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Abstract: This paper delves into the investigation of quasi-linear neutral differential equations in
the third-order canonical case. In this study, we refine the relationship between the solution and
its corresponding function, leading to improved preliminary results. These enhanced results play a
crucial role in excluding the existence of positive solutions to the investigated equation. By building
upon the improved preliminary results, we introduce novel criteria that shed light on the nature of
these solutions. These criteria help to distinguish whether the solutions exhibit oscillatory behavior
or tend toward zero. Moreover, we present oscillation criteria for all solutions. To demonstrate the
relevance of our results, we present an illustrative example. This example validates the theoretical
framework we have developed and offers practical insights into the behavior of solutions for quasi-
linear third-order neutral differential equations.
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1. Introduction

Third-order quasi-linear NDEs, while sounding complex, play a pivotal role in various
practical applications, addressing a wide array of real-world problems. These equations
emerge in fields such as engineering, physics, and biology, where they are instrumental in
modeling dynamic systems exhibiting intricate interactions and time delays. By delving
into their solutions and properties, we gain insights into phenomena ranging from electrical
circuits with distributed parameters to the behavior of biochemical systems with feedback
loops. In this paper, understanding and solving third-order quasi-linear NDEs become in-
valuable tools for engineers, scientists, and researchers seeking to unravel the mysteries of
dynamic systems and optimize their performance in the face of delays and nonlinearities [1–3].

Delay-neutral differential equations are considered one of the most important tools
used to describe and represent life models and systems with extreme accuracy. This is
due to the nature of the delay-neutral differential equation, which contains both delayed
and non-delayed functions. Therefore, many mechanical, physical, chemical, and other
science models use delay-neutral differential equations. For example, these equations are
used in describing population growth dynamics and in modeling physiological processes
with neurotransmission delays, see [4]. For more applications in various sciences, please
see [5–7].
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In this paper, we study the oscillatory behavior of quasi-linear third-order NDEs.
These equations are expressed in the following form:(

a2(`)
((

a1(`)z′(`)
)′)α)′

+ q(`)xα(σ(`)) = 0, ` ≥ `0, (1)

where z(`) = x(`)+p(`)x(τ(`)). Throughout this study, we make the following assumptions:

(H1) α is a ratio of two positive odd integers and α > 1;
(H2) q, p ∈ C([`0, ∞)), q(`) ≥ 0, and 0 ≤ p(`) < p0 < ∞;
(H3) τ, σ ∈ C1([`0, ∞)), τ(`) ≤ `, σ(`) ≤ `, τ′(`) ≥ τ0 > 0, σ′(`) > 0,

(
σ−1(`)

)′ ≥ σ0 > 0,
τ ◦ σ = σ ◦ τ, lim`→∞ τ(`) = ∞, and lim`→∞ σ(`) = ∞;

(H4) a2 ∈ C1([`0, ∞)), a1 ∈ C2([`0, ∞)), a1 > 0, a2 > 0,

∫ ∞

`0

1
a1(s)

ds = ∞, and
∫ ∞

`0

1

a1/α
2 (s)

ds = ∞. (2)

By a solution to (1), we mean a nontrivial function, x ∈ C([Lx, ∞),R), Lx > `0,

which has the property z, a1z′, a2

(
(a1z′)′

)α
∈ C1([Lx, ∞),R), and satisfies (1) on [Lx, ∞).

We consider only those solutions x of (1) that exist on some half-line [Lx, ∞) and satisfy
the condition

sup{|x(`)| : ` > L} > 0, for all L ≥ Lx.

Differential equations (DEs) form a fundamental framework in mathematics, encom-
passing a variety of applications across science and engineering. Within this field, NDEs
hold a special place due to their ability to model systems where the rate of change of a
function is affected not only by its past behavior but also by the behavior of the delayed
intermediate. This property allows NDEs to capture real-world phenomena that exhibit in-
herent time lags, making them invaluable tools in various fields, including biology, control
theory, economics, and physics, see [8–10].

Oscillation theory, a pivotal facet of differential equation analysis, offers crucial in-
sights into solution behaviors. Oscillatory solutions, reflecting dynamic and periodic
phenomena, pervade many natural systems. Hence, investigating oscillation criteria, partic-
ularly for third-order NDEs, holds paramount importance in both theoretical and practical
contexts. This paper delves into obtaining oscillation criteria for third-order NDEs, aiming
to establish more precise conditions governing the occurrence of oscillations in the solutions,
see [11–14].

The study of oscillation criteria for higher-order DEs has long captured significant
interest within the field, see [15–18]. Notably, the analysis of third-order NDEs has received
attention due to its importance in diverse scientific and engineering fields, from control
theory to population dynamics. Several preceding studies have contributed valuable
insights into the oscillation behavior of such equations. Researchers have proposed varied
techniques and methodologies to establish conditions under which solutions of third-
order NDEs either oscillate or remain nonoscillatory. These criteria often involve intricate
mathematical analyses, including inequalities, integral inequalities, and comparisons with
auxiliary functions, see [19–21].

Hanan [22], in 1961, studied third-order differential equations in the linear case, that
is, by setting a1(`) = a2(`) = 1, α = 1 in (1). She provides one of the most important
conditions that cannot be weakened for (1) in the linear case by introducing the condition

lim inf
t→∞

t3q(t) >
2

3
√

3
.
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Thereafter, many works focused on this type of equation. In 2010, Saker and Džu-
rina [23], extended the study to include the presence of α, i.e., they were interested in
studying the oscillatory behavior of the delay differential equation(

a2(`)
(
x′′(`)

)α
)′

+ q(`)xα(σ(`)) = 0.

They presented sufficient conditions ensuring that every solution of previous equations
either oscillates or converges to zero. On the other hand, by using Riccati transformation,
Thandapani and Li [24] investigated some asymptotic properties for the neutral differential
equation (

a2(`)
(
z′′(`)

)α
)′

+ q(`)xα(σ(`)) = 0, (3)

with 0 ≤ p(`) ≤ p0 < 0. They established certain sufficient conditions guaranteeing that
every solution of (3) either oscillates or converges to zero.

In 2019, Džurina et al. [25] established necessary conditions for the nonexistence of
Kneser solutions in oscillation results for third-order NDEs of the following form(

a2(`)
(
a1(`)z′(`)

)′)′
+ q(`)x(σ(`)) = 0. (4)

By combining their recently acquired results with pre-existing research, they ensured
oscillation for all solutions of (4). In the same year, Jadlovská et al. [26] investigated
the effective oscillatory criteria associated with third-order delay differential equations,
represented by the form(

a2(`)
(
a1(`)x′(`)

)′)′
+ q(`)x(σ(`)) = 0,

with a specific focus on the canonical case, aiming to establish that any nonoscillatory
solution converges to zero.

