such couples as a relation on V.

We demonstrate that when a given relation L satisfies an axiom known as the pseu-
dographoid axiom, a global Markov property holds. This implies that the set of relations
constructed from the covariance and concentration graphs are subsets of L. We also establish
a one-to-one mapping between the covariance and concentration graphs, simplifying many
proofs. For instance, we show that less restrictive conditions are needed for the global Markov
property on the covariance graph, contrary to the assumptions made in [17].

In the final section, we introduce a graphical criterion for identifying new dependen-
cies from the covariance and/or concentration graphs, extending the work in [17]. We
provide examples of CC-faithful probability distributions, showing that when either the
covariance or concentration graph forms a cycle, P is CC-faithful.

The paper is organized as follows: Section 2 introduces the notations and is divided
into two subsections focusing on basic graph theory and properties of relations, respectively.
Section 3 discusses how relations derived from the concentration and covariance graphs are
subsets of the originating relation, provided they satisfy the pseudographoid axiom. Section 4
introduces separatoids, a generalization of separators. Section 5 examines the role of separator
size in the ability of the graphs to describe CI statements. Finally, Section 6 presents a graphical
criterion for reading dependencies and provides examples of CC-faithful distributions.

2. Preliminaries

In this section, we delineate the essential notations utilized throughout this paper. It
is systematically segmented into two subsections: the first focuses on the characteristics
and nuances of undirected graphs, while the second meticulously details the assembly
of relations, representing a comprehensive method to articulate the set of Conditional
Independence (CI) statements within a specified probability distribution.

2.1. Undirected Graphs

An undirected graph G = (V, E) consists of sets V representing the set of vertices and
E ⊆ V where V is the set defined in (1).
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∀ uv ∈ E ⇐⇒ vu ∈ E

For u, v ∈ V, we write u ∼G v when uv ∈ E and we say that u and v are adjacent in G.
Let us first recall some basic definitions of undirected graphs.

• A path connecting two distinct vertices u and v in a graph G is a sequence of distinct
vertices (u0, . . . , un), where u0 = u and un = v and, for each i ∈ {0, . . . , n− 1}, ui ∼G
ui+1. Such a path is denoted by p = p(u, v, G), establishing that p(u, v, G) connects u0
and un. Alternatively, we can state that u0 and un are connected by p(u, v, G). The length
of this path, denoted by |p(u, v, G)|, is defined as the number of edges connecting
the vertices within p, |p(u, v, G)| = n. Moreover, we denote by P(u, v, G) the set of
all possible paths between u and v. Furthermore, we define two paths p1 and p2 in
P(u, v, G) to be disjoint if their intersection is u, v, clearly indicating that u and v are
the sole common vertices between p1 and p2.

• A subgraph of G induced graph by a subset U ⊆ V is denoted by GU = (U, EU), U ⊆ V
and EU = E ∩ (U ×U)

• A connected component of G is the largest subgraph GU = (U, EU) of G such that each
pair of vertices can be connected by at least one path in GU . Equivalently we can
define GU to be a connected component of G if and only if GU satisfies the following
two conditions

i. ∀ uv ∈ U ×U, P(u, v, GU) 6= ∅.
ii. ∀ u ∈ U ∀ w ∈ V \U, P(u, w, G) = ∅.

It is straightforward to see that the two definitions above are equivalent.
• For a connected graph, a separator is a subset S of V such that there exists a pair of

non-adjacent vertices u and v such that u, v 6∈ S and

∀p ∈ P(u, v, G), p ∩ S 6= ∅ (4)

In that case, we write u⊥Gv | S. It is also easily verified that every S′ ⊇ S such that
S′ ⊆ V \ {u, v} is also a separator. We are thus led to the notion of minimal separator.
The separator S is defined to be a minimal separator between two non-adjacent vertices
u and v if for any w ∈ S, the subsets S \ {w} is not a separator of u and v.

• For any triplet (A, B, S) of pairwise disjoint subsets of V, we say that S separates A
and B in G and we denote by A⊥GB | S if for any pair of vertices uv ∈ A× B we have
u⊥Gv | S.

2.2. The Set of Relations

Let V be a finite set. We don’t distinguish in the next of this paper between singletons
and elements and we denote by AB a union of two subsets A and B of V. We call a couple
an object (uv |S) where u and v are two distincts elements of V and S ⊆ V \ uv. We denote
by C(V) the set of all the couples

C(V) = {(uv |S) where uv ∈ V ×V, u 6= v and S ⊆ V \ uv}, (5)

where V \ uv = V \ {u, v}.
Any subset of C(V) will be called a relation, and it will be generally denoted by L. We

associate a given relation L the set V(L) the of subsets of V defined as follows

V(L) = { S ⊆ V such that ∃ uv ∈ V and (uv |S) ∈ L} (6)

Let us now give three examples of well-known relations. We will see later that these
relations satisfy the pseudographoid axiom.
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Example 1. Let XV = (Xv, v ∈ V)′ be a random vector with a probability distribution P. Let us
define the relation c(P) as follows

c(P) = {(uv |S) ∈ C(V) such that u⊥⊥ v | S} (7)

where u⊥⊥ v | S denotes that the variables Xu and Xv are independent given the sub-random vector
XS indexed by S.

Example 2. Let G = (V, E) be an undirected graph and where we denote by u⊥Gv | S when the
set S ⊆ V \ uv separates u and v in G.

s(G) = {(uv |S) ∈ C(V) such that u⊥Gv | S} (8)

Let us notice the following remarks

i. G is complete if and only if s(G) = ∅.
ii. G is connected if and only if V(s(G)) 63 ∅, where V(s(G)) is the set associated with s(G)

according to (6).
iii. G has n connected components U1, . . . , Un then s(G) =

(⋃n
i=1 s(GUi )

)
∪ s∅(G) where for

i = 1 . . . n the graph GUi is the subgraph induced from Ui on G and s∅ is the relation defined
as follows

(uv |S) ∈ s∅(G) ⇐⇒ S = ∅ and ∃ i 6= j ∈ {1, . . . , n} s.t. u ∈ Ui and v ∈ Uj.

Example 3. Let us consider Σ a positive definite matrix, i.e., Σ = (σuv)u,v∈V . We denote by ΣuS,vS
the sub-matrix of Σ with rows in uS and columns in vS. We denote then the following relation

d(Σ) = {(uv |S) ∈ C(V) such that det(ΣuS,vS) = 0} (9)

Note that if Σ is considered as the covariance matrix of the probability distribution P then the
relations d(Σ) and c(P) defined respectively (9) and in (7) are equal.

