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Abstract: Connectivity in graphs is useful in describing different types of communication systems
like neural networks, computer networks, etc. In the design of any network, it is essential to evaluate
the connections based on their strengths. In this manuscript, we comprehensively describe various
connectivity parameters related to interval-valued intuitionistic fuzzy graphs (IVIFGs). These are
the generalizations of the parameters defined for fuzzy graphs, interval-valued fuzzy graphs, and
intuitionistic fuzzy graphs. First, we introduce interval-valued intuitionistic fuzzy bridges (IVIF
bridges) and interval-valued intuitionistic fuzzy cut-nodes (IVIF cut-nodes). We discuss the many
characteristics of these terms as well as establish the necessary and sufficient conditions for an arc to
become an IVIF-bridge and a vertex to be an IVIF-cutnode. Furthermore, we initiate the concepts
of interval-valued intuitionistic fuzzy cycles (IVIFCs) and interval-valued intuitionistic fuzzy trees
(IVIFTs) and explore few relationships among them. In addition, we introduce the notions of fuzzy
blocks and fuzzy block graphs and extend these terms as interval-valued fuzzy blocks (IVF-blocks)
and interval-valued intuitionistic fuzzy block graphs (IVIF-block graphs). Finally, we provide the
application of interval-valued intuitionistic fuzzy trees (IVIFTs) in a road transport network.

Keywords: IVIF-blocks; IVIF-block graphs; IVIF-bridges; IVIF-cycles; IVIF-trees

MSC: 057C2; 03E72

1. Introduction

In 1965, Zadeh [1] initiated the concept of a fuzzy sets (FSs) which became an efficient
tool to solve the problems containing uncertainties. After this, the theory of FSs became an
important area of research for researchers in various fields of natural and social sciences
including medical, engineering, artificial intelligence, management sciences, etc. Due to
a wide range of applications of FSs, several generalizations of FSs have been introduced.
Zadeh himself introduced the generalization of FSs named interval-valued fuzzy sets
(IVFSs) [2]. Afterwards, Atanassov [3] proposed the concepts of intuitionistic fuzzy sets
(IFSs). Furthermore, Gargov and Atanassov [4] explored the notion of interval-valued
intuitionistic fuzzy sets (IVIFSs) with the aim of amalgamating the view and measuring
the complex nature of the human mind with more accuracy. The concepts of IVIFS was
extensively applied in different fields like decision making [5], medical diagnosis [6], etc.
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A decade after Zadeh’s landmark paper, Rosenfeld [7] and Yeh et al. [8] introduced fuzzy
graphs (FGs). Subsequently, the term M-strong FGs was introduced by Bhutani et al. [9].
Some important terms related to FGs were initiated by Bhattacharya [10]. Peng and
Mordeson [11] introduced some important operations on FGs. Different terms of FGs like
cycles, co-cycles, and fuzzy line graphs were presented by Mordeson and Nair [12]. Mathew
and Sunitha [13] initiated the term node connectivity based on different types of arcs of
FGs. The term interval-valued fuzzy graphs (IVFGs) was explored in [14]. Cayley-IVFGs
were explored in [15]. Sequentially, the term intuitionistic fuzzy graph (IFGs) was explored
in 1994 in [16]. Numerous new operations along with their basic properties on IFGs were
introduced in [17]. Similarly, the shortest paths in different networks were examined
through IFGs in [18]. The order, size, etc. of IFGs were explored by Nagoor Gani et al. [19].
The extension of IFG, named intuitionistic fuzzy competition graphs [20], intuitionistic
fuzzy tolerance graphs [21], etc., have also been discussed in the literature. Similarly, the
concepts of connectivity in intuitionistic fuzzy incidence graphs and their applications
were explored in [22]. The term internally stable set in IFGs was explained in [23]. Some
new terms of IFGs were addressed in [24] The concept of a strong-IVIFG was discussed
in [25]. The connectivity status of the IFG with applications in banking was introduced
in [26]. Intuitionistic fuzzy trees (IFTs) were introduced by Chountas et al. [27,28]. Various
terms related to IF-trees such as the radius, distance, and eccentricity were introduced
by Thamizhendhi and Parvathi [29]. The study of IFGs and IFTs were also conducted by
many researchers [30,31]. Interval-valued intuitionistic fuzzy graphs (IVIFGs) were studied
in [32]. Similarly, many generalizations of IVIFGs were explored in [33–35]. Recently, some
other extensions of FGs with applications in various fields have been explored in [36,37].
In the same vein, many new terms related to fuzzy graphs have been explored in [38,39].

The unique structure of IVIFSs is useful to express the membership and non-membership
degrees in terms of intervals, which is more helpful in dealing with uncertainties. Also,
expressing uncertain information using IVIFSs can effectively avoid the loss of any infor-
mation. In our study, we introduce various connectivity parameters related to IVIFGs.
These are the generalized forms of concepts related to FGs, IVFGs, and IFGs. Moreover,
the notions described for IVIFGs combine the qualitative characteristics of FGs, IVFGs,
and IFGs.

The novelty and motivations of our work are as follows.

1. We introduce different of strong arcs like α[φ− ,φ+ ]-strong, β[φ− ,φ+ ]-strong, δ[φ− ,α+ ]-arc,
α[ψ− ,ψ+ ]-strong, β[ψ− ,ψ+ ]-strong, and δ[ψ− ,ψ+ ]-strong. Based on these arcs, we introduce
the different types of path and discuss the connectivity of IVIFGs.

2. We extend many notions of IFGs towards IVIFGs such as interval-valued intuitionis-
tic fuzzy bridges (IVIFBs), interval-valued intuitionistic fuzzy cut-notes (IVIFCNs),
interval-valued intuitionistic fuzzy trees (IVIFTs), interval-valued intuitionistic fuzzy
cycles (IVIFCs), etc.

3. We can hardly find discussions about the fuzzy blocks and fuzzy block graphs. In our
work, we first introduce the concepts of interval-valued fuzzy blocks (IVF-blocks) and
interval-valued fuzzy block graphs (IVF-block graphs). Then, we extend these notions
as interval-valued intuitionistic fuzzy blocks (IVIF-block graphs) and interval-valued
intuitionistic fuzzy block graphs (IVIF-block graphs).

4. A traffic control system, computer networking, or any real-life problem involving
networking works best in an interval-valued intuitionistic fuzzy environment as
compared to the fuzzy, interval-valued fuzzy, and intuitionistic fuzzy environments.
As evidence, we provide the application of IVIFTs towards the traffic control system.

The rest of this manuscript is organized as follows: In Section 2, basic useful terminolo-
gies are provided. In Section 3, we introduce the notions of interval-valued intuitionistic
fuzzy bridges (IVIFBs) and interval-valued intuitionistic fuzzy cut notes (IVIFCNs). After-
wards, the ideas of interval-valued intuitionistic fuzzy trees (IVIFTs) and interval-valued
intuitionistic fuzzy cycles (IVIFCs) are discussed in Section 4. In Section 5, first we introduce
the notions of interval-valued fuzzy-blocks (IVF-blocks) and interval-valued fuzzy block
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graphs (IVF-block graphs). Then, we shift these terms towards IVIFGs. In Section 6, we
present the application of IVIFTs towards the traffic control system along with numerical
calculations. Finally, we conclude our study with future directions.

2. Preliminaries

Definition 1 ([1]). A fuzzy set (FS) is a pair (V, φ), where φ is a membership function that
allocates values to each entity of V from [0, 1].

Definition 2 ([40]). An IVFS is a pair (V, φ), where φ is a membership function that allocate
values in terms of the subintervals of [0, 1] to each member of V.

Definition 3 ([41]). An IFS T on U is of the form

T = {(u, φT(u), ψT(u))|u ∈ U}

where both φT(u) and ψT(u) are the functions such as φT : U → [0, 1] and ψT : U → [0, 1] are
the membership values and non-membership values of the given entity u ∈ U, respectively, with
0 ≤ φT(u) + ψT(u) ≤ 1.

Definition 4 ([4]). An IVIFS T on U can be described as

T = {(u, φT(u), ψT(u))|u ∈ U}

where φT(u) ⊂ [0, 1] and ψT(u) ⊂ [0, 1] are intervals representing the membership and non-
membership values, respectively, with supφT(u) + supφT(u) ≤ 1.

Definition 5 ([7]). A pair G = (C, D) is a fuzzy graph (FG) defined on a crisp graph G∗ =
(V, E), where C = {φC}, D = {ψD}, φC : V → [0, 1], and ψD : V × V → [0, 1], satisfying
ψD(u, v) ≤ min{φC(u), φC(v)} for all u, vs. ∈ V.

Definition 6 ([42]). An interval-valued fuzzy graph (IVFG) defined on a crisp graph G∗ = (V, E)
is G = (C, D), where C = {φC} ⊂ [0, 1] and D = {φD} ⊂ [0, 1] are the IVFSs on V and
E = V ×V, respectively.

Definition 7 ([16]). An intuitionistic fuzzy graph (IFG) defined on a crisp graph G∗ = (V, E) is a
pair G = (C, D), where C = (ψC, φC) is an IFS on V and D = (ψD, φD) is an IFS on E = V×V,
and for all u, v ∈ V

ψD(u, v) ≤ min(ψC(u), ψC(v))

φD(u, v) ≤ max(φC(u), φC(v))

Definition 8 ([43]). An IFG G = (C, D) defined on a crisp graph G∗ = (V, E) is said to be
complete, if for each (u, v) ∈ E,

ψD(u, v) = min(ψC(u), ψC(v))

φD(u, v) = max(φC(u), φC(v))

Definition 9 ([43]). In an IFG G = (C, D), a φ-path P(u, v) is a set of distinct vertices P :
u = v0, v1, . . . , vm = v such that φD(vj−1, vj) > 0, and a ψ-path if ψD(vj−1, vj) > 0, where
j = 1, 2, . . . , m. If φD(vj−1, vj) > 0 and ψD(vj−1, vj) > 0, then we call it a path in IFG.