Following a different approach, Chatzarakis et al. [27] introduced improved criteria for
oscillatory behavior in third-order NDEs with unbounded neutral coefficients, presented
by the form

z′′′(`) + q(`)xα(σ(`)) = 0,

where they introduced sharp criteria that demonstrate the nonexistence of Kneser solutions.
On the other hand, higher order equations have been studied using many methods

and techniques, see for example [28,29].
This paper aims to establish more stringent and improved criteria that guarantee the

oscillation of all solutions of (1) through the use of advanced mathematical tools and tech-
niques. The proposed criteria extend current results and facilitate a deeper understanding
of the oscillatory nature of tertiary NDEs, providing more space when modeling.

The rest of this paper is structured as follows. In Section 2, we introduce a set of
definitions and lemmas essential for simplifying mathematical operations in our work.
Section 3 is dedicated to a series of lemmas that pertain to the asymptotic properties of
solutions within the class N2. These lemmas play a pivotal role in illustrating oscillation
results. Section 4 provides results that ensure the asymptotic convergence to zero of any
Kneser solution. Moving on to Section 5, we combine the results from the preceding sections
to articulate the main results of this paper. Finally, in Section 6, we offer an example that
supports and illustrates the validity of our results.

2. Preliminary Results

In this section, we present a set of definitions and assumptions that are needed in this
paper to simplify the mathematical calculations. For the sake of brevity, we define

p0(`) := (1− p(σ(`)))α,



Axioms 2023, 12, 1112 4 of 22

φ(`) := min{q(`), q(τ(`))},

L0z = z, L1z = a1z′, L2z = a2

((
a1z′

)′)α
, L3z =

(
a2

((
a1z′

)′)α)′
,

π1(`) :=
∫ `

`0

1
a1(s)

ds, π2(`) :=
∫ `

`0

1

a1/α
2 (s)

ds, π12(`) :=
∫ `

`0

π2(s)
a1(s)

ds,

π1(ς, $) :=
∫ ς

$

1
a1(s)

ds, π2(ς, $) :=
∫ ς

$

1

a1/α
2 (s)

ds, π12(ς, $) :=
∫ ς

$

π2(s)
a1(s)

ds,

F[0](`) := F(`) and F[j](`) := F
(

F[j−1](`)
)

, for j = 1, 2, . . . , n,

p1(`; n) :=
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](`)
))[ 1

p(τ[2k](`))
− 1
]

π12(τ[2k](`))

π12(`)
,

p̂1(`, n) :=
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](`)

))
π12

(
τ[−2k+1](`)

)
π12
(
τ[−2k](`)

) − 1
p
(
τ[−2k](`)

)
,

B(`, n) :=
{

max{p0(`), p1(`; n)} for p0 < 1,
p̂1(`; n) for p0 >R12(`, `1)/R12(τ(`), `1),

λ∗ := lim inf
`→∞

π12(`)

π12(σ(`))
,

β∗ := lim inf
`→∞

1
α

a1/α
2 (`)πα

12(σ(`))π2(`)q(`)Bα(σ(`), n),

and

k∗ := lim inf
`→∞

π
β∗
2 (`)

π12(`)

∫ `

`0

π
1−β∗
2 (s)
a1(s)

ds, for β∗ ∈ (0, 1).

Remark 1. For our purposes, we must define the following conditions

π12(`)

π12(σ(`))
≥ λ, where λ ∈ (1, λ∗), (5)

1
α

a1/α
2 (`)πα

12(σ(`))π2(`)q(`)Bα(σ(`), n) ≥ β, where β ∈ (0, β∗), (6)

and
π

β
2 (`)

π12(`)

∫ `

`0

π
1−β
2 (s)
a1(s)

ds ≥ k, where k ∈ [1, ∞). (7)

Lemma 1 ([30]). Assume that A and B are real numbers, A > 0, then,

BU − AU(α+1)/α ≤ αα

(α + 1)α+1
Bα+1

Aα
. (8)

Lemma 2 ([31]). Assume that x1, x2 ∈ [0, ∞). Then,

(x1 + x2)
α ≤ µ(xα

1 + xα
2)

and

µ =

{
1 for 0 < α ≤ 1;
2α−1 for α > 1.
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Lemma 3 ([32]). Let y ∈ Cn([`0, ∞), (0, ∞)), y(i)(`) > 0 for i = 1, 2, . . . , n, and y(n+1)(`) ≤
0, eventually. Then, eventually,

y(`)
y′(`)

≥ ε

n
`,

for every ε ∈ (0, 1).

Lemma 4 ([33]). Suppose that x is a solution to (1) that is positive eventually. In such a case, z
satisfies one of the following cases

N1 : z > 0, L1z < 0, L2z > 0, and L3z ≤ 0,

N2 : z > 0, L1z > 0, and L2z > 0,

for ` large enough. The symbol Ωi (Category Ωi) represents the set of all solutions that are positive
eventually and where the corresponding function fulfills condition (Ni) for i = 1, 2. The solutions
within the category Ω1 are referred to as Kneser solutions.

Lemma 5 ([34]). Assume that x is an eventually positive solution of (1). If p0 < 1, then, eventually

x(`) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](`)
)) z

(
τ[2k](`)

)
p
(
τ[2k](`)

) − z
(

τ[2k+1](`)
),

for any integer n ≥ 0.

Lemma 6. Assume that x is an eventually positive solution of (1). If p0 > 1, then,

x(`) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−k](`)

))[z
(

τ[−2k+1](`)
)
− 1

p
(
τ[−2k](`)

) z
(

τ[−2k](`)
)]

.

Proof. From
z(`) = x(`) + p(`)x(τ(`)),

we deduce that

x(`) =
1

p(τ−1(`))

[
z
(

τ−1(`)
)
− x
(

τ−1(`)
)]

=
1

p
(
τ[−1](`)

) z
(

τ[−1](`)
)

− 1
p
(
τ[−1](`)

) 1
p
(
τ[−2](`)

) [z(τ[−2](`)
)
− x
(

τ[−2](`)
)]

=
1

p
(
τ[−1](`)

) z
(

τ[−1](`)
)
−

2

∏
i=1

1
p
(
τ[−i](`)

) z
(

τ[−2](`)
)

+
3

∏
i=1

1
p
(
τ[−i](`)

) [z(τ[−3](`)
)
− x
(

τ[−3](`)
)]

.

By repeating the same technique a number of times, we obtain

x(`) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[i](`)

))[z
(

τ[−2k+1](`)
)
− 1

p
(
τ[−2k](`)

) z
(

τ[−2k](`)
)]

.

