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Abstract: In this paper, a simple and novel fractional-order memristor circuit is established, which
contains only resistance, inductance, capacitance and memristor. By using fractional calculus theory
and the Adomian numerical algorithm, special bifurcations, chaotic degradation, C0 and Spectral
Entropy (SE) complexity under one-dimensional and two-dimensional parameter variations with
different orders, parameters and initial memristor values of the system were studied. Meanwhile, in
order to better utilize the applications of fractional-order memristor systems in communication and
security, a misalignment projection synchronization scheme for fractional-order systems is proposed,
which overcomes the shortcomings of constructing Lyapunov functions for fractional-order systems
to prove stability and designing controllers for the Laplace transform matrix.

Keywords: fractional-order memristor circuit; Adomian algorithm; misalignment projection synchronization
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1. Introduction

In 1971, Leon O. Chua first proposed the existence of a fourth fundamental circuit
element, in addition to the well-known capacitor, resistor and inductor. This prediction was
based on his analysis of the relationship between charge and magnetic flux, following the
principle that all possible variable combinations should be complete [1]. He also categorized
these elements according to the properties of memristors [2]. However, the definition of
implementation time is too long: it was not until 2008 that HP Labs successfully produced
a nonlinear two-terminal component using nanoscale TiO2 − TiO2−x, which confirmed the
previous theoretical predictions and stimulated the research interest of domestic and for-
eign scholars in a memristor [3]. As a resistance with nonlinear characteristics, a memristor
is a passive device. It does not only remember the amount of charge flowing through it but
it also changes the resistance by controlling the current flowing through it, which is physi-
cally realizable and is considered to have the potential to subvert the traditional mode and
trigger a circuit revolution. It has garnered attention in various fields including computer
science [4,5], neural networks [6,7], telecommunications engineering [8,9], biological engi-
neering [10,11] and other disciplines.

Currently, research on the preparation of memristors is a highly active area [12–14].
However, memristor modeling is also the key to the research, which is the basis for explor-
ing the application of a memristor. At present, the modeling of actual memristors mostly
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adopts an integer-order model (only related to the information of the nearest point), that is,
the equation of state of memristor internal variables adopts the form of an integer-order
differential equation. In fact, if the memristor and the capacitance and inductance of dy-
namic circuit components adopt fractional-order models with higher degrees of freedom
and better memory (information about all points in the past), they can more closely ap-
proach their actual characteristics. In 2009, Petráš et al. generalized the memristor system,
memory capacitance system, and memory inductance system [15] proposed by Leon O.
Chua, and obtained a fractional-order nonlinear memristor system [16]. In 2013, Fouda et al.
improved the HP TiO2 memristor model and built a fractional memristor model, and ana-
lyzed the relationship between its memristor value and the input signal, fractional-order
calculus order under different signal excitations [17,18]. In 2020, Ding et al. proposed a
fractional-order memristor circuit based on the classic Chua’s circuit, analyzed its stability
and dynamic characteristics and finally carried out numerical simulation, and the results
were consistent with the theoretical analysis [19]. Subsequently, an increasing number of
scholars focused on researching the dynamics and applications of fractional-order memris-
tor circuit systems [20–23]. The proposal of these series of achievements not only further
enriched the nonlinear circuit theory of memristors but also highlighted the complex dy-
namics of memristor circuits due to fractional-order sensitivity. This includes phenomena
like super-multistability, coexistence/symmetry attractor, etc. Such advancements have
played a crucial role in applications like image encryption, confidential communication
and other engineering projects [24–27].

Chaotic synchronization belongs to a type of generalized chaos control. Chaotic syn-
chronization theory was first developed in 1990 by Pecora and Carroll, who proposed the
synchronization of chaotic circuits [28]. Chaotic synchronization can be used to achieve
signal encryption at the sending end and undistorted recovery at the receiving end thanks
to the sensitive initial values and noise-like properties of chaos. At present, the main
methods for achieving chaos synchronization include the master-slave synchronization
method [29,30], generalized synchronization method [31], the phase synchronization
method [32], etc. In fact, the proportion factor between the master and slave systems
determines the type of chaotic synchronization. From the perspective of secure commu-
nication, the more complex the proportion factor, the stronger the system’s anti-cracking
ability. However, due to the unpredictability of its scale factors, many scholars have been
conducting relevant research in recent years. Min et al. first proposed a new chaotic system
synchronization method, namely, misalignment projection synchronization. Taking a new
four-dimensional hyperchaotic Qi system as an example, based on Lyapunov stability the-
ory, an effective nonlinear controller was designed to achieve the misalignment projection
synchronization of two hyperchaotic Qi systems with different initial values. It has good
communication and confidentiality characteristics [33]. In 2015, Sun et al. designed a feed-
back controller based on Lyapunov stability theory, and realized misalignment projection
synchronization of a series of complex linear chaotic systems and a series of real linear
chaotic systems under different initial values [34]. In 2019, Li et al. discussed mixed func-
tion projection synchronization of four-dimensional integer-order and three-dimensional
integer-order chaotic systems based on Lyapunov stability theory [35]. Most of the afore-
mentioned research focuses on misalignment projection synchronization in integer-order
chaotic systems. However, given the more complex nonlinear dynamic characteristics of
fractional-order memristor systems, studying their synchronization processes holds greater
practical value.

