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Abstract: In this article, a new two-parameter model called the truncated Cauchy power-inverted
Topp–Leone (TCP-ITL) is constructed by merging the truncated Cauchy power -G (TCP-G) family
with the inverted Topp–Leone (ITL) distribution. Some structural properties of the newly suggested
model are obtained. Different types of entropies are proposed under the TCP-ITL distribution. Under
the complete and hybrid censored data, the maximum likelihood (ML), maximum product of spacing
(MPSP), and Bayesian estimate approaches are explored. A simulation study is developed to test
the proposed distribution’s restricted sample attributes. In the majority of cases, the numerical data
revealed that the Bayesian estimates provided more accurate outcomes than the equivalent alternative
estimates. The adaptability of the proposed approach is proven using examples from dependability,
medicine, and engineering. A real-world data set is utilized to demonstrate the potential of the TCP-
ITL distribution in comparison to other well-known distributions. The results of the model selection
revealed that the proposed distribution is the best choice for the data sets under consideration.

Keywords: Bayesian estimation; truncated Cauchy power family; inverted Topp–Leone; hybrid
censored scheme; maximum likelihood; maximum product spacing; MCMC; COVID-19
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1. Introduction

In the current statistical literature, various univariate continuous distributions may be
employed in a variety of data modeling applications. Furthermore, it appears that the num-
ber of accessible distributions is insufficient to handle the different data found in domains
such as medicine, biology, demography, engineering sciences, actuarial science, finance,
economics, and dependability [1]. Researchers in statistics and applied mathematics are
interested in developing new extended continuous distributions that are more effective for
data modeling. Methods for expanding well-known distributions include adding parame-
ters, compounding, generating, transforming, and composing. Several statisticians were
drawn to develop novel models in recent decades by the emergence of new families of
continuous distributions. Our specific interest is in the TCP-G family, which was presented
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by [2]. The TCP-G family’s cumulative distribution function (CDF) and probability density
function (PDF) are defined below:

F(z; β, φ) =
4
π

arctan [G(z; φ)]β, z ∈ R, β > 0, (1)

and

f (z; β, φ) =
4βg(z; φ)(G(z; φ))β−1

π[1 + (G(z; φ))2β]
, z ∈ R, β > 0, (2)

where G(z; φ) and g(z; φ) are the CDF and PDF, respectively, for any baseline distribution,
with the set of parameters φ and β being a shape parameter of the TCP-G family.

On the basis of the TCP-G family, relevant studies were supplied, for example, the
TCP Weibull-G family [3], TCP inverse exponential distribution [4], TCP odd Fréchet-G
family [5], and TCP Lomax distribution [6].

Because of their application, inverted or inverse distributions are essential in many
domains, including biological sciences, chemical data, life test issues, medical sciences,
etc. In terms of the density and hazard rate function (HRF), inverted conformation dis-
tributions differ from non-inverted conformation distributions. Many authors studied
these inverted models, such as the inverse power Lindley distribution [7], inverted Kumu-
maraswamy distribution [8], inverted length-biased exponential distribution [9], inverted
log-logistic distribution [10], inverted Gompertz distribution [11], inverted Lindley distri-
bution [12], inverted generalized linear exponential distribution [13], inverted Nakagami-m
distribution [14], inverted Nadarajah–Haghigh distribution [15], inverse power Maxwell
distribution [16], inverse power Lomax distribution [17], discrete inverse Burr distribu-
tion [18], discrete inverse Rayleigh distribution [19], inverse Weibull distribution [20],
inverse Sushila distribution [21], and inverse log-gamma distribution [22].

The CDF and PDF of the ITL model with a shape parameter a in [23] is provided with:

G(z; a) = 1−
{
(1 + 2z)a

(1 + z)2a

}
; z > 0, a > 0, (3)

and
g(z; a) = 2az(1 + z)−2a−1(1 + 2z)a−1 ; z > 0, a > 0. (4)

Some academics investigated and created novel extensions and generalizations of the
ITL distribution, including the power ITL distribution investigated by [24], Kumaraswamy
ITL distribution discussed by [25], alpha power ITL distribution proposed by [26], half-
logistic ITL distribution suggested by [27], the odd log-logistic Topp–Leone G family by [28],
and the Burr III-Topp–Leone-G family by [29].

The primary purpose of this article is to present and examine the statistical properties
of a novel two-parameter model known as the truncated Cauchy power-inverted Topp–
Leone (TCP-ITL) distribution. The following considerations persuaded us to investigate
the suggested model. It is specified as follows:

1. It is fascinating to see the suggested model’s adaptability with the various graphical
forms of the PDF and HRF. As a result, the numerical and graphical analyses of the
related PDF and HRF revealed unexpected features, demonstrating the previously
unknown fitting capability of the TCP-ITL.

2. Some different statistical features of the TCP-ITL model, such as the QF, moments
and incomplete moments, moment-generating function, and four different types of
entropy, such as the Rényi entropy (RE), Havrda and Charvat entropy (HaChE), Tsallis
entropy (TSE), and Arimoto entropy (ArE).

3. The statistical inference of the model parameters under complete and hybrid censored
data by using the maximum likelihood (ML), maximum product of spacing (MPSP),
and Bayesian estimation approaches are explored.
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4. The potential of the TCP-ITL distribution is demonstrated using four real data sets in
contrast to the ITL, the Kumaraswamy (K), Marshall–Olkin–Kumaraswamy (MOK),
beta, alpha power Kumaraswamy (APK), and exponentiated Kumaraswamy (EK) dis-
tributions. According to the results of the criterion measurements, the recommended
distribution is the best option for the data sets under consideration.

Structure of the Paper

This paper has the following structure. Section 2 describes the construction of the
TCP-ITL model. The CDF, PDF, reliability function (RF), and HRF, as well as the asymp-
totes and graphical forms for the PDF and HRF, are all provided in Section 2. Section 3
establishes clear representations of several fundamental aspects of the proposed TCP-ITL,
such as the QF, linear representation of the PDF, rth ordinary, and sth incomplete moments
and moment-generating function. Various forms of an entropy measure are proposed
in Section 4. In Section 5, we carry out the estimation using three approaches, the ML
approach, MPSP approach, and Bayesian approach, to estimate the unknown parameters
of the TCP-ITL model. In Section 6, a Monte Carlo simulation examination is conducted to
determine the efficiency of the three recommended estimation methodologies. In Section 7,
we apply the TCP-ITL using three genuine data sets. Furthermore, the suggested model
is compared to many well-known comparison models, including the ITL, K, MOK, beta,
APK, and EK models. Eventually, in Section 8, we offer some final thoughts on our results
from all aspects of this research.

2. The Construction of the TCP-ITL Distribution

A random variable Z is said to have the TCP-ITL distribution when we substitute the
CDF (3) and PDF (4) in the CDF (1) and PDF (2). The CDF and PDF of a random variable Z
have the TCP-ITL distribution with parameters a and β and is defined by:

F(z; a, β) =
4
π

arctan

[
1−

{
(1 + 2z)a

(1 + z)2a

}]β

, z > 0 , a, β > 0, (5)

and

f (z; a, β) = 8az (1 + z)−2a−1(1 + 2z)a−1
β

[
1−

{
(1+2z)a

(1+z)2a

}]β−1

π

[
1 +

(
1−

{
(1+2z)a

(1+z)2a

})2β
] , z > 0 , a, β > 0. (6)

The reliability function, HRF, reversed HRF, and cumulative HRF of Z are provided via:

F̄(z; a, β) = 1− F(z; a, β) = 1− 4
π

arctan

[
1−

{
(1 + 2z)a

(1 + z)2a

}]β

, z > 0 , a, β > 0,

h(z; a, β) =
f (z; a, β)

F̄(z; a, β)
=

8βaz (1 + z)−2a−1(1 + 2z)a−1
[

1−
{

(1+2z)a

(1+z)2a

}]β−1

π

[
1 +

(
1−

{
(1+2z)a

(1+z)2a

})2β
][

1− 4
π arctan

[
1−

{
(1+2z)a

(1+z)2a

}]β
] ,

τ(z; a, β) =
f (z; a, β)

F(z; a, β)
=

2βaz (1 + z)−2a−1(1 + 2z)a−1
[

1−
{

(1+2z)a

(1+z)2a

}]β−1

[
1 +

(
1−

{
(1+2z)a

(1+z)2a

})2β
][

arctan
[

1−
{

(1+2z)a

(1+z)2a

}]β
] ,



Axioms 2023, 12, 148 4 of 30

and

H(z; a, β) = − ln[F̄(z; a, β)] = − ln

1− 4
π

arctan

[
1−

{
(1 + 2z)a

(1 + z)2a

}]β
.