Therefore, we have successfully demonstrated the proof.
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3. Nonexistence of N2-Type Solutions

In this section, we introduce several lemmas that pertain to the asymptotic properties
of solutions within the class N2. These lemmas will play a pivotal role in demonstrating
our primary results regarding oscillations.

Lemma 7. Suppose that β∗ > 0 and x ∈ Ω2. Then for ` sufficiently large
(A1,1) lim`→∞ L2z(`) = lim`→∞ L1z(`)/π2(`) = lim`→∞ z(`)/π12(`) = 0;
(A1,2) L1z/π2 is decreasing and L1z ≥ π2(L2z)1/α;
(A1,3) z/π12 is decreasing and x > (π12/π2)L1z.

Proof. Let x ∈ Ω2 and choose `1 ≥ `0, such that x(τ(`)) > 0 and β satisfies (6) for ` ≥ `1.
(A1,1): Since L2z is a positive decreasing function, obviously

lim
`→∞

L2z = l ≥ 0.

If l > 0, then L2z ≥ l > 0, and so for any ε ∈ (0, 1), we have

z(`) ≥ l1/α
∫ `

`1

1
a1(u)

∫ u

`1

1

a1/α
2 (s)

dsdu ≥ l̃π12(`), l̃ = εl1/α. (9)

Since
z(`) = x(`) + p(`)x(τ(`)),

then z(`) ≥ x(`) and

x(`) = z(`)− p(`)x(τ(`))
≥ z(`)− p(`)z(τ(`)).

Since z′ > 0, then
x(`) ≥ (1− p(`))z(`).

Using this in (1), we obtain

−L3z(`) = q(`)xα(σ(`))

≥ q(`)(1− p(σ(`)))αz(σ(`))α.

From (9), we find
−L3z(`) ≥ −l̃αq(`)B(`)πα

12(σ(`)).

Integrating from `1 to `, we have

L2z(`1) ≥ l̃α
∫ `

`1

q(s)B(s)πα
12(σ(s))ds

≥ αβl̃α
∫ `

`1

1

a1/α
2 (s)π2(s)

ds

= αβl̃α ln
π2(`)

π2(`1)
→ ∞ as `→ ∞,

which is a contradiction. Hence, l = 0. Applying l’Hôpital’s rule, we see that (A1,1) holds.
(A1,2): Using the fact that L2z is positive and decreasing, we see that
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L1z(`) = L1z(`1) +
∫ `

`1

(L1z(s))′ds

≥ L1z(`1) +
∫ `

`1

L1/α
2 z(s)

a1/α
2 (s)

ds

≥ L1z(`1) + L1/α
2 z(`)

∫ `

`1

1

a1/α
2 (s)

ds

= L1z(`1) + L1/α
2 z(`)

∫ `

`1

1

a1/α
2 (s)

ds− L1/α
2 z(`)

∫ `1

`0

1

a1/α
2 (s)

ds.

In view of (A1,1), there is a `2 > `1, such that

L1z(`1)− L1/α
2 z(`)

∫ `1

`0

1

a1/α
2 (s)

ds > 0, ` ≥ `2.

Thus
L1z(`) > π2(`)L1/α

2 z(`),

and consequently (
L1z
π2

)′
(`) =

π2(`)L1/α
2 z(`)− L1z(`)

a1/α
2 (`)π2

2(`)
< 0.

(A1,3): Since L1z/π2 is a decreasing function tending to zero, then

z(`) = z(`2) +
∫ `

`2

L1z(s)
π2(s)

π2(s)
a1(s)

ds

≥ z(`2) +
L1z(`)
π2(`)

∫ `

`2

π2(s)
a1(s)

ds

≥ z(`2) +
L1z(`)
π2(`)

π12(`) +
L1z(`)
π2(`)

∫ `2

`0

π2(s)
a1(s)

ds

>
L1z(`)
π2(`)

π12(`).

Therefore (
z

π12

)′
(`) =

L1z(`)π12(`)− z(`)π2(`)

a1(`)π
2
12(`)

< 0.

Lemma 8. Assume that x ∈ Ω2. Then

x(`) > B(`, n)z(`) (10)

and (
a2(`)

((
a1(`)z′(`)

)′)α)′
≤ −q(`)Bα(σ(`), n)zα(σ(`)). (11)

Proof. If p0 < 1, then, due to the fact that z(`) is increasing and τ[2k](`) ≥ τ[2k+1](`),
we have

z(τ[2k](`)) ≥ z(τ[2k+1](`)),

which, along with Lemma 5, implies that

x(`) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](`)
))[ z(τ[2k](`))

p(τ[2k](`))
− z(τ[2k+1](`))

]

≥
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](`)
))[ 1

p(τ[2k](`))
− 1
]

z(τ[2k](`)). (12)
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Moreover, as z/π12 is decreasing and τ[2k](`) ≤ `, we have

z(τ[2k](`))

π12(τ[2k]`)
≥ z(`)

π12(`)

and

z(τ[2k](`)) ≥ π12(τ[2k](`))

π12(`)
z(`).

Thus, using the above inequality and substituting in (12), we obtain

x(`) >
n

∑
k=0

(
2k

∏
i=0

p
(

τ[i](`)
))[ 1

p(τ[2k](`))
− 1
]

π12(τ[2k](`))

π12(`)
z(`)

= p1(`; n)z(`). (13)

On the other hand, if p0 > 1, then z/π12 is decreasing and τ[−2k](`) ≥ τ[−2k+1](`), implying
that

z
(

τ[−2k+1](`)
)

π12
(
τ[−2k+1](`)

) ≥ z
(

τ[−2k](`)
)

π12
(
τ[−2k](`)

)
and

z
(

τ[−2k+1](`)
)
≥

π12

(
τ[−2k+1](`)

)
π12
(
τ[−2k](`)

) z
(

τ[−2k](`)
)

.

Using Lemma 6, we can conclude that

x(`) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](`)

))
π12

(
τ[−2k+1](`)

)
π12
(
τ[−2k](`)

) − 1
p
(
τ[−2k](`)

)
z
(

τ[−2k](`)
)

.

As z(`) is increasing and τ[−2k](`) ≥ `, we have

x(`) >
n

∑
k=1

(
2k−1

∏
i=1

1
p
(
τ[−i](`)

))
π12

(
τ[−2k+1](`)

)
π12
(
τ[−2k](`)

) − 1
p
(
τ[−2k](`)

)
z(`)

= p̂1(`, n)z(`). (14)

From (1), we have
L3z(`) = −q(`)xα(σ(`)).

Using (13) and (14), we obtain

L3z(`) ≤ −q(`)Bα(σ(`), n)zα(σ(`)).