In light of the above-mentioned study, this paper introduces a 3D RLCM fractional-
order memristor circuit system, evolving from a basic memristor circuit [36]. This system
contains just one resistor, one inductor, one capacitor and a memristor. The key advance-
ment lies in extending the system from a limited integer-order to a fractional-order. The
Adomian numerical decomposition algorithm is employed to explore the complex dynam-
ical behaviors of the system, such as new attractors, coexisting symmetric bifurcations,
Poincaré sections and Lyapunov Exponent spectra (LEs). These behaviors are analyzed
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under various fractional orders q, system parameters and internal memristor parameters.
Secondly, the system dynamics behavior was characterized based on the C0 algorithm and
SE algorithm. Subsequently, a fractional-order misalignment projection synchronization
scheme was proposed and the feasibility of the proposed scheme was verified. Finally,
the paper also elaborates that the new system can be suggested for image encryption, mask-
ing and undistorted restoration due to its rich dynamics, thereby laying the foundation for
further research.

2. Fractional 3D Memristor Circuit System Model
2.1. Fractional Calculus Theory

The unified calculus includes integer-order operators and fractional-order operators,
which can be represented by operator aDq

t0
, where a and t0 are the upper and lower limits of

integration, respectively, and q ∈ R is the order of the calculus operator. Calculus operators
can be defined as

aDq
t0
=


dq

dtq , q > 0
1, q = 0∫ t

a (dτ)q, q < 0
(1)

when q > 0, aDq
t0

represents the fractional derivative and aD−q
t0

represents the fractional
integral. When q = n ∈ N, then aDq

t0
is the usual integer-order derivative. In the devel-

opment of fractional calculus theory, the most widely recognized definitions of fractional
derivatives include the Caputo, Riemann–Liouville (RL) and Grünwald–Letnikov (GL)
definitions [37,38]. Caputo defines that whether it is a fractional-order differential equation
or an integer-order differential equation, its initial condition can be consistent, and it has a
clear explanation of the initial condition of integer-order, and has the advantage of zero
initial value when applied to constants [39]. The definition is as follows

aDq
t0

f (t) =
1

Γ(n − q)

∫ t

a

f (n)(τ)

(t − τ) q−n+1 dτ (2)

when n = ⌈q⌉ and q > 0, according to the Caputo definition, the integral is described by
the following equation.

aD−q
t0

f (t) =
1

Γ(q)

∫ t

a

f (τ)

(t − q) 1−q dτ (3)

and the above definition Γ(•) is the gamma function, i.e.,

Γ(z) =
∞
∫
0

tz−1e−tdt (4)

2.2. A 3D Fractional-Order Flux-Controlled Memristor

The 3D flux-controlled memristor meets the following requirements{
i = dqqc(φ)

dt = W(φ)v
qc(φ) = α

3 φ3 − β
4 φ4 − φ

(5)

in which φ represents the internal state variable of memristor, qc represents charge, q
represents the order, and W(φ) = αφ2 − βφ3 − 1 represents the memristor function of the
flux-controlled memristor, and v and i represent the input voltage and output current given
outside the memristor, respectively. When α = 1, β = −1, through the numerical research
on the memristor of Equation (5) above, it is found that in Figure 1, when the fractional
orders are taken as q = 1, q = 0.9, q = 0.7 and q = 0.5 respectively, it is found that the
hysteresis loop area of the memristor increases gradually in the process of the gradual
reduction of the orders. Compared with integer-order, a fractional-order flux-controlled
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memristor has a wider range of memristor parameters, so it has the advantages of easy
integration and low power consumption.