We also know that from any probability distribution P we can define two undirected
graphs called covariance and concentration graphs. We will show in the next section that
the set of relations constructed from these two graphs is included in the set of relations
composed from the probability distribution. We will prove this result remains true for
any relation satisfying an axiom called the pseudographoid relation. This fact is known
for concentration graphs (see [14]). However, by using a dual relationship between the
covariance and the concentration graph, we show that this inclusion can also be satisfied
by covariance graphs, unlike what is proved in [17] where the author assumes a further
axiom called the weak transitivity axiom.

3. Markov Relations

Let us denote byR(V) the set of relations defined on V and we define onR(V) the
application T : R(V) −→ R(V) such that the relation T (L) is defined as follows

T (L) = {(uv |S) such that (uv |V \ Suv) ∈ L}. (10)

The relation T (L) will be called the dual of L. It is easily seen that for any L ∈ R(V)
we have T (T (L)) = L, i.e., T ◦ T = idR(V). In this section and in the next of this paper,
we say that L satisfies the pseudogrphoid axiom if the following axiom is satisfied: for any
{u, v, w} ⊆ V and S ⊆ V \ uvw the following axiom

{(uv |Sw), (uw |Sv)} ⊆ L then {(uv |S), (uw |S)} ⊆ L (11)

It was proved in [21] that all the relations c(P), s(G) and d(Σ) defined in the
Examples 1–3 satisfy the pseudographoid axiom (11).
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Lemma 1. Let L and L′ be two relations inR(V). The following assertions are then satisfied

i. If L is satisfying (11) then T (L) is a pseudographoid too.
ii. If L ⊆ L′ then T (L) ⊆ T (L′).

Proof. The proof of (i) can be found in [21] (see Lemma 2).
Let us now prove (ii). We have

(uv |S) ∈ T (L) ⇐⇒ (uv |V \ Suv) ∈ L ⊆ L′
=⇒ (uv |V \ Suv) ∈ L′
=⇒ (uv |S) ∈ T (L′)

Let us now show how to associate to any relation L and a fixed set P of subsets of V, i.e.,

P = {S, S ⊆ V}.

We will see later two kinds of such graphs constructed using pairwise relationships
but their role will be larger. Indeed, they will help us determine all the elements of L from
reading separation statements on those graphs. Let us consider the following application
G : R(V)×P2(V) −→ G(V) such that if G = G(L,P) then

u 6∼G v ⇐⇒ ∃ S ∈ P such that (uv |S) ∈ L. (12)

We denote here by P2(V) the power set of the power set P(V) of V, i.e.,

P2(V) = {P such that P ⊆ P(V)}.

Let us fix k ∈ {0, . . . , |V| − 2} and consider the following family of subsets of V,
Pk ∈ P2(V), i.e.,

Pk = {S ⊆ V such that |S| = k} (13)

and we consider then the following pair of undirected graphs (Gk, Hk) defined as follows

Gk = G(L,Pk) and Hk = G(L,P|V|−k−2) (14)

We are now interested in the special case where k = |V| − 2

Case 1 G = G|V|−2 = G(L,P|V|−2) where P|V|−2 = {S ⊆ V such that |S| = |V| − 2} we
say that G is the concentration graph associated with L.

Case 2 H = H|V|−2 = G(L,P0) where P0 = {∅}. We say that H is the covariance graph
associated with L.

Instead of considering the application G(·, ·) we will rather consider the following two
applications g and h and defined as follows

g = G(·,P|V|−2) and h = G(·,P0) (15)

The applications g and h will be called respectively that concentration and the covariance
map. It is easily seen that g = h ◦ T and h = g ◦ T . It is easily seen then that G can be
viewed as the covariance graph of the dual of L, i.e., T (L) and vis versa for the graph H.

This section aims to show that a part of the element of a given relation can be described
using the concentration and the covariance graphs. The theorem that will be proved below
is a generalization of a result well known as the global Markov property to a distribution
probability to its covariance or concentration graph.
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Theorem 1. Let L ∈ R(V) a pseudographoid. Let G = g(L) and H = h(L) be respectively the
concentration and the covariance graphs associated with L. Then if L is a pseudographoid then

s(G) ⊆ L (16)

and
T (s(H)) ⊆ L (17)

Before we begin the proof of Theorem 1, it is important to note that the equalities
s(G) ⊆ L and T (s(H)) ⊆ Lmay occur. These are related to the concept of faithfulness of
the graphical structure to the pseudographoid structure. The definition of faithfulness will
be discussed later in Definition 3.

Proof. Let us first proof (16). The proof below can also be found in [10,13,21].
Let then (uv |S) ∈ S(G), i.e., u⊥Gv | S and let us show that (uv |S) ∈ L. Let us prove

this by backward induction on n = |S|. If n = |V| − 2 there is nothing to prove.
Assume now that |S| = n < |V| − 2 and that relations in s(G) are contained in L

when |S| > n.
Since Suv  V, let w ∈ V \ Suv. Hence (uv | Sw) ∈ s(G) and by induction we

can say that (uv | Sw) ∈ L. Further more since {(uv | S), (uv | Sw)} ∈ s(G) then either
(uw | Sv) ∈ s(G) or (vw | Su) ∈ s(G). Otherwise, a path exists between u and w that
does not intersect Sv, and another one between v and w that does not intersect Su. Hence
we can construct a path between u and v that contains w and does not intersect S. It is a
contradiction with (uv |S) ∈ s(G).

Let us then assume that (uw | Sv) ∈ s(G). Hence (uw | Sv) ∈ L. Since L is a
pseudographoid we can deduce from {(uv |Sw), (uw |Sv)} ⊆ L that (uv |S) ∈ L.

To prove (17) it will be enough to apply (16) to the relation T (L). According to
Lemma 1 the relation T (L) satisfyies the pseudographoid axiom (see (11)). Then

s(g(T (L)) ⊆ T (L) ⇐⇒ s(h(L)) ⊆ T (L) ⇐⇒ (17) is satisfied

We can deduce then from Theorem 1 that if L is a pseudographoid the following
inclusion holds

s(G) ∪ T (s(H)) ⊆ L (18)

Since it is well known that the relation defined from a given probability distribution P
as in Example 1 is also satisfying the pseudographoid axiom (11). Let us then define the
CC-faithful probability distributions.

Definition 1. Let P be a probability distribution of a random vector X = (Xv, v ∈ V)′ and let

i. c(P) be the relation associated to P according to (7)
ii. G = g(c(P)) be the concentration associated with P.
iii. H = h(c(P)) be the covariance associated with P.

We say that P is a CC-faithful if c(P) = s(G) ∪ T (s(H)).

Our main question now for the next of this paper is to determine which conditions
should be satisfied by the undirected graph G and/or H to obtain the equality in (18)?