Hence, we have successfully demonstrated the proof of the lemma.

The following lemma gives some additional properties of solutions belonging to the
class N2.

Lemma 9. Assume that β∗ > 0 and x ∈ Ω2. Then for β ∈ (0, β∗) and ` sufficiently large
(A2,1) L1z/π

1−β∗
2 is decreasing and (1− β∗)L1z > π2(L2z)1/α;

(A2,2) lim`→∞ L1z(`)/π
1−β∗
2 (`) = 0;

(A2,3) z/π1/k
12 is decreasing and z > k(π12/π2)L1z.

Proof. Let x ∈ Ω2 and choose `1 ≥ `0, such that z(σ(`)) > 0 and parts (A1,1)–(A1,3) in
Lemma 7 hold for ` ≥ `1 ≥ `0 and choose fixed but arbitrarily large β ∈ (β∗/(1 + β∗), β∗)
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and k ≤ k∗ satisfying (6) and (7), respectively, for ` ≥ `1.
Since

β

1− β
> β∗,

there exist constants c1 ∈ (0, 1) and c2 > 0, such that

c1β

1− β
> β∗ + c2. (15)

(A2,1): Define
w(`) = L1z(`)− π2(`)(L2z(`))1/α, (16)

which is clearly positive by (A1,2). Differentiating w and using (11) and (6), we see that

w′(`) =
(

L1z(`)− (L2z(`))1/απ2(`)
)′

= − 1
α

π2(`)(L2z(`))1/α−1L3z(`)

≥ 1
α

q(`)π2(`)Bα(σ(`), n)zα(σ(`))(L2z(`))1/α−1

≥ β
zα(σ(`))

a1/α
2 (`)πα

12(σ(`))
(L2z(`))1/α−1. (17)

By virtue of (A1,3), we have

w′(`) ≥ β
zα(`)

a1/α
2 (`)πα

12(`)
(L2z(`))1/α−1. (18)

Considering (A1,2) and (A1,3), we obtain the following inequality:

z(`)
π12(`)

>
L1z(`)
π2(`)

> (L2z(`))1/α.

Since α > 1, then (
z(`)

π12(`)

)1−α

<

(
L1z(`)
π2(`)

)1−α

< (L2z(`))(1−α)/α. (19)

Substituting the previous inequality in (18), we obtain

w′(`) ≥ β
zα(`)

a1/α
2 (`)πα

12(`)

(
z(`)

π12(`)

)1−α

= β
z(`)

a1/α
2 (`)π12(`)

≥ β
L1z(`)

a1/α
2 (`)π2(`)

.

Integrating from `2 to ` and using the fact that L1z/π2 is decreasing and tends to zero
asymptotically, we have

w(`) ≥ w(`2) + β
∫ `

`2

L1z(s)
a1/α

2 (s)π2(s)
ds ≥ w(`2) + β

L1z(`)
π2(`)

∫ `

`2

1

a1/α
2 (s)

ds

= z(`2) + β
L1x(`)
π2(`)

π2(`)− β
L1x(`)
π2(`)

∫ `2

`0

1

a1/α
2 (s)

ds > βL1x(`). (20)

Then
(1− β)L1z(`) > π2(`)(L2z(`))1/α

and (
L1z(`)

π
1−β
2 (`)

)′
=

(L2z(`))1/απ2(`)− (1− β)L1z(`)

a1/α
2 (`)π

2−β
2 (`)

< 0. (21)



Axioms 2023, 12, 1112 10 of 22

It can be deduced straightforwardly from (21) and the observation that L1z is increasing
that β < 1. Using this in (20) and taking (15) into account, we find that

w(`) ≥ w(`3) + β
∫ `

`3

L1z(s)
a1/α

2 (s)π2(s)
ds

≥ w(`3) + β
L1z(`)

π
1−β
2 (`)

∫ `

`3

1

a1/α
2 (s)πβ

2 (s)
ds

≥ β

1− β

L1z(`)

π
1−β
2 (`)

(
π

1−β
2 (`)− π

1−β
2 (`3)

)
≥ c1β

1− β
L1z(`)

≥ (β∗ + c2)L1z(`),

which implies

(1− β∗)L1z(`) > (1− β∗ − c2)L1z(`) > (L2z(`))1/απ2(`)

and (
L1z(`)

π
1−β∗−c2
2 (`)

)′
< 0, (22)

the conclusion then immediately follows.
(A2,2): Obviously, (22) also implies that L1z/π

1−β∗
2 → 0 as `→ ∞, since otherwise

L1z(`)

π
1−β∗−c2
2 (`)

=
L1z(`)

π
1−β∗
2 (`)

πc2
2 (`)→ ∞ as `→ ∞, (23)

which is a contradiction.
(A2,3): By utilizing (A2,1) and (A2,2), as well as L1z/π

1−β∗
2 as a decreasing function tending

towards zero, we can derive:

z(`) = z(`4) +
∫ `

`4

L1z(s)

π
1−β∗
2 (s)

π
1−β∗
2 (s)
a1(s)

ds

≥ z(`4) +
L1z(`)

π
1−β∗
2 (`)

∫ `

`4

π
1−β∗
2 (s)
a1(s)

ds

= z(`4) +
L1z(`)

π
1−β∗
2 (`)

∫ `

`0

π
1−β∗
2 (s)
a1(s)

ds− L1z(`)

π
1−β∗
2 (`)

∫ `4

`0

π
1−β∗
2 (s)
a1(s)

ds

>
L1z(`)

π
1−β∗
2 (`)

∫ `

`0

π
1−β∗
2 (s)
a1(s)

ds

≥ k
π12(`)

π2(`)
L1z(`).

Therefore (
z(`)

π1/k
12 (`)

)′
=

kπ12(`)L1z(`)− π2(`)z(`)
ka1(`)π

1/k+1
2 (`)

< 0.

As a result, we have successfully concluded the proof of the Lemma.

Corollary 1. If β∗ ≥ 1 then Ω2 = ∅.
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Proof. This can be deduced from the inequality:

(1− β∗)L1z(`) > (L2z(`))1/απ2(`),

taking into account the positivity of L2z.

Corollary 2. If β∗ > 0 and λ∗ = ∞, then Ω2 = ∅.