Figure 1 shows how the TCP-ITL distribution’s PDF can be decreasing, unimodal, and
skewed to the right. Figure 2 shows that the TCP-ITL distribution’s HRF encompasses
J-shaped, upside-down, and decreasing forms.
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Figure 1. PDF for the TCP-ITL distribution.
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Figure 2. HRF for the TCP-ITL distribution.

3. Properties

This section describes the structural features of the TCPIL as specified in Equation (6),
comprising explicit formulas for the QF, the linear representation of the PDF, the rth
ordinary and sth incomplete moment, and the moment-generating function. There are also
several graphical and numerical representations of these properties.
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3.1. Quantile Function

The QF is necessary for generating random variates. For u ∼ uni f orm(0, 1), the QF of
the TCP-ITL is given by Equation (7). Assume Z ∼ TCP-ITL (a, β), then its QF is given by
Equation (7)

Qu =

(
1−

(
1−

(
tan
(

πu
4
)) 1

β

) 1
a
)
+

√
1−

(
1−

(
tan
(

πu
4
)) 1

β

) 1
a

(
1−

(
tan
(

πu
4
)) 1

β

) 1
a

. (7)

By replacing u = 0.5 in Equation (7), the median of the TCP-ITL is readily avail-
able. Furthermore, setting u = 0.25 and u = 0.75 in (7), the 25th and 75th percentiles
are computed. The MacGillivrays skewness (MSK) function [30] is computed from the
next formula

MSK =
zu + z1−u − 2z0.5

zu − z1−u
, 0 < u < 1.

Figures 3 and 4 represent the plots of MSK for some numerous values of the parameters.
We may observe that the quantity of MSK rises as β and a rise.
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Figure 3. Plots of the MSK for the TCP-ITL distribution at β = 0.5 and 1.5.
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Figure 4. Plots of the MSK for the TCP-ITL distribution at a = 1.5 and 5.0.
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3.2. Important Representation

We demonstrated a beneficial increase in the TCP-ITL density that may be utilized to
drive various critical TCP-ITL features. According to [2], the PDF given by Equation (6)
may be represented as

f (z; a, β) =
8
π

aβz(1 + z)−2a−1(1 + 2z)a−1
∞

∑
i=0

(−1)i

[
1− (1 + 2z)a

(1 + z)2a

]β(2+i)−1

, (8)

using the next binomial expansion (1− z)b =
∞
∑

j=0
(−1)j

(
b
j

)
zj, in Equation (8), we obtain

f (z; a, β) =
8
π

aβz
∞

∑
i,j=0

(−1)i+j(i + 1)
(

β(2 + i)− 1
j

)
(1 + z)−2a(j+1)−1(1 + 2z)a(j+1)−1, (9)

again using the next binomial expansion (1 + z)b =
∞
∑

k=0

(
b
j

)
zj, in Equation (9),

we obtain

f (z; a, β) =
∞

∑
i,j,k=0

∆i,j,kzk+1(1 + z)−2a(j+1)−1, (10)

where ∆i,j,k =
aβ
π 2k+3(−1)i+j(i + 1)

(
β(2 + i)− 1

j

)(
a(j + 1)− 1

k

)
.

3.3. The rth Moment

The rth ordinary is an essential statistic for determining the distribution dispersion.
To derive the central or actual moments, utilize the following relationship: the first moment
about the mean is always equal to zero, and the second moment around the mean is equal to
variance as µ2 = µ′2 −

(
µ′1
)2, µ3 = µ′3 − 3µ′1µ′2 + 2

(
µ′1
)3 and µ4 = µ′4 − 4µ′3µ′1 + 6µ′2

(
µ′1
)2 −

3
(
µ′1
)4. The moment-based measurement of skewness and kurtosis is calculated utilizing

β1 =
µ2

3
µ3

2
and β2 = µ4

µ2
2
, respectively.

Assume that Z ∼ TCP-ITL (a, β) for z ∈ (0, ∞) and a, β > 0, then its rth ordinary by
utilizing Equation (6) and beta prime function is β(a, b) =

∫ ∞
0 za−1(1 + z)−a−bdz provided

via

µ′r =
∞

∑
t=0

∆i,j,k

∫ ∞

0
zr+k+1(1 + z)−2a(j+1)−1dz,

µ′r =
∞

∑
i,j,k=0

∆i,j,kβ[(r + k + 2), (2a(j + 1)− r− k− 1)]. (11)

For r = 1, the mean of TCP-ITL is yielded as µ′1 = ∑∞
i,j,k=0 ∆i,j,kβ[k + 2, (2a(j + 1)− k− 2)]

and [2a(j + 1)] < k + 2.
Figure 5 depicts the three-dimensional plots of the mean, variance, coefficient of

skewness (CS), coefficient of kurtosis (CK), and coefficient of variation (CV) for the TCP-ITL
model at a ∈ [2, 10], β ∈ [1, 2]. Moreover, some numerical values are provided in Table 1.
We can notice from Table 1 that when a is fixed and β is increasing, then the measures of
E(Z), E(Z2), E(Z3), E(Z4), var are increasing, but the measures of SK, KU, and CV are
decreasing. Moreover, when β is fixed and a is increasing, then the measures of E(Z),
E(Z2), E(Z3), E(Z4), var, SK, KU, and CV are decreasing.
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Table 1. Some numerical values of moments.

a β E(Z) E(Z2) E(Z3) E(Z4) Variance Skewness Kurtosis Coefficient of Variation

5.0

0.5 0.397 0.422 1.021 6.539 0.264 4.740 75.136 1.293

0.7 0.506 0.578 1.424 9.152 0.322 4.418 67.225 1.121

0.9 0.598 0.726 1.823 11.761 0.369 4.238 63.095 1.016

1.2 0.714 0.936 2.414 15.670 0.426 4.084 59.709 0.915

1.5 0.811 1.133 2.995 19.571 0.475 3.994 57.819 0.849

2.0 0.948 1.439 3.946 26.054 0.541 3.908 56.075 0.777

2.5 1.061 1.722 4.874 32.515 0.597 3.859 55.127 0.729

3.0 1.158 1.986 5.783 38.953 0.646 3.828 54.550 0.694

6.0

0.5 0.343 0.290 0.489 1.624 0.172 3.799 37.659 1.210

0.7 0.435 0.395 0.681 2.272 0.206 3.519 33.601 1.045

0.9 0.512 0.495 0.870 2.918 0.233 3.363 31.500 0.943

1.2 0.609 0.635 1.148 3.884 0.265 3.229 29.796 0.845

1.5 0.689 0.766 1.421 4.845 0.290 3.152 28.858 0.781

2.0 0.801 0.966 1.863 6.439 0.325 3.078 28.009 0.711

2.5 0.893 1.150 2.292 8.020 0.353 3.037 27.560 0.665

3.0 0.971 1.319 2.708 9.589 0.376 3.012 27.295 0.632

7.0

0.5 0.304 0.217 0.286 0.655 0.124 3.303 26.152 1.156

0.7 0.385 0.295 0.397 0.915 0.147 3.044 23.290 0.995

0.9 0.452 0.368 0.507 1.175 0.164 2.899 21.819 0.895

1.2 0.536 0.471 0.667 1.563 0.184 2.776 20.636 0.800

1.5 0.605 0.566 0.824 1.948 0.199 2.705 19.993 0.737

2.0 0.701 0.710 1.077 2.584 0.220 2.638 19.421 0.669

2.5 0.778 0.842 1.320 3.212 0.236 2.601 19.126 0.624

3.0 0.845 0.962 1.554 3.834 0.249 2.579 18.957 0.591
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Figure 5. Three-dimensional plots of mean, variance, CS, and CK for the TCP-ITL model at
a ∈ [2, 10], β ∈ [1, 2].

3.4. The sth Incomplete Moment

The sth incomplete moment is a significant metric with several uses, including calcu-
lating the mean waiting time, conditional moments, and income inequality measures.

Assume that Z ∼ TCP-ITL (a, β) for z ∈ (0, ∞) and a, β > 0, then its sth incomplete
moments by utilizing (6) and incomplete beta function βw(a, b) =

∫ w
0 za−1(1− z)b−1dz are

provided via

ϕs(w) =
∞

∑
i,j,k=0

∆i,j,kβ w
1+w

[(s + k + 1), (2a(j + 1)− s− k− 1)]. (12)

Theoretically, Equation (12) is beneficial by utilizing the relationship between incom-
plete beta and Gauss hypergeometric functions as βz(a, b) = za

a 2F1(a, 1− b; a + 1; z). The
readers are referred to [31] for a more extensive examination of the numerous beta functions
and their relationships.

ϕs(w) =
∞

∑
i,j,k=0

∆i,j,k
( w

1+w )
s+k+1

(s + k + 1) 2F1

[
s + k + 1, 1− 2a(j + 1) + s + k; s + k + 2;

w
1 + w

]
.