4. Separatoids on L
Let L be a non empty relation inR(V) and let us denote by V(L) the subset of pairs

uv belonging in V ×V such that u 6= v and there exists at least one S ⊆ V \ uv such that
(uv |S) ∈ L. Let us consider the following definition
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Definition 2. Let u and v be two distincts elements of V. Let S and T be two subsets of V \ uv
such that (uv |S) and (uv |T) in L. We say that

i. S is a minimum separatoid between u and v if either S = ∅ or ∀w ∈ S, (uv |S \ w) 6∈ L.
ii. T is a maximum separatoid between u and v if either T = V \ uv or ∀w ∈ V \ Tuv,

(uv |Tw) 6∈ L.

Let us then denote by S(u, v,L) and by T(u, v,L) be respectively the set of all the
minimal and maximal separatoids defined between u and v. We define the following
two parameters

s(u, v,L) = min
S∈S(u,v,L)

|S| (19)

and
t(u, v,L) = max

T∈T(u,v,L)
|T| (20)

Lemma 2. Let L ∈ R(V) and let uv ∈ V and S(u, v,L) and S(u, v, T (L)) be the set of minimal
separatoids associated respectively to L and T (L). Then

S ∈ S(u, v,L) ⇐⇒ V \ Suv ∈ T(u, v, T (L)). (21)

Furthermore, we have

s(u, v,L) + t(u, v, T (L)) = |V| − 2. (22)

Proof. Let S ∈ S(u, v,L) and let us prove that T = V \ Suv ∈ T(u, v, T (L)). It is equivalent
to show the following statements

i. (uv |T) ∈ T (L)
ii. either T = V \ uv or ∀w ∈ V \ Tuv, (uv |Tw) 6∈ L

Since (uv |S) ∈ L, then (uv |V \Suv) ∈ T (L). Hence (uv |T) = (uv |V \Suv) ∈ T (L).
Then (i) is proved.

Let us show (ii). If S = ∅, then T = V \ uv. Let w ∈ V \ Tuv we know that (uv |
S \w) 6∈ L. Hence (uv |V \ ((S \w)uv) 6∈ T (L) since V \ ((S \w)uv) = (V \ Suv)w = Tw.
Hence, (ii) is completely proved.

We can use the same argument to show the other way in the equivalence (21).
Let us now prove the equality (22). Let s = s(u, v,L) and t = t(u, v, T (L)). let us

show that s + t = |V| − 2.
Let S ∈ S(u, v,L), then |S| ≥ s. Since V \ Suv ∈ T(u, v, T (L)), then |V \ Suv| ≤ t.

Hence |S| ≥ |V| − t− 2. Then s ≥ |V| − t− 2 and s + t ≥ |V| − 2.
Let now T ∈ T(u, v, T (L)), then |T| ≤ t. Since V \Tuv ∈ S(u, v,L), then |V \Tuv| ≥ s.

Hence |T| ≤ |V| − s− 2. Then t ≤ |V| − s− 2 and t + s ≤ |V| − 2.
We deduce then that s + t = |V| − 2.

Let us consider the case of a relation a type s(G) where G is an undirected graph. Since
(uv | S) belongs to S(G) means that S separates u and v in G then for any w ∈ V \ Suv
we have also (uv | Sw) ∈ s(G). Let us recall that if S separates u and v in G, then any
subset containing S is also a separator of u and v in G. Then it is easily seen that the
set T(u, v, s(G)) = {V \ uv} and consequently by applying Lemma 2 we deduce that
t(u, v, s(G)) = |V| − 2, S(u, v, T (s(G))) = {∅} and s(u, v, T (s(G))) = 0.

We have then proved the lemma below.

Lemma 3. Let G be an undirected graph and let s(G) be the relation associated with G according
to (2). Then T(u, v, s(G)) = {V \ uv}, S(u, v, T (s(G))) = {∅}, t(u, v, s(G)) = |V| − 2 and
s(u, v, T (s(G))) = 0.

Let us define then the separability of an undirected graph.
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Definition 3. Let G = (V, E) be an undirected graph. If G is not complete, we define for any non
adjacent pair of vertices uv in G the separability order of uv as

so(u, v, G) = s(u, v, s(G)) (23)

we define the separability of G by

so(G) = max
u 6∼Gv

so(u, v, G) (24)

if G is not-complete and equal to +∞ is G is complete.

In the following section, we will explore how understanding the separability order
of the covariance graph aids in determining the capacity of the concentration graph to
represent the elements of L, and vice versa. We will revisit a finding from a previous paper
(see [18]), which elucidates the effects on the covariance graph when the concentration
graph fully represents L. This was initially demonstrated for concentration and covariance
graphs under specific conditions in [18]. Here, we expand upon this result under much
broader conditions.

However, let’s make some remarks about the parameters introduced in Definition 3. In-
deed, this parameter was defined and used in [22]. But determining the value of so(u, v, G)
for a given non-adjacent vertices are known to be called Menger’s problem (see [23]), and
it was proved in many references (see [24–26]), and many others) this number equals the
maximal number of disjoint paths between u and v.

Hence if u and v are note belonging to the same connected component of G, then
so(u, v, G) = 0. Furthermore, so(G) = 0 if and only if G comprises complete connected
components and if so(G) = +∞ if and only if G is complete.

5. Ability of the Concentration and the Covariance Graphs to Represent L
In this section, we are interested in showing how much-undirected graphs can describe

a pseudographoid relation L. We have already seen in Theorem 1 that the concentration
graph G = g(L) and the covariance graph H = h(L) are both of them able to determine
elements of L by reading separation statements on G and H. Our main question in this
section is which of the elements of L can be missed by G and H. We will show that the
couples (uv |S) ∈ L that G can miss having necessary an S with a cardinality smaller than
a number depending on the separability order of H. By using a “dual technique”, we show
that the couples (uv | S) ∈ L that H can miss having necessary an S with a cardinality
smaller than a number depending on the separability order of G.

Before giving the proof of the main result of this section, we would like to introduce
some notations. Let us recall that by the construction of G, the following equivalence is
satisfied for any pair uv of non-adjacent vertices in G

(uv |V \ uv) ∈ s(G) ⇐⇒ (uv |V \ uv) ∈ L (25)

Hence if we denote for any l ∈ {0, . . . , |V| − 2} an application φl : R(V) −→ R(V)
such that for any relation L

φl(L) = {(uv |S) ∈ L such that |S| = l} (26)

From the equivalence in (25) it can be easily deduced that φ|V|−2(L) = φ|V|−2(s(G)).
Let us thus define the integer µ = µ(L) as the smallest integer such that

φl(L) = φl(s(G)) (27)

is satisfied. Hence we deduce that when µ is known, the undirected graph G allows us to
determine all the couples (uv |S) of L where |S| ≥ µ.
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Similarly and by construction of H, the following equivalence is satisfied for any pair
uv of non-adjacent vertices in G

(uv |∅) ∈ T (s(H)) ⇐⇒ (uv |∅) ∈ L (28)

Hence the equivalence in (28) can be written φ0(L) = φ0(T (s(H))). We can also
define the integer ν = ν(L) as the largest integer such that

φl(L) = φl(T (s(H))) (29)

Hence we deduce that when ν is known, the undirected graph H allows us to deter-
mine the couples (uv |S) of L where |S| ≤ ν.