Figure 1. Hysteresis loop area of memristor with different fractional orders q .

Further, according to Kirchhoff’s voltage law, we set the circuit parameters of memris-
tor as shown in Table 1.

Table 1. Circuit parameters of 3D fractional-order flux-controlled memristor.

Circuit Parameters Physical Meaning Parameter Value

C1 Capacitance 1.232 µF
C2 Capacitance 1.84 µF
C3 Capacitance 1.1 µF

R0/R1/R2/R3/R4/R5/R6/R7/R8 Resistance 10 kΩ
RA Resistance 62.84 MΩ
RB Resistance 250 kΩ
RC Resistance 2.5 kΩ

Based on Equation (5), the circuit schematic for the 3D fractional-order flux-controlled
memristor can be designed, as shown in Figure 2.

3

2

6

6

3

2

6

3

2
6

2

3

v

(

t)

)

(

ti

v)(

Figure 2. Circuit schematic diagram of fractional-order flux-controlled memristor.

Here, the terms Ai (i = 1, 2, 3, 4, 5) represent multipliers and Ui (i = 1, 2, 3, 4) denote
amplifiers. From the circuit schematic of the 3D fractional-order flux-controlled memristor,
the following input–output circuit equation of the memristor can be derived. The numerical
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simulation and circuit simulation v(t)-i(t) curves are shown in Figure 3, further verifying
the correctness of the 3D flux-controlled memristor model proposed in this paper.

i(t) =
R6

R5

R2

R7
φ2v(t)− R4

R3

R2

R8
φ3v(t)− R2

R1
v(t) (6)

    

 

 

 v

i

(a)

 4  2 0 2 4

 10

 5

0

5

10

(b)

Figure 3. Simulation results of v(t)-i(t) curve of memristor controlled by 3D fractional flux. (a) Analog
circuit results; (b) numerical simulation results.

2.3. Fractional-Order System Description and Chaotic Description

Based on the 3D fractional-order flux-controlled memristor circuit system [36], a simple
and novel fractional-order memristor chaotic circuit system that only includes resistance,
inductance, capacitance and a memristor is established. Its circuit principle is shown in
Figure 4.

R

W

Figure 4. Circuit system schematic diagram of 3D fractional-order flux-controlled memristor.

In the above circuit schematic diagram, the symbols R, L and C represent the resistance,
inductance and capacitance of the system, respectively. It can be seen from the above that the
system is shown in Equation (5), and dφ

dt = vc − ιφ+ κvc φ. According to Kirchhoff’s voltage
law in Figure 4, the following fractional-order memristor circuit system can be obtained.

dqvc
dt = 1

C (iL − W(φ)vc)
dqiL

dt = 1
L (−vc − RiL)

dq φ
dt = vc − ζφ + ξvC φ

(7)

We introduce four state variables into the circuit equation for dimensionless processing,
so that x1 = vc, x2 = iL, x3 = φ. And the 3D flux-controlled fractional memristor is
W(φ) = αφ2 − βφ3 − 1 and capacitance C = 1, inductance L = 1, R = 0.4, ζ = a = 1,
ξ = b = 4, and the internal parameters of the memristor are α = 1 and β = −1. Thus,
Equation (7) can be written as a dimensionless equation.
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Dq

t0
x1 = x2 −

(
αx3

2 − βx3
3 − 1

)
x1

Dq
t0

x2 = −x1 − 0.4x2

Dq
t0

x3 = x1 − ax3 + bx1x3

(8)

According to the Caputo fractional-order differential definition in Equation (2), when
t ∈ (t0, t1), k − 1 < q < k(k ∈ N), the two basic properties of the Caputo operator are
as follows

Dq
t0

Jq
t0

x(t) = x(t) (9)

and
Jq
t0

(
Dq

t0

)
x(t) = x(t)− ∑k=0

κ−1 x(κ)
(
t+0

)
(10)

where the ∑κ−1
k=0 x(k)

(
t+0

)
denotes a summation, representing the total of all terms from

k down to 0. This notation is mathematically accurate and signifies the sum of the first
k derivatives of the function x(t) evaluated at t+0 , which is a moment shortly after t0.
The Adomian decomposition algorithm is applied to analyze the system as described in
system (8). By assuming a decomposition into three terms, we derive the following initial
value problem. 