Proof. Let x ∈ Ω2, and choose `1 ≥ `0, such that z(σ(`)) > 0 and parts (A2,1)–(A2,3) in
Lemma 7 hold for ` ≥ `1 ≥ `0 and choose fixed but arbitrarily large λ ≤ λ∗, β ≤ β∗, and
k ≤ k∗ satisfying (5), (6), and (7), respectively, for ` ≥ `1. Using (17), and the decreasing of
z/π1/k

12 , we have

w′(`) ≥ β
zα(σ(`))

a1/α
2 (`)πα/k

12 (σ(`))π
α(1−1/k)
12 (σ(`))

(L2z(`))1/α−1

≥ β
zα(`)

πα/k
12 (`)

1

a1/α
2 (`)π

α(1−1/k)
12 (σ(`))

(L2z(`))1/α−1.

Using (A2,3), (19), and (5), we obtain

w′(`) ≥ β
zα(`)

πα/k
12 (`)

1

a1/α
2 (`)π

α(1−1/k)
12 (σ(`))

(
z(`)

π12(`)

)1−α

= β
π

α(1−1/k)
12 (`)

a1/α
2 (`)π

α(1−1/k)
12 (σ(`))

z(`)
π12(`)

≥ β
λα(1−1/k)

a1/α
2 (`)

z(`)
π12(`)

≥ βkλα(1−1/k) L1z(`)
a1/α

2 (`)π2(`)
.

Integrating the last inequality from `2 to ` and using that L1z/π2 is a decreasing function
tending to zero, we obtain

w(`) ≥ kβλα(1−1/k)L1z(`). (24)

Thus (
1− kβλα(1−1/k)

)
L1z(`) ≥ (L2z(`))1/απ2(`).

As λ can assume arbitrarily large values, we can choose λ such that λ > (1/kβ)k/α(k−1),
thereby leading to a contradiction with the positivity L2z. This concludes the proof of
Corollary 2.

Corollary 3. Assume that β∗ > 0 and k∗ = ∞. Then, Ω2 = ∅.

Proof. The proof follows with the same steps from Corollary 2, and the fact that k can be
arbitrarily large, we omit it.

Definition 1. For our purposes, let us define the following sequence {βn}∞
n=0, assuming it exists:

β0 = β∗, where β∗ ∈ (0, 1),

βn =
β0kn−1λ

α(1−1/kn−1)
∗

1− βn−1
, where λ∗ ∈ [1, ∞), (25)

and kn satisfies the condition:

kn = lim inf
`→∞

π
βn
2 (`)

π12(`)

∫ `

`0

π
1−βn
2 (s)
a1(s)

ds, n ∈ N0. (26)
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Remark 2. Clearly, βn+1 exists if βi < 1 and ki ∈ [1, ∞) for i = 0, 1, . . . , n. In this scenario, we
can derive the following inequality:

β1

β0
=

k0λα(1−1/k0)

1− β0
> 1

and
k1 ≥ k0.

We can easily establish, through the use of mathematical induction on n, the following inequality

βn+1

βn
≥ ln > 1, (27)

where

l0 :=
k0λ

α(1−1/kn−1)
∗
1− β0

,

ln :=
knλ

α(1/kn−1−1/kn)
∗ (1− βn−1)

kn−1(1− βn)
, n ∈ N, (28)

with
kn ≥ kn−1.

Next, we will demonstrate how iterative improvements can be made to the results
presented in Lemma 9.

Lemma 10. Suppose that δ∗ > 0 and x ∈ Ω2. Then, for any n ∈ N0 and ` sufficiently large
(An,1) L1z/π

1−βn
2 is decreasing and (1− βn)L1z > (L2z)1/απ2;

(An,2) lim`→∞ L1z(`)/π
1−βn
n (`) = 0;

(An,3) z/π1/εnkn
12 is decreasing and z > εnkn(π12/π2)L1z for any εn ∈ (0, 1).

Proof. Let x ∈ Ω2 with z(σ(`)) > 0 and parts (A1,1)–(A1,3) in Lemma 7 hold for ` ≥ `1 ≥ `0
and choose fixed but arbitrarily large β ≤ β∗, and k ≤ k∗ satisfying (6) and (7), respectively,
for ` ≥ `1. We will proceed by induction on n. For n = 0, the conclusion follows from
Lemma 9 with ε0 = k/k∗. Next, assume that (An,1)–(An,3) hold for n ≥ 1 for ` ≥ `n ≥ `1.
We need to show that they each hold for n + 1.
(An+1,1): Using (An,3) in (17), we obtain

w′(`) ≥ β
zα(σ(`))

a1/α
2 (`)πα/εnkn

12 (σ(`))π
α(1−1/εnkn)
12 (σ(`))

(L2z(`))1/α−1

≥ β
zα(`)

a1/α
2 (`)πα/εnkn

12 (`)π
α(1−1/εnkn)
12 (σ(`))

(
z(`)

π12(`)

)1−α

= β
π

α(1−1/εnkn)
12 (`)

π
α(1−1/εnkn)
12 (σ(`))

z(`)
a1/α

2 (`)π12(`)

≥ εnknβλα(1−1/εnkn) L1z(`)
a1/α

2 (`)π2(`)
.

By integrating the aforementioned inequality from `n to ` and employing (An,1) and (An,2),
we obtain
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w(`) ≥ w(`n) + εnknβλα(1−1/εnkn)
∫ `

`n

L1z(s)
a1/α

2 (s)π2(s)
ds (29)

≥ w(`n) + εnknβλα(1−1/εnkn) L1z(`)

π
1−βn
2 (`)

∫ `

`n

1

a1/α
2 (s)πβn

2 (s)
ds

≥ w(`n) +
εnknβλα(1−1/εnkn)

1− βn

L1z(`)

π
1−βn
2 (`)

[
π

1−βn
2 (`)− π

1−βn
2 (`n)

]
>

εnknβλα(1−1/εnkn)

1− βn
L1z(`) = ηβn+1L1z(`),

where

η =
β

β∗
εn

λα(1−1/εnkn)

λ
α(1−1/kn)
∗

∈ (0, 1),

and η → 1 where (λ, εn, β)→ (λ∗, 1, β∗). Choose η, such that

η >
1

1− βn + βn+1
=

1
1 + βn(ln − 1)

, (30)

where ln satisfies (27). Then

ηβn+1

1− ηβn+1
>

βn+1

(1 + βn(ln − 1))
(

1− ln βn
1+βn(ln−1)

) =
βn+1

1− βn
,

and there exist two constants, c1 ∈ (0, 1) and c2 > 0, such that

c1
η(1− βn)βn+1

1− ηβn+1
> βn+1 + c2.

According to the definition (16) of w, we deduce that

(1− ηβn+1)L1z(`) = (L2z(`))1/απ2(`)

and (
L1z(`)

π
1−ηβn+1
2 (`)

)′
< 0.