The two lemma below help us to give a relationship between µ(L) and ν(T (L)).

Lemma 4. Let L be a relation in R(V) and φl an application defined as in (26) where
l ∈ {0, . . . , |V| − 2}. Then

T ◦ φl = φ|V|−l−2 ◦ T .

Proof. Let L ∈ L,

T (φl(L)) = {(uv |S) such that(uv |V \ Suv) ∈ φl(L)}

= {(uv |S) such that(uv |V \ Suv) ∈ L and |V \ Suv| = l}

= {(uv |S) such that(uv |S) ∈ T (L) and |V| − |S| − 2 = l}

= {(uv |S) such that(uv |S) ∈ T (L) and |S| = |V| − l − 2}

= φ|V|−l−2(T (L))

Lemma 5. Let L ∈ R(V) a pseudographoid and let G and H be, respectively the concentration
and the covariance graph associated to L. Then

µ(L) = |V| − ν(T (L))− 2

Proof. Let l ≥ µ(L), then
φl(L) = φl(s(G)). (30)

But φl(L) = φ|V|−l−2(T (L)) according to Lemma 4 and to the fact that G is the
covariance graph associated with T (L). Then

φ|V|−l−2(T (L)) = φl(s(h(T (L))))
= φ|V|−l−2(T (s(h(T (L)))))

Hence if we denote Lᵀ = T (L) and , we have

φ|V|−l−2(Lᵀ) = φ|V|−l−2(T (s(h(Lᵀ))))

Hence |V| − l − 2 ≤ ν(Lᵀ) ⇐⇒ l ≥ |V| − ν(Lᵀ) − 2. Since µ is the smallest l
satisfying (30) then

|V| − ν(Lᵀ)− 2 ≤ µ(L) ⇐⇒ ν(Lᵀ) ≥ |V| − µ(L)− 2. (31)
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Similarly if we consider l ≤ ν(Lᵀ) and let us write Hᵀ = h(Lᵀ) = G which is the
covariance graph associated to Lᵀ. Then

φl(Lᵀ) = φl(T (s(Hᵀ))). (32)

But φl(Lᵀ) = φ|V|−l−2(L) and

φl(T (s(Hᵀ))) = φ|V|−l−2(s(Hᵀ)) = φ|V|−l−2(s(G))

Hence (32) becomes
φ|V|−l−2(L) = φ|V|−l−2(s(G)).

This implies that |V| − l − 2 ≥ µ(L) ⇐⇒ l ≤ |V| − µ(L)− 2. Since ν(Lᵀ) is the
largest integer. Then

ν(Lᵀ) ≤ |V| − µ(L)− 2 (33)

Hence the Lemma is proved by combining (31) and (33).

Let us then prove the main result of this section.

Theorem 2. Let L ∈ R(V) be a pseudographoid. Let G = g(L) and H = h(L) be respectively the
concentration and the covariance graph associated with L. Let µ = µ(L), ν = µ(L), sG = so(G)
and sH = so(H). Assume that G and H are connected. Then, the following two inequalities hold

µ ≥ |V| − sH − 1 (34)

ν ≤ sG − 1 (35)

Before starting the proof of Theorem 2, we must first prove the following lemma.

Lemma 6. Let L ∈ R(V) be a pseudographoid. Let G = g(L) and H = h(L) be the concentra-
tion and the covariance graph associated with L. Let µ = µ(L) and sH = so(H). Assume that

so(H) ≤ |V| − µ(L)− 2 (36)

then E ⊆ F and for any uv 6∈ F there exists S ⊆ V \ uv such that (uv | S) ∈ s(H) and
(uv |V \ Suv) ∈ s(G).

Proof. Let us assume that (36) holds. Since µ(L) is an integer that belongs to {0, . . . , |V| − 2}
then (36) implies that H is necessarily not complete and the set of pairs on non-adjacent
vertices in H V \ F is not empty. Let uv be a pair of non-adjacent vertices in H, i.e.,
uv 6∈ F. According to (36) there exists a subset S ⊆ V such that (uv | S) ∈ s(H) and
|S| ≤ |V| − µ(L)− 2.

We can also write S as follows

S = V \ (Tuv) (37)

where T = V \ Suv. By applying the Markov property (17) in Theorem 1, we deduce that
(uv | T) ∈ L. Secondly as |S| ≤ |V| − µ − 2 and |T| = |V| − |S| − 2, then |T| = l ≥ µ
and by using the definition of µ we deduce that (uv | T) ∈ φl(L) = φl(s(G))) . Hence
(uv |T) ∈ s(G). So u⊥Gv | T and then u 6∼G v.

We can deduce then that E ⊆ F.
We have also proved that for any non-adjacent pair of vertices uv in H we can find a

subset S ⊆ V \ uv such that (uv |S) ∈ s(H) and (uv |V \ Suv) ∈ s(G).
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Lemma 7. Let L ∈ R(V) be a pseudographoid. Let G = g(L) and H = h(L) be respectively
the concentration and the covariance graph associated with L. Let ν = µ(L) and sG = so(G).
Assume that

sG ≤ ν (38)

then F ⊆ E and for any uv 6∈ E there exists S ⊆ V \ uv such that (uv | S) ∈ s(G) and
(uv |V \ Suv) ∈ s(H).

Proof. We will show that the proof of Lemma 7 can be obtained by Lemma 6 to Lᵀ = T (L).
Let us first assume that (36) holds.

Let us remaind that g(Lᵀ) = g(T (L)) = h(L). By using also Lemma 5 we have
µ(L) = |V| − µ(Lᵀ)− 2. Hence

so(G) ≤ ν(L) ⇐⇒ so(h(Lᵀ)) ≤ ν(T (Lᵀ))
⇐⇒ so(h(Lᵀ)) ≤ |V| − µ(Lᵀ)− 2

Hence (36) holds for Lᵀ. By applying Lemma 6 for Lᵀ we deduce that H = g(Lᵀ) is
an undirected graph where the set of edges F is included in E the set of edges of G = h(Lᵀ).
The remaining conclusion of the lemma and can be obtained obviously.

Proof of Theorem 2. Note that if G and/or H are complete, there is nothing to prove since
in that case, the separability order is equal to +∞, and the inequalities remain satisfied in
that case.