Dq
t0

x(t) + Lx(t) + Nx(t) = Λ(t)

x(k)
(
t+0

)
= bk, k = 0, 1, · · · , m − 1

m ∈ N, m − 1 < q ≤ m

(11)

In this, Dq
t0

represents the q order Caputo derivative, while L and N represent the
linear and nonlinear terms of system (8), respectively. Lx1

Lx2
Lx3

 =

 x2 + x1
−x1 − 0.4x2

x1 − ax3

,

 Nx1
Nx2
Nx3

 =

 αx1x2
3 − βx1x3

3
0

bx1x3

,

 Λ1
Λ1
Λ1

 =

 0
0
0

 (12)

And the initial value vector of system (8) is
(

Λx1 Λx2 Λx3

)T
=

(
0 0 0

)T , so
it can be inferred from Equation (12) that Equation (13) holds as follows

Dq
t0

x(t) = Λ(t)− Lx(t)− Nx(t) (13)

By combining Equations (10) and (13), the following Equation (14) can be obtained.

x(t) = ∑m−1
k=0 bk

(t − t0)
k

k!
+ Jq

t0
Λ(t)− Jq

t0
Lx(t)− Jq

t0
Nx(t) (14)

According to Equation (12), system (8) can be rewritten as x1(t)
x2(t)
x3(t)

 =

 x1(t0)
x2(t0)
x3(t0)

+ Jq
t0

 x2 + x1
−x1 − 0.4x2

x1 − ax3

+ Jq
t0

 αx1x2
3 − βx1x3

3
0

bx1x3

 (15)

For the linear term Lx(t) and nonlinear term Nx(t) of system (8), they can be ex-
pressed as

x = ∑∞
i=0 xi = ∑∞

i=0

(
xi

1, xi
2, · · · xi

n

)T
(16)

Nx = ∑∞
i=0 Ai = ∑∞

i=0

(
Ai

1, Ai
2, · · · Ai

n

)T
(17)

Combined with the rate of convergence of the Adomian algorithm for a fractional-
order system, the first five items of system (8) are selected under the condition of ensuring
accuracy, and among them are the nonlinear terms x1x2

3, x1x3
3 and x1x3. Following the

principle of nonlinear term decomposition [40,41], the decomposition process is detailed
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in Appendix A. Substituting Equations (16) and (17) into Equation (14), the infinite series
solution of system (8) is as follows

x = ∑∞
i=0 xi = ∑m−1

k=0 bk
(t−t0)

k

k! + Jq
t0

Λ(t)

−Jq
t0

L
(
∑∞

i=0 xi)− Jq
t0

L
(
∑∞

i=0 Ai) (18)

According to Equation (18), the recursive form of x(t) is as follows

x0 = ∑m−1
k=0 bk

(t−t0)
k

k! + Jq
t0

Λ(t)

x1 = −Jq
t0

Lx0 − Jq
t0

A0

x2 = −Jq
t0

Lx1 − Jq
t0

A1

...

xi = −Jq
t0

Lxi − Jq
t0

Ai

...

(19)

Therefore, Equation (19) provides an infinite series solution to Equation (16). Thus,
in the interval t ∈ (t0, t1), the infinite series solution of Equation (16) can be rewritten as

xj(t) = ∑∞
i xi

j = x0
j + x1

j + x2
j + x3

j + · · ·+ xi
j + · · · , j = 1, · · · , n (20)

According to the initial condition, x0 is equivalent to x0 = [x1(t0), x2(t0), x3(t0)],
and the decomposition coefficient of the system (8) is shown in Appendix B. Then, by se-
lecting the first five terms in the series Equation (20), the approximate solution of system (8)
in the interval t0, t1 is

x̃1(t) = x0
1 + x1

1 + x2
1 + x3

1 + x4
1 + x5

1

x̃2(t) = x0
2 + x1

2 + x2
2 + x3

2 + x4
2 + x5

2

x̃3(t) = x0
3 + x1

3 + x2
3 + x3

3 + x4
3 + x5

3

(21)

Using the Adomian decomposition algorithm and considering system (8) with pa-
rameters set to a = 1, b = 4, and fractional order q = 0.55, the internal parameters
of the memristor are set to α = 1, β = −1. Setting the initial values of the system to
x0 = (0.01, 0.1, 0), the phase diagram of the system, as shown in Figure 5, can be obtained,
where system (8) is chaotic.

 1  0.5 0 0.5 1

0

0.5

1

1.5

2

(a) (b)

Figure 5. Chaotic attractor diagram of the system. (a) The projection of the chaotic attractor on the
plane (x1, x2); (b) the chaotic attractor in the three-dimensional space (x1, x2, x3).