Using the above monotonicity in (29), we see that

w(`) ≥ w(`n) + εnknβλα(1−1/εnkn)
∫ `

`n

L1z(s)
a1/α

2 (s)π2(s)
ds

≥ εnknβλα(1−1/εnkn)

1− ηβn+1

L1z(`)

π
1−ηβn+1
2 (`)

(
π

1−ηβn+1
2 (`)− π

1−ηβn+1
2 (`n)

)
≥ c1εnknβλα(1−1/εnkn)

1− ηβn+1
L1z(`)

= c1ηβn+1
1− βn

1− ηβn+1
L1z(`)

> (βn+1 + c2)L1z(`).

Then
(1− βn+1 − c2)L1x(`) > (L2x(`))1/απ2(`), (31)

and (
L1x(`)

π
1−βn+1−c2
2 (`)

)′
< 0, (32)
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which leads to the conclusion.
(An+1,2): Obviously, (32) also implies that L1z/π

1−βn+1
2 → 0 as `→ ∞, since otherwise

L1z(`)

π
1−βn+1−c2
2 (`)

=
L1(z`)

π
1−βn+1
2 (`)

πc2
2 (`)→ ∞ as `→ ∞, (33)

which is a contradiction.
(An+1,3): By utilizing that (An+1,1) and (An+1,2), as well as L1z/π

1−βn+1
2 as a decreasing

function tending towards zero, we can derive:

z(`) = z
(
`′′n
)
+
∫ `

`′′n

L1z(s)

π
1−βn+1
2 (s)

π
1−βn+1
2 (s)

a1(s)
ds

≥ z
(
`′′n
)
+

L1z(`)

π
1−βn+1
2 (`)

∫ `

`′′n

π
1−βn+1
2 (s)

a1(s)
ds

= z
(
`′′n
)
+

L1z(`)

π
1−βn+1
2 (`)

∫ `

`0

π
1−βn+1
2 (s)

a1(s)
ds− L1z(`)

π
1−βn+1
2 (`)

∫ `′′n

`0

π
1−βn+1
2 (s)

a1(s)
ds

>
L1z(`)

π
1−βn+1
2 (`)

∫ `

`0

π
1−βn+1
2 (s)

a1(s)
ds

≥ εn+1kn+1
π12(`)

π2(`)
L1z(`),

and(
z(`)

π
1/εn+1kn+1
12 (`)

)′
=

εn+1kn+1π
1/εn+1kn+1
12 (`)L1z(`)− π

1/εn+1kn+1−1
12 (`)π2(`)z(`)

εn+1kn+1a1(`)π
2/εn+1kn+1
12 (`)

=
εn+1kn+1π12(`)L1z(`)− π2(`)z(`)

εn+1kn+1a1(`)π
1/εn+1kn+1+1
12 (`)

< 0,

for any εn ∈ (0, 1). The proof of this Lemma is complete.

Corollary 4. Assume that βi < 1, i = 0, 1, 2, . . . , n− 1, and βn ≥ 1. Then, Ω2 = ∅.

Proof. This follows directly from

(1− βn)L1z(`) > (L2z(`))1/απ2(`),

and the fact that L2 is positive.

In view of the previous corollary and (27), the sequence {βn} given by (25) is increasing
and bounded from above, i.e, there exists a limit

lim
n→∞

βn = β j ∈ (0, 1),

satisfying the equation

β j =
β∗k jλ

α(1−1/kj)
∗

1− β j
, (34)

where

k j = lim inf
`→∞

π
β j
2 (`)

π12(`)

∫ `

`0

π
1−β j
2 (s)
a1(s)

ds.

Then, the next important resulting in the nonexistence of N2-type solutions are direct.
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Lemma 11. Assume that λ∗ < ∞ and (34) does not possess a root on (0, 1). Then, Ω2 = ∅.

Corollary 5. Assume that λ∗ < ∞. If

β∗ > max

 β j
(
1− β j

)
λ

α(1/kj−1)
∗

k j
: 0 < β j < 1

. (35)

Then, Ω2 = ∅.

Lemma 12. Assume that (2) holds. Furthermore, assume that there exists ρ ∈ C1([`0, ∞), (0, ∞)),
such that

lim sup
`→∞

∫ `

`0

(
ρ(s)q(s)Bα(σ(s), n)

(
σ(s)

s

)2α/ε

−
aα

1(s)(ρ
′(s))α+1

+

(α + 1)α+1πα
2 (s)ρ

α(s)

)
ds = ∞, (36)

where (ρ′(`))+ = max{0, ρ′(`)}. Then, Ω2 = ∅.

Proof. Assume the contrary, that x ∈ Ω2. Now define

w(`) = ρ(`)
L2z(`)
zα(`)

, ` ≥ `1, (37)

then, w(`) > 0 and

w′(`) = ρ′(`)
L2z(`)
zα(`)

+ ρ(`)
L3z(`)
zα(`)

− αρ(`)
L2z(`)
zα(`)

z′(`)
z(`)

= ρ′(`)
L2z(`)
zα(`)

+ ρ(`)
L3z(`)
zα(`)

− αρ(`)
L2z(`)
zα(`)

1
a1(`)

L1z(`)
z(`)

≤ −ρ(`)q(`)Bα(σ(`), n)
zα(σ(`))

zα(`)
+

ρ′(`)

ρ(`)
w(`)− αw(`)

1
a1(`)

L1z(`)
z(`)

.

Then, in view of (11) and (A1,2)-part of Lemma 7, we have

w′(`) ≤ −ρ(`)q(`)Bα(σ(`), n)
zα(σ(`))

zα(`)
+

ρ′(`)

ρ(`)
w(`)− α

π2(`)

a1(`)
w(`)

(L2z)1/α

z(`)

= −ρ(`)q(`)Bα(σ(`), n)
zα(σ(`))

zα(`)
+

ρ′(`)

ρ(`)
w(`)− απ2(`)

a1(`)ρ1/α(`)
w1+1/α(`).

Since z > 0, L1z > 0, and L2z > 0, then from Lemma 3 we obtain

z(`)
z′(`)

≥ ε

2
`.