Definition 10 ([43]). The φ-strength of connectedness among the vertices ui and uj in an IFG
G is φ∞

D = sup{φk
D(ui, uj)|k = 1, 2, . . . , m}, and the ψ-strength of connectedness among ui

and uj is ψ∞
D = inf{ψk

D(ui, uj)|k = 1, 2, . . . , m}. Similarly, φ∞
D (ui, uj) = sup{φD(u, u1) ∧
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φD(u1, u2)∧ ...∧ φD(uk−1, u)|u, u1, u2, . . . , uk−1}, whenever the nodes u, v are joined by φ-paths
having the length k. If the nodes u, v are joined by ψ-paths having the length k, then ψ∞

D (ui, uj) =
inf{ψD(u, u1) ∨ ψD(u1, u2) ∨ ...∨ ψD(uk−1, v)}.

Definition 11 ([43]). An IFG G = (C, D) described in Definition 7, is said to be

1. φ-connected, if there is a φ-path between each pair of the vertices.
2. ψ-connected, if there is a ψ-path between each pair of vertices.
3. a strong connected graph, whenever there exists a path in between each pair of vertices.

Definition 12 ([44]). An arc (v1, v2) in an IFG G = (C, D) is said to be

1. αφ-strong if φD(v1, v2) > φ
′∞
D (v1, v2) and αψ-strong if ψD(v1, v2) < ψ

′∞
D (v1, v2).

2. βφ-strong if φD(v1, v2) = φ
′∞
D (v1, v2) and βψ-strong if ψD(v1, v2) = ψ

′∞
D (v1, v2).

3. δφ-arc if φD(v1, v2) < φ
′∞
D (v1, v2) and δψ-arc if ψD(v1, v2) > ψ

′∞
D (v1, v2).

We refer the reader to [44] for further discussions on bridges, trees, etc., of IFGs.
Important note: Throughout this article, we use the notations φ−C (u) for φLC(u) and

φ+
C (u) for φUC(u), respectively. Similarly, we use ψ−D(uv) for ψLD(u) and ψ+

D(uv) for
φUD(uv).

3. IVIF-Bridges and IVIF-Cut Nodes

In this section, we introduce IVIF-bridges and IVIF-cut nodes. We also provide some
important results and examples related to them.

Definition 13. An IVIFG G = (C, D) is strong, if for all ([ui, uj], [vi, vj]) ∈ D, φD([ui, uj], [vi,
vj]) = min{φC[ui, uj]}, φC[vi, G = (C, D) is strong, if for all ([ui, uj], [vi, vj]) ∈ D, φD([ui,
uj], [vi, vj]) = min(φC[ui, uj], φC[vi, vj]) and ψD([ui, uj], [vi, vj]) = max(ψC [ui, uj], φC[vi, vj]).
And G = (C, D) is complete if for all ui = u0, u1, u2..., un = uj, vi = v0, v1, v2, ..., vn = vj ∈ C
φD([ui, uj], [vi, vj]) = min(φC[ui, uj], φC[vi, vj]) and ψD([ui, uj], [vi, vj]) = max(ψC[ui, uj],
φC[vi, vj]).

Remark 1. In an IVIFG, if φD([ui, uj], [vi, vj]) = ψD([ui, uj], [vi, vj]) = 0 for any i and j, then
there is no edge among the vertices ui = u0, u1, u2..., un = uj and vi = v0, v1, v2, ..., vn = vj.
However, if φD([ui, uj], [vi, vj]) 6= ψD([ui, uj], [vi, vj]) = 0, then there is an edge among the
vertices ui = u0, u1, u2..., un = uj and vi = v0, v1, v2, ..., vn = vj.

Definition 14. In an IVIFG G = (C, D), a path P in G, i.e., P : u = u0, u1, . . . , um = v is a
sequence of distinct vertices. The path P is called a [φ−, φ+]-path from u to v if φD(uj−1, uj) > 0,
and is called a [ψ−, ψ+]-path whenever ψD(uj−1, uj) > 0 for j = 1, 2, . . . , m. We call P a path in
an IVIFG if it has both [φ−, φ+]-path and [ψ−, ψ+]-path. Hence, P is a (u− v) path of length m.
If u = v and m > 3, then the path P is a [φ−, φ+]-cycle and [ψ−, ψ+]-cycle which turns into be
a cycle.

Definition 15. Let G = (C, D) be an IVIFG, then it is called a [φ−, φ+]-connected, whenever
there is a [φ−, φ+]-path among each couple of the nodes in G, and is called a [ψ−, ψ+]-connected, if
there is a [ψ−, ψ+]-path among each pair of the nodes in G. Additionally, an IVIFG G∗ is strongly
connected, if there is a path among every pair of vertices.

Definition 16. If ui, uj ∈ C ⊆ G, then the [φ−, φ+]-strength of connectedness among the vertices
ui, uj is φ∞

D = sup{φk
D(ui, uj)|k = 1, 2, . . . , m}, and the [ψ−, ψ+]-strength among ui and uj is

ψ∞
D = inf{ψk

D(ui, uj)|k = 1, 2, . . . , m}. Similarly, φ∞
D (ui, uj) is sup{φD(u, u1) ∧ φD(u1, u2) ∧

... ∧ φD(uk−1, u)|u, u1, u2, . . . , uk−1, v ∈ C}, whenever the nodes u, v are joined by [φ−, φ+]-
paths having the length k. If the nodes u, v are joined by [ψ−, ψ+]-paths having the length k, then
ψ∞

D (ui, uj) is inf{ψD(u, u1) ∨ ψD(u1, u2) ∨ ...∨ ψD(uk−1, v)|u, u1, u2, ..., uk−1, v ∈ C}.
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Remark 2. If there is a path P = [φ−, φ+]-path in an IVIFG G = (C, D) from u to v, then the
[φ−, φ+]-strength of P among the vertices u and v is denoted by [φ−, φ+]∞P (u, v). Also, if there is a
path P that is a [ψ−, ψ+]-path in an IVIFG G from u to v, then the [ψ−, ψ+]-strength of P among
the vertices u and v is denoted by [ψ−, ψ+]∞P (u, v). A path P in between a pair of the nodes u and v is
a [φ−, φ+]-strongest (u− v) path and a [ψ−, ψ+]-strongest (u− v) path, if the [φ−, φ+]-strength
is equal to [φ−, φ+]∞P (u, v) and the [ψ−, ψ+]-strength is equal to [ψ−, ψ+]∞P (u, v), respectively.

Definition 17. Let G = (C, D) be an IVIFG, then an arc (r, s) in G is called [φ−, φ+]-strong and
[ψ−, ψ+]-strong, if [φ−, φ+]D(r, s) ≥ [φ−, φ+]

′∞
D (r, s), and [ψ−, ψ+]D(r, s) ≤ [ψ−, ψ+]

′∞
D (r, s).

And, an arc (r, s) in G is called strong if it is either [φ−, φ+]-strong or [ψ−, ψ+]-strong.

Definition 18. Let G = (C, D) be an IVIFG. Then, an arc (r, s) in G is α[φ− ,φ+ ]-strong, β[φ− ,φ+ ]-
strong, and δ[φ− ,φ+ ]-arc satisfies

[φ−, φ+]D(r, s) > [φ−, φ+]
′∞
D (r, s)

[φ−, φ+]D(r, s) = [φ−, φ+]
′∞
D (r, s)

[φ−, φ+]D(r, s) < [φ−, φ+]
′∞
D (r, s)

and is said to be α[ψ− ,ψ+ ]-strong, β[ψ− ,ψ+ ]-strong and δ[ψ− ,ψ+ ]-arc if

[ψ−, ψ+]D(r, s) < [ψ−, ψ+]
′∞
D (r, s)

[ψ−, ψ+]D(r, s) = [ψ−, ψ+]
′∞
D (r, s)

[ψ−, ψ+]D(r, s) > [ψ−, ψ+]
′∞
D (r, s)

Example 1. In an IVIFG G = (C, D) shown in Figure 1, the arcs (w1, w2) and (w1, w3) are
α[φ− ,φ+ ]-strong arcs and α[ψ− ,ψ+ ]-strong arcs, which implies that the arcs (w1, w2) and (w1, w3)
are strong arcs. However, the arc (w3, w4) is neither an α[φ− ,φ+ ]-strong arc, nor β[φ− ,φ+ ]-strong
arc, and nor δ[φ− ,φ+ ]-arc, but it is a δ[ψ− ,ψ+ ]-arc. Similarly, the arc (w2, w4) is neither an α[φ− ,φ+ ]-
strong arc, nor β[φ− ,φ+ ]-strong arc, and nor δ[φ− ,φ+ ]-arc, but it is an α[ψ− ,ψ+ ]-strong arc. But, the
arc (w2, w3) is δ[φ− ,φ+ ]-arc and δ[ψ− ,ψ+ ]-arc.

Figure 1. Interval-valued intuitionistic fuzzy graph.

Definition 19. Let P : u = u0, u1, . . . , um = v be a [φ−, φ+]-path from u to v in an IVIFG
G = (C, D). The path P is called a [φ−, φ+]-strong (α[φ− ,φ+ ]-strong), if the arcs (uj−1, uj),
where j = 1, 2, ..., m are [φ−, φ+]-strong (α[φ− ,φ+ ]-strong). Again, P is a [ψ−, ψ+]-path, then the
path P is called [ψ−, ψ+]-strong (α[ψ− ,ψ+ ]-strong), if the arcs (uj−1, uj), where j = 1, 2, ..., m are
[ψ−, ψ+]-strong (α[ψ− ,ψ+ ]-strong).

