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Abstract: In this paper we generalize the allocation rule (point solution or value) known as the mixed
value by introducing the weighted mixed value.The proposed solution assigns value in graph games
where players, and/or links, have weights representing asymmetries of the players, and different
flows, lengths, emotional intensities, trust in the transmission of the information, etc. in the links. We
present several characterizations of this value using properties, such as mixed component efficiency,
weighted mixed fairness, weighted balanced contributions and weighted balanced link contributions.
These properties were inspired by the classical properties used to characterize the Myerson value and
the position value.
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1. Introduction

A cooperative game with transferable utility or a TU-game is a model for a situation
in which a set of actors can obtain benefits by cooperating. Any coalition (subset of players)
is feasible and gets a payoff (a real number interpreted as the maximum gains they can
obtain regardless of the strategies of the players outside the coalition) if it is formed.
Coalition payoffs are assumed to be transferable between players. One of the main issues
in cooperative game theory is how to obtain a reasonable distribution of the value of the
grand coalition among all the players. The Shapley value [1] is one of the most prominent
allocation rules (point solution or value) for players in a TU-game. It assigns each player a
convex linear combination of his or her marginal contributions to different coalitions (the
value of the coalition when he incorporates minus the value of the coalition without him).

In this paper we deal with TU-games with cooperation restricted by a graph, also
called communication situations or graph games.

The first attempt in this setting was due to [2]. He defined the graph-restricted game
in which the value of a coalition is the sum of the values of its maximally connected (in
the graph) subcoalitions. Given the prominence of the Shapley value as the allocation rule
for players in a TU-game, Myerson applied it to this graph restricted game obtaining an
allocation rule, which is now known as the Myerson value [2,3].

The position value is another allocation rule for TU-games with cooperation restricted
by a graph, introduced by [4,5]. They used a different approach from Myerson, defining
another graph-restricted game, the so called link game, a new TU-game in which the
players are the links of the graph and the coalitions are its subgraphs. The outcome of a
subgraph coincides with the payoff given to the grand coalition by the restricted game
of Myerson to that subgraph. Then, the position value assigns to each player half of the
Shapley value (in the link game) of all the links he or she is involved in.

Axioms 2023, 12, 180. https://doi.org/10.3390/axioms12020180 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12020180
https://doi.org/10.3390/axioms12020180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-9121-5212
https://orcid.org/0000-0003-1505-256X
https://orcid.org/0000-0002-7035-0888
https://doi.org/10.3390/axioms12020180
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12020180?type=check_update&version=2


Axioms 2023, 12, 180 2 of 16

Since their introduction, the Myerson value and the position value have received
incessant attention. Most recent works have obtained characterizations in different set-
tings [6–11].

Another value, the mixed value, that allocates worth not only to players, but also to
links in a communication situation, was introduced and characterized in [12]. They defined
the corresponding restricted TU-game. In it, the actors are both the players in the original
game and the links in the graph. The value of a coalition (of players and links) coincides
with the sum of the values (in the original game) of the maximally connected subcoalitions
of the players in the graph given by the links. The mixed value is the Shapley value of the
previous restricted game. They characterized this allocation rule using efficiency, additivity
in the game, the superfluous link property and anonymity.

Mixed value has received less attention in the literature, and one of the aims of this
paper was to further analyze it. Recently, reference [13] used the mixed value to analyze
the impact of intermediaries in a negotiation.

In this paper we present a generalization of this mixed value to take into account
that players and/or links can have weights representing a priori differences between them.
As an example, these link weights can represent different flows, lengths, latencies in the
information transmission, emotional intensities, trust in the transmission of information
or even probabilities of relation. Similarly, players can have asymmetries in bargaining or
cooperation abilities.

In all the three previously referred to allocations rules, the Shapley value [1] of the
corresponding newly defined game (the graph restricted game, the link game or the
pseudogame of players and links) was always used.