3.5. Moment-Generating Function

According to the definition, the moment-generating function M(t) = E
[
etZ] =∫

etz f (z)dz, can be yielded. Assume that Z ∼ TCP-ITL (a, β) for z ∈ (0, ∞) and a, β > 0,
then its moment-generating function may be computed by utilizing (6) and replacing
etz = ∑∞

m=0
tm

m! z
m and is provided via

E
[
etZ
]
=

∞

∑
m=0

∞

∑
i,j,k=0

∆i,j,k
tm

m!
β[m + k + 1, (2a(j + 1)−m− k− 1)] , (13)

where [2a(j + 1)] < m + k + 1.

4. Entropy Measures

Entropies are a measurement of the variation, instability, or unpredictability of a system.

4.1. The Rényi Entropy

The Rényi entropy (RE) [32] is used in ecology and statistics as a measure of diversity.
It is identified by the expression for ν > 0 and ν 6= 1.

Iν(Z) = (1− ν)−1 log
∫ +∞

0
f (z)νdz . (14)
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We employ the same series expansions and mathematical manipulation that we used
to calculate Equation (6) to achieve

Iν(Z) = (1− ν)−1 log

[
∞

∑
i,j,k=0

ωi,j,kβ[ν + k + 1, 2a(j + ν)− k− 1]

]
,

where

ωi,j,k =
(

aβ
π

)ν
2k+3ν(−1)i+j

(
ν + i− 1

i

)(
ν(β− 1) + 2βi

j

)(
ν(a− 1) + aj

k

)
.

4.2. Havrda and Charvat Entropy

The Havrda and Charvat entropy (HCE) [33] measure is provided via

HCν(x) =
1

21−ν − 1

[(∫ +∞

0
( f (x))ν dx

) 1
ν

− 1

]
, ν > 0, ν 6= 1. (15)

For the TCP-ITL distribution, the Havrda and Charvat entropy is obtained as

HCν(x) =
1

21−ν − 1

( ∞

∑
i,j,k=0

ωi,j,kβ[ν + k + 1, 2a(j + ν)− k− 1]

) 1
ν

− 1

.

4.3. Tsallis Entropy

The Tsallis entropy (TE) [34] measure is provided via

Tν(x) =
1

ν− 1

[
1−

∫ +∞

0
( f (x))ν dx

]
, ν > 0, ν 6= 1. (16)

For the TCP-ITL distribution, the Tsallis entropy is obtained as

Tν(x) =
1

ν− 1

[
1−

∞

∑
i,j,k=0

ωi,j,kβ[ν + k + 1, 2a(j + ν)− k− 1]

]
.

4.4. Arimoto Entropy

The Arimoto entropy (AE) [35] measure is provided via

Aν(x) =
ν

1− ν

[(∫ +∞

0
( f (x))ν dx

) 1
ν

− 1

]
, ν > 0, ν 6= 1. (17)

For the TCP-ITL distribution, the Arimoto entropy is obtained as

Aν(x) =
ν

1− ν

( ∞

∑
i,j,k=0

ωi,j,kβ[ν + k + 1, 2a(j + ν)− k− 1]

) 1
ν

− 1

.

Some numerical values of entropy are provided in Tables 2 and 3. We can notice from
Tables 2 and 3 the following comments:

• When a and β are fixed and ν is increasing, then the measures of RE, HCE, TE, and AE
are decreasing.

• When a and ν are fixed and β is increasing, then the measures of RE, HCE, TE, and AE
are increasing.

• When ν and β are fixed and a is increasing, then the measures of RE, HCE, TE, and AE
are decreasing.
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Table 2. Some numerical values of entropy at ν = 0.8, 1.5.

a β
ν = 0.8 ν = 1.5

Rényi Havrda and Charvat Tsallis Arimoto Rényi Havrda and Charvat Tsallis Arimoto

5.0

0.5 0.098 0.311 0.233 0.231 −0.087 −0.360 −0.208 −0.211

0.7 0.189 0.612 0.460 0.455 0.035 0.135 0.080 0.079

0.9 0.243 0.797 0.601 0.593 0.100 0.370 0.221 0.217

1.2 0.294 0.977 0.739 0.726 0.157 0.565 0.341 0.331

1.5 0.328 1.098 0.832 0.816 0.194 0.683 0.415 0.400

2.0 0.367 1.238 0.941 0.920 0.235 0.808 0.494 0.473

2.5 0.394 1.337 1.018 0.994 0.262 0.890 0.547 0.522

3.0 0.414 1.413 1.077 1.051 0.283 0.951 0.587 0.557

6.0

0.5 0.032 0.101 0.075 0.075 −0.140 −0.599 −0.342 −0.351

0.7 0.119 0.378 0.283 0.281 −0.024 −0.095 −0.055 −0.056

0.9 0.169 0.545 0.409 0.405 0.036 0.140 0.082 0.082

1.2 0.216 0.703 0.529 0.523 0.089 0.331 0.197 0.194

1.5 0.246 0.808 0.609 0.600 0.121 0.445 0.267 0.261

2.0 0.280 0.926 0.700 0.688 0.157 0.564 0.340 0.330

2.5 0.303 1.007 0.762 0.749 0.181 0.641 0.389 0.376

3.0 0.320 1.069 0.810 0.795 0.199 0.698 0.424 0.409

7.0

0.5 −0.021 −0.065 −0.048 −0.048 −0.185 −0.809 −0.457 −0.474

0.7 0.062 0.195 0.145 0.145 −0.072 −0.297 −0.171 −0.174

0.9 0.110 0.348 0.260 0.259 −0.016 −0.062 −0.036 −0.036

1.2 0.153 0.490 0.368 0.365 0.033 0.127 0.075 0.074

1.5 0.181 0.583 0.438 0.433 0.063 0.237 0.141 0.139

2.0 0.211 0.685 0.516 0.509 0.094 0.350 0.209 0.205

2.5 0.231 0.754 0.569 0.561 0.115 0.423 0.253 0.248

3.0 0.246 0.806 0.608 0.600 0.130 0.475 0.285 0.278

Table 3. Some numerical values of entropy at ν = 2.0, 2.5.

a β
ν = 2.0 ν = 2.5

Rényi Havrda and Charvat Tsallis Arimoto Rényi Havrda and Charvat Tsallis Arimoto

5.0

0.5 −0.150 −0.826 −0.377 −0.413 −0.192 −1.452 −0.654 −0.626

0.7 −0.015 −0.069 −0.034 −0.034 −0.047 −0.270 −0.140 −0.116

0.9 0.053 0.231 0.119 0.116 0.024 0.121 0.066 0.052

1.2 0.113 0.457 0.243 0.229 0.084 0.389 0.225 0.168

1.5 0.150 0.585 0.318 0.292 0.122 0.531 0.316 0.229

2.0 0.191 0.713 0.396 0.356 0.163 0.667 0.410 0.287

2.5 0.220 0.794 0.447 0.397 0.192 0.749 0.470 0.323

3.0 0.241 0.851 0.484 0.426 0.213 0.805 0.513 0.347
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Table 3. Cont.

a β
ν = 2.0 ν = 2.5

Rényi Havrda and Charvat Tsallis Arimoto Rényi Havrda and Charvat Tsallis Arimoto

6.0

0.5 −0.200 −1.171 −0.518 −0.586 −0.240 −1.994 −0.855 −0.860

0.7 −0.071 −0.354 −0.170 −0.177 −0.101 −0.646 −0.318 −0.278

0.9 −0.007 −0.034 −0.017 −0.017 −0.036 −0.203 −0.106 −0.088

1.2 0.047 0.204 0.105 0.102 0.019 0.099 0.054 0.043

1.5 0.080 0.336 0.176 0.168 0.053 0.258 0.145 0.111

2.0 0.116 0.468 0.250 0.234 0.089 0.409 0.237 0.176

2.5 0.140 0.551 0.298 0.275 0.113 0.500 0.296 0.216

3.0 0.158 0.609 0.332 0.305 0.131 0.563 0.338 0.243

7.0

0.5 −0.242 −1.491 −0.642 −0.745 −0.280 −2.523 −1.037 −1.087

0.7 −0.117 −0.619 −0.289 −0.309 −0.146 −1.016 −0.479 −0.438

0.9 −0.057 −0.282 −0.136 −0.141 −0.085 −0.525 −0.262 −0.226

1.2 −0.007 −0.034 −0.017 −0.017 −0.034 −0.192 −0.100 −0.083

1.5 0.023 0.102 0.052 0.051 −0.003 −0.019 −0.010 −0.008

2.0 0.055 0.236 0.122 0.118 0.029 0.145 0.080 0.063

2.5 0.076 0.319 0.167 0.160 0.050 0.244 0.137 0.105

3.0 0.091 0.378 0.199 0.189 0.065 0.311 0.177 0.134

5. Model Inference and Estimation Method

Hybrid censoring is discussed briefly in this section. Assume that n test units are
uniformly distributed with the PDF f (z; Θ) and that Θ is a vector of unknown parameters.
Let z1:n < z2:n < · · · < zn:n represent the ordered s of these test units. Remember that a life
test experiment is ended under hybrid censoring when either a pre-specified time T or a
pre-determined r number of units fail. In this scenario, an experiment is to be stopped at a
random time point κ, where κ = minimal(T; zr:n). As a result, the observed lifespan under
this censorship could fall into one of three categories:

Category I: z1:n < z2:n < · · · < zd:n, if d < r and zd:n < T < zd+1:n (type-I censored).
Category II: z1:n < z2:n < · · · < zr:n, if zr:n < T (type-II censored).
Category III: z1:n < z2:n < · · · < zn:n, if zn:n < T and n = r (complete sample).