Figure 6a,b show the results of Poincaré section with x2 = 0 and x3 = 0, respectively,
when the fractional orders are q = 0.3 and q = 0.9, and the remaining parameters of the
system remain consistent with the above. There are some irregular point distributions
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in the Poincaré section of the system, both at the three-dimensional interface and on the
plane, further explaining the complex dynamic behavior of the system caused by fractional
order q.

(a) (b)

Figure 6. Poincaré section and projection of the system. (a) x2 = 0 in x1-x3-x2 section in three-
dimensional space; (b) x3 = 0 in x1-x2-x3 section in three-dimensional space.

3. System Dynamics Behavior
3.1. Special Bifurcation Phenomenon of the System

To analyze the dynamic phenomenon of order q changes in fractional-order memristor
system, when the range of order change q ∈ (0.5, 1), a = 1, b = 4, α = 1 and β = −1, we
set the initial value of the system to x0 = (0.01, 0.1, 0). Figure 7 shows the bifurcation and
LEs as the fractional order q changes: Figure 7a shows two period-doubling bifurcation
paths with upper and lower symmetric synchronization paths, and a brief period window
appears on their paths, ultimately ending in a chaotic state; the results in Figure 7b and the
bifurcation diagram reflect consistent dynamic results.

(a)

 

 

 

(b)

Figure 7. System order q changes. (a) Bifurcation diagram; (b) two LEs greater than zero.

Utilizing the 0-1 testing method, this method is mainly a quantitative analysis method
to determine whether the system has chaotic or periodic motion states. As shown in
Figure 8, the parameter values and initial values of the system remain consistent with
the aforementioned. When the order q = 0.55 is selected on the bifurcation path of the
fractional-order memristor system, the trajectory in the p-s plane is ordered. When the
order q = 0.62, the trajectory of the system in the p-s plane is chaotic and disorderly. It
separately explains why the two motion states of system (8) exhibit periodic and chaotic
phenomena under two sets of the order q values.

When parameter q = 0.55, b = 4, and the internal parameter of memristor α = 1,
β = −1, we set the initial value of the system to x0 = (0.01, 0.1, 0). When the system pa-
rameter a is a variable, Figure 9a shows a bifurcation diagram of the variation of parameter
a, describing the system changing within the range of parameter a ∈ (0.6, 1.5),; it indicates
a novel bifurcation phenomenon where the bifurcation path of the system with parameter a
exhibits a symmetric period doubling bifurcation and ends with a reverse period doubling
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bifurcation. Furthermore, in conjunction with the spectral lines of the first two Lyapunov
Exponents (LEs) shown in Figure 9b, it is observed that the bifurcation diagram exhibits
consistent dynamic behavior.

 80  60  40  20 0

 20

0

20

40

60

80

 20 100

(a)

 50 0 50 100

 300

 200

 100

0

150

(b)

Figure 8. p-s plane trajectory of the system. (a) q = 0.55; (b) q = 0.62.

(a)

0.6 0.8 1 1.2 1.4

 4

 3

 2

 1

0

1

LEs1

LEs2

(b)

Figure 9. System parameter a changes. (a) Bifurcation diagram; (b) two LEs greater than zero.

Similarly, the internal parameter α of memristor W(φ) = αφ2 − βφ3 − 1 is selected as
a variable to research the dynamic behavior of the system. When selecting α ∈ (0.6, 1.4),
Figure 10 shows the internal parameter α of the memristor, respectively. The bifurcation
diagram is a variable and so are the first two largest spectrum lines of LEs. It can be
observed that the overall dynamic behavior of the system exhibits a process of reverse
period doubling bifurcation, which shows that the internal parameters of the memristor in
this system have a great impact on the dynamic phenomenon of the system.

(a)

0.6 0.8 1 1.2 1.4

 2

 1.5

 1

 0.5

0

0.5

LEs1

LEs2

(b)

Figure 10. System parameter α changes. (a) Bifurcation diagram; (b) two LEs greater than zero.
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3.2. Chaotic Degradation Phenomenon of the System

The nonlinear memristor chaotic system is in a chaotic state within a finite time range,
and after a period of time, it sinks into a periodic state (chaotic degradation). To illustrate the
chaotic degenerate dynamic behavior of the system (8), we set the parameters of the system
as a = 1, b = 4, fractional order q = 0.545 and α = 1, β = −1, respectively. The initial value
of the system is set to x0 = (0.1, 0, 0). Therefore, the time-domain waveform of the system
state variable x1 is shown in Figure 11, while selecting the phase diagram of the system
on the x1-x2 plane at the same time. In order to verify the chaotic degradation dynamic
behavior, the LEs time-domain waveform of system (8) was further obtained. In Figure 11a,
it is found that the chaotic phenomenon appears before t < 35s, and it degenerates to a
periodic state after t > 35s.