In this paper we propose the use of the weighted Shapley value [14] to allocate worth in
the pseudogame, when players and links have associated weights. The obtained allocation
rule is named weighted mixed value. As mentioned above, a crucial difference between the
mixed value and the Myerson and position values is that the former allows us to know
how much of the value of the grand coalition should be allocated to the links. This can
be interpreted as the costs for the players of maintaining the communication channels,
paying the intermediaries who own the links, the importance of a partner’s relationships
in a social network, etc. In this paper we intend to go deeper into the measurement of the
value, not only of the players, but also of these connections, to characterize the value and
to address situations in which the different communications present symmetries due to
length, capacity, emotional intensity, probability, etc. The obtained results could be useful
in distributing maintenance costs between different towns and different road sections in a
terrestrial communications network, distributing income among the owners of suburban
buses, commuter trains and the metro, and, also, to strategically decide on the need to
build a new pipeline (see Example 1) (at the time of writing this paper, the European Union
was addressing the strategic problem of building a new gas pipeline to reduce dependence
on external countries), distributing benefits between telephone companies from different
countries who provide communications, and measuring centrality of individuals and their
relationships in a social network, etc.

We present several characterizations of this value using the following properties:
mixed component efficiency, weighted mixed fairness, weighted balanced contributions
and weighted balanced link contributions. They were inspired by well-known properties,
such as fairness and balanced contributions used to characterize the Myerson value [2,3]
and the balanced link contributions used to characterize the position value [15].

The obtained characterizations are also useful in the particular case in which all
the players and links have no weights. Then, in fact, in this paper we also obtain new
characterizations for the mixed value.

The remainder of the paper is organized as follows. In Section 2 we include some
preliminaries and notation on cooperative TU-games, graphs and communication situations.
Section 3 is devoted to obtaining the dividends of the pseudogame, or mixed game, and to
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introducing the weighted mixed value. In Section 4 we present several characterizations of
this value. The paper ends with a section of conclusions, final remarks and references.

2. Preliminaries
2.1. Cooperative TU-Games

An n-person TU-game (cooperative game with transferable utility) is an ordered pair
(N, v) where N = {1, 2, . . . , n} is the set of players and v, the characteristic function, is a
map v : 2N → R assigning to each coalition S ∈ 2N the payoff, v(S), of the members in S if
they cooperate.

We denote the vector space of all n-person TU-games by GN . The family
{(N, uS)}∅ 6=S⊆N , with the characteristic functions uS, 0 6= S ⊆ N, defined as

uS(T) =
{

1 if S ⊆ T
0 otherwise

is a basis of GN , known as the unanimity games basis. Then, every characteristic function v
can be uniquely written as

v = ∑
∅ 6=S⊆N

∆v(S)uS.

These coordinates of (N, v), in such a basis, {∆v(S)}∅ 6=S⊆N , are known as the Harsanyi
dividends [16], and can be calculated from the value of the coalitions in the following way
(the cardinality of the subsets S, T, . . . of N is denoted by s, t, . . . ),

∆v(S) = ∑
T⊆S

(−1)s−tv(T).

An allocation rule on GN assigns a specific payoff to each player in the game. The
Shapley value [1], Sh, is a well-known allocation rule whereby the allocation of each player
i is obtained as a convex linear combination of the marginal contributions of the player to
different coalitions

Shi(N, v) = ∑
S⊆N\{i}

(n− s− 1)!s!
n!

[v(S ∪ {i})− v(S)].

Alternatively, it can be obtained as

Shi(N, v) = ∑
S⊆N:i∈S

∆v(S)
s

,

i.e., as the sum of the proportional part (to the size of the coalition) of the dividend of
different coalitions to which the player belongs.

In [14] the weighted Shapley value is defined, Shλ, in which for a vector of positive
weights λ = (λ1, . . . , λn),

Shλ
i (N, v) = ∑

S⊆N:i∈S
∆v(S)

λi

∑
j∈S

λj

i.e., the weighted Shapley value of a player is the sum of the dividends of the coalitions to
which the player belongs multiplied by the proportional part of the weight of the player
with respect to the sum of the weights of the members of the coalition. Simplifying, while
the dividends in the Shapley value are distributed proportionally to the size of the coalition,
in the case of the weighted Shapley value they are distributed proportionally to the weights.
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2.2. Graphs

A network (graph) is a pair (N, γ) in which N = {1, 2, . . . , n} is the set of nodes
and γ ⊆ γN = {{i, j} | i, j ∈ N, i 6= j}. Each {i, j} ∈ γ is a link representing a direct
communication between i and j.