A path P in G is termed as strong (α-strong), and is either [φ−, φ+]-strong or [ψ−, ψ+]-strong
(α[φ− ,φ+ ]-strong or α[ψ− ,ψ+ ]-strong).
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Example 2. In an IVIFG G = (C, D) given in Figure 2a, C = {u1, u2, u3} and D = {(u1, u2),
(u2, u3), (u1, u3)}. The arc (u1, u2) is in G is α[φ− ,φ+ ]-strong arc but the arc (u1, u2) is neither
α[ψ− ,ψ+ ]-strong arc, nor β[ψ− ,ψ+ ]-strong arc, and nor δ[ψ− ,ψ+ ]-arcl the arc (u1, u3) is α[φ− ,φ+ ]-arc,
but the arc (u1, u3) is neither α[ψ− ,ψ+ ]-strong arc, nor β[ψ− ,ψ+ ]-strong arc, and nor δ[ψ− ,ψ+ ]-arc;
and the arc (u2, u3) is δ[φ− ,φ+ ]-strong but the arc (u2, u3) is neither α[ψ− ,ψ+ ]-strong arc, nor
β[φ− ,φ+ ]-strong arc, and nor δ[ψ− ,ψ+ ]-arc. Similarly, in an IVIFG shown in Figure 2b, the arc
(v1, v3) is the only α[ψ− ,ψ+ ]-strong arc.

In Figure 2a, the path P1 : u1, u2 is a α[φ− ,φ+ ]-strong path while the path (P3)
∗ : v1, v3 in

Figure 2b is a α[ψ− ,ψ+ ]-strong path. Thus, both the paths P1 and P∗3 are α-strong paths.

(a) (b)

Figure 2. Interval-valued intuitionistic fuzzy graphs (a,b).

Proposition 1. If an IVIFG G = (C, D) is [φ−, φ+]-connected, then there must exist a [φ−, φ+]-
strong path among every couple of vertices of a graph G.

Proof. It is straightforward.

Proposition 2. Let G = (C, D) be a [ψ−, ψ+]-connected IVIFG. Then, there is a [ψ−, ψ+]-strong
path in the set of vertices of graph G.

Proof. Let G be an [ψ−, ψ+]-connected IVIFG. Then, there must exist a [ψ−, ψ+]-path
between each couple of the vertices u, v. However, if the arc (u, v) between u, v is
not a [ψ−, ψ+]-strong arc, then [ψ−, ψ+]D(u, v) > [ψ−, ψ+]

′∞
D (u, v). Thus, there exists a

P = [ψ−, ψ+]-path from the vertex u to v in which the [ψ−, ψ+]-strength of P is less
than [ψ−, ψ+]D(u, v). Here, if a few arcs of the path P are not [ψ−, ψ+]-strong, then we
have the same argument. Lastly, we must have a [ψ−, ψ+]-path from u to v which is
[ψ−, ψ+]-strong.

Remark 3. The converse of Proposition 2 is not true, in general.

Proposition 3. If a [φ−, φ+]-path from the vertex u to v in an IVIFG G = (C, D) is α[φ− ,φ+ ]-
strong, then this path P in G is a [φ−, φ+]-strongest (u− v) path.

Proof. Let G = (C, D) be an IVIFG. Consider a path P : u = u0, u1, u2, ..., um = v in G
which is an α[φ− ,φ+ ]-strong and further assume that it is not a [φ−, φ+]-strongest (u− v)
path in G. Consider a [φ−, φ+]-strongest (u − v) path in G which is expressible as P

′
:

u = u
′
0, u

′
1, u

′
2, ..., u

′
m = v. Hence, for j = 1, 2, 3, ..., m, we have [φ−, φ+]D(u

′
j−1, u

′
j) >

u∞
P (u, v). Moreover, both the paths P and P

′
make a cycle, denoted by C∗. In a path P,

[φ−, φ+]-arc of C∗ is the weakest arc. Assuming an arc (r, s) be the weakest [φ−, φ+]-arc in
the path P. Let (r− s) be the path in a cycle C∗ not including (r− s), which is represented
by P

′′
. Consequently, we have [φ−, φ+]D(r, s) ≤ [φ−, φ+]

′′∞
P (r, s) ≤ [φ−, φ+]D(r, s), which
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shows that (r, s) is not identified to be an α[φ− ,φ+ ]-strong arc, which disproves of the
supposition. Hence, the path P in G is a [φ−, φ+]-strongest (u− v) path.

Remark 4. The converse of Proposition 3 is not true, i.e., if there exists a [φ−, φ+]-strongest
(u− v) path in G, then it is not necessary to be an α[φ− ,φ+ ]-strong path.

Proposition 4. In an IVIFG G = (C, D), if a [ψ−, ψ+]-path P from the vertex u to v is α[ψ− ,ψ+ ]-
strong, then the path P is a [ψ−, ψ+]-strongest (u− v) path in G.

Proof. Let G = (C, D) be an IVIFG. Let P : u = u0, u1, u2, ..., um = v in G be α[ψ− ,ψ+ ]-
strong, and assume that P in G is not a [ψ−, ψ+]-strongest (u− v) path. In an IVIFG, a
[ψ−, ψ+]-strongest (u− v) path in G, denoted by P

′
: u = u

′
0, u

′
1, u

′
2, ..., u

′
m = v. Thus, for

j = 1, 2, 3, ..., m, [ψ−, ψ+]D(u
′
j−1, u

′
j) < v∞

P (u, v). Furthermore, a cycle C∗ is formed by both

the paths P and P
′
. The weakest arc of C∗ in the path P is [ψ−, ψ+]-arc. Let an arc (r, s) in

the path P as the weakest [ψ−, ψ+]-arc. In cycle C∗, let P
′′

be the (r − s) path excluding
(r − s). Consequently, for an arc (r, s) not to be an α[ψ− ,ψ+ ]-strong arc, we must have

[ψ−, ψ+]D(r, s) ≥ [ψ−, ψ+]
′′∞
P (r, s) ≥ [ψ−, ψ+]D(r, s). Which disproves our assumption.

Hence, a path P in G is satisfied to be a [ψ−, ψ+]-strongest (u− v) path.

Remark 5. The converse of Proposition 4 does not need to be true, i.e., it is not mandatory to the
[ψ−, ψ+]-strongest (u− v) path in G to be an α[ψ− ,ψ+ ]-strong path.

Definition 20. Let G = (C, D) be an IVIFG. An arc (u, v), i.e., ([u1, u2], [v1, v2]) in G is said
to be an interval-valued intuitionistic fuzzy [φ−, φ+]-bridge (IVIF [φ−, φ+]-bridge), whenever an
arc ([u1, u2], [v1, v2]) in between some couple of the nodes is removed, which reduces the [φ−, φ+]-
strength of connectedness among some couple of the nodes. Similarly, if the nodes r, s ∈ C, that
is, r = ([r1, r2], [r3, r4]) and s = ([s1, s2], [s3, s4]) is such that there is an edge ([u1, u2], [v1, v2])
in every [φ−, φ+]-strongest (r − s) path. An arc (u, v), i.e., ([u1, u2], [v1, v2]) in an IVIFG G
is an interval-valued intuitionistic fuzzy [ψ−, ψ+]-bridge (IVIF [ψ−, ψ+]-bridge), and whenever
this arc ([u1, u2], [v1, v2]) is removed, it extends the [ψ−, ψ+] connectedness strength among a few
couples of the nodes. Similarly, the nodes r, s ∈ C, i.e., r = ([r1, r2], [r3, r4]) and s([s1, s2], [s3, s4]),
such that, in every [ψ−, ψ+]-strongest (r − s) path, the arc ([u1, u2], [v1, v2]) exists. An arc
([u1, u2], [v1, v2]) in an IVIFG G is an interval-valued intuitionistic fuzzy bridge (IVIFB), which
is either an IVIF [φ−, φ+]-bridge or an IVIF [ψ−, ψ+]-bridge.

Definition 21. Let G = (C, D) be an IVIFG. When A node u ∈ C, where u = ([u1, u2], [u3, u4])
in G is an interval-valued intuitionistic fuzzy [φ−, φ+]-cut node (IVIF [φ−, φ+]-cut node), and
this u is removed, it minimizes the [φ−, φ+] connectedness strength among a few other couples of
nodes. Likewise, if the nodes r, s ∈ C exist where r = ([r1, r2], [r3, r4]) and s = ([s1, s2], [s3, s4]) in
such a way that a node u is involved in every [φ−, φ+]-strongest (r− s) path. A node u ∈ C where
u = ([u1, u2], [u3, u4]) in G is an interval-valued intuitionistic fuzzy [ψ−, ψ+]-cut node (IVIF
[ψ−, ψ+]-cut node), whenever this node u is removed, the [ψ−, ψ+] connectedness strength among
a few other couples of nodes increases. Similarly, there exist r, s ∈ C where r = ([r1, r2], [r3, r4])
and s = ([s1, s2], [s3, s4]), so that this u is involved in every [ψ−, ψ+]-strongest (r− s)path. A
node u ∈ C, where u = ([u1, u2], [u3, u4]) in an IVIFG G is called an interval-valued intuitionistic
fuzzy cut-node (IVIFCN) if it is either an IVIF [φ−, φ+]-cut node or an IVIF [ψ−, ψ+]-cut node.