Meanwhile, the time domain waveform of time t ∈ (100s-200s) is obtained as shown
in Figure 11b. The time domain waveform changes regularly, indicating a stable periodic
state. Additionally, the interval phase diagrams in Figure 11c,d reveal that the results align
with the time-domain waveforms. It is further observed that the chaotic attractor emerges
before t < 35s, while a stable periodic limit cycle state manifests after t > 35s.

0 50 100 150 200

 1

 0.5

0

0.5

1

1.5

(a)

100 120 140 160 180

 1

 0.5

0

0.5

1

200

(b)

 1  0.5 0 0.5 1

0

0.5

1

(c)

 1  0.5 0 0.5 1 1.5

 0.5

0

0.5

1

1.5

(d)

Figure 11. Chaotic degradation dynamic behavior of the system. (a) Time domain
waveform of state variable x1 within time (the blue line represents chaotic state and the
red line is periodic state); (b) time domain waveform of state variable x1 within time
t ∈ (100s–200s); (c) the projection of chaotic attractor in time t ∈ (0s–35s); (d) stable periodic limit
cycle in time t ∈ (100s–200s).

4. System Complexity Analysis
4.1. Characteristics of Complexity Variation with Order q

Any description of the nonlinear dynamic behavior of a system can be considered
research into the complexity of the system. Complexity actually involves exploring whether
a chaotic sequence is close to a random sequence. If it is closer to a random sequence, it
indicates that the complexity of the system is relatively high. When the parameters of
system (8) are consistent with the parameters researched in Figure 7, the C0 complexity and
SE complexity of the system with respect to fractional order q are shown in Figure 12. The
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smaller the order, the smaller the system complexity, and vice versa, which is consistent
with the dynamic characteristics described by the Largest Lyapunov exponent (LLE) of
fractional order q as a variable in Figure 7.

(a)

0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

(b)

Figure 12. The complexity of system fractional order q changes. (a) C0 complexity; (b) SE complexity.

Then, we found that Figure 12 was researched using the C0 complexity algorithm and
the SE complexity algorithm. Through comparative research between the two algorithms,
it was found that they can reflect the same dynamic behavior, but what can be found is that
the C0 complexity characterizes the dynamic phenomenon more effectively.

4.2. Characteristics of Complexity Variation with Internal Parameter α of Memristor

Similarly, when the system parameters are consistent with the above, according to
the internal parameters of the system memristor α, the C0 complexity and SE complexity
can be determined and they are shown in Figure 13. Furthermore, we can find the internal
parameters of the system memristor α the LLE under changes, as shown in Figure 10, show-
ing good consistency between the structural complexity and the dynamic characteristics
described by the LLE.

(a)

0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 13. The complexity of system internal parameter α changes. (a) C0 complexity; (b) SE
complexity.

4.3. Chaotic Map of System Complexity

Based on the C0 algorithm and SE algorithm, the complexity chaos diagram of the
system can be determined, as shown in Figure 14, and the system parameter settings are
consistent with the dynamic phenomena researched above. It can be seen from Figure 14
that the chaotic region of the system is basically concentrated in the fractional order
q ∈ (0.55, 0.8) and the internal parameters of the system memristor α ∈ (0.6, 0.8). In this
region, the system exhibits a small dark-red area that exhibits complex chaotic behavior,
and the boundary between the high complexity and low complexity regions of the system
can be clearly determined through the complexity chaotic map.
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(a) (b)

Figure 14. Chaotic map of system structure complexity (dark-red area that exhibits complex chaotic
behavior). (a) C0 complexity chaotic map; (b) SE complexity chaotic map.

5. Misalignment Projection Synchronization of the System
5.1. Theoretical Analysis of Misalignment Projection Synchronization

Definition 1. If there is a fractional-order chaotic system Dq
t0

x = f (x), x ∈ Rn is a fractional-
order system variable. If the nonlinear function is selected as f : Rn → Rn, the slave system of
the fractional-order system can be defined as Dq

t0
y = f (y) + U, and U is the controller. Therefore,

the fractional-order error system is defined as follows

e(t) = y − Φx (22)

In which, Φ for n × n constant matrix. According to Equation (22), if there is a matrix Φ
such that limt→∞ ∥ e(t) ∥= 0, then the fractional slave system and the master system achieve
misalignment projection synchronization.