Notice that Category I, Category II, and Category III, respectively, correspond to
the type-I, type-II censoring, and complete sample. Then, (z1:n < z2:n < · · · < zd:n)
is a censored hybrid sample with the PDF f (z; Θ) and the CDF F(z; Θ) describing its
distribution. The corresponding likelihood function can then be expressed as

L(Θ) ∝ [1− F(κ; a, β)]n−d
d

∏
i=1

f (z; a, β)

For more information on the hybrid censoring sample, see Balakrishnan and Kundu [36].
For more information examples, see [37]’s obtained Bayesian estimation and prediction for a
hybrid censored lognormal distribution.

To evaluate the estimation problem of the TCP-ITL distribution based on hybrid cen-
soring samples, this part uses three estimate methods: the maximum likelihood, maximum
product of spacing, and Bayesian.
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5.1. Maximum Likelihood Estimation

The maximum likelihood estimators (MLEs) of the TCP-ITL distribution were inves-
tigated. It was worked as the case when both Θ = (a, β) are unknown. Suppose that
z1, · · · , zn be a random sample from the TCP-ITL distribution and assume that Θ = (a, β)
be the parameter vector. The likelihood function of the TCP-ITL distribution under the
hybrid censored samples takes the form

Ln(Θ) =

(
8
π

)n
anβn

n

∏
i=1

zi(1 + zi)
−2a−1(1 + 2zi)

a−1

[
1−

{
(1+2zi)

a

(1+zi)
2a

}]β−1

[
1 +

(
1−

{
(1+2zi)

a

(1+zi)
2a

})2β
]×

1− 4
π

arctan

[
1−

{
(1 + 2κ)a

(1 + κ)2a

}]β
n−d

,

(18)

The log-likelihood (`) function is defined as follows:

`n(Θ) =n
[

ln
(

8
π

)
+ ln(a) + ln(β)

]
+

n

∑
i=1

ln(zi)− (2a + 1)
n

∑
i=1

ln(1 + zi) + (a− 1)
n

∑
i=1

ln(1 + 2zi)+

(β− 1)
n

∑
i=1

ln

[
1−

{
(1 + 2zi)

a

(1 + zi)
2a

}]
−

n

∑
i=1

ln

1 +

(
1−

{
(1 + 2zi)

a

(1 + zi)
2a

})2β


+ (n− d)ln

1− 4
π

arctan

[
1−

{
(1 + 2κ)a

(1 + κ)2a

}]β
,

(19)

The components of score vector Un(Θ) = ∂`n(Θ)
∂Θ =

(
∂`n(Θ)

∂a , ∂`n(Θ)
∂β

)
are given below

Ua(Θ) =
∂`n(Θ)

∂a
=

n
a
− 2

n

∑
i=1

ln(1 + zi) +
n

∑
i=1

ln(1 + 2zi) + (β− 1)
n

∑
i=1

{
(1+2zi)

(1+zi)
2

}a
ln
{

(1+2zi)

(1+zi)
2

}
1−

{
(1+2zi)

(1+zi)
2

}a +

2β
n

∑
i=1

(
1−

{
(1+2zi)

(1+zi)
2

}a)2β−1{
(1+2zi)

(1+zi)
2

}a
ln
{

(1+2zi)

(1+zi)
2

}
1 +

(
1−

{
(1+2zi)

(1+zi)
2

}a)4β

+

4β(n− d)
{

1+2κ

(1+2κ)2

}a[
1−

{
1+2κ

(1+2κ)2

}a]β−1

ln
[

1+2κ

(1+2κ)2

]
(

π − 4 arctan
[

1−
{

1+2κ

(1+2κ)2

}a]β
)(

1 +
[

1−
{

1+2κ

(1+2κ)2

}a]2β
) ,

(20)

and

Uβ(Θ) =
∂Ln(Θ)

∂β
=

n
β
−

4(n− d)
[

1−
{

1+2κ

(1+2κ)2

}a]β

ln
[

1−
{

1+2κ

(1+2κ)2

}a]
(

π − 4 arctan
[

1−
{

1+2κ

(1+2κ)2

}a]β
)(

1 +
[

1−
{

1+2κ

(1+2κ)2

}a]2β
) . (21)

To produce the MLE, two nonlinear systems of equations that are differentiating
(20) and (21) with respect to α and β and equating each solution to zero must be solved
concurrently. By using the ‘maxLik’ package, which uses the Newton–Rabson (NR) method
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of maximization in the maximum likelihood computations, one can utilize the R statistical
programming language software to calculate the desired MLEs α and β for any given
data set.

5.2. Maximum Product of Spacing Method

If z(1) < · · · < z(n) is a random sample of the size n, you can describe the uniform
spacing as:

Di(Θ) = F(z(i), Θ)− F(z(i−1), Θ); i = 1, . . . , n + 1, (22)

where Di(Θ) denotes the uniform spacings, F(z(0), Θ) = 0, F(z(n+1), Θ) = 1, and

∑n+1
i=1 Di(Θ) = 1. This is the general form of MPS with hybrid censored samples.

PS(Θ) ∝ [1− F(κ, Θ)]n−d
d+1

∏
i=1

Di(Θ) (23)

The maximum product of spacing (MPS) estimators (MPSE) of the TCP-ITL distri-
bution parameters based on hybrid censored samples can be obtained by maximizing

PS(Θ) ∝
d+1

∏
i=1

 4
π

arctan

[
1−

{
(1 + 2zi)

a

(1 + zi)
2a

}]β

− 4
π

arctan

[
1−

{
(1 + 2zi−1)

a

(1 + zi−1)
2a

}]β
1− 4

π
arctan

[
1−

{
(1 + 2κ)a

(1 + κ)2a

}]β
n−d (24)

with respect to a and β. Further, the MPSE of the TCP-ITL distribution can also be obtained
by solving the nonlinear equation of derivatives of ln[PS(Θ)] with respect to a, and β.

5.3. Bayesian Estimation

In this subsection, the Bayesian estimation of the parameter of the model is obtained
when data are observed based on the squared error loss function (SELF), which is defined
by

LSELF = (Θ, Θ̌) = (Θ̌−Θ)2,

where Θ̌ is an estimator of Θ. Denote the prior and posterior distributions of Θ by π(Θ)
and π∗(Θ | x), respectively. Under the SELF, the Bayesian estimation of any function B(Θ)
of Θ is given by

ṽSELF = E[Θ | x] =
∫ ∞

0

∫ ∞

0
Θπ∗(Θ | x)dadβ. (25)

Prior distribution is important for the development of Bayes estimators.
Under the assumption of gamma prior distributions, we investigate this estimate prob-

lem. Therefore, it is assumed here that a and β follow independent gamma distributions
with a ∼ Γ(η1, b1), and β ∼ Γ(η2, b2), with probability densities given by, respectively,

π(a) ∝ aη1−1e−
a

b1 , π(β) ∝ βη2−1e−
β

b2 , a, β > 0, ηi, bi > 0, i = 1, 2. (26)

Using the informative prior (26) and the likelihood function (18), the joint posterior
density can be derived as follows:
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Π∗(Θ) ∝an+η1−1e−
a

b1 βn+η2−1e−
β

b2

n

∏
i=1

zi(1 + zi)
−2a−1(1 + 2zi)

a−1

[
1−

{
(1+2zi)

a

(1+zi)
2a

}]β−1

[
1 +

(
1−

{
(1+2zi)

a

(1+zi)
2a

})2β
]×

1− 4
π

arctan

[
1−

{
(1 + 2κ)a

(1 + κ)2a

}]β
n−d

.