Example 3. Consider an IVIFG G = (C, D) given in Figure 3, where C = {u, w, v, x} and
D = {(u, v), (v, w), (u, w), (w, x), (v, x)(u, x), (v, w)}. Here, the arc (u, v) is an δ[φ− ,φ+ ]-arc
and δ[ψ− ,ψ+ ]-arc, (u, w) and (v, x) are δ[φ− ,φ+ ]-arcs and α[ψ− ,ψ+ ]-arcs, the arcs (u, x) and (v, w)
are α[φ− ,φ+ ]-strong and α[ψ− ,ψ+ ]-strong arcs, i.e., (u, x) and (v, w) are strong arcs, while the arc
(w, x) is an α[φ− ,φ+ ]-strong and δ[ψ− ,ψ+ ]-arc. Consequently, all the arcs in G are strong. Further to
this, both the arcs (u, v) and (v, x) are neither an IVIF [φ−, φ+]-bridges, nor an IVIF [ψ−, ψ+]-
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bridges. Hence, the arcs (u, v) and (v, x) do not form IVIFBs. The arcs (u, x) and (v, w) are
both IVIF [φ−, φ+]-bridges and IVIF [ψ−, ψ+]-bridges, i.e., both are IVIFBs. The arc (w, x) is
an IVIF [φ−, φ+]-bridge for some couple of vertices as well as an IVIF [ψ−, ψ+]-bridge for some
couple of vertices, which implies the IVIFB. Hence, all the arcs except (u, v) and (v, x) are forming
IVIFBs. The vertex u is [ψ−, ψ+]-cut vertex for the pair of vertices v and x, and the vertex x is
a [φ−, φ+]-cut vertex for the pair of vertices u and v, and the vertex w is both [φ−, φ+], and the
[ψ−, ψ+]-cut vertices are for the vertices u and v. Hence, all the vertices u, x, and w are IVIFCNs,
except v.

Figure 3. Interval-valued intuitionistic fuzzy graph.

Theorem 1. The following statements are equivalent.

1. An arc (u, v) in G is an IVIF-bridge.
2. An arc (u, v) in G is not the weakest arc of any cycle.

Theorem 2. Let (u, v) be an IVIF-bridge of an IVIFG G = (C, D). Then, φ∞
D (u, v) = φD(u, v)

and ψ∞
D (u, v) = ψD(u, v).

Proof. Assume an arc (u, v) is an IVIF-bridge and φ∞
D (u, v) exceeds over φD(u, v); however,

ψ∞
D (u, v) falls behind from ψD(u, v). So, there is a strongest (u− v) path that has a strength

that is greater than φD(u, v) and less than ψD(u, v). Also, every arc of (u− v) has a strongest
path that is has a strength greater than φD(u, v) and less than ψD(u, v). Along with the arc
(u, v), the path (u− v) makes an IVIF-cycle, which considers (u, v) to be the weakest arc.
This contradicts the assumption, i.e., that (u, v) is an IVIF-bridge.

Theorem 3. Let G = (C, D) be an IVIFG and (u, v) be an arc in G. Then, we have the following.

(i) Anarc (u, v) in G isan IVIF-[φ−, φ+]-bridge if andonly if [φ−, φ+]D(u, v) > [φ−, φ+]
′∞

D(u, v).
(ii) Anarc (u, v) in G isanIVIF-[ψ−, ψ+]-bridge ifandonly if [ψ−, ψ+]D(u, v) < [ψ−, ψ+]

′∞
D(u, v).

(iii) An arc (u, v) in G is called an IVIFB if and only if either [φ−, φ+]D(u, v) > [φ−, φ+]
′∞

D(u, v)
or [ψ−, ψ+]D(u, v) < [ψ−, ψ+]

′∞
D(u, v).

Proof. (i) Let an arc (u, v) in G be an IVIF [φ−, φ+]-bridge. Then, the nodes r, s ∈ C exist
in such a way that for all (u, v) in G, there is an arc which is a [φ−, φ+]-strongest (r, s)
P-path. Now, let P

′
be a [φ−, φ+]-path from the node r to s, where the arc (u, v) does not

include any of the [φ−, φ+]-paths from the node r to s, and the [φ−, φ+]-strength of it is at
its maximum, where the arc (u, v) is not present.

So, both the paths P and P
′

make a cycle C∗, and there is an another [φ−, φ+]-path
as C∗ − (u, v) which is a P

′′
. We assert that there exists a [φ−, φ+]-strongest path as P

′′
in

between nodes u and v. Consider the path P
′

in between the nodes u and v as a [φ−, φ+]-
strongest path, and the [φ−, φ+]-strength between r and s does not reduce after deleting
the arc (u, v). This proves that our supposition is wrong. Therefore, [φ−, φ+]

′′∞
P (u, v) =

[φ−, φ+]
′∞
D (u, v). Furthermore, the cycle C∗ of the weakest [φ−, φ+]-arc is held on P

′
; thus,

[φ−, φ+]D(u, v) > [φ−, φ+]
′′∞
P (u, v) refers to the fact that [ψ−, ψ+]D(u, v) > [φ−, φ+]

′∞
D (u, v).
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On the other hand, if we assume that [φ−, φ+]D(u, v) > [φ−, φ+]
′∞
D (u, v), then the [φ−, φ+]-

strength of connectedness in between the nodes u and v is reduced by deleting an arc (u, v).
Hence, the arc (u, v) in G is IVIF [φ−, φ+]-strong.

(ii) Let an arc (u, v) in G be an IVIF [ψ−, ψ+]-bridge. Then, the nodes r, s ∈ C exist in
such a way that, for all (u, v) in G, there is an arc which is a [ψ−, ψ+]-strongest (r, s) P-path.
Now, let the path P

′
be a [ψ−, ψ+]-path from the node r to s in which the arc (u, v) is not

included, and among all of the [ψ−, ψ+]-paths from node r to s, the [ψ−, ψ+]-strength is the
minimum, where the arc (u, v) is not present.

So, both paths P and P
′

generate a cycle C∗, and there is an another [ψ−, ψ+]-path
as C∗ − (u, v), i.e., P

′′
. We claim that there exists a [ψ−, ψ+]-strongest path P

′′
in between

the nodes u and v. Assuming that the path P
′

in between the nodes u and v is a [ψ−, ψ+]-
strongest path, then the [ψ−, ψ+]-strength between r and s does not increase after deleting
the arc (u, v). This proves that our supposition is wrong. Therefore, [ψ−, ψ+]

′′∞
P (u, v) =

[ψ−, ψ+]
′∞
D (u, v). Furthermore, cycle C∗ of the weakest [ψ−, ψ+]-arc is relying on P

′
. Thus,

[ψ−, ψ+]D(u, v) < [ψ−, ψ+]
′′∞
P (u, v) implies that [ψ−, ψ+]D(u, v) < [ψ−, ψ+]

′∞
D (u, v). On

the other hand, if we assume that [ψ−, ψ+]D(u, v) < [ψ−, ψ+]
′∞
D (u, v), then the [ψ−, ψ+]

connectedness strength among the nodes u and v increases by removing an arc (u, v).
Hence, the arc (u, v) in G is an IVIF [ψ−, ψ+]-strength.

(iii) From parts (i) and (ii), this is evident.

Corollary 1. Let G = (C, D) be an IVIFG and (u, v) be an arc in G. Then:

(i) An arc (u, v) is defined as an IVIF [φ−, φ+]-bridge if and only if this arc (u, v) is an α[φ− ,φ+ ]-
strong arc.

(ii) An arc (u, v) is defined as an IVIF [ψ−, ψ+]-bridge if and only if this arc (u, v) is an α[ψ− ,ψ+ ]-
strong arc.

(iii) An arc (u, v) in G is called an IVIFB if and only if either it is an α[φ− ,φ+ ]-strong arc or
α[ψ− ,ψ+ ]-strong arc.

Corollary 2. In an IVIFG G = (C, D), every IVIFB is a strong arc.

Remark 6. The converse of Corollary 2 is not valid and it means there is a strong arc (r, s) in
IVIFG G = (C, D), which does not need to be an IVIFB.

Proposition 5. Let (u, v) be an arc in an IVIFG G = (V, E). Then,

(i) If the arc (u, v) in G is [φ−, φ+]-strong, then [φ−, φ+]D(u, v) = [φ−, φ+]∞D(u, v).
(ii) If the arc (u, v) in G is [ψ−, ψ+]-strong, then [ψ−, ψ+]D(u, v) = [ψ−, ψ+]∞D(u, v).
(iii) If the arc (u, v) in G is strong, then either φ+]D(u, v) = [φ−, φ+]∞D(u, v) or ψ+]D(u, v) =

[ψ−, ψ+]∞D(u, v).

Proof. (i) In an IVIFG G = (C, D), we evidently have [φ−, φ+]D(u, v) = [φ−, φ+]∞D(u, v).
(ii) In an IVIFG G = (C, D), we have [ψ−, ψ+]D(u, v) ≥ [ψ−, ψ+]

′∞
D (u, v). Let an arc (u, v) in

G be an [ψ−, ψ+]-strong arc, then [ψ−, ψ+]D(u, v) ≤ [ψ−, ψ+]
′∞
D (u, v). If [ψ−, ψ+]D(u, v) =

[ψ−, ψ+]
′∞
D (u, v), then we have [ψ−, ψ+]D(u, v) = [ψ−, ψ+]∞D(u, v). Moreover, if [ψ−, ψ+]D

(u, v) < [ψ−, ψ+]
′∞
D (u, v), then [ψ−, ψ+]D(u, v) = [ψ−, ψ+]∞D(u, v).

(iii) By parts (i) and (ii), it follows directly.

Proposition 6. Let G = (C, D) be an IVIFG. Then, an arc (r, s) in G is an IVIF [φ−, φ+]-bridge
if and only if (r, s) in G is not present as a weakest [φ−, φ+]-arc in all the cycles in G.

Proof. Consider the arc (r, s) of a cycle C∗ as the weakest [φ−, φ+]-arc of C∗ in G and the
path P from the vertex r to s is denoted by C∗− (r, s). So, [φ−, φ+]D(u, v) ≤ [φ−, φ+]∞P (u, v).
Anyway, if we have [φ−, φ+]

′∞
D (u, v) ≥ [φ−, φ+]∞P (u, v), this further implies that [φ−, φ+]D

(u, v) ≤ [φ−, φ+]
′∞
D (u, v). Finally, the arc (r, s) is not proven to be an α[φ−, φ+]-strong
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arc. So, it is not defined to be an IVIF [φ−, φ+]-bridge by the Corollary 1. Conversely,
this assumes that an arc (r, s) is not an IVIF [φ−, φ+]-bridge. By Corollary 1, it is not
α[φ−, φ+]-strong. Hence, [φ−, φ+]D(u, v) ≤ [φ−, φ+]

′∞
D (u, v). Consider a path P from

the vertex r to s in G − (r, s) satisfying [φ−, φ+]
′∞
D (u, v) = [φ−, φ+]∞P (u, v). As a result,

[φ−, φ+]D(u, v) ≤ [φ−, φ+]∞P (u, v). A cycle C∗ is formed by adding the path denoted by P
together with the arc (r, s). It is obvious that (r, s) is the weakest [φ−, φ+]-arc in cycle C∗,
which disproves our supposition.