Let us first prove that (34) and (35) are equivalent.
Assume that (34) is true for any relation L. Since for any pseudographoid L, the dual

of L which is T (L) is also a pseudographoid and Hence it satisfies (34):

µ(T (L)) ≥ |V| − so(h(T (L))− 1 (39)

Bu using Lemma 5 we deduce that

= µ(T (L)) = |V| − ν(T (T (L))− 2 = |V| − ν− 2 (40)

Then by using (40) and as h ◦ T = g the inequality (39) becomes

|V| − ν− 2 ≥ |V| − so(g(L))− 1 = |V| − so(G)− 1 = |V| − s− 1 ⇒ ν ≤ s− 1

Hence we obtain (35). We have proved that (39) ⇒ (40). We similarly also prove
that (40)⇒ (39).

Let us now assume that (34) does not hold. Then by equivalence (35) does not hold.
We can then assume that (36) and (38). Note that once (36) is satisfied by equivalence (38) is
also satisfied. These former inequalities are the principal hypothesis in Lemmas 6 and 7.
Let us then apply these lemmas. We deduce that H = G and for any non-adjacent pair of
vertices uv in G there exists S ⊆ V \ uv where (uv |S) and (uv |V \ Suv) are in S(G) and
where neither S is empty nor V \ Suv.

Hence we can find four vertices u1, u2, u3 and u4 in G such that u1 ∼G∼G u2 ∼G
u3 ∼G u4 where u2 ∈ S, u3 ∈ V \ Su1u4 and u1 6∼G u4. The vertices u1 and u3 are also not
adjacent in G. Otherwise, a path exists between u1 and u4 which is u1 ∼G u3 ∼ u4 that does
not intersect S. Similarly, we can say that u2 and u4 are not adjacent in G. Hence, (u1, u3) is
a pair of non-adjacent vertices in G such that u1 ∼G u2 ∼G u3 is a path connecting these
two vertices. Hence any subset T separating u1 and u3 contains u2. However, it will not be
possible to V \ Tuv to separate u1 andu3 in G. We obtain then a contradiction.

The second part now of this section is devoted to device an algorithm allowing us to
compute the parameters µ and ν for a giving L. It will then be an algorithm that may help
us to verify if a given L is at the same satisfying the pseudographoid axiom.
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The following result concerns relations that satisfy the following two axioms:

1. the semigraphoid axiom: for any triplet (u, v, w) of distinct elements of V and
S ⊆ V \ uvw such that

{(uw |S), (uv |Sw)} ⊆ L =⇒ {(uv |S), (uw |Sv)} ⊆ L. (41)

2. the weak transitive axiom: for any triplet (u, v, w) of distinct elements of V and
S ⊆ V \ uvw such that

{(uv |S), (uv |Sw)} ⊆ L =⇒ (uw |S) ∈ L or (vw |S) ∈ L (42)

Lemma 8. Let L ∈ R(V) be a relation satisfying the axioms (11), (42) and (41). Let
l ∈ {0, . . . , |V| − 2}. Let (uv |S) ∈ L. Then the following assertions hold

i. Assume that φl+1(L) = φl+1(s(G)) and |S| = l. Then

(uv |S) ∈ s(G) ⇐⇒ ∃w ∈ V \ Suv such that (uv |Sw) ∈ s(G). (43)

ii. Assume that φl(L) = φl(T (s(H))) and |S| = l + 1. Then

(uv |S) ∈ T (s(H)) ⇐⇒ ∃w ∈ S such that (uv |S \ w) ∈ s(H). (44)

Proof. Let us start by proving (i). The left-to-right of the equivalence (43) is indeed obvious.
Let us now show the right-to-left way. Hence assume that there exists w ∈ V \ Suv such
that (uv |S) ∈ s(G). Since |Sw| = l + 1 and φl+1(L) = φl+1(s(G)) then

(uv |S) ∈ L and (uv |Sw) ∈ L.

Since L satisfies the weak transitivity axiom (42) we deduce that

(uw |S) ∈ L or (vw |S) ∈ L.

Assume that (uw |S) ∈ L. Since (uv |Sw) ∈ L and by applying (41) we deduce that
(uw |Sv) ∈ L. Since also that φl+1(L) = φl+1(s(G)) we deduce that u⊥Gw | Sv.

As u⊥Gv | Sw and u⊥Gw | Sv then by applying (11) we have u⊥Gv | S.
Let us now prove (ii). We will indeed apply (i) to the relation T (L), which also satisfies

the axioms (11), (42) and (41), and to its concentration graph which is H.
Since the equality φl(L) = φl(T (s(H))) and by applying Lemma 4 we obtain

φ|V|−l−2(T (L)) = φ|V|−l−2(s(H)). (45)

Let l′ = |V| − l− 3. Then (45) is equivalent to φl′+1(T (L)) = φl′+1(s(H)). Let us then
apply (i) to H and T (L). Then

(uv |S) ∈ T (s(H)) ⇐⇒ (uv |V \ Suv) ∈ s(H)
⇐⇒ ∃w ∈ V \ ((V \ Suv)uv) = S such that (uv | (V \ Suv)w) ∈ s(H)

Since |V \ Suv| = |V| − (l + 1)− 2 = l′. Furthermore the fact that (uv | (V \ Suv)w) ∈
s(H) is equivalent to (uv |S \ w) ∈ T (s(H)). Hence, (ii) is proved.

Lemma 9. Let L ∈ R(V) be a relation satisfying the axioms (11), (42) and (41). Let µ and ν are
parameters associated with L. Let l ∈ {0, . . . , |V| − 2}.
i. Assume that l ≤ |V| − 3. Assumes that φl+1(L) = φl+1(s(G)) and let (uv |S) ∈ L where

|S| = l, then
(uv |S) ∈ s(G) ⇐⇒ u 6∼G v (46)
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ii. Assume that l ≥ 1. Assumes that φl−1(L) = φl−1(s(G)) and let (uv | S) ∈ L where
|S| = l, then

(uv |S) ∈ T (s(H)) ⇐⇒ u 6∼G v (47)

Proof of Lemma 9. First, we prove (ii) by induction on l ≤ ν.
If l = 1, then |S| = 1 and S = {w} where w ∈ V \ uv. By applying (44) in Lemma 8

we deduce that

(uv |S) = (uv |w) ∈ T (s(H)) ⇐⇒ (uv |∅) ∈ T (s(H))
⇐⇒ u 6∼H v

Assume now that (49) is satisfied for any subset S with cardinality l. Let us prove it
for |S| = l + 1, ≤ ν.

Let us then apply (44) since the hypothesis of Lemma 8 are still satisfied :

(uv |S) ∈ T (s(H)) ⇐⇒ ∃w ∈ S such that (uv |S \ w) ∈ s(H).