(27)

The marginal posterior densities of the parameters a and β can be derived as

π∗(a) ∝ an+η1−1e−
a

b1

n

∏
i=1

(1 + zi)
−2a−1(1 + 2zi)

a−1

[
1−

{
(1+2zi)

a

(1+zi)
2a

}]β−1

[
1 +

(
1−

{
(1+2zi)

a

(1+zi)
2a

})2β
]×

1− 4
π

arctan

[
1−

{
(1 + 2κ)a

(1 + κ)2a

}]β
n−d

π∗(β) ∝ βn+η2−1e−
β

b2

n

∏
i=1

[
1−

{
(1+2zi)

a

(1+zi)
2a

}]β−1

[
1 +

(
1−

{
(1+2zi)

a

(1+zi)
2a

})2β
]
1− 4

π
arctan

[
1−

{
(1 + 2κ)a

(1 + κ)2a

}]β
n−d

Because the marginal posterior densities in (28) are not well-known distributions,
we will utilize the Metropolis–Hastings sampler to produce values for a and β using the
normal proposal distribution in (28).

Furthermore, Chen and Shao’s [38] approach was widely used to create the highest
posterior density (HPD) intervals for the Bayesian estimation with uncertain benefit distri-
bution parameters. For example, using two endpoints from the MCMC sample outputs,
2.5% and 97.5% percentiles, a 95% HPD interval can be produced. The Bayes trustworthy
intervals for the β, θ, and δ parameters are calculated as follows:

1. Sorted parameters as ã[1] < ã[2] < . . . < ã[N], and β̃[1] < β̃[2] < . . . < β̃[N], and N is
the length of MCMC generated.

2. The 95% symmetric credible intervals of ã and β̃ become
(

ãL 25
1000 , ãL 975

1000

)
and(

β̃L 25
1000 , β̃L 975

1000

)
.

6. Simulation

In this section, we conduct a simulation study to compare the performance of the pro-
posed methods. We first simulate the hybrid censored data from the TCP-ITL distribution
for different choices of n and r for all cases as:

If n = 50, r = 25, 35, and 50. While n = 100, r = 70, 85, and 100.
The time of the hybrid censored sample was changed for each case as follows:
In Table 4: If T = 15, 40, and 9999 when a = 0.35, β = 1.5. If T = 2.3, 3.7, and 999 when

a = 1.2, β = 1.5. If T = 1, 1.7, and 99 when a = 3, β = 1.5.
In Table 5: If T = 1.3, 4.2, and 9999 when a = 0.35, β = 0.5. If T = 0.65, 1.2, and 99

when a = 1.2, β = 0.5. If T = 0.35, 0.6, and 99 when a = 3, β = 0.5.
In Table 6: If T = 50, 350, and 99,999,999 when a = 0.35, β = 3. If T = 6, 9, and 99

when a = 1.2, β = 3. If T = 1.6, 2.5, and 99 when a = 3, β = 3.
In the simulation study, the comparison between the MLE, MPS, and Bayesian esti-

mation methods were discussed, although we know it is impossible to compare Bayesian
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methods to a classical estimation method, but by using information of the MLE to generate
the Bayesian estimate, we can compare between the MLE and Bayesian estimation methods.
Many recent papers discussed the comparison between the MLE and Bayesian and also
different estimation methods. The mathematical difference between the MLE and Bayesian
is the parameters have prior distribution (random variables). We used gamma as the prior
distribution with shapes and scale parameters (hyper-parameters). Now, how to select the
hyper-parameters? We select the hyper-parameters by using the information of the MLE
and gamma information. This method is denoted as the elicitation of hyper-parameters,
see Dey et al. [39].

By equating â and β̂ with the mean and variance of gamma priors distribution, we
may determine their respective means and variances. We obtain

1
N

N

∑
j=1

âj = η1b1 &
1
N

N

∑
j=1

β̂j = η2b2,

1
N − 1

N

∑
j=1

(
âj − 1

N

N

∑
j=1

âj

)2

= b2
1η1 &

1
N − 1

N

∑
j=1

(
β̂j − 1

N

N

∑
j=1

β̂j

)2

= b2
2η2,

where N is a total iteration of simulation. Now, on solving the above two equations,
the estimated hyper-parameters can be written as

η1 =

(
1
N ∑N

j=1 âj
)2

1
N−1 ∑N

j=1

(
âj − 1

N ∑N
j=1 âj

)2 & b1 =

1
N−1 ∑N

j=1

(
âj − 1

N ∑N
j=1 âj

)2

1
N ∑N

j=1 âj
,

η2 =

(
1
N ∑N

j=1 β̂j
)2

1
N−1 ∑N

j=1

(
β̂j − 1

N ∑N
j=1 β̂j

)2 & b2 =

1
N−1 ∑N

j=1

(
β̂j − 1

N ∑N
j=1 β̂j

)2

1
N ∑N

j=1 β̂j

We then compute the MLE and MPS of a and β using the NR algorithm and Bayesian
estimates using the Metropolis–Hastings (MH) algorithm based on 10000 Monte Carlo
simulations. We would like to point out that we used the R programming language to
generate estimators for the shake computation. We recommend utilizing the ‘maxLik’
package, which solves classical estimates using the NR algorithm of maximizing in numer-
ical calculations, see [40], and the ‘CODA’ package, which simulates MCMC varieties to
generate Bayesian estimates, see [41]. It is seen that the performance of the MLE, MPS,
and Bayesian estimates were obtained using the mean square error (MSE) and the length
of the confidence intervals values. In the confidence interval, the asymptotic confidence
interval for the MLE and MPS were determined where the length of these terms is L.ACI,
see [42,43]. While in the Bayesian estimation, the credible confidence interval (L.CCI) was
obtained. To determine the best method, the smallest terms of the MSE and the length of
the confidence interval values were selected.
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Table 4. MSE and length of CI for MLE, MPS, and Bayesian estimation for parameter of the TCP-ITL
based on hybrid censored samples: when β = 1.5.

β = 1.5 n = 50 MLE MPS Bayesian

n a T r MSE L.ACI MSE L.ACI MSE L.CCI

50

0.35

15 25
a 0.0237 0.5321 0.0191 0.5331 0.0137 0.2798

β 0.2496 1.5783 0.1684 1.5839 0.0253 0.5015

40 35
a 0.0133 0.4077 0.0111 0.4076 0.0130 0.2333

β 0.1735 1.3588 0.1248 1.3582 0.0186 0.4117

9999 50
a 0.0068 0.2867 0.0059 0.2869 0.0051 0.1909

β 0.1107 1.0833 0.0830 1.0840 0.0083 0.3070

1.2

2.3 25
a 0.2271 1.6155 0.1731 1.6163 0.0191 0.4758

β 0.2692 1.5965 0.1701 1.5975 0.0193 0.4719

3.7 35
a 0.1157 1.2142 0.1009 1.2137 0.0147 0.4122

β 0.1694 1.3425 0.1251 1.3425 0.0163 0.4217

999 50
a 0.0569 0.8291 0.0506 0.8288 0.0086 0.2957

β 0.1002 1.0259 0.0780 1.0256 0.0078 0.3024

3

1 25
a 1.2864 3.8258 0.9727 3.8240 0.0183 0.5217

β 0.2871 1.6378 0.1782 1.6374 0.0199 0.4883

1.7 35
a 0.7157 2.9248 0.5658 2.9243 0.0135 0.4383

β 0.1825 1.3623 0.1226 1.3617 0.0144 0.3992

99 50
a 0.4002 2.2010 0.3441 2.2041 0.0073 0.3198

β 0.1340 1.1830 0.0984 1.1845 0.0076 0.3008

100

0.35

15 25
a 0.0066 0.3022 0.0063 0.3022 0.0053 0.2089

β 0.0981 1.0792 0.0793 1.0795 0.0480 0.5019

40 35
a 0.0044 0.2497 0.0045 0.2500 0.0041 0.1889

β 0.0716 0.9579 0.0648 0.9581 0.0342 0.4066

9999 50
a 0.0025 0.1842 0.0023 0.1841 0.0037 0.1305

β 0.0487 0.7806 0.0415 0.7805 0.0156 0.2922

1.2

2.3 70
a 0.0732 1.0123 0.0727 1.0132 0.0279 0.4468

β 0.0926 1.0624 0.0792 1.0634 0.0314 0.4344

3.7 85
a 0.0466 0.8129 0.0461 0.8145 0.0225 0.3608

β 0.0643 0.9074 0.0580 0.9076 0.0259 0.3961

999 100
a 0.0257 0.5890 0.0256 0.5889 0.0152 0.2640

β 0.0500 0.7910 0.0452 0.7905 0.0120 0.2796

3

1 70
a 0.3925 2.3521 0.3911 2.3511 0.0234 0.5292

β 0.0805 0.9928 0.0690 0.9929 0.0302 0.4249

1.7 85
a 0.2394 1.8270 0.2246 1.8260 0.0160 0.4178

β 0.0600 0.8645 0.0501 0.8641 0.0242 0.3680

99 100
a 0.1572 1.4551 0.1551 1.4550 0.0084 0.3008

β 0.0503 0.7868 0.0442 0.7885 0.0116 0.2753
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Table 5. MSE and length of CI for MLE, MPS, and Bayesian estimation for parameter of the TCP-ITL
based on hybrid censored samples: when β = 0.5.