Proposition 7. Let G = (C, D) be an IVIFG. An arc (r, s) in G is an IVIF [ψ−, ψ+]-bridge if and
only if it is not present as a weakest [ψ−, ψ+]-arc in all the cycles of G.

Proof. Consider an arc (r, s) of a cycle C∗ as the weakest [ψ−, ψ+]-arc of C∗ in G and the
path P from the node r to s is C∗ − (r, s). So, [ψ−, ψ+]D(u, v) ≥ [ψ−, ψ+]∞P (u, v). How-
ever, if we have [ψ−, ψ+]

′∞
D (u, v) ≤ [ψ−, ψ+]∞P (u, v), this implies that [ψ−, ψ+]D(u, v) ≥

[ψ−, ψ+]
′∞
D (u, v). Consequently, the arc (r, s) is not proven to be an α[ψ−, ψ+]-strong arc.

So, it is not an IVIF [ψ−, ψ+]-bridge by Corollary 1.
Conversely, assume that an arc (r, s) is not an IVIF [ψ−, ψ+]-bridge. By Corollary 1,

it is not α[ψ−, ψ+]-strong. Hence, [ψ−, ψ+]D(u, v) ≥ [ψ−, ψ+]
′∞
D (u, v). Consider a path

P from the vertex r to s in G − (r, s) satisfying [ψ−, ψ+]
′∞
D (u, v) = [ψ−, ψ+]∞P (u, v). As

a result, [ψ−, ψ+]D(u, v) ≥ [ψ−, ψ+]∞P (u, v). A cycle C∗ is formed by adding the path P
together with arc (r, s). It is obvious that (r, s) is the weakest [ψ−, ψ+]-arc in cycle C∗,
which disproves our supposition.

Proposition 8. In an IVIFG G, the arc (u, v) is an IVIF-bridge if and only if there does not exist
any cycle in which (u, v) is the weakest bridge.

Proposition 9. Let G = (C, D) be an IVIFG. Then, any vertex is an IVIF cut-node if and only if
it is the common node between two IVIF− bridges.

Proof. Let G = (C, D) be an IVIFG with edges (u, v) and (r, s) and assume that the vertex v
is an IVIF cut-node. The node v as an IVIF cut-node decrease the strength of connectedness
when it is removed. Assume that at least one of the edges incident to v, namely (u, v) and
(r, s), is not an IVIF-bridge. Hence, it is possible that such an edge in G is the weakest edge.
Thus, by removing vertex v, the strength of connectedness is not decreased. Therefore, both
of the given edges (u, v) and (r, s) are essentially IVIF-bridges.

On the other hand, assume that, in between two IVIF-bridges (u, v) and (r, s), v is
the common node. To prove that v is the IVIF cut-node of the two IVIF-bridges (u, v)
and (r, s), we need to show that removing either of these bridges reduces the strength of
connectedness. Evidently, if two incident edges are IVIF-bridges, then their removal will
decrease the strength of connectedness of the graph. Therefore, it follows that, if v is the
IVIF cut-node of the bridges (u, v) and (r, s), then removing either of these bridges will
reduce the strength of connectedness. Hence, the converse is also true.

Theorem 4. Let G = (C, D) be an IVIFG that has a cycle C∗. Then, any node is an IVIF cut-node
of G if and only if it is a common node in between two IVIF− bridges.

Proof. Let t be an IVIF-cut node in G. So, there are two distinct vertices u and v such that
either u or v is not t. In this way, the node t lies on each IVIFstrongest u− v path. Since G∗

is a cycle, there is only one strongest path from u to v that includes node v, and by Remark 2,
all the arcs on this path are IVIF− bridges. Hence, in between two IVIF− bridges, t is a
common node.

On the other hand, if two IVIF− bridges (u, t) and (t, v) exist that share a common
node at t, then according to Proposition 8, neither of the arcs (u, t) and (t, v) can be the
weakest in the graph G. Furthermore, if a path exists between nodes u and v in G that
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does not include the arcs (u, t) and (t, v), then its strength is guaranteed to be less than or
equal to the minimum of φD(u, t) and φD(t, v) and greater than the maximum of ψD(u, t)
and ψD(t, v). Therefore, it can be concluded that the path u− v is the strongest among
all possible paths connecting nodes u and v in G and φ∞

D (u, v) = φD(u, t) ∧ φD(t, v) and
ψ∞

D (u, v) = ψD(u, t) ∧ ψD(t, v). Hence, t is an IVIF-cut node.

Theorem 5. Let C∗ be a cycle in an IVIFG G. If there is at most one α-strong arc in G, then G
does not have an IVIF-cut node.

Proof. The proof is obvious.

Remark 7. In general, the converse of Theorem 5 is not true.

Theorem 6. In an IVIFG G, if there is only one path in between any pair of vertices v1, v2, then
that path constitutes a strong p1 − p2 path.

4. IVIF-Trees and IVIF-Cycles

In this section, we introduce and discuss the terms IVIF-trees and IVIF-cycles along
with examples and the necessary results.

Definition 22. In an IVIFG G = (C, D), a [φ−, φ+]-connected graph G is an interval-valued
intuitionistic fuzzy [φ−, φ+]-tree (IVIF [φ−, φ+]-tree) if it contains an interval-valued intuitionistic
fuzzy spanning subgraph (IVIFSSG) F and is itself a [φ−, φ+]-tree such that for all arcs (r, s) not
in F, we have [φ−, φ+]D(r, s) < [φ−, φ+]∞F (r, s). In addition, an IVIFSSG denoted by F is referred
to as a spanning [φ−, φ+]-tree of G.

Definition 23. In an IVIFG G = (C, D), a [ψ−, ψ+]-connected graph G is an interval-valued
intuitionistic fuzzy [ψ−, ψ+]-tree, also represented as (IVIF [ψ−, ψ+]-tree), whenever an interval-
valued intuitionistic fuzzy spanning subgraph IVIFSSG exists there, which is denoted by F

′
, and

itself is a [ψ−, ψ+]-tree such that, for every arc (r, s) not in F
′
, it ensures that [ψ−, ψ+]D(r, s) >

[ψ−, ψ+]∞
F′
(r, s). Furthermore, an IVIFSSG F

′
is a spanning [ψ−, ψ+]-tree of an IVIFG G.

Definition 24. Let G = (C, D) be an IVIFG which is strongly connected graph. Then, G is an
interval-valued intuitionistic fuzzy tree (IVIFT) whenever an IVIFSSG denoted by F

′′
is itself a tree

such that, for every arc (r, s) not in F
′′
, we have [φ−, φ+]D(r, s) < [φ−, φ+]∞F (r, s) as well as

satisfying [ψ−, ψ+]D(r, s) > [ψ−, ψ+]∞
F′
(r, s). In addition, an IVIFSSG F

′′
is a spanning tree of G.

Proposition 10. If an IVIFG G = (C, D) is an IVIFT, then G must be an IVIF [φ−, φ+]-tree, and
IVIF [ψ−, ψ+]-tree.

Remark 8. The converse of Proposition 10 is not true in general as depicted in Example 4.

Example 4. In Figure 4, consider G = (C, D), where C = {u1, u2, u3, u4, u5} and D =
{(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u1, u5), (u2, u5), (u3, u5)}, G is an IVIF [φ−, φ+]-tree and
IVIF [ψ−, ψ+]-tree; however, G is not an IVIFT because a spanning tree F

′′
does not exist which is

equal to both F and F
′
.

Theorem 7. Let (u, v) be an arc in an IVIF [φ−, φ+]-tree. Then, an IVIFG G is an α[φ− ,φ+ ]-strong
if and only if the arc (u, v) is present in [φ−, φ+]-spanning tree F of G.

Proof. It is straightforward.
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Figure 4. Interval-valued intuitionistic fuzzy [φ−, φ+]-tree and [ψ−, ψ+]-tree G.

By Theorem 7, F is an IVIF [φ−, φ+]-tree which includes all the α[φ− ,φ+ ]-strong arcs.

Corollary 3. If an IVIFG G = (C, D) is an IVIF [φ−, φ+]-tree, then an IVIFSSG F is a unique
spanning [φ−, φ+]-tree.

Theorem 8. If there is an arc (u, v) in the IVIF [ψ−, ψ+]-tree, then an IVIFG G is α[ψ− ,ψ+ ]-strong
if and only if the arc (u, v) is lying in the IVIFG G of the spanning [ψ−, ψ+]-tree of F

′
.