We say that i and j are connected in (N, γ) if there exists i1, i2, . . . ik ∈ N with i1 = i
and ik = j such that {il , il+1} ∈ γ, for l = 1, . . . , k− 1. A set ∅ 6= S ⊆ N is connected in
(N, γ) if it is a singleton or if every pair of nodes in S is connected in the graph (S, γ|S) with
γ|S = {{i, j} ∈ γ | i, j ∈ S} .

A maximal connected subset in (N, γ) is a connected component. For ∅ 6= S ⊆ N, S/γ
denotes the partition of S in connected components in the graph (S, γ|S). For η ⊆ γ, N/η
denotes the partition of N in connected components in the graph (N, η).

Given a graph (N, γ), the following subgraphs of (N, γ) are relevant in this paper: the
subgraph in which the link l ∈ γ has disappeared, (N, γ \ {l}); the subgraph of the links
incident on i ∈ N, (N, γi), with γi = {l ∈ γ | i ∈ l}; and the subgraph in which i ∈ N has
broken all links, so becoming isolated, (N, γ−i), with γ−i = γ \ γi.

2.3. Communication Situations

A communication situation, a graph game or a game with communication restricted by
a graph can be modeled by means of a triple (N, v, γ) where (N, v) is a TU-game and (N, γ)
is a network. The set of all communication situations with N as the set of nodes/players is
denoted by CSN .

For communication situations, refs. [2,3] introduced a graph-restricted game, (N, vγ),
as follows:

vγ(S) = ∑
C∈S/γ

v(C).

Later, also for a communication situation (N, v, γ), with (N, v) a zero-normalized
game, references [4,5] introduced the link game, (γ, rv

γ) ∈ Gγ in which the characteristic
function was given by:

rv
γ(η) = ∑

C∈N/η

v(C) for all η ⊆ γ.

In [12] another game was introduced, a pseudogame, or mixed game (N ∪ γ, wv,γ) ∈
GN∪γ, in which the pseudo-players were either players in the game or links in the network.
It is defined as:

wv,γ({S, η}) = ∑
C∈S/η

v(C) for all {S, η}⊆̃{N, γ},

where given {S, η} and {S′, η′} with S, S′ ⊆ N and η, η′ ⊆ γ, we denote by {S, η}⊆̃{S′, η′}
the order given by S ⊆ S′ and η ⊆ η′. If {S, η}⊆̃{S′, η′} but S 6= S′ or η 6= η′ (or both),
then we will write {S, η}⊂̃{S′, η′}.

The Myerson value, µ [2,3] and the position value, π [4,5] are two well known alloca-
tion rules for communication situations that assign value to players.

They are defined as
µ(N, v, γ) = Sh(N, vγ)

and
πi(N, v, γ) = ∑

l∈γi

1
2

Shl(γ, rv
γ), i ∈ N

with

Shl(γ, rv
γ) = ∑

η⊆γ\{l}

(|γ| − |η| − 1)!|η|!
|γ|! [rv

γ(η ∪ {l})− rv
γ(η)], for l ∈ γ,

where the cardinality of the sets of links γ and η is denoted by |γ| and |η|.
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A mixed allocation rule, the mixed value, ρ, assigning payoff to players and links is
introduced in [12]. It is given by:

ρ(N, v, γ) = Sh(N ∪ γ, wv,γ).

Myerson characterized his value in terms of component efficiency and fairness in [2].
Later, reference [3] obtained another characterization substituting fairness with balanced
contributions.

An allocation rule satisfies component efficiency if it distributes the value of each
component among the members of that component and, therefore, there is no transfer of
utility between components. It satisfies fairness if, when two players break their link, the
payoff of both is equally modified. It satisfies balanced contributions if the effect on the
payoff that one player isolating makes to another is the same as the other player’s isolating
makes to him or her.

Formally, an allocation rule ψ on CSN , i.e., a map ψ : CSN → Rn, ψi(N, v, γ) repre-
senting the outcome for a player i in the communication situation (N, v, γ), satisfies:

-Component efficiency [2] if, for all (N, v, γ) ∈ CSN and all C ∈
N/γ, ∑i∈C ψi(N, v, γ) = v(C).

-Fairness [2] if, for all (N, v, γ) ∈ CSN and every l = {i, j} ∈ γ, ψi(N, v, γ) −
ψi(N, v, γ \ {l}) = ψj(N, v, γ)− ψj(N, v, γ \ {l}).