Since |S \ w| = l and the hypothesis of Lemma 8 are still satisfied. Hence, by applying
the induction hypothesis, we can deduce that (49) is still satisfied for |S| = l + 1. Hence,
(ii) is proved.

The proof of (ii) is easily deduced from (i). It is obtained by applying (i) to G, which is
the covariance associated with T (L).

Lemma 10. Let L ∈ R(V) be a relation satisfying the axioms (11), (42) and (41). Let µ and ν are
parameters associated with L. Let l ∈ {0, . . . , |V| − 2}.
i. Assume that l ≤ |V| − 3. If φl+1(L) = φl+1(s(G)). Then

φl(L) = φl(s(G)) ⇐⇒ V(s(G), l) = V(L, l) ∩ E (48)

ii. Assume that l ≥ 1. If φl−1(L) = φl−1(T (s(H))). Then

φl(L) = φl(T (s(H))) ⇐⇒ V(T (s(H)), l) = V(L, l) ∩ E (49)

6. Graphical Criteria for Not Belonging to L
In this section, we give a graphical criterion from either the concentration and/or the

covariance graphs that can be used to determine now which of the couples in C(V) could
not be in the relation L. In other terms, we are giving here the reciprocal way of the global
Markov property. If L is, for example, a relation as the one associated with a random vector
and defined in Example 1 this criteria will allow us to read now dependencies statements
between a triplet of sub-random vectors. This criterion was also used in [17] but to read
dependencies only from covariance graphs.

Definition 4. Let uv be a pair of vertices in an undirected graph G and n ∈ N∗. We say that u
and v are n−connected given S if there exists exactly n paths p1, . . . , pn in P(u, v, G) pairwise
disjoints, i.e., ∀i 6= j (pi ∩ pj) \ {u, v} = ∅ such that ∀ i = 1, . . . , n pi ⊆ Suv. We denote then
that u ∼n

G v | S.

The lemma below is needed for the proof of the main result in this paper.

Lemma 11. Let L ∈ R(V) be a pseudographoid. Let U ⊆ V. Let us denote by LU the relation
deduced from as following

LU = {(uv |S) ∈ L and Suv ⊆ U}

Let us denote by H and H(U) be the covariance graph associated respectively with L and LU .
Then H(U) = HU where HU is the subgraph of H induced on U.



Axioms 2023, 12, 1109 15 of 20

Proof. We know that the graph H(U) is defined as follows

u 6∼H(U) v ⇐⇒ (uv |∅) ∈ LU ⇐⇒ (uv |∅) ∈ L ⇐⇒ u 6∼HU v.

Hence, the lemma is proved.

The following statements are all the possible contrapositive of the semigrpahoid axiom.
Some of them will be needed in the proof of the main result. If L is a semigraphoid then it
satisfies the following statements

(uw |S) 6∈ L and (uv |S) ∈ L =⇒ , (uw |Sv) 6∈ L (50)

(uw |S) 6∈ L and (uw |Sv) ∈ L =⇒ , (uv |S) 6∈ L (51)

(uv |Sw) 6∈ L and (uv |S) ∈ L =⇒ , (uw |Sv) 6∈ L (52)

(uv |Sw) 6∈ L and (uw |Sv) ∈ L =⇒ , (uv |S) 6∈ L (53)

We now define another family of relations: the graphoids.

Definition 5. A relation L is called a graphoid if it is at the same a pseudographoid and
a semigraphoid.

As we see in the prove above, we will rather use the contrepositive of the weak
transitive axiom defined (42).

If (uw |S) 6∈ L, (vw |S) 6∈ L and (uv |S) ∈ L
then (uv |Sw)} 6∈ L (54)

Here is now the last lemma before giving the proof of the main result of this section.

Lemma 12. Let L ∈ R(V) be a graphoid. Let H be the covariance associated with L. Let u, v ∈ V
and S ⊆ V \ uv. Assume that the following two hypotheses are satisfied

A. i/ ∀w ∈ S, any path between w and v contains u and ii/ u ∼H v. Then (uv |S) 6∈ L
B. i/ ∀w ∈ V \ Suv, any path between w and v contains u and ii/ u ∼G v. Then (uv |S) 6∈ L

Proof. Let us prove (A).
Let us first deduce from (i) that ∀w ∈ S the vertices v and w can not be adjacent in H

then (vw |∅) ∈ L. We can also deduce from the condition (i) that (uv |∅) 6∈ L.
Secondly, according to (ii), we can deduce that the subset V \ ((S \ w)wv) = V \ Sv

contains u since u 6∈ S and this later subset intersects any path between v and w. Then by
using Theorem 1 we deduce that (vw |S \ w) ∈ L.

Let prove Lemma 12 by induction on n = |S|.
Let us prove the lemma for n = 1. Let us note that (uv |∅) 6∈ L and (vw |∅) ∈ L.

Hence by applying (50) we deduce that (uv |w) 6∈ L.
Let us assume that the lemma is true for subsets S with cardinality n. Let us prove it

for n + 1. Hence assume that |S| = n + 1. Using the induction hypothesis for all w ∈ S,
(uv |S \w) 6∈ L. Assume that (uv |S) ∈ L. Since S = (S \w)w. Then by using the induction
hypothesis we have (uv |S \ w) 6∈ L. Since we have already proved that (vw |S \ w) ∈ L,
then by using (50) we deduce that (uv | (S \ w)w) 6∈ L. Hence (uw |S) 6∈ L.

The part (B) of the lemma is deduced by applying (A) to T (L) and G which is the
covariance graph associated with T (L).

Let us now give the criteria needed to determine if a couple (uv |S) can not be in a relation
L. Considering the relations that are derived from probability distributions, we can then be
able to determine which relations do not correspond to Conditional Independence statements.
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Theorem 3. Let L ∈ R(V) be a relation satisfying the axioms (11), (41) and (42). Let G and H
be the concentration and the covariance graph associated with L. Then

i. if u ∼1
H v | S then (uv |S) 6∈ L

ii. if u ∼1
G v | S then (uv |V \ Suv) 6∈ L

Proof of Theorem 3. Let us first prove (i).
Since u ∼1

H v | S then there exists a unique path between u and v such that
p ⊆ S ∪ {u, v}. Let us prove (i) by induction on n = |p| the length of p.

If n = 1 then u ∼H v. We have to prove that

(uv |S) 6∈ L. (55)

Let us now prove (55) by induction on n = |S|.
When |S| = 1, S = {w}. Hence, two cases are possible :

w ∼H u ∼H v or u ∼H v ∼H u.