Proof. Let (u, v) be an arc in G which is an α[ψ− ,ψ+ ]-strong arc, so by Definition 22,
we have [ψ−, ψ+]D(u, v) < [ψ−, ψ+]∞G−(u,v)(u, v). Whenever (u, v) is not a part of an

IVIFSSG F
′
, then consequently [ψ−, ψ+]D(u, v) > [ψ−, ψ+]∞

F′
(u, v). Furthermore, the

[ψ−, ψ+]-tree that is an IVIFSSG F
′

is an IVISFS of G − (u, v). Therefore, this condition
is satisfied [ψ−, ψ+]∞

F′
(u, v) ≥ [ψ−, ψ+]∞G−(u,v)(u, v). We observe that [ψ−, ψ+]D(u, v) >

[ψ−, ψ+]∞G−(u,v)(u, v), which disproves our supposition. Thus, the arc (u, v) is present in

an IVIVSSG F
′
. Alternatively, assume an arc (u, v) be a part of F

′
. In an IVIFG G, if the

arc (u, v) is not a α[ψ
−, ψ+]-strong, so we have [ψ−, ψ+]D(u, v) ≥ [ψ−, ψ+]∞G−(u,v)(u, v). A

cycle C∗ is considered as a [ψ−, ψ+]-cycle that includes the arc (u, v). So, in the cycle C∗,
there is an arc (r, s), not be a part of an IVIFSSG F

′
. Then, it follows [ψ−, ψ+]D(r, s) >

[ψ−, ψ+]∞
F′
(r, s). We obtain the [ψ−, ψ+]-path P = C∗ − (r, s) from the node r to s in

F
′

of G, and consequently [ψ−, ψ+]∞P (r, s) = [ψ−, ψ+]∞
F′
(r, s), since an IVIFSSG F

′
is

proven to be a [ψ−, ψ+]-tree. Moreover, [ψ−, ψ+]∞P (r, s) ≥ [ψ−, ψ+]D(u, v) implies that
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[ψ−, ψ+]∞
F′
(r, s) ≥ [ψ−, ψ+]D(u, v) implies that [ψ−, ψ+]D(r, s) > [ψ−, ψ+]D(u, v). Hence,

the arc (u, v) in each cycle C∗ of an IVIFG G is not proven to be the weakest [ψ−, ψ+]-arc.
Thus, this arc (u, v) in G defined an IVIF [ψ−, ψ+]-bridge by Proposition 7. Hence, the arc
(u, v) in G is an α[ψ

−, ψ+]-strong.

Corollary 4. If an IVIFG G is an IVIF [ψ−, ψ+]-tree, then an IVIFSSG F′ of G contains a distinct
spanning [ψ−, ψ+]-tree.

Proposition 11. A unique spanning tree F
′′

exists in an IVIFT G = (V, E), satisfying F = F
′
= F

′′
.

Proof. Let G be an IVIFT. Then, a unique spanning tree F
′′

exists such that, for every arc
(r, s) not included in F

′′
, we have

[φ−, φ+]D(r, s) < [φ−, φ+]∞
F′′
(r, s)

and also we have
[ψ−, ψ+]D(r, s) > [ψ−, ψ+]∞

F′′
(r, s)

Then, a unique spanning [φ−, φ+]-tree F exists with F
′′
= F, and similarly, a unique

spanning [ψ−, ψ+]-tree F
′

exists with F
′′
= F

′
. As a result, we obtain a distinct spanning

tree F
′′

with F = F
′
= F

′′
.

Corollary 5. An IVIFG G = (C, D) is an IVIFT if and only if it is an IVIF [φ−, φ+]-tree and an
IVIF [ψ−, ψ+]-tree together with the condition that F = F

′
= F

′′
.

Proof. Let an IVIFG G = (C, D) be an IVIFT; then, by Proposition 10, G must be an
IVIF [φ−, φ+]-tree and IVIF [ψ−, ψ+]-tree, and by Proposition 11, we have F

′′
= F

′
= F.

Conversely, let there exist a spanning [φ−, φ+]-tree and a [ψ−, ψ+]-tree, represented by F
and F

′
with F = F

′
with F

′′
= F

′
= F. Then, for an arc (u, v) not in IVIFSSG F

′′
equal to F

implies [φ−, φ+]D(u, v) < [φ−, φ+]∞
F′′
(u, v) and [ψ−, ψ+]D(u, v) > [ψ−, ψ+]∞

F′′
(u, v). Thus,

an IVIFG G is an IVIFT together with the spanning tree F
′′
.

Example 5. In Figure 5, consider G = (C, D), where C = {v1, v2, v3, v4, v5} and D =
{(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v1, v5), and(v2, v5)}. IVIFG given in Figure 5 does not
satisfy the property of the IVIF [φ−, φ+]-tree because it contains β[φ− ,φ+ ]-strong arcs; however, it is
an IVIF [ψ−, ψ+]-tree as it does not contain any β[ψ− ,ψ+ ]-strong arcs. Thus, G = (C, D) is not an
IVIFT.
The arcs (v2, v5) and (v2, v3) in Figure 5 are β[φ− ,φ+ ]-strong and δ[ψ− ,ψ+ ]-strong, the arcs (v1, v2)
and (v1, v5) in the graph given in Figure 5 are β[φ− ,φ+ ]-strong and α[ψ− ,ψ+ ]-strong. Lastly, the arcs
(v3, v4) and (v4, v5) in G are α[φ− ,φ+ ]-strong and α[ψ− ,ψ+ ]-strong, i.e., both of these arcs are strong.

Corollary 6. In an IVIFT G = (C, D), arc (u, v) is an α[φ− ,φ+ ]-strong if and only if α[ψ− ,ψ+ ]-
strong in G.

Proof. Let (u, v) be an α[φ− ,φ+ ]-strong arc in an IVIFG G. Then, the arc (u, v) is present in

the IVIFSSG F, and by Theorem 7, G is an IVIFT. Therefore, F
′′

is equal to F
′

and is also
equal to F, i.e., F = F

′
= F

′′
. It follows that the arc (u, v) is present in the IVIFSSG F

′
.

Hence, the arc (u, v) in G is α[ψ− ,ψ+ ]-strong by Theorem 8. The converse is the same as the
above.
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Figure 5. Interval-valued intuitionistic fuzzy [ψ−, ψ+]-tree G.

Proposition 12. Let G = (C, D) be an IVIFG. Then:

(i) If G = (C, D) is an IVIF [φ−, φ+]-tree and (u, v) is not in F, then [φ−, φ+]F(u, v) =

[φ−, φ+]
′∞
D (u, v).

(ii) If G = (C, D) is an IVIF [ψ−, ψ+]-tree and (u, v) is not in F
′
, then [ψ−, ψ+]F′ (u, v) =

[ψ−, ψ+]
′∞
D (u, v).

(iii) If an IVIFG G = (C, D) is an IVIFT and (u, v) is not in F
′′
, then [φ−, φ+]F′′ (u, v) =

[φ−, φ+]
′∞
D (u, v) and [ψ−, ψ+]F′′ (u, v) = [ψ−, ψ+]

′∞
D (u, v).

Proof. (i) Consider a path P in F as a [φ−, φ+]-path from node u to v. All the arcs present
in P are α[φ− ,φ+ ]-strong by Theorem 7. Consequently, P is α[φ− ,φ+ ]-strong. Hence, by
Proposition 3, P is a [φ−, φ+]-strongest (u− v) path. This implies that [φ−, φ+]F(u, v) =
[φ−, φ+]

′∞
D (u, v).

(ii) Consider a path P in F
′

as a [ψ−, ψ+]-path from node u to v. All the arcs present
in P are α[ψ− ,ψ+ ]-strong by the Theorem 8. As a result, P is α[ψ− ,ψ+ ]-strong. Hence, by
Proposition 4, P is satisfied as a [ψ−, ψ+]-strongest (u − v) path. which implies that
[ψ−, ψ+]F′ (u, v) = [ψ−, ψ+]

′∞
D (u, v).

(iii) The third part of Proposition follows directly from the parts ((i) and (ii)), i.e.,
[φ−, φ+]F′′ (u, v) = [φ−, φ+]

′∞
D (u, v) as well as [ψ−, ψ+]F′′ (u, v) = [ψ−, ψ+]

′∞
D (u, v).

Example 6. In Figure 6, G = (C, D), where C = {w1, w2, w3, w4, w5} and D = {(w1, w2), (w2,
w3), (w3, w4), (w4, w5), (w1, w5), (w2, w5), (w3, w5)}. An IVIFG G = (C, D) is an IVIF [φ−, φ+]
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-tree as well as an IVIF [φ−, φ+] -tree, and we also have the equality that is F = F
′
. Consequently,

G is an IVIFT.
The arcs (w2, w5), (w2, w3), and (w3, w4) in G are α[φ− ,φ+ ]-strong and α[ψ− ,ψ+ ]-strong.

However, the arcs (w1, w2), (w3, w5) and (w4, w5) in G are δ[φ− ,φ+ ]-arcs and δ[ψ− ,ψ+ ]-arcs.

Figure 6. Interval-valued intuitionistic fuzzy graph G.

Finally, we analyze several types of IVIFCs and present a few relationships among
IVIFTs and IVIFCs.

Definition 25. Let G be a [φ−, φ+]-cycle. Then, we call G an interval-valued intuitionistic fuzzy
[φ−, φ+]-cycle (IVIF-[φ−, φ+]-cycle) whenever G includes more than one weakest [φ−, φ+]-arcs.
Similarly, an IVIFG G is a [ψ−, ψ+]-cycle, then we call an IVIFG G an interval-valued intuitionistic
fuzzy [ψ−, ψ+]-cycle (IVIF [ψ−, ψ+]-cycle), whenever G has more than one weakest [ψ−, ψ+]-arc.
Finally, G is termed an IVIFC, and either it is an IVIF-[φ−, φ+]-cycle or an IVIF- [ψ−, ψ+]-cycle.

Proposition 13. Let G = (C, D) be an IVIFG. Then, we have the following:

(i) If G = (C, D) is an IVIF-[φ−, φ+]-cycle, then there is no δ[φ− ,φ+ ]-arc in G.
(ii) If G = (C, D) is an IVIF [ψ−, ψ+]-cycle, then there is no δ[ψ− ,ψ+ ]-arc in G.
(iii) If an IVIFG G = (C, D) is an IVIFC, then there are no δ[φ− ,φ+ ]-arcs or δ[ψ− ,ψ+ ]-arc in G.

Proof. (i) If (u, v) is an δ[φ− ,φ+ ]-arc lying in G, then (u, v) is a single weakest [φ−, φ+]-arc,
a contradiction to Definition 25.

(ii) If (u, v) in G is a δ[ψ− ,ψ+ ]-arc, then (u, v) in G turns into a single weakest [ψ−, ψ+]-
arc, a contradiction to Definition 25.