By integrating the preceding inequality over the interval from τ(`) to `, we obtain

z(σ(`))
z(`)

≥
(

σ(`)

`

)2/ε

,

which implies that

w′(`) ≤ −ρ(`)q(`)Bα(σ(`), n)
(

σ(`)

`

)2α/ε

+
(ρ′(`))+

ρ(`)
w(`)− απ2(`)

a1(`)ρ1/α(`)
w1+1/α(`). (38)

Setting

B =
(ρ′(`))+

ρ(`)
and A =

απ2(`)

a1(`)ρ1/α(`)
,
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and using Lemma 1, we see that

(ρ′(`))+
ρ(`)

w(`)− απ2(`)

a1(`)ρ1/α(`)
w1+1/α(`) ≤

aα
1(`)(ρ

′(`))α+1
+

(α + 1)α+1πα
2 (`)ρ

α(`)
. (39)

Thus, from (38) and (39), we obtain

w′(`) ≤ −
(

ρ(`)q(`)Bα(σ(`), n)
(

σ(`)

`

)2α/ε

−
aα

1(`)(ρ
′(`))α+1

+

(α + 1)α+1πα
2 (`)ρ

α(`)

)
. (40)

Integrating (40) from `1 to `, we obtain

∫ `

`1

(
ρ(s)q(s)Bα(σ(s), n)

(
σ(s)

s

)2/ε

−
aα

1(s)(ρ
′(s))α+1

+

(α + 1)α+1πα
2 (s)ρ

α(s)

)
ds ≤ w(`1),

for all large `. This is a contradiction to (36).

4. Convergence to Zero of Kneser Solutions

In this section, we establish certain conditions that guarantee the absence of Kneser
solutions satisfying (N1) within Category Ω1.

Theorem 1. If there exists a function ζ ∈ C([`0, ∞), (0, ∞)) satisfying σ(`) < ζ(`) and
τ−1(ζ(`)) < `, such that the differential equation

ω′(`) +
1
µ

τ0

τ0 + pα
0

φ(`)πα
12(ζ(`), σ(`))ω

(
τ−1(ζ(`))

)
≤ 0, (41)

is oscillatory, then Ω1 = ∅.

Proof. Let x ∈ Ω1, say x(`) > 0 and x(σ(`)) > 0 for ` ≥ `1 ≥ `0. This implies that

z > 0, L1z < 0, L2z > 0, and L3z ≤ 0. (42)

From (1), we see that

0 ≥
pα

0
τ′(`)

(
a2(τ(`))

((
a1(τ(`))z′(τ(`))

)′)α)′
+ pα

0q(τ(`))xα(σ(τ(`)))

≥
pα

0
τ0

L3z(τ(`)) + pα
0q(τ(`))xα(σ(τ(`)))

=
pα

0
τ0

L3z(τ(`)) + pα
0q(τ(`))xα(τ(σ(`))). (43)

Combining (1) and (43), we obtain

0 ≥ L3z(`) +
pα

0
τ0

L3z(τ(`)) + q(`)xα(σ(`)) + pα
0q(τ(`))xα(τ(σ(`)))

≥ L3z(`) +
pα

0
τ0

L3z(τ(`)) + φ(`)(xα(σ(`)) + pα
0 xα(τ(σ(`)))).

Using Lemma (2), we obtain

0 ≥ L3z(`) +
pα

0
τ0

L3z(τ(`)) +
1
µ

φ(`)(x(σ(`)) + p0x(τ(σ(`))))α. (44)
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From the definition of z, we have

z(σ(`)) = x(σ(`)) + p(σ(`))x(τ(σ(`))) ≤ x(σ(`)) + p0x(τ(σ(`))).

By using the latter inequality in (44), we find

0 ≥ L3z(`) +
pα

0
τ0

L3z(τ(`)) +
1
µ

φ(`)zα(σ(`)).

That is (
L2z(`) +

pα
0

τ0
L2z(τ(`))

)′
+

1
µ

φ(`)zα(σ(`)) ≤ 0. (45)

However, it can be deduced from the monotonicity of L2z(`) that

−L1z($) ≥ L1z(ς)− L1z($) =
∫ ς

$
(L1z(s))′ds =

∫ ς

$

L1/α
2 z(s)

a1/α
2 (s)

ds

≥ L1/α
2 z(ς)

∫ ς

$

1

a1/α
2 (s)

ds = L1/α
2 z(ς)π2(ς, $). (46)

Integrating (46) from $ to ς, and using (42), we obtain

z($) ≥ L1/α
2 z(ς)π12(ς, $). (47)

Thus, we have
z(σ(`)) ≥ L1/α

2 z(ζ(`))π12(ζ(`), σ(`)),

which, by virtue of (45), yields that(
L2z(`) +

pα
0

τ0
L2z(τ(`))

)′
+

1
µ

φ(`)πα
12(ζ(`), σ(`))L2z(ζ(`)) ≤ 0. (48)

Now, set

ω(`) = L2z(`) +
pα

0
τ0

L2z(τ(`)) > 0.

From the fact that L2z(`) is non-increasing, we have

ω(`) ≤ L2z(τ(`))
(

1 +
pα

0
τ0

)
,

or equivalently,

L2z(ζ(`)) ≥ τ0

τ0 + pα
0

ω
(

τ−1(ζ(`))
)

. (49)

Using (49) in (48), we show that ω is a positive solution of the differential inequality

ω′(`) +
1
µ

τ0

τ0 + pα
0

φ(`)πα
12(ζ(`), σ(`))ω

(
τ−1(ζ(`))

)
≤ 0.

Considering ([35], Theorem 1), we can deduce that (41) also possesses a positive solution,
which contradicts our previous assertion. Thus, we can conclude that the proof is now fully
established.

Corollary 6. If there exists a function ζ ∈ C([`0, ∞), (0, ∞)) satisfying σ(`) < ζ(`) and
τ−1(ζ(`)) < `, such that

lim inf
`→∞

∫ `

τ−1(ζ(`))
φ(s)πα

12(ζ(s), σ(s))ds >
µ
(
τ0 + pα

0
)

τ0e
, (50)
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then, Ω1 = ∅.

Theorem 2. If there exists a function δ ∈ C([`0, ∞), (0, ∞)) satisfying δ(`) < `, and σ(`) <
τ(δ(`)), such that

lim sup
`→∞

πα
12(τ(δ(`)), σ(`))

∫ `

δ(`)
φ(s)ds >

µ
(
τ0 + pα

0
)

τ0
, (51)

then, Ω1 = ∅.

Proof. Using the same method as demonstrated in the proof of Theorem 1, we obtain the
following inequality:

0 ≥
(

L2z(`) +
pα

0
τ0

L2z(τ(`))
)′

+
1
µ

φ(`)zα(σ(`)).

By integrating the previous inequality from δ(`) to `, and considering the fact that z is a
decreasing function, we derive:

L2z(δ(`)) +
pα

0
τ0

L2z(τ(δ(`))) ≥ L2z(`) +
pα

0
τ0

L2z(τ(`)) +
1
µ

zα(σ(`))
∫ `

δ(`)
φ(s)ds

≥ 1
µ

zα(σ(`))
∫ `

δ(`)
φ(s)ds.