-Balanced contributions [3] if, for all (N, v, γ) ∈ CSN and all i, j ∈ N, ψi(N, v, γ)−
ψi(N, v, γ−j) = ψj(N, v, γ)− ψj(N, v, γ−i).

Recent and interesting papers on the fairness property are [17,18], and on the balanced
contributions property are [19–22].

Slikker characterized the position value in terms of component efficiency and balanced
link contributions in [15].

An allocation rule satisfies balanced link contributions if the sum of the effects gener-
ated by removing, one by one, the links of a player on another player is equal to what this
other player would generate in he or she acting the same.

Formally, an allocation rule ψ, on CSN satisfies the balanced link contri-
butions property, if, given (N, v, γ) ∈ CSN , and i, j ∈ N, it holds that
∑

l∈γj

[ψi(N, v, γ)− ψi(N, v, γ \ {l})] = ∑
l∈γi

[
ψj(N, v, γ)− ψj(N, v, γ \ {l})

]
.

Extensions of the balanced link contributions property have been used to characterize
different generalizations of the position value, as in [7,23–26].

The mixed value is characterized using efficiency, additivity in the game, the superflu-
ous link property and anonymity in [12].

A rule (for players and links) satisfies additivity if the allocation in a communication
situation, in which the game is the sum of TU-games (ceteris paribus), coincides with the
sum of the allocations in the respective communication situations. Formally, ψ on CSN

is additive if for (N, v + v′, γ), (N, v, γ), (N, v′, γ) ∈ CSN , ψ(N, v + v′, γ) = ψ(N, v, γ) +
ψ(N, v′, γ).

An allocation rule (for players and links) satisfies the superfluous link property if the
allocation does not change when eliminating links that are null players in the pseudogame.
Finally, a rule on CSN for players and links satisfies anonymity if the allocation only
depends on the number of non-isolated players and links.

One of the aims of this paper is to obtain new characterizations of the mixed value,
based on properties close to fairness, balanced contributions and balanced link contribu-
tions. As mentioned, these properties are prominent in the literature on communication
situations. Furthermore, these new characterizations permit us to relate the three aforemen-
tioned values. Moreover, additivity is not an appealing property, especially in economy
contexts, where the sum of TU-games may not have interpretation. Thus, new characteriza-
tions avoiding additivity can be useful in such contexts.
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3. The Weighted Mixed Value

In this section we introduce the weighted mixed value as an allocation rule for commu-
nication situations in which players are possibly not symmetric, having different weights
and also where the links can have weights representing different capacities, flows, distances,
etc. The defined rule allocates the weighted Shapley value [14] of the mixed game defined
in [12].

To motivate this rule let us consider the following example.

Example 1. Suppose country 1 produces gas and country 2 uses it in its industry. If 1 and 2 agree,
they can make a joint unit profit when 1 sells the gas to 2. However, in order to move the gas from 1
to 2, a pipeline is needed that passes through country 3, which does not need gas, because it uses
other types of energy in its industry. This situation can be modeled by (N, v, γ) with N = {1, 2, 3},
v = u{1,2} and γ = {a = {1, 3}, b = {2, 3}}.

The high cost for players 1 and 2 to pay 3 and maintain the pipeline makes 1 and 2 consider
building another pipeline through country 4, which also does not need gas. Moreover, this new
pipeline would have twice the capacity of the existing one. Then, this new situation can be modeled
by (N, v, γ′) with N = {1, 2, 3, 4}, v = u{1,2} and γ′ = {a = {1, 3}, b = {2, 3}, c = {1, 4},
d = {2, 4}}.

A representation of (N, γ) and (N, γ′) is given in Figure 1.

1 23

a b

1 23

4

a b

c d

Figure 1. Graphs (N, γ) and (N, γ′).

The pseudogames are given by:

wv,γ({S, η}) =
{

1, for {S, η} = {N, γ}
0, otherwise.

(1)

wv,γ′({S, η}) =


1, for {S, η} = {1, 2, 3, a, b}, {1, 2, 4, c, d}

or {1, 2, 3, 4, a, b, c, d}
0, otherwise.