(iii) The third part of the proposition directly follows from the parts ((i) and (ii)).
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Theorem 9. A path P in an IVIFG G is an IVIF-[φ−, φ+]-cycle if and only if it is not an IVIF-
[φ−, φ+]-tree.

Proof. Let C be an IVIF-[φ−, φ+]-cycle. Then, by Proposition 13, no δ[φ− ,φ+ ]-arcs exist
in G. Consider C be an IVIF [φ−, φ+]-tree, then a distinct spanning [φ−, φ+]-tree rep-
resented by IVIFSSG F must exist there. If the arc (u, v) is not present in the unique
spanning tree F, then [φ−, φ+]D(u, v) < [φ−, φ+]

′∞
F (u, v) and by Proposition 13, we have

[φ−, φ+]
′∞
F (u, v) = [φ−, φ+]

′∞
D (u, v). Hence, [φ−, φ+]D(u, v) < [φ−, φ+]

′∞
D (u, v). Thus, G is

not an IVIF [φ−, φ+]-cycle. Conversely, do not let C be an IVIF-[φ−, φ+]-tree. Then, arc (r, s)
is a random distinct (r− s) path such as P = G− (r, s) exists there in G in such a way that
we have [φ−, φ+]D(r, s) ≥ [φ−, φ+]∞P (r, s). This means that there exists no unique weakest
[φ−, φ+]-arc. As a result, C is proven to be an IVIF-[φ−, φ+]-cycle.

Theorem 10. Let G be a [ψ−, ψ+]-cycle. Then, G is an IVIF-[ψ−, ψ+]-cycle if and only if G is not
an IVIF-[ψ−, ψ+]-tree.

Proof. Let G be an IVIF-[ψ−, ψ+]-cycle, then by Proposition 13, no δ[ψ− ,ψ+ ]-arcs exists
in G. Let G be an IVIF-[ψ−, ψ+]-tree, then a distinct spanning [ψ−, ψ+]-tree represented
by IVIFSSG F

′
exists there. If the arc (u, v) is not present in the unique spanning tree

F
′
, then [ψ−, ψ+]D(u, v) > [ψ−, ψ+]

′∞
F′
(u, v) and by Proposition 12 [ψ−, ψ+]∞

F′
(u, v) =

[ψ−, ψ+]
′∞
D (u, v). This implies that [ψ−, ψ+]D(u, v) > [ψ−, ψ+]

′∞
D (u, v). Thus, G is not

an IVIF-[ψ−, ψ+]-cycle. Conversely, let G be an IVIF-[ψ−, ψ+]-tree. Therefore, arc (r, s)
in an IVIFG G, a distinct (r − s) path such as P = G − (r, s) exists in G in such a way
that [ψ−, ψ+]D(r, s) ≤ [ψ−, ψ+]P(r, s). It implies that in an IVIFG G, no unique weakest
[ψ−, ψ+]-arc exists. Thus, G is proven to be an IVIF-[ψ−, ψ+]-cycle.

Corollary 7. If an IVIFG G is an IVIFC, then it is not an IVIFT.

Proof. Let G be an IVIFC. Then, either G is an IVIF-[φ−, φ+]-cycle or IVIF-[ψ−, ψ+]-cycle.
Assume that G is an IVIF-[φ−, φ+]-cycle; then, by Theorem 9, G, which is an IVIFC, is
not an IVIF-[φ−, φ+]-tree. Consequently, G is also not to be an IVIFT. Consider G as an
IVIF-[ψ−, ψ+]-cycle; then, by Theorem 10, G is not an IVIF-[ψ−, ψ+]-tree, which implies
that G is not an IVIFT.

Remark 9. The converse of Corollary 7 is not valid.

We can observe the converse of Corollary 7 in the next example.

Example 7. Consider an IVIFG shown in Figure 7, where C = {x1, x2, x3, x4, x5} and
D = {(x1, x2), (x2, x3), (x3, x4), (x4, x5), and(x1, x5)}. Then, the arcs (x1, x5), (x2, x3) and
(x3, x4) are α[φ− ,φ+ ]-strong and α[ψ− ,ψ+ ]-strong; the arc (x1, x2) is δ[φ− ,φ+ ]-arc and α[ψ− ,ψ+ ]-
strong; and the arc (x4, x5) is α[φ− ,φ+ ]-strong and δ[ψ− ,ψ+ ]-arc. Hence, a graph G is an IVIF-
[φ−, φ+]-tree and IVIF- [ψ−, ψ+]-tree, but this IVIFG G is not an IVIFT as F 6= F′. Moreover, it
is not an IVIFC as there is no weakest [φ−, φ+]-arc or weakest [ψ−, ψ+]-arc.
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Figure 7. Interval-valued intuitionistic fuzzy [φ−, φ+]-tree and [ψ−, ψ+]-tree G.

5. IVIF-Blocks and IV IF-Block Graphs

The structure of IVIFG G can be manipulated in different ways in terms of IVIF-
intersection graphs. An IVIF-block graph is an important structure based on the IVIF-
intersection graph. We can construct an IVIF-intersection graph by considering an IVIF-
block in an IVIFG G as a family of sets and generate an IVIF-intersection graph on this
collection by considering each set as a vertex. Before introducing the IVIF-block graph,
first we propose the notion of fuzzy block graphs (F-block graphs) which is missing in the
existing literature about fuzzy graphs.

Definition 26. A fuzzy block graph is the fuzzy intersection graph in which the vertex set consists
of fuzzy blocks.

Example 8. Consider an FG shown in Figure 8.

Figure 8. A fuzzy graph G.

It is easy to verify that an FG has three fuzzy blocks, namely B1, B2, and B3 given in Figure 9.
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Figure 9. Fuzzy blocks in an FG G.

We have a fuzzy intersection graph P(G) = (B, Q), for all Bi, Bj ∈ B and BiBj ∈ Z. In
P(G) = (B, Q), we have

B = {B1, B2, B3},

and
Z = {B1B2, B2B3, B1B3},

where B1 = {q1, q2, q3}, B2 = {q1, q3, q4}, B3 = {q3, q5}.
For a fuzzy block graph, we allocate the values under the given conditions:

(1) φB(Bi) = φC(qi)
(2) φQ(BiBj) = φD(pi pj)

Thus, the values are: φB(B1) = φC(q1) = 0.2, φB(B2) = φC(q2) = 0.4, φB(B3) = φC(q3) =
0.6 and φQ(B1B2) = φD(q1q2) = 0.2, φQ(B2B3) = φD(q2q3) = 0.4, φQ(B1B3) = φD(q1q3) = 0.2

Using the above values, we have a new graph, a fuzzy block graph shown in Figure 10.

Figure 10. A fuzzy block graph G? of G.

Now, we begin our discussion about the term IVIF-block graphs.

Definition 27. In an IVIFG G = (C, D), a maximally connected IVIF subgraph is said to be a
block in an IVIFG if it is induced by a subset of vertices that does not contain any IVIF-cut vertex.
If a graph G is the IVIF-block, then G is itself an IVIF-block in G.

Remark 10. An IVIFG is an IVIF-block if there does not exist any IVIF-cut nodes.
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Theorem 11. A connected IVIFG is a block if and only if, for every two vertices which are not joined
by IVIF-bridges, these are connected by two non-intersecting and distinct strongest IVIF-path.

Definition 28. An IVIPF-block graph is the IVIF-intersection graph of an IVIFG in which the
vertex set consists of IVIF-blocks.

Example 9. Consider an IVIFG G shown in Figure 11. It is easy to observe that the vertices q2
and q4 are IVIF-cut nodes. Hence, G itself is not an IVIF-block. However, with the help of IVIF-cut
nodes in an IVIFG G, one can analyze the IVIF− blocks in an IVIFG G.

Figure 11. An IVIFG G.

Here, IVIFB1, IVIFB2, IVIFB3, IVIFB4, and IVIFB5 shown in Figure 12 are the IVIF-blocks
in an IVIFG G.

Figure 12. IVIFBs of IVIFG G.
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Next, we produce an IVIF-block graph G? of IVIFG G.
Since we have five IVIF-blocks of an IVIFG shown in Figure 12, we can consider an IVIF-

intersection graph, P(G) = (B, Q), for all Bi, Bj ∈ B, and BiBj ∈ Q. We can compute the values
using the conditions of IVIF-intersection graphs given below:

(1) [φ−, φ+]B(Bi) = [φ−, φ+]C(qi) and [ψ−, ψ+]B(Bi) = [ψ−, ψ+]C(qi).
(2) [φ−, φ+]Q(BiBj) = [φ−, φ+]D(qiqj) and [ψ−, ψ+]Q(BiBj) = [ψ−, ψ+]D(qiqj).