Since τ(δ(`)) < τ(`), and L2z(`) is non-increasing, we have

L2z(τ(δ(`)))
(

1 +
pα

0
τ0

)
≥ 1

µ
zα(σ(`))

∫ `

δ(`)
φ(s)ds. (52)

By using (47) with ς = τ(δ(`)) and $ = σ(`) in (52), we obtain

L2z(τ(δ(`)))
(

1 +
pα

0
τ0

)
≥ 1

µ
L2z(τ(δ(`)))πα

12(τ(δ(`)), σ(`))
∫ `

δ(`)
φ(s)ds.

That is
τ0 + pα

0
τ0

≥ 1
µ

πα
12(τ(δ(`)), σ(`))

∫ `

δ(`)
φ(s)ds.

Next, we calculate the lim sup for both sides of the preceding inequality, which leads to a
contradiction with (51). This concludes the proof.

5. Oscillation Theorems

In this section, we are prepared to present the main results of this paper. By combining
the results from the preceding two sections, we can readily derive the following theorems
without providing proof.

Theorem 3. Assume that β∗ ≥ 1, and either (50) or (51) holds. Then, (1) is oscillatory.

Theorem 4. Assume that β∗ > 0, λ∗ = ∞, and either (50) or (51) holds. Then, (1) is oscillatory.

Theorem 5. Assume that βi < 1, i = 0, 1, 2, . . . , n− 1, and βn ≥ 1 and either (50) or (51) holds.
Then, (1) is oscillatory.

Theorem 6. Assume that λ∗ < ∞, (35), and either (50) or (51) holds. Then, (1) is oscillatory.

Theorem 7. Assume that (36) and either (50) or (51) holds. Then, (1) is oscillatory.
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In the following, we provide an example that supports and illustrates our results.

Example 1. Consider ((
(x(`) + p0x(τ0`))

′′
)5
)′

+
q0

`11 x5(σ0`) = 0, (53)

where 0 ≤ p0 < 1, and τ0, σ0 ∈ (0, 1). Clearly,

a1(`) = 1, a2(`) = 1, π1(`) ∼ `, π2(`) ∼ `, π12(`) ∼ `2/2.

We can calculate:

λ∗ = lim inf
`→∞

π12(`)

π12(σ(`))
=

1
σ2

0
,

p1(`; n) = [1− p0]
n

∑
k=0

p2k
0 τ4k

0 ,

p̂1(`, n) =
[
p0τ2

0 − 1
] n

∑
k=1

1
p2k

0
,

and

B(`, n) = B0 =

{
p1(`; n) for p0 < 1,
p̂1(`; n) for p0 > 1/τ2

0 .

Then

β∗ = lim inf
`→∞

1
α

a1/α
2 (`)πα

12(σ(`))π2(`)q(`)Bα
0(σ(`), n)

= lim inf
`→∞

1
5

σ10
0 `10

25 `
q0

`11 B5
0 =

1
160

σ10
0 q0B5

0.

For β∗ ≥ 1, we have

q0 >
160

σ10
0 B5

0
. (54)

Now, for ρ(`) = `ν, where ν ≥ 10, condition (36) leads to

lim sup
`→∞

∫ `

`0

(
ρ(s)q(s)Bα(σ(s), n)

(
σ(s)

s

)2α/ε

−
aα

1(s)(ρ
′(s))α+1

+

(α + 1)α+1πα
2 (s)ρ

α(s)

)
ds

= lim sup
`→∞

∫ `

`0

(
sν q0

s11 B5
0σ10/ε

0 − 1
66

ν6s6ν−6

s5s5ν

)
ds

= lim sup
`→∞

∫ `

`0

(
q0B5

0σ10/ε
0 − ν6

66

)
sν−11ds = ∞,

Which is satisfied when

q0 >
ν6

66B5
0σ10/ε

0

. (55)

Condition (50) leads to:

lim inf
`→∞

∫ `

τ−1(ζ(`))
φ(s)πα

12(ζ(s), σ(s))ds = lim inf
`→∞

∫ `

τ−1
0 ζ0`

q0

s11

(
ζ2

0 − σ2
0
)5

25 s10ds

=
1
32

q0

(
ζ2

0 − σ2
0

)5
ln

τ0

ζ0
.
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which is satisfied when:

q0 >
32µ

(
τ0 + pα

0
)

τ0e
(
ζ2

0 − σ2
0
)5 ln τ0

ζ0

(56)

Condition (51) leads to:

lim sup
`→∞

πα
12(τ(δ(`)), σ(`))

∫ `

δ(`)
φ(s)ds = lim sup

`→∞
π5

12(τ0δ0`, σ0`)
∫ `

δ0`

q0

s11 ds

= lim sup
`→∞

(
τ2

0 δ2
0 − σ2

0
)5(1− δ10

0
)
`10

320δ10
0

q0

`10

=

(
τ2

0 δ2
0 − σ2

0
)5(1− δ10

0
)

320δ10
0

q0,

which is satisfied when:

q0 >
320
(
τ0 + p5

0
)
δ10

0(
τ2

0 δ2
0 − σ2

0
)5(1− δ10

0
) . (57)

Now, by applying conditions (54)–(57), we can show that Theorems (3) and (7) exhibit oscillatory
behavior. This can be confirmed by assigning particular values to (53).

Example 2. Consider
(x(`) + 0.5x(0.9`))′′′ +

q0

`3 x(0.5`) = 0. (58)

Clearly,
λ∗ = 4,

p1(`; 10) = (1− 0.5)
10

∑
k=0

(0.5)2k(0.9)4k = 0.5981,

and
B(`, 10) = B0 = p1(`; 10) = 0.5981.

Then

β∗ = lim inf
`→∞

(0.5)2`2

2
`

q0

`3 (0.598 1) = 0.07476q0.

For β∗ ≥ 1, we have
q0 > 13.376.

Conditions (36) and (51) are satisfied when

q0 > 26.751, ρ(`) = `2, ε = 0.5

and
q0 > 22.274, δ0 = 0.7, (59)

respectively. Thus, from Theorems 3 and 7, we conclude that (58) is oscillatory.

6. Conclusions

This paper has studied the oscillatory behavior of a quasi-linear NDE of the third
order. Through our research efforts, we have significantly enhanced the understanding
of the relationship between the solution, x, and the corresponding function, z. This im-
provement has led to the derivation of improved preliminary results, which play a crucial
role in excluding positive solutions for the studied equation. Building upon these refined
preliminary results, we have developed novel criteria for determining the nature of the
solutions, whether they exhibit oscillatory behavior or tend towards zero. These criteria
contribute to a deeper comprehension of the dynamic behavior of the systems described by
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these equations. In the future, an intriguing avenue for research involves broadening the
scope of this study to encompass NDEs of higher orders.
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