Lemma 1. If the fractional-order system controller is designed as U(t) = u(t) + Ψ(t), where
u(t) = Φ f (x) − f (y), Ψ(t) = −κe,κ = [κ1, κ2, · · · , κn]

T , κi > 0(i = 1, 2, · · · , n), κ =

[κ1, κ2, · · · , κn]
T , κi > 0(i = 1, 2, · · · , n), when n ≥ 3, the system achieves misalignment

projection synchronization.

Considering that the slave system is selected as system (8), the master system is as
follows 

Dq
t0

xs1 = xs2 −
(
αxs3

2 − βxs3
3 − 1

)
xs1 + u1

Dq
t0

xs2 = −xs1 − 0.4xs2 + u2

Dq
t0

xs3 = xs1 − axs3 + bxs1xs3 + u3

(23)

According to Lemma 1, the controller of design Equation (23) is

u1 = −k(xs1 − α11x1 − α12x2 − α13x3)

−
(
xs2 −

(
αxs3

2 − βxs3
3 − 1

)
xs1

)
+α11

(
x2 −

(
αx3

2 − βx3
3 − 1

)
x1
)
+ α12(−x1 − 0.4x2)

+α13(x1 − ax3 + bx1x3)

(24)

u2 = −k(xs2 − α21x1 − α22x2 − α23x3)− (−xs1 − 0.4xs2)

+α21
(
x2 −

(
αx3

2 − βx3
3 − 1

)
x1
)
+ α22(−x1 − 0.4x2)

+α23(x1 − ax3 + bx1x3)

(25)

u3 = −k(xs3 − α31x1 − α32x2 − α33x3)− (xs1 − axs3 + bxs1xs3)

+α31
(
x2 −

(
αx3

2 − βx3
3 − 1

)
x1
)
+ α32(−x1 − 0.4x2)

+α33(x1 − ax3 + bx1x3)

(26)
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By substituting Equations (24)–(26) into Equation (23), the following Equation (27) can
be obtained.

Dq
t0

xs1 = −k(xs1 − α11x1 − α12x2 − α13x3) + α11
(
x2 −

(
αx3

2 − βx3
3 − 1

)
x1
)

+α12(−x1 − 0.4x2) + α13(x1 − ax3 + bx1x3)

Dq
t0

xs2 = −k(xs2 − α21x1 − α22x2 − α23x3)+α21
(
x2 −

(
αx3

2 − βx3
3 − 1

)
x1
)

+α22(−x1 − 0.4x2) + α23(x1 − ax3 + bx1x3)

Dq
t0

xs3 = −k(xs3 − α31x1 − α32x2 − α33x3) + α31
(
x2 −

(
αx3

2 − βx3
3 − 1

)
x1
)

+α32(−x1 − 0.4x2) + α33(x1 − ax3 + bx1x3)

(27)

According to the Adomian algorithm, solving the slave system can result in

xs1(m + 1) =
5
∑

j=0
ξ

j
1hjq/Γ(jq + 1)

xs2(m + 1) =
5
∑

j=0
ξ

j
2hjq/Γ(jq + 1)

xs3(m + 1) =
5
∑

j=0
ξ

j
3hjq/Γ(jq + 1)

(28)

where ξ0
1 = xs1(m), ξ0

2 = xs2(m), ξ0
3 = xs3(m).

ξ
j
1 = −k

(
ξ

j−1
1 − α11cj−1

1 − α12cj−1
2 − α13cj−1

3

)
+ α11cj

1 + α12cj
2 + α13cj

3

ξ
j
2 = −k

(
ξ

j−1
2 − α21cj−1

1 − α22cj−1
2 − α23cj−1

3

)
+ α21cj

1 + α22cj
2 + α23cj

3

ξ
j
3 = −k

(
ξ

j−1
3 − α31cj−1

1 − α32cj−1
2 − α33cj−1

3

)
+ α31cj

1 + α32cj
2 + α33cj

3

(29)

where cj
i(i = 1, 2, 3, j = 1, 2, 3, 4, 5).