β = 0.5 MLE MPS Bayesian

n a T r MSE L.ACI MSE L.ACI MSE L.CCI

50

0.35

1.3 25
a 0.1140 1.0670 0.0744 1.0665 0.0222 0.4543

β 0.0183 0.4481 0.0140 0.4480 0.0163 0.3358

4.2 35
a 0.0336 0.6208 0.0257 0.6203 0.0168 0.3049

β 0.0101 0.3513 0.0089 0.3513 0.0100 0.3040

9999 50
a 0.0127 0.3708 0.0096 0.3707 0.0106 0.2333

β 0.0085 0.3158 0.0069 0.3156 0.0082 0.2306

1.2

0.65 25
a 0.6107 2.5305 0.4204 2.5306 0.0202 0.5273

β 0.0151 0.4121 0.0116 0.4119 0.0149 0.2940

1.2 35
a 0.3686 2.0352 0.2721 2.0364 0.0140 0.4413

β 0.0102 0.3455 0.0082 0.3455 0.0100 0.2739

99 50
a 0.1371 1.2025 0.1020 1.2028 0.0070 0.2993

β 0.0075 0.2954 0.0063 0.2956 0.0069 0.2206

3

0.35 25
a 0.9983 3.5633 0.8590 3.5595 0.0205 0.5570

β 0.0091 0.3337 0.0075 0.3334 0.0082 0.2390

0.6 35
a 0.8104 3.4313 0.8146 3.4303 0.0130 0.4183

β 0.0083 0.3222 0.0071 0.3220 0.0080 0.2512

99 50
a 0.5163 2.5885 0.5384 2.5902 0.0067 0.3180

β 0.0061 0.2744 0.0060 0.2771 0.0060 0.2340

100

0.35

1.3 70
a 0.0348 0.6478 0.0276 0.6474 0.0025 0.1868

β 0.0082 0.3248 0.0072 0.3246 0.0046 0.1416

4.2 85
a 0.0143 0.4299 0.0121 0.4296 0.0001 0.0432

β 0.0052 0.2616 0.0046 0.2622 0.0002 0.0445

9999 100
a 0.0049 0.2458 0.0042 0.2460 0.0001 0.0310

β 0.0034 0.2134 0.0032 0.2137 0.0001 0.0340

1.2

0.65 70
a 0.2500 1.8039 0.2167 1.8030 0.0271 0.5213

β 0.0060 0.2823 0.0055 0.2824 0.0053 0.2158

1.2 85
a 0.1291 1.3028 0.1123 1.3024 0.0184 0.3999

β 0.0044 0.2403 0.0039 0.2401 0.0038 0.2064

99 100
a 0.0558 0.8371 0.0515 0.8380 0.0090 0.2865

β 0.0032 0.2082 0.0032 0.2089 0.0031 0.2028

3

0.35 70
a 0.6337 3.0640 0.6528 3.0630 0.0194 0.5163

β 0.0032 0.2105 0.0034 0.2108 0.0030 0.1784

0.6 85
a 0.4776 2.5801 0.4571 2.5778 0.0151 0.4629

β 0.0030 0.2131 0.0032 0.2135 0.0030 0.1695

99 100
a 0.3354 2.0429 0.2886 2.0430 0.0069 0.3018

β 0.0029 0.2005 0.0028 0.2005 0.0029 0.1496
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Table 6. MSE and length of CI for MLE, MPS, and Bayesian estimation for parameter of the TCP-ITL
based on hybrid censored samples: when β = 3.

β = 3 MLE MPS Bayesian

n a T r MSE L.ACI MSE L.ACI MSE L.CCI

50

0.35

50 25
a 0.0068 0.3057 0.0069 0.3061 0.0049 0.1758

β 1.1615 3.0928 0.6705 3.0949 0.0201 0.5521

350 35
a 0.0031 0.2028 0.0029 0.2026 0.0028 0.1444

β 0.2860 1.8030 0.2277 1.8011 0.0145 0.4232

99,999,999 50
a 0.0018 0.1661 0.0017 0.1665 0.0017 0.1252

β 0.1710 1.6568 0.2136 1.6612 0.0062 0.2830

1.2

6 25
a 0.0068 0.3057 0.0069 0.3061 0.0049 0.1758

β 1.1615 3.0928 0.6705 3.0949 0.0201 0.5521

9 35
a 0.0031 0.2028 0.0029 0.2026 0.0028 0.1444

β 0.2860 1.8030 0.2277 1.8011 0.0145 0.4232

99 50
a 0.0018 0.1661 0.0021 0.1665 0.0016 0.1252

β 0.1710 1.6568 0.2136 1.6612 0.0062 0.2830

3

1.6 25
a 0.7332 2.9324 0.5755 2.9344 0.0186 0.5266

β 1.5895 3.6586 0.8778 3.6556 0.0195 0.5473

2.5 35
a 0.4010 2.2494 0.3439 2.2497 0.0148 0.4288

β 0.8873 2.9741 0.6046 2.9713 0.0140 0.4445

99 50
a 0.2667 1.8355 0.2507 1.8340 0.0067 0.2873

β 0.7136 2.6387 0.4974 2.6364 0.0073 0.3237

100

0.35

50 70
a 0.0020 0.1861 0.0025 0.1860 0.0019 0.1273

β 0.1224 1.4141 0.1571 1.4126 0.0233 0.5006

350 85
a 0.0016 0.1583 0.0018 0.1582 0.0015 0.1123

β 0.1581 1.5309 0.1712 1.5294 0.0191 0.4372

99,999,999 100
a 0.0010 0.1253 0.0011 0.1252 0.0009 0.0886

β 0.1096 1.3116 0.1323 1.3108 0.0089 0.2934

1.2

6 70
a 0.0317 0.6780 0.0325 0.6783 0.0330 0.3435

β 0.3920 2.1900 0.3329 2.1925 0.0258 0.5190

9 85
a 0.0273 0.6296 0.0276 0.6290 0.0309 0.3020

β 0.3410 2.0869 0.3076 2.0848 0.0160 0.4154

99 100
a 0.0184 0.5000 0.0179 0.5003 0.0169 0.2427

β 0.2521 1.7281 0.2100 1.7313 0.0074 0.3007

3

1.6 70
a 0.2533 1.8953 0.2500 1.8933 0.0227 0.4931

β 0.5487 2.5078 0.4229 2.5054 0.0210 0.4886

2.5 85
a 0.1871 1.5921 0.1690 1.5980 0.0210 0.4077

β 0.3419 1.9912 0.2669 2.0014 0.0159 0.4401

99 100
a 0.1343 1.3425 0.1250 1.3411 0.0096 0.2926

β 0.2697 1.7788 0.2251 1.7769 0.0076 0.3080
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We can draw the following conclusions from Tables 4–6. As expected, the proposed
estimates of a and β perform better as n increases in terms of their MSE and length of CI.
The findings showed that the MSE and length of CI decrease with the sample size. These
results unequivocally show the accuracy and consistency of the estimators. As a result,
the three estimation approaches do a good job of the TCP-ITL distribution parameters.
We show the Bayesian method of estimation is better than the other methods. It is also
observed that the L.CCI are smaller as compared to the length of the CI. Figure 6 discusses
the heat map of the MSE for Tables 4–6, including the following:

X-label: Bayes1 is the MSE of a for the Bayesian, Bayes2 is the MSE of β for the
Bayesian, MPS1 is the MSE of a for the MPS, MPS2 is the MSE of β for the MPS, MLE1 is
the MSE of a for the MLE, and MLE2 is the MSE of β for the MLE.