(2)

We will suppose that the weights of the links a and b are, respectively, 1
4 , and the weights

for c and d are 1
2 . We assume equal unitary weight for the countries. It is not easy, in general, to

assign weights to the links. In this case we suppose that the weight is the pipeline capacity, i.e.,
the amount of gas that moves per unit of time, flow rate, between the entry and exit points of the
pipeline, considering given the entry and exit pressures.

For the communication situation (N, v, γ) we have an allocation, the weighted Shapley value
of (N, wv,γ), of (

2
7

,
2
7

,
2
7

,
1
14

,
1

14

)
,

i.e., players 1 and 2 must reward with 2
7 to the intermediation of country 3 in the connection of the

pipeline and with 1
14 + 1

14 = 1
7 to the owners of the pipeline. This quantity can also be seen as the

cost of the maintenance of the pipeline.
For the communication situation (N, v, γ′) we have an allocation, the weighted Shapley value

of (N, wv,γ′), of
1

616
(218, 218, 64, 42, 16, 16, 21, 21).
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In this way (excluding the cost of creating the pipeline) 1 and 2 must face a cost of 64
616 +

42
616 =

106
616 < 2

7 to reward players 3 and 4, and a cost of a pipeline of 2× 16
616 + 2× 21

616 < 1
7 . Thus, to have

alternatives reduces the cost for players and weakens the intermediaries.

Before characterizing the value, let us obtain the pseudogame for communication
situations in which the game is a unanimity one. The obtained result is useful to calculate
the weighted mixed value and also to characterize it. To do this, first we introduce the
definition of minimal connection set-graph for a coalition in a graph.

Definition 1. Given (N, v, γ) and ∅ 6= S ⊆ N, we say that {T, η}⊆̃{N, γ} with S ⊆ T is a
connection set-graph of S in (N, γ), if (T, η) is a connected graph. We say that {T, η}, a connection
set-graph of S in (N, γ), is minimal if, for all {T′, η′} with {T′, η′}⊂̃{T, η}, {T′, η′} is not a
connection set-graph of S in (N, γ).

Given ∅ 6= S ⊆ N, we denoteMCSG(S, N, γ) the family, occasionally empty, of the
minimal connection set-graphs of S in (N, γ).

Example 2. Consider the communication situations (N, v, γ) and (N, v, γ′) as in the Example 1.
For S = {1, 2}, the unique minimal connection set-graph of S in (N, γ) is {1, 2, 3, a, b}.
For S = {1, 2}, the minimal connection set-graphs of S in (N, γ′) are {1, 2, 3, a, b},

{1, 2, 4, c, d}.

Proposition 1. For (N, uS, γ) ∈ CSN , with (N, uS) the unanimity game of S in GN , we have:

wuS ,γ = 1− ∏
{Ti ,ηi}∈MCSG(S,N,γ)

[
1− u{Ti ,ηi}

]
(3)

ifMCSG(S, N, γ) 6= ∅, and wus ,γ ≡ 0 (the null game), otherwise.
We denote (N ∪ γ, u{S,η}) if {∅, ∅} 6= {S, η} ⊆ {N, γ} for the games of the unanimity

basis in GN∪γ.

Proof. SupposeMCSG(S, N, γ) 6= ∅. The other case is trivial.
For {T, η}⊆̃{N, γ}, we have that

wuS ,γ({T, η}) = uη
s (T) = ∑

C∈T/η

us(C)

=

{
1 if there is C ∈ T/η such that S ⊆ C
0 otherwise

=

{
1 if S is connected in (T, η)
0 otherwise.

On the other hand, using the right hand side of (3)1− ∏
{Ti ,ηi}∈MCSG(S,N,γ)

[
1− u{Ti ,ηi}

]({T, η})

=

{
1 if there is {Ti, ηi} ∈ MCSG(S, N, γ) such that {Ti, ηi}⊆̃{T, η}
0 otherwise

=
{

1 if S is connected in {T, η}
0 otherwise

Thus, the result is proved.
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Corollary 1. For (N, uS, γ) ∈ CSN , with (N, uS) the unanimity game of S in GN , and
MCSG(S, N, γ) =

{
{T1, η1}, {T2, η2}, . . . , {Tr, ηr}

}
, we have

wuS ,γ =
r

∑
i=1

u{Ti ,ηi} −
r−1

∑
i=1

r

∑
j=i+1

u{Ti∪Tj ,ηi∪ηj} + · · ·+ (−1)r−1u{∪r
i=1Ti,∪r

i=1ηi
}.