Let us consider the case where w ∼H u ∼H v. Note that w 6∼H v otherwise it exists
another path between u and v different from the path-edge u ∼H v. Hence

(uv |∅) 6∈ L and (wv |∅) ∈ L (56)

Let us then apply (50) in the case where (u, w, v, S = ∅) then (uv |w) 6∈ L. Then the
statement is proved when |S| = 1.

Let us assume that (uv |S) 6∈ Lwhen |S| = n and satisfies the hypothesis of Theorem 3.
Let us assume now that |S| = n + 1. Let us denote by HSuv the induced graph of H on Suv.
Let us then define the following two subsets of S :

S(u) = {w ∈ S \ p such that P(w, u, HSuv) 6= ∅ and P(w, v, HS) = ∅}

and
S(v) = {w ∈ S \ p such that P(w, u, HSuv) = ∅ and P(w, v, HS) 6= ∅}

First we claim that S = S(u) ∪ S(v) and that S(u) ∩ S(v) = ∅.
The second statement in our claim is obvious, i.e., S(u) ∩ S(v) = ∅. let us show that

S = S(u) ∪ S(v).
Let w ∈ S. If P(u, w, HSuv) 6= ∅ and P(v, w, HSuv) 6= ∅ then there exists

p′ ∈ P(u, w, HSuv) and p′′ ∈ P(v, w, HSuv), both of them are included in HSuv and p = p′p′′

which is the union of p′ and p′′ is a path connecting u and v different from the edge path
u ∼H v. We obtain a contradiction with the fact that a single path exists between u and v in H.

Since S 6= ∅ then either S(u) 6= ∅ or S(v) 6= ∅.
Let us assume then that S(u) 6= ∅. Since for any w ∈ S(u), w 6∼H v, then for all

w ∈ S(u) we have (vw |∅) ∈ L. However (uv |∅) 6∈ L. Hence by using Lemma 12 we
deduce that

(uv |S(u)) 6∈ L.

Similarly if we assume that S(v) 6= ∅ we deduce that (uv |S(u)) 6∈ L.
Let w ∈ S. It is easily seen that S \ w is a set with cardinality n and satisfying the

hypothesis of Theorem 3. Hence, by using the induction hypothesis, we deduce that
(uv |S \ w) 6∈ L. Assume that w ∈ S(u). Since there is no path between w and v that does
not intersect u then V \ ((S \ w)wv) contains u. Hence any path between w and v intersect
V \ ((S \ w)uv) in u. Then (vw |S \ w) ∈ L. We have shown then that

(vw |S \ w) ∈ L and (uv |S \ w) 6∈ L.

Hence by using (50) we deduce that (uv |S) ∈ L since S = (S \ w)w.
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Let us assume that the result remains true when p is a path with length n. Assume
now that |p| = n + 1. Let then w ∈ p \ uv. The vertex w ∈ S as p \ uv ⊆ S. As

V \ ((S \ w)uv) = (V \ (Suv))w.

Hence p ∩V \ ((S \ w)uv) = w. Since p is the unique path between u and v then

(uv |S \ w) ∈ L.

Since u ∼1
H w | S \ w and v ∼1

H w | S \ w then by applying the induction hypothesis
we deduce that (uw |S \ w) 6∈ L and (vw |S \ w) 6∈ L.

As L is a relation satisfying the weak transitivity axiom (42), then by applying (54) we
deduce that (uv |S) 6∈ L.

Finally, (ii) is deduced by applying (i) to T (L).

Let us now consider the following axiom

{(uv |S), (uw |S)} ∈ L =⇒ {(uv |Sw), (uw |Sv)} ∈ L (57)

where u, v, w ∈ V and S ⊆ V \ uvw. We will say that a relation L is a gaussoid if it is
relation satisfying (11), (41), (42) and (57).

Let us now show there is also another criterion as the one shown in Theorem 3 that
can help us to determine elements of L.

Theorem 4. Let L ∈ R(V) be a gaussoid. Let u, v in V and S ⊆ V \ S. Let us assume that there
exists w ∈ S such that w ∼1

H v | S and let p be the single path between v and w Then

(uv |S) ∈ L ⇐⇒ (uv |S \ p) ∈ L (58)

Proof. Let us write the proof by induction n = |p|.
Let n = 1 then w ∼H v and S \ p = S \ vw = S \ w. We have then to prove (58).
Since any path between w and u should contain v and S \ w does not contain v. Since

p is the only path between v and w. Then any path between w and v intersects S \ w in v.
Then, by using Theorem 1 we deduce that (uw |S \ w) ∈ L.

Let us assume that (uv | S \ w) 6∈ L and since (uw | S \ w) ∈ L we apply (50) to
(u, w, v, S \ w) we deduce that (uv |S) 6∈ L.

If we assume now that (uv |S \w) ∈ L and since L is a gaussoid then by applying (57)
we deduce that (uv |S) ∈ L. Hence the equivalence (58) is proved.

Let us assume that Theorem 4 is true when p is with length equal to n, i.e., |p| = n:
there are n edges in the path p. Assume now that |p| = n + 1.

Let w′ ∈ p, w ∼H w′. We have also easily noted that w′ ∼1
H v | S \ w. Since p′ = p \ w

is a path with n vertices we can apply (58) to S \ w and p′ :

(uv |S \ w) ∈ L ⇐⇒ (uv |S \ w \ p′) ∈ L (59)

However let us note that (S \ w) \ p′ = (S \ p) \ w. By induction hypothesis, any path
between w and u should contain {v}. Then Suv \ (S \ w)uw = {v} seprates u and v in
HSuv. Hence by applying Theorem 1 and Lemma 11, we deduce that (uw |S \ w) ∈ L.

Let us assume that (uv | S \ w) 6∈ L and since (uw | S \ w) ∈ L, we apply (50) to
(u, w, v, S \ w) and we deduce that (uv |S) 6∈ L.

If we assume now that (uv |S \w) ∈ L and since L is a gaussoid then by applying (57)
we deduce that (uv |S) ∈ L.

Hence we have shown that

(uv |S \ w) ⇐⇒ (uv |S) ∈ L.
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Hence by using (59) we deduce also that

(uv |S) ∈ L ⇐⇒ (uv | (S \ p) \ w) ∈ L.

We can also note that Suv \ (((S \ p) \w)wu) = p \wu. Then this former set separates
u and w in HSwu. Hence (uw | (S \ p) \ w) ∈ L.

Let us assume that (uv | (S \ p) \ w) 6∈ L and since (uw | (S \ p) \ w) ∈ L we can
apply (50) to (u, w, v, (S \ p) \ w) we deduce then that (uv |S \ p) 6∈ L.

If we assume now that (uv | (S \ p) \ w) ∈ L and since L is a gaussoid then by
applying (57) we deduce that (uv |S \ p). Hence the equivalence (58) is proved.