Y-label: n50c1s1 is the MSE when n = 50, a = 0.35, r = 25, and the first T value;
n50c1s2 is the MSE when n = 50 a = 0.35, r = 35, and the second T value; n50c1s3 is the
MSE when n = 50, a = 0.35, r = 50, and the third T value; n50c2s1 is the MSE when n = 50,
a = 1.2, r = 25, and the first T value; n50c2s2 is the MSE when n = 50, a = 1.2, r = 35,
and the second T value; n50c2s3 is the MSE when n = 50, a = 1.2, r = 50, and the third
T value; n50c3s1 is the MSE when n = 50, a = 3, r = 25, and the first T value; n50c3s2 is
the MSE when n = 50, a = 3, r = 35, and the second T value; n50c3s3 is the MSE when
n = 50, a = 3, r = 50, and the third T value; n100c1s1 is the MSE when n = 100, a = 0.35,
r = 70, and the first T value; n100c1s2 is the MSE when n = 100, a = 0.35, r = 85, and the
second T value; n100c1s3 is the MSE when n = 100, a = 0.35, r = 100, and the third T value;
n100c2s1 is the MSE when n = 100, a = 1.2, r = 70, and the first T value; n100c2s2 is the
MSE when n = 100, a = 1.2, r = 85, and the second T value; n100c2s3 is the MSE when
n = 100, a = 1.2, r = 100, and the third T value; n100c3s1 is the MSE when n = 100, a = 3,
r = 70, and the first T value; n100c3s2 is the MSE when n = 100, a = 3, r = 85, and the
second T value; n100c3s3 is the MSE when n = 100, a = 3, r = 100, and the third T value.
The dark color indicates that the MSE value is large, while the light color indicates that the
MSE value is small.
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Figure 6. Cont.
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Figure 6. Heat maps of MSE results.

7. Application of Real Data

In this section, three actual data sets are used to demonstrate the TCP-ITL distribution’s
potential. The TCP-ITL distribution is contrasted with many rival models, including the odd
log-logistic modified Weibull (OLLMW) distribution by Saboor et al. [44], Kumaraswamy
Weibull (KW) distribution by Cordeiro et al. [45], extended odd Weibull Lomax (EOWL)
distribution by Alsuhabi et al. [46], Weibull–Lomax (WL) distribution by Tahir et al. [47],
extended Weibull (EW) distribution by Peng et al. [48], modified Kies inverted Topp–Leone
(MKITL) distribution by Almetwally et al. [49], inverse Weibull (IW) distribution and
X-gamma Lomax (XGL) distribution by Almetwally et al. [50], generalized inverse Weibull
(GIW) distribution by De Gusmao et al. [51], and gamma distribution.

For Global Reserves Natural data set I in Table 7, we obtained different comparison
models in Table 8 and results of estimation methods. Tables 9–11 provide values for the
Cramer–von Mises (CVM), Anderson–Darling (AD), and Kolmogorov–Smirnov (KSD)
statistics, along with their P-values (PVKS), for all the models fitted based on the three real
data sets. These statistics include the Akaike information criterion (AIC), correct Akaike
information criterion (CAIC), Bayesian information criterion (BIC), and Hannan–Quinn.
The MLE and standard errors (SE) of the parameters for the models under consideration
are also included in these tables. The SE values were obtained by the square root of the
diagonal of the inverse of a Hessian matrix, where we obtained the Hessian matrix by using
the ‘maxLik’ package. When compared to all the other models applied to each real data set
in Tables 9–11, the TCP-ITL distribution has the highest P-value and the lowest KS, CvM,
AD, AIC, BIC, HQIC, and CAIC values.

Figures 7–9 show the fit empirical, histogram, QQ-plot, and PP-plot for the TCP-ITL
distribution for the COVID-19 data of the United Kingdom and Canada.

Tables 8, 12, and 13 discuss the different estimation methods for the parameters of the
TCP-ITL distribution based on the hybrid censored samples. By these results, we note the
time T increases and the size r increases, and the SE decreased. The Bayesian estimation
method has the smallest SE for the parameters of the TCP-ITL distribution based on the
hybrid censored samples comparing the MLE. The MPS is not applicable in data I and III
because we note the data sets have the same observation.

For the Bayesian estimation, we discussed Figures 10–12 of the MCMC results to check
the convergences, and we conclude the MCMC results have convergence.
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Figure 7. Fitted PDF for Global Reserves Natural data set I.
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Figure 9. Fitted PDF for flood level data set III.
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Table 7. The percent Global Reserves Natural Gas of the Countries (2020).

Rank Country % Global Reserves Rank Country % Global Reserves

1 Russia 19.9 23 Ukraine 0.6

2 Iran 17.1 24 Malaysia 0.5

3 Qatar 13.1 25 Uzbekistan 0.4

4 Turkmenistan 7.2 26 Oman 0.4

5 United States 6.7 27 Vietnam 0.3

6 China 4.5 28 Israel 0.3

7 Venezuela 3.3 29 Argentina 0.2

8 Saudi Arabia 3.2 30 Pakistan 0.2

9 UAE 3.2 31 Trinidad 0.2

10 Nigeria 2.9 32 Brazil 0.2

11 Iraq 1.9 33 Myanmar 0.2

12 Canada 1.3 34 United Kingdom 0.1

13 Australia 1.3 35 Thailand 0.1

14 Azerbaijan 1.3 36 Mexico 0.1

15 Algeria 1.2 37 Bangladesh 0.1

16 Kazakhstan 1.2 38 Netherlands 0.1

17 Egypt 1.1 39 Bolivia 0.1

18 Kuwait 0.9 40 Brunei 0.1

19 Norway 0.8 41 Peru 0.1

20 Libya 0.8 42 Syria 0.1

21 Indonesia 0.7 43 Yemen 0.1

22 India 0.7 44 Papua New Guinea 0.1

Table 8. MLE and Bayesian estimation for TCP-ITL based on hybrid censored samples: Data I.

MLE Bayesian

r T Estimates SE Lower Upper Estimates SE Lower Upper

44 max(X)
a 1.1550 0.3181 0.5315 1.7785 3.1200 0.2646 2.9017 4.0398

β 0.5046 0.0825 0.3428 0.6664 1.2419 0.0521 0.9838 1.3469

35 0.6
a 1.6910 0.9337 0.1390 3.5210 5.2507 0.8119 4.6740 5.7682

β 0.5646 0.1286 0.3124 0.8167 1.1762 0.1266 0.7058 1.2751

35 1.3
a 1.7091 0.6172 0.4994 2.9188 5.1838 0.7314 4.8602 5.7866

β 0.5720 0.1077 0.3609 0.7831 1.4081 0.1030 0.9885 1.6014

40 6
a 1.0551 0.3351 0.3982 1.7119 2.9117 0.6727 1.7629 4.3244

β 0.4900 0.0835 0.3264 0.6535 1.1507 0.0921 0.7596 1.5817
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Table 9. MLE and different measures for each model of Data set I Global Reserves Natural.

Estimates SE KSD PVKS AIC BIC HQIC CAIC CVM AD

TCP-ITL
a 1.1550 0.3181

0.1417 0.3401 131.9224 135.4908 132.2151 133.2457 0.1378 1.0693
β 0.5046 0.0825

ITL α 2.3646 0.3565 0.2992 0.0008 153.2059 154.9901 153.3012 153.8676 0.1465 1.1182

OLLMW

α 12.4358 8.0350

0.1371 0.3797 135.3472 142.4840 136.3729 137.9939 0.1398 1.0957
β 0.0010 0.0021

θ 0.7124 0.0169

λ 0.0591 0.0391

KW

α 6.4653 3.9410

0.1779 0.1234 133.6958 140.8326 134.7214 136.3424 0.1386 1.0840
β 0.4598 0.4665

θ 25.6596 25.0357

λ 0.4001 0.1156

EOWL

α 3.3258 2.0215

0.1438 0.3231 132.2461 139.3829 133.2718 134.8928 0.1389 1.0902
β 1.0951 1.5178

θ 0.1754 0.0568

λ 0.0098 0.0124

EW

α 0.5880 0.0753

0.1785 0.1212 140.8229 146.1754 141.4229 142.8078 0.2236 1.5563β 98.5859 75.3859

θ 0.1139 0.0503

MKITL
α 0.4394 0.0593

0.1642 0.1861 133.9317 137.5001 135.2551 134.2244 0.1640 1.2311
β 1.4542 0.2583

IW
α 0.7922 0.0965

0.1602 0.2087 141.9545 142.5545 147.307 143.9394 0.2396 1.6480
β 0.3889 0.0870

GIW

α 0.4919 0.8661

0.1602 0.2088 136.5200 141.8726 138.5050 137.1200 0.1390 1.0993β 0.6825 0.9034

θ 0.7918 0.0965

Gamma
α 0.5034 0.0887

0.1980 0.0635 144.6730 148.2414 144.9657 145.9963 0.3039 2.0003
β 0.2240 0.0618

Table 10. MLE and different measures for each model of Senegal COVID-19 data II.

Estimates SE KSD PVKS AIC BIC HQIC CAIC CVM AD

TCP-ITL
α 46.4611 9.4888

0.0885 0.9507 −64.7732 −61.9053 −64.3447 −63.8383 0.0311 0.2435
β 2.7087 0.7494

EK

α 0.3571 0.4269

0.1094 0.8134 −63.2672 −58.9652 −62.3783 −61.8649 0.0389 0.2669β 6.1680 2.6239

θ 104.0626 35.8501

APK

α 0.0237 0.0481

0.0882 0.9520 −61.4001 −57.0981 −60.5112 −59.9978 0.0371 0.3426β 3.0733 0.4271

θ 27.3055 20.9555

MOK

α 13.3874 3.2429

0.11037 0.8051 −56.4469 −52.145 −55.5581 −55.0446 0.0798 0.6778β 1.1461 0.8567

θ 15.3077 10.0012
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Table 10. Cont.