Example 3. Consider the communication situations (N, v, γ) and (N, v, γ′), as in the Example 2.
As v = u{1,2} using the previous result we have

wv,γ = wu{1,2} ,γ = u{1,2,3,a,b}

wv,γ′ = wu{1,2} ,γ′ = u{1,2,3,a,b} + u{1,2,4,c,d} − u{1,2,3,4,a,b,c,d},

which are the expressions of the games (1) and (2) in terms of the unanimity games.

In the following we define the concept of mixed allocation rule in CSN and we intro-
duce the weighted mixed value, which assigns to each player in a communication situation
(N, v, γ) the weighted Shapley value of the pseudogame (N, wv,γ).

Definition 2. A mixed allocation rule ϕ on CSN is a map that assigns to every communication
situation (N, v, γ) ∈ CSN a vector ϕ(N, v, γ) containing the payoffs of the players (nodes),
ϕi(N, v, γ), i ∈ N, and the value of the links, ϕl(N, v, γ), l ∈ γ, in the communication situation.

Definition 3. Given a communication situation (N, v, γ), suppose there is a vector λ =(
(λi)i∈N , (λl)l∈γ

)
such that its components are the positive weights of the players of the game and

the links of the graph. Then, the weighted mixed value of (N, v, γ), ρλ(N, v, γ) is defined as,

ρλ(N, v, γ) = Shλ(N, wv,γ).

Remark 1. In the special case in which all the weights are equal to one (in fact, it suffices if they
are all equal), the weighted mixed value coincides with the mixed value of [12].

4. Characterizing the Weighted Mixed Value

In this section we obtain three characterizations of the weighted mixed value (that
also apply in the particular case of the mixed value), using the following five properties:
mixed component efficiency, weighted mixed fairness, weighted balanced contributions,
weighted mixed balanced contributions and weighted balanced link contributions.

The mixed component efficiency property states that the value of a connected compo-
nent should be shared among the members and the links of the component.

Definition 4. A mixed allocation rule, ϕ, defined on CSN satisfies mixed component efficiency if,
for each (N, v, γ) ∈ CSN ,

∑
i∈N

ϕi(N, v, γ) + ∑
l∈γ

ϕl(N, v, γ) = v(N).

The weighted mixed fairness property is, of course, inspired by the Myerson’s fairness.
It states that when two players break their link, the ratio between the variation in their
payoffs coincides with the ratio of their weights. Moreover, for each one of these two
players, the ratio between the variation of his or her payoff and the value of the link also
coincides with the ratio of the respective weights.

Definition 5. A mixed allocation rule on CSN , ϕ, satisfies weighted mixed fairness, if for every
(N, v, γ) ∈ CSN , every vector of weights λ, and every directly connected pair of players i, j ∈ N,
with l = {i, j},

λj[ϕi(N, v, γ)− ϕi(N, v, γ \ {l})]
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= λi
[
ϕj(N, v, γ)− ϕj(N, v, γ \ {l})

]
and

λl [ϕi(N, v, γ)− ϕi(N, v, γ \ {l})] = λi[ϕl(N, v, γ)].

Remark 2. In the special case in which λ = (1, 1, . . . , 1) ∈ Rn+|γ| we obtain the mixed fairness
property that, for each pair of directly connected players i, j, can be written as:

ϕi(N, v, γ)− ϕi(N, v, γ \ {l}) = ϕj(N, v, γ)− ϕj(N, v, γ \ {l}) = ϕl(N, v, γ).

In the following definition we introduce the weighted balanced contributions property
that generalizes the property introduced in [3].

Definition 6. A mixed allocation rule, ϕ, on CSN satisfies the weighted balanced contributions
property, if for each i, j ∈ N and every vector of weights λ, it holds that

λj
[
ϕi(N, v, γ)− ϕi(N, v, γ−j)

]
= λi

[
ϕj(N, v, γ)− ϕj(N, v, γ−i)

]
.

Remark 3. In the special case in which λ = (1, 1, . . . , 1) ∈ Rn+|γ| the previous property becomes
the classical balanced contributions property of [3].

The weighted mixed balanced contributions property establishes that the effect in a
link of the isolation of a player equals the effect in the same player if that link is broken.