From Figures 11 and 12, we observe that

B = {B1, B2, B3, B4, B5},

and
Z = {B1B2, B1B3, B1B4, B2B3, B2B4, B3B4, B4B5},

where B1 = {q1, q2, q4}, B2 = {q1, q3, q4}, B3 = {q4, q5}, B4 = {q1, q2, q3}, and B5 = {q2, q3, q4}.
Following the definition, we have
[φ−, φ+]B(B1) = [φ−, φ+]C(q1) = [0.5, 0.6],
[φ−, φ+]B(B2) = [φ−, φ+]C(q2) = [0.4, 0.5],
[φ−, φ+]B(B3) = [φ−, φ+]C(q3) = [0.3, 0.4],
[φ−, φ+]B(B4) = [φ−, φ+]C(q4) = [0.4, 0.5],
[φ−, φ+]B(B5) = [φ−, φ+]C(q5) = [0.3, 0.4];
[ψ−, ψ+]B(B1) = [ψ−, ψ+]C(q1) = [0.2, 0.3],
[ψ−, ψ+]B(B2) = [ψ−, ψ+]C(q2) = [0.2, 0.3],
[ψ−, ψ+]B(B3) = [ψ−, ψ+]C(q3) = [0.2, 0.3],
[ψ−, ψ+]B(B4) = [ψ−, ψ+]C(q4) = [0.3, 0.4],
[ψ−, ψ+]B(B5) = [ψ−, ψ+]C(q5) = [0.2, 0.3];
[φ−, φ+]Q(B1B2) = [φ−, φ+]D(q1q2) = [0.4, 0.5],
[φ−, φ+]Q(B1B3) = [φ−, φ+]D(q1q3) = [0.3, 0.4],
[φ−, φ+]Q(B1B4) = [φ−, φ+]D(q1q4) = [0.4, o.5],
[φ−, φ+]Q(B2B3) = [φ−, φ+]D(q2q3) = [0.3, 0.4],
[φ−, φ+]Q(B2B4) = [φ−, φ+]D(q2q4) = [0.4, 0.5],
[φ−, φ+]Q(B3B4) = [φ−, φ+]D(q3q4) = [0.3, 0.4],
[φ−, φ+]Q(B4B5) = [φ−, φ+]D(q4q5) = [0.3, 0.4];
[ψ−, ψ+]Q(B1B2) = [ψ−, ψ+]D(q1q2) = [0.2, 0.3], [ψ−, ψ+]Q(B1B3) = [ψ−, ψ+]D(q1q3) =

[0.2, 0.3], [ψ−, ψ+]Q(B1B4) = [ψ−, ψ+]D(q1q4) = [0.2, 0.3], [ψ−, ψ+]Q(B2B3) = [ψ−, ψ+]D(q2q3)

= [0.2, 0.3], [ψ−, ψ+]Q(B2B4)= [ψ−, ψ+]D(q2q4)= [0.3, 0.4], [ψ−, ψ+]Q(B3B4)= [ψ−, ψ+]D(q3q4)

= [0.3, 0.4], [ψ−, ψ+]Q(B4B5) = [ψ−, ψ+]D(q4q5) = [0.3, 0.4].
Hence, the resulting graph shown in Figure 13 is the corresponding IVIF-block graph G? of

an IVIFG G.

Figure 13. IVIF-block graph G? of an IVIFG G.
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Theorem 12. In an IVIFG G, G? = (C?, D?) is an IVIF-block graph if and only if every
IVIF− block in G? is a complete IVIFG.

Proof. Let G? be an IVIF-block graph and Gk
? be an IVIF − block in G?. Let Gk

? be an
incomplete IVIFG, then we have two nodes q1, q2 in Gk

? with

1. [φ−, φ+]D?(q1, q2) < [φ−, φ+]C?q1 ∧ [φ−, φ+]C?q2
2. [ψ−, ψ+]D?(q1, q2) > [ψ−, ψ+]C?q1 ∨ [ψ−, ψ+]C?q2

Thus, Gk
? is not a strong IVIFG and neither q1 nor q2 are IVIF-cut-nodes in an IVIFG

G. This contradicts the maximality of Gk
?.

Conversely, let G? be an IVIFG in which every IVIF-block Gk
? is complete. Construct

B(G?) using the conditions of the IVIF-intersection graph, and then generate a new IVIFG
by adding every vertex Gk

? of B(G?) having a number of end lines which is the same as
the counting of the nodes of the block Gk

? which are not the IVIF-cut nodes of G. Thus, it is
very clear that B(G?) is isomorphic to G?.

6. Application

Assuming a traffic blockage on a road where we want to control the flow of traffic.
By the use of an IVIF-tree, we can select the proper settings for a traffic light based on the
traffic conditions. The input variables of this problem are given in the following:

NS stands for ’North Side’: All the vehicles standing at the northern side of the lane;
SS stands for ’South Side’: All the vehicles standing at the southern side of the lane;
ES stands for ’East Side’: All the vehicles standing at the eastern side of the lane;
WS stands for ’West Side’: All the vehicles standing at the western side of the lane;
Utilizing the aforementioned input variables like north, south, east, and west; the

following structure will be helpful to produce an IVIF-tree:

• Whenever NS is L for low, THEN move to the vertex c;
• Whenever NS is M for medium, THEN move to the vertex i;
• Whenever NS is H for high, THEN move to the vertex b;
• Whenever SS is L for low, THEN move to the vertex e;
• Whenever SS is M for medium, THEN move to the vertex j;
• Whenever SS is H for high, THEN move to the vertex d;
• Whenever ES is L for low, THEN move to the vertex k;
• Whenever ES is M for medium, THEN move to the vertex g;
• Whenever ES is H for high, THEN move to the vertex l;
• Whenever WS is L for low, THEN move to the vertex f ;
• Whenever WS is M for medium, THEN move to the vertex m;
• Whenever WS is H for high, THEN move to the vertex h.

Vertexb: IF the aggregate vehicle count at the SS is specified as L, THEN for the
northward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the SS is specified as M, THEN for the northward road, the output is shown by a yellow
light, ELSE, for the northward road, the output is shown by a red light;

Vertexc: IF the aggregate vehicle count at the SS is specified as H, THEN for the
southward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the SS is specified as M, THEN for the eastward road, the output is shown by a yellow
light, ELSE, for the eastward road, the output is shown by a red light;

Vertexd: IF the aggregate vehicle count at the WS is specified as L, THEN for the
eastward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the WS is specified as M, THEN for the eastward road, the output is shown by a yellow
light, ELSE, for the eastward road, the output is shown by a red light;

Vertexe: IF the aggregate vehicle count at the WS is specified as H, THEN for the
eastward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the WS is specified as M, THEN for the southward road, the output is shown by a yellow
light, ELSE, for the southward road, the output is shown by a red light;



Axioms 2023, 12, 1120 22 of 24

Vertex f : IF the aggregate vehicle count at the NS is specified as L, THEN for the
eastward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the NS is specified as M, THEN for the eastward road, the output is shown by a yellow
light, ELSE, for the eastward road, the output is shown by a red light;

Vertexg: IF the aggregate vehicle count at the NS is specified as H, THEN for the
westward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the NS is specified as M, THEN for the northward road, the output is shown by a yellow
light, ELSE, for the northward road, the output is shown by a red light;

Vertexh: IF the aggregate vehicle count at the ES is specified as L, THEN for the
northward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the ES is specified as M, THEN for the northward road, the output is shown by a yellow
light, ELSE, for the northward road, the output is shown by a red light;

Vertexi: IF the aggregate vehicle count at the ES is specified as H, THEN for the
southward road, the output is shown by a green light, ELSE, IF the aggregate vehicle count
at the ES is specified as M, THEN for the westward road, the output is shown by a yellow
light, ELSE, for the westward road, the output is shown by a red light;

Vertexj: IF the aggregate vehicle count at the SS is specified as L, THEN for the
northward road, the output is shown by a yellow light, ELSE, IF the aggregate vehicle
count at the SS is specified as M, THEN for the northward road, the output is shown by a
red light, ELSE, for the northward road, the output is shown by a red light;

Vertexk: IF the aggregate vehicle count at the WS is Low, THEN for the eastward road,
the output is shown by a yellow light, ELSE, IF the aggregate vehicle count at the WS is
specified as M, THEN for the eastward road, the output is shown by a red light, ELSE, for
the eastward road, the output is shown by a red light;

Vertexl: IF the aggregate vehicle count at the NS is specified as L, THEN for the
eastward road, the output is shown by a yellow light, ELSE, IF the aggregate vehicle count
at the NS is specified as M, THEN for the eastward road, the output is shown by a red light,
ELSE, for the eastward road, the output is shown by a red light;

Vertexm: IF the aggregate vehicle count at the ES is specified as L, THEN for the
northward road, the output is shown by a yellow light, ELSE, IF the aggregate vehicle
count at the ES is specified as M, THEN for the northward road, the output is shown by a
red light, ELSE, for the northward road, the output is shown by a red light.

We would further need to calculate the an element’s membership degree represented
by φ and non-membership degree represented by ψ in an IVIFT for the “Medium” condition,
based on the peculiar traffic situations.

Suppose that, for all the aforementioned input variables, like NS, SS, ES, and WS, the
degree of membership for the “medium” condition is [0.5, 0.6]

NS: φNShigh = [0.6, 0.7], ψNShigh = [0.2, 0.3];
NS: φNSmedium = [0.5, 0.6], ψNSmedium = [0.5, 0.6];
NS: φNSlow = [0.2, 0.3], ψNSlow = [0.2, 0.3];
SS: φSShigh = [0.8, 1], ψSShigh = [0.1, 0.2];
SS: φSSmedium = [0.5, 0.6], ψSSmedium = [0.5, 0.6];
SS: φSSlow = [0.1, 0.2], ψSSlow = [0.1, 0.2];
ES: φEShigh = [0.4, 0.5], ψEShigh = [0.3, 0.4];
ES: φESmedium = [0.5, 0.6], ψESmedium = [0.5, 0.6];
ES: φESlow = [0.3, 0.4], ψESlow = [0.3, 0.4];
WS: φWShigh = [0.2, 0.3], ψWShigh = [0.4, 0.5];
WS: φWSmedium = [0.5, 0.6], ψWSmedium = [0.5, 0.6];
WS: φWSlow = [0.4, 0.5], ψWSlow = [0.4, 0.5].
By utilizing the membership and non-membership values as mentioned above, we

can apply the IVIF-tree to determine the correct traffic light setting for any sequence of low,
medium, and high traffic situations.
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7. Conclusions

In this research work, we developed the theory of connectivity of IVIFGs and provided
application towards road map designs. In this context, we initiated the concepts of IVIF-
bridges, IVIF-cut vertices, IVIF-trees, IVIF-cycles. Moreover, we have also introduced
the concepts of IVIF-blocks and IVIF-block graphs. Throughout, we provided suitable
examples and counter examples to furnish our results. We have also provided several
inter-relationships among the newly established terms. Many characterizations of IVIFGs
have also been provided. Finally, we provided the application of IVIFTs towards road map
designing. One can shift all the terms introduced in our study towards interval-valued
picture fuzzy graphs, bipolar picture fuzzy graphs, etc.
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