Corollary 1. Let L ∈ R(V) be a gaussoid and let G and H be respectively the concentration and
the covariance graph associated withL. Let µ = µ(L), ν = ν(L), s = so(G) and t = so(H). Then

i. if H is a cycle, then ν = |V| − 3, sG ≥ |V| − 2, µ = |V| − 2 and L = S(G) ∪ T (S(H)).
ii. if G is a cycle, then µ = 1, sH ≥ |V| − 2, ν = 0 and L = S(G) ∪ T (S(H)).

Proof. Let us prove (i). Assume that H is a cycle. Let u and v two vertices in H and
S ⊆ V \ uv such |S| = l ≤ |V| − 3 and let us show that

(uv |S) ∈ L =⇒ u⊥Hv | V \ Suv (60)

Firstly that note that if l ≤ |V| − 3 then the cardinality of |V \ Suv| = |V| − l − 2 ≥ 1.
Then V \ Suv 6= ∅.

Let us assume, to the contrary, that u 6⊥Hv | V \ Suv. Then, there exists a path between
u and v that does not intersect V \ Suv. Given that H is a cycle, this path p is unique and is
contained within Suv. Consequently, u ∼1

H v | S. According to Theorem 3, this implies that
(uv |S) 6∈ L, leading to a contradiction. Since ν is defined as the largest integer for which
φl(L) = φl(T (s(H))), it follows that ν ≥ |V| − 3.

Let us denote φ|V|−2(T (s(H))) 6= ∅, given that H is connected. It is important to note
that ν 6= |V| − 2, as H is a connected graph. This means that we cannot find edges that an
empty set can separate.

Since ν ≤ sG − 1 (as stated in Theorem 2), and we have proven that ν ≥ |V| − 3, it
follows that sG ≥ |V| − 2. Consequently, if G is not a complete graph, then all separators
in G have a cardinality equal to |V| − 2. Therefore, for all l = 0, . . . , |V| − 3, φl(s(G)) = ∅,
and L can include pairs (uv | S) ∈ L where |S| = |V| − 3. To establish this, it suffices to
select u and v as non-adjacent in H. By applying Theorem 3, we can deduce that (uv |S)
must belong to L.

Let us now prove that L = s(G) ∪ T (s(H)). Consider (uv | S) ∈ L. If |S| = |V| − 2,
then (uv |S) ∈ φ|V|−2(L) = φ|V|−2(s(G)) ⊆ s(G). Given that sG ≥ |V| − 2, it follows that
for all l = 0, . . . , |V| − 3, φl(s(G)) = ∅. Furthermore, as demonstrated in the first part of
this proof, if (uv |S) is valid, then (uv |V \ Suv) ∈ s(H). Consequently, we conclude that
L = s(G) ∪ T (s(H)).

7. A Discussion about the Gieger and Pearl Conjecture

Geiger and Pearl conjectured that for any undirected graph GG, it is possible to
construct a probability distribution PP such that

c(P) = L (61)

(see [10,27]). This conjecture is particularly relevant in the context of concentration graphical
models, where the faithfulness assumption plays a pivotal role. The concept of faithfulness in
these models, as defined in relation to Equation (61), is critical, especially when considering
the PC algorithms (see [18]). In faithful graphical models, the 0-1 graph is expected to
include, at a minimum, all the edges present in the full conditional independence graph, also
known as the concentration graph (see [28]). This relationship underscores the importance
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of the faithfulness assumption in accurately representing and analyzing the underlying
probabilistic structures in graphical models.

It was also proved in [21] that from any undirected graph H = (V, F) and for a fixed
non-negative ε “sufficiently close de zero” we can construct a real positive definite matrix
AH,ε = (auv)uv∈V×V as follows

auv =


1 if u = v
ε if uv ∈ E
0 otherwise,

(62)

and they showed (see Corollaries 2 & 3 in [21]) that T (s(H)) = d(AH,ε). Hence if we
consider a random vector X with Gaussian distribution having AH,ε as a covariance matrix
the undirected graph H is then the covariance graph associated with P the probability
distribution of X. According to Theorem 2, the separability order of the concentration graph
G associated with P is a complete graph, and then s(G) = ∅.

On the other hand let now consider an undirected graph G and let us consider
BG,ε =

(
AG,ε)−1 where

(
AG,ε)−1 is constructed as in (62) and let us consider the random

vector Y as a Gaussian vector with covariance matrix BG,ε. According to the construction
of AG,ε, the undirected graph G is the concentration graph associated to Q, the probability
distribution of Y. Since T (s(G)) = d(AH,ε), then s(G) = T (d(AG,ε)) = d(BG,ε). We have
applied here Lemma 1 in [21]). By applying also 2 the covariance graph H associated to Q
is complete and hence T (s(H)) = ∅.

We think then that Geiger and Pearl’s conjecture is completely proved.

8. Conclusions

In conclusion, this paper has comprehensively examined the role of undirected graphs in
representing sets of Conditional Independence (CI) statements. Through rigorous exploration
of properties and implications, we have established that specific axioms govern these sets,
providing a mathematical framework for their representation. Our investigation has focused
on covariance and concentration graphs, the only known families of undirected graphs capable
of comprehensively describing CI statements. We have introduced parameters to assess
the limitations of these graphs and provided a computational method for their evaluation.
Additionally, we have offered criteria to ascertain the complete representation of CI statements
through their corresponding graphs. These findings advance the theoretical understanding
of graph theory in statistical contexts and offer practical tools for researchers in related fields.
Future work could extend these insights to more complex graph structures or apply them in
empirical network data studies. Overall, this research significantly enhances our understanding
of the capabilities and limitations of undirected graphs in representing CI statements, making
a substantial contribution to the field of graphical models.

9. Notations

• V is a finite set
• |V| is the cardinality of V
• E is a subset of V ×V \ {(u, u), u ∈ V}
• uv is the couple (u, v) in V ×V
• G = (V, E) is an undirected graph where V is the set of vertices and E is the set of

edges that satisfies uv ∈ E ⇐⇒ vu ∈ E
• P = {S, S ⊆ V}
• Pk = {S, S ⊆ V and |S| = k}
• XV = (Xv, v ∈ V)′ is a random vector with values in R|V|
• XS = (Xs, s ∈ V)′ is sub-random-vector of XV
• u⊥⊥ v | S means that Xu⊥⊥Xv | XS
• A, B and S disjoint subsets of V, A⊥⊥ B | S means that XA⊥⊥XB | XS
• S(G) = {(A, B, S), S separates A and B in G }
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• C(P) = {(A, B, S), A⊥⊥ B | S}
• (uv | S) is a couple
• A set of couples L is called a relation
• If G = (V, E) is an undirect graph u ∼G v means that uv ∈ E is an edge in E.
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