Definition 7. A mixed allocation rule, ϕ, on CSN satisfies the weighted mixed balanced contribu-
tions property, if for i ∈ N and l ∈ γ and a vector of weights, λ, it holds that

λi[ϕl(N, v, γ)− ϕl(N, v, γ−i)]

= λl [ϕi(N, v, γ)− ϕi(N, v, γ \ {l})]

The weighted balanced link contributions property adapts the property of [15] to this
weighted setting.

Definition 8. An allocation rule, ϕ, on CSN satisfies the weighted balanced link contributions
property, if, given (N, v, γ) ∈ CSN , a vector of weights λ, and i, j ∈ N, it holds that

λj ∑
l∈γj

[ϕi(N, v, γ)− ϕi(N, v, γ \ {l})]

= λi ∑
l∈γi

[
ϕj(N, v, γ)− ϕj(N, v, γ \ {l})

]
.

Remark 4. In the special case in which λ = (1, 1, . . . , 1) ∈ Rn+|γ| the previous property becomes
the classical balanced link contributions property of [15].

Proposition 2. The weighted mixed value, ρλ, satisfies mixed component efficiency, weighted mixed
fairness, weighted balanced contributions, weighted mixed balanced contributions and weighted
balanced link contributions.

Proof.
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(a) Let us prove that ρλ satisfies mixed component efficiency. Given (N, v, γ) ∈ CSN , λ
a vector of weights and C ∈ N/γ, by definition

ρλ(N, v, γ) = Shλ(N, wv,γ).

As the weighted Shapley value is efficient:

∑
i∈C

ρλ
i (N, v, γ) + ∑

l∈γ|C

ρλ
l (N, v, γ)

= ∑
i∈C

Shλ
i (N, wv,γ) + ∑

l∈γ|C

Shλ
l (N, wv,γ)

= ∑
i∈C

Shλ
i (C, wv|C ,γ|C ) + ∑

l∈γ|C

Shλ
l (C, wv|C ,γ|C )

= wv|C ,γ|C ({C, γ|C}) = v|C(C) = v(C).

(b) As the weighted mixed value is clearly linear (in the game), to prove that ρλ satisfies
weighted mixed fairness, it is sufficient to see that the property holds for commu-
nication situations of the form (N, uS, γ) with (N, uS) the unanimity game of the
coalition S 6= ∅. Suppose λ is the vector of weights. Then,

ρλ(N, uS, γ) = Shλ

N ∪ γ, 1− ∏
{Tk ,ηk}∈MCSG(S,N,γ)

(1− u{Tk ,ηk})

,

where (N ∪ γ, 1) is the pseudogame in which

1({S, η}) =
{

1 for all {S, η} 6= {∅, ∅},
0 otherwise.

Thus, for i, j ∈ N and l = {i, j},

ρλ
i (N, v, γ)− ρλ

i (N, v, γ \ {l})

is zero, or is the weighted Shapley value of a linear combination of unanimity games,
(N ∪ γ, u{T,η}) such that l belongs to η in all of them. If the difference is zero, the
result is trivial. In another case, taking into account that the weighted Shapley value
of each player or link is proportional to his, her or its weight, we have

λj[ρ
λ
i (N, v, γ)− ρλ

i (N, v, γ \ {l})] = λi[ρ
λ
j (N, v, γ)− ρλ

j (N, v, γ \ {l})]

and

λl [ρ
λ
i (N, v, γ)− ρλ

i (N, v, γ \ {l})] = λi[ρ
λ
l (N, v, γ)− ρλ

l (N, v, γ \ {l}]

and, thus, the result is proved.
(c) Let us prove that ρλ satisfies weighted balanced contributions. For (N, v, γ), i, j ∈ N

and λ
ρλ

i (N, v, γ)− ρλ
i (N, v, γ−j)

and
ρλ

j (N, v, γ)− ρλ
j (N, v, γ−i)

are both zero, or the weighted Shapley value of a linear combination of unanimity
games (N, u{T,η}) ∈ GN∪γ. The property trivially holds if both quantities vanish.
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In another case, as the weighted Shapley value assigns to each player a quantity
proportional to his weight, we have that

λj[ρ
λ
i (N, v, γ)− ρλ

i (N, v, γ−j)] = λi[ρ
λ
j (N, v, γ)− ρλ

j (N, v, γ−i)]

and thus the result.
(d) The proof of ρλ satisfies weighted mixed balanced contributions follows immedi-

ately from the previous one, considering two players and a link and reproduces
the argument.