5.2. Numerical Simulation of Misalignment Projection Synchronization

In the numerical simulation of misalignment projection synchronization of the system,
the system parameters are a = 1, b = 4 and q = 0.45, respectively. The internal parameters
of memristor α = 1, β = −1. The initial values of the fractional slave system are (0.01, 0.1, 0),
and the initial values of the master system are (2, 3, 1). Further selection of the matrix Φ is
shown below

Φ =

α11 α12 α13
α21 α22 α23
α31 α32 α33

 =

 0 0.65 0
−0.85 0 0

0 0 −1.2

 (30)

Therefore, the synchronization error of the system’s misalignment projection is
e1 = xs1 − 0.85x2
e2 = xs2 + 0.65x1
e3 = xs3 − 1.2x3

(31)

The numerical simulation results of the system’s misalignment projection synchroniza-
tion are shown in Figure 15. From Equation (31), it can be seen that variables xs1, xs2 and xs3
are synchronized with −0.85x2, 0.65x1 and −1.2x4, respectively. The curves of the sequence
diagram (xs1, x2), (xs2, x1) and (xs3, x3) are shown in Figure 15a,c,e. The correspond-
ing synchronization phase diagram curves are shown in Figure 15b,d,f. After numerical
simulation, it was found that the fractional-order system achieved misalignment projec-
tion synchronization.
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Figure 15. Numerical results of system misalignment projection synchronization. (a) Time se-
ries (blue) xs1 and (red) x2; (b) synchronization phase diagram xs1-x2; (c) time series (blue) xs2

and (red) x1; (d) synchronization phase diagram xs2-x1; (e) time series (blue) xs3 and (red) x3;
(f) synchronization phase diagram xs3-x3.

6. Conclusions

In this paper, the circuit model of a fractional-order 3D flux-controlled memristor
is obtained through the theoretical analysis of fractional-order Caputo definition, which
shows the rationality of the establishment of this memristor. Subsequently, a memristor
is incorporated to develop a fractional-order chaotic system, composed solely of resis-
tance, inductance and capacitance elements. The system’s phase diagram and Poincaré
section are then analyzed using the Adomian decomposition algorithm. Meanwhile, the bi-
furcation diagram and LEs with fractional order q, system parameter a and memristor
internal parameter α as variables are found to have the coexistence of up and down sym-
metric bifurcation path dynamics. Specifically, there are period-doubling bifurcations,
reverse-period-doubling bifurcations, and special chaotic degradation phenomena on the
bifurcation path. Secondly, for the complexity of the system, under the comparative study
of the C0 algorithm and SE algorithm, it was found that the C0 algorithm portrays the
dynamic behavior of the system more accurately. Finally, based on the fractional-order
generalized projection synchronization theory, a fractional-order misaligned projection
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synchronization scheme is proposed for the system. The viability of this proposed scheme
is further substantiated through both theoretical analysis and numerical simulations. Using
the chaotic time series of fractional-order system misalignment projection synchronization
for secure communication, image encryption, and the parallel computing of Hash Values
in plaintext, images will have higher security and can effectively resist known-plaintext
attacks. In light of this, the generalized misalignment correction projection synchronization
of chaotic systems discussed in this paper has significant practical value.
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Appendix A

The decomposition processes of the nonlinear terms x1x2
3, x1x3

3, and x1x3 in system (8)
are shown in Equations (A1)–(A3), respectively.

A0 = x0
1
(
x0

3
)2

A1 = x1
1
(
x0

3
)2

+ 2x0
1x0

3x1
3

A2 = x2
1
(
x0

3
)2

+ 2x1
1x0

3x1
3 + 2x0

1x0
3x2

3 + x0
1
(
x1

3
)2

A3 = x3
1
(
x0

3
)2

+ 2x2
1x0

3x1
3 + 2x1

1x0
3x2

3

+x1
1
(

x1
3
)2

+ 2x0
1x0

3x3
3 + 2x0

1x1
3x2

3

A4 = x4
1
(
x0

3
)2

+ 2x3
1x0

3x1
3 + 2x2

1x0
3x2

3 + x2
1
(
x1

3
)2

+2x1
1x0

3x3
3 + 2x1

1x1
3x2

3 + 2x0
1x0

3x4
3

+2x0
1x1

3x3
3 + x0

1
(
x2

3
)2

(A1)
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1
(

x0
3
)3
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1
(
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3
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1
(
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3
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A2 = x2
1
(

x0
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3
)2x1

3 + 6x2
1
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Appendix B

The iteration coefficients for the numerical solution of the system are as follows

c1
1 = c0

2 − αc0
1(c

0
3)

2 + βc0
1(c

0
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