Estimates SE KSD PVKS AIC BIC HQIC CAIC CVM AD

K
α 2.4382 0.3335

0.1353 0.5751 −59.9538 −57.0858 −59.5252 −59.0189 0.0741 0.6409
β 31.9917 14.6988

Beta
α 4.7004 1.1552

0.1083 0.8225 −63.0484 −60.1804 −62.6198 −62.1135 0.0440 0.3988
β 17.4681 4.4646

ITL α 30.2539 5.4338 0.1904 0.1853 −55.7185 −54.2845 −55.5805 −55.2510 0.0341 0.3048

Gamma
α 6.1575 1.5235

0.0916 0.9358 −64.3018 −61.4338 −63.8732 −63.3669 0.0331 0.2886
β 29.1566 7.5164

Table 11. MLE and different measures for each model of the flood level data III.

Estimates SE KSD PVKS AIC BIC HQIC CAIC CVM AD

TCP-ITL
a 30.4065 6.4173

0.1284 0.8964 −28.4612 −26.4698 −27.7553 −28.0725 0.0454 0.2768
β 11.4472 5.7151

EK

α 0.2393 0.1882

0.1508 0.7534 −26.0267 −23.0395 −24.5267 −25.4436 0.0626 0.3739β 4.3099 1.0001

θ 815.3741 185.8772

APK

α 103.3454 57.3081

0.1864 0.4904 −21.2119 −18.2247 −19.7119 −20.6287 0.1384 0.8266β 1.7417 0.4553

θ 7.8359 2.8893

MOK

α 0.0152 0.0347

0.1300 0.8877 −25.8470 −22.8598 −24.3470 −25.2639 0.0514 0.3292β 6.4466 1.2659

θ 5.3311 11.0554

K
α 3.3787 0.6043

0.2176 0.2998 −21.9465 −19.9551 −21.2407 −21.5578 0.1673 0.9748
β 12.0126 5.4759

Beta
α 6.8315 2.1181

0.2063 0.3625 −24.3671 −22.3757 −23.6613 −23.9784 0.1267 0.7514
β 9.2373 2.8915

ITL α 10.6952 2.3915 0.3721 0.0079 −6.4280 −5.4322 −6.2058 −6.2336 0.0699 0.4305

Gamma
α 13.5708 4.2398

0.1726 0.5906 −26.8643 −24.8728 −26.1584 −26.4756 0.0753 0.4619
β 32.1197 10.2224

Table 12. MLE, MPS, and Bayesian estimation for parameters of TCP-ITL based on hybrid censored
samples: Data II.

MLE MPS Bayesian

r T Estimates SE Lower Upper Estimates SE Lower Upper Estimates SE Lower Upper

31 1
a 46.4063 9.4815 27.8226 64.9900 46.4063 9.4815 27.8226 64.9900 22.9116 4.9305 14.0346 32.8419

β 2.7053 0.7484 1.2384 4.1722 2.7053 0.7484 1.2384 4.1722 1.8495 0.4806 0.9842 2.7881

20 0.2
a 47.8768 14.6865 19.0912 76.6623 40.2913 13.7695 13.3030 67.2796 4.2107 2.1515 1.4998 6.9777

β 2.7959 1.0181 0.8004 4.7913 2.2561 0.8198 0.6494 3.8628 0.7513 0.2465 0.3795 1.1235

20 0.25
a 47.1387 12.5108 22.6176 71.6599 40.8599 11.8221 17.6887 64.0311 7.9281 2.7097 3.4907 12.5283

β 2.7611 0.9107 0.9762 4.5461 2.2833 0.7497 0.8138 3.7528 0.9641 0.2724 0.5293 1.4805

25 0.25
a 50.3660 11.6432 27.5453 73.1866 44.6581 11.0658 22.9692 66.3471 12.7954 3.3827 6.9520 19.2480

β 2.9630 0.9138 1.1720 4.7540 2.4867 0.7619 0.9934 3.9801 1.2119 0.3141 0.6683 1.8111
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Table 13. MLE and Bayesian estimation for TCP-ITL based on hybrid censored samples with different
cases: Data set III.

MLE Bayesian

r T Estimates SE Lower Upper Estimates SE Lower Upper

20 1
a 30.4065 6.4173 17.8286 42.9843 17.5977 2.5528 11.0885 24.5465

β 11.4472 5.7151 0.2456 22.6487 3.4733 0.8221 1.4866 5.7411

15 0.45
a 34.8751 7.8562 19.4770 50.2733 11.8472 3.0320 6.1586 17.5158

β 15.5375 7.9139 0.0263 33.0088 1.9487 0.8781 0.9094 3.2611

18 0.5
a 34.0657 7.3325 19.6941 48.4374 14.2534 2.9212 8.6380 20.6930

β 14.7475 7.2701 0.4981 30.4805 2.4022 0.8691 1.0307 3.8191

7.1. Data Set I

The first data set represents the percent of the Global Reserves of Natural Gas of
the Countries (2020). The data set was obtained from the following electronic address:
https://worldpopulationreview.com/country-rankings/natural-gas-by-country. The data
set is reported in Table 7.

7.2. Data Set II

The second data set was obtained from the WHO [52],with the set of data belonging to
Senegal for 31 days from 18 July 2021 to 17 August 2021 where the mortality rate received
for COVID-19 is 0.1017, 0.1179, 0.1361, 0.1720, 0.1885, 0.1867, 0.1465, 0.0904, 0.2144, 0.0883,
0.2447, 0.1207, 0.1869, 0.2504, 0.3282, 0.2271, 0.2897, 0.1437, 0.4596, 0.2817, 0.2469, 0.1528,
0.2269, 0.1954, 0.4639, 0.2820, 0.1323, 0.2334, 0.2470, 0.1882, and 0.2022. The mortality rate
equation is

mortality ratej =
New deathsj

Cumulative casesi −Cumulative deaths(i−1)

Throughout this subsection, we apply the TCP-ITL model to a real-world data set to
assess its adaptability. To compare the TCP-ITL model to the other six fitted distributions,
one, two, and three parameters are employed. We compare the TCP-ITL distribution with
the ITL [23], beta, Kumaraswamy (K), Marshall–Olkin–Kumaraswamy (MOK) [53], alpha
power Kumaraswamy (MOK) [54], and exponentiated Kumaraswamy (EK) [55].

The parameter estimates of the MLE with the standard error (SE) and the numerical
value are presented in Tables 9 and 10. Moreover, the numerical values of the KSD and its
PVKS, AIC, BIC, HQIC, and CAIC statistics for the data sets are presented in Tables 9 and 10.
From Tables 9 and 10, the values of the KSD, AIC, BIC, HQIC, and CAIC are minimum for
the TCP-ITL distribution. Thus, the TCP-ITL distribution is a better model for the data sets
as compared with the other six models. Figures 7–9 display the fitted PDF plots of each
data set.

7.3. Data Set III

The third data set, given in Dumonceaux and Antle, includes 20 observations of the
maximum flood level (in millions of cubic feet per second) for the Susquehanna River near
Harrisburg, Pennsylvania [56], and Mazucheli et al. [57]. The data are as follows: 0.26, 0.27,
0.30, 0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 0.41, 0.42, 0.42, 0.42, 0.45, 0.48, 0.49, 0.61, 0.65, 0.74.

8. Concluding Remarks

In this article, the truncated Cauchy power family is combined with the inverted
Topp–Leone distribution to create a new two-parameter model called the truncated Cauchy
power-inverted Topp–Leone distribution. Some statistical and mathematical features of
the TCP-ITL distribution are implemented, including the quantile function, moments and

https://worldpopulationreview.com/country-rankings/natural-gas-by-country
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incomplete moments, the moment-generating function, and various types of entropy, such
as the Rényi entropy, Havrda and Charvat entropy, Tsallis entropy, and Arimoto entropy
(ArE). The maximum likelihood (ML), maximum product of spacing (MPSP), and Bayesian
estimate approaches are investigated for complete and hybrid censored data. To test
the proposed distribution’s restricted sample attributes, a simulation study is created.
The majority of the time, the numerical data revealed that the Bayesian estimates were more
accurate than the comparable alternative estimates. Examples from dependability, medicine,
and engineering demonstrate the adaptability of the proposed approach. The potential of
the TCP-ITL distribution is demonstrated in comparison with some known distributions
using three real-world data sets. According to the results of the criteria measurements,
the proposed distribution is the best option for the data sets under consideration.
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