(e) To prove that ρλ satisfies weighted balanced link contributions we use the linearity
(in the game) of the mixed weighted value and, thus, it is sufficient to prove that the
property holds for (N, uS, γ) with, uS the characteristic function of the unanimity
game of ∅ 6= S ⊆ N. Suppose i, j ∈ N and λ is a vector of weights. As

wuS ,γ = 1− [ ∏
{Ti ,ηi}∈MCSG(N,uS ,γ)

(1− u{Ti ,ηi})]

we have, for l ∈ γj that wuS ,γ−wuS ,γ\{l} is a linear combination of unanimity games
u{T,η} such that l ∈ η in all of them. Thus

∑
l∈γj

[
ρλ

i (N, uS, γ)− ρλ
i (N, uS, γ \ {l})

]
is the value of i in all unanimity games in which l ∈ γj is present. However, in these
unanimity games j is also present as it is incident on the different arcs l ∈ γj. By
symmetry, the variation of value of j

∑
l∈γi

[
ρλ

j (N, uS, γ)− ρλ
j (N, uS, γ \ {l})

]
corresponds to the same unanimity games and, thus, both values are proportional
to the weights, which completes the proof.

Theorem 1. The weighted mixed value, ρλ, is the unique mixed allocation rule on CSN satisfying
mixed component efficiency and weighted mixed fairness.

Proof. It has already been proved that the weighted mixed value satisfies these two prop-
erties. Reciprocally, consider a mixed allocation rule, ϕ, on CSN satisfying both properties.
Suppose (N, v, γ) ∈ CSN , C ∈ N/γ, i, j ∈ C and λ is a vector of weights. The proof uses
induction on |γ|, the cardinally of γ. If |γ| = 0, then C is necessarily a singleton, the value
of which is uniquely determined using the mixed component efficiency property. Suppose
the result is proved for |γ| ≤ r and consider |γ| = r + 1. If C is a singleton the value is
again uniquely determined. Then, suppose a sequence of nodes i = i1, i2, . . . , ik = j exist,
such that

λi2 [ϕi1(N, v, γ)− ϕi1(N, v, γ \ {i1, i2})]

= λi1 [ϕi2(N, v, γ)− ϕi2(N, v, γ \ {i1, i2})].

Then,
λi2 ϕi1(N, v, γ)− λi1 ϕi2(N, v, γ)

= λi2 ϕi1(N, v, γ \ {i1, i2})− λi1 ϕi2(N, v, γ \ {i1, i2}),

which, using the induction hypothesis, is equal to

λi2 ρλ
i1(N, v, γ \ {i1, i2})− λi1 ρλ

i2(N, v, γ \ {i1, i2}).
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As ρλ satisfies the weighted mixed fairness property,

λi2 ρλ
i1(N, v, γ \ {i1, i2})− λi1 ρλ

i2(N, v, γ \ {i1, i2})

= λi2 ρλ
i1(N, v, γ)− λi1 ρλ

i2(N, v, γ)

and, thus,
λi2 ϕi1(N, v, γ)− λi1 ϕi2(N, v, γ)

= λi2 ρλ
i1(N, v, γ)− λi1 ρλ

i2(N, v, γ)

or
λi2 [ϕi1(N, v, γ)− ρλ

i1(N, v, γ)] = λi1 [ϕi2(N, v, γ)− ρλ
i2(N, v, γ)].

Using this argument iteratively, we have

λi[ϕj(N, v, γ)− ρλ
j (N, v, γ)] = λj[ϕi(N, v, γ)− ρλ

i (N, v, γ)]

for all i, j ∈ C. As we can label the nodes in C, 1, 2, . . . , c, without loss of generality, we have

λ1 ϕj(N, v, γ)− λj ϕ1(N, v, γ) = λ1ρλ
j (N, v, γ)− λjρ

λ
1 (N, v, γ) (4)

for j = 1, 2, . . . , c. Moreover, for each l ∈ γ|C and i ∈ l one of the nodes on which l is
incident, we have

λl [ϕi(N, v, γ)− ϕi(N, v, γ \ {l})] = λi ϕl(N, v, γ)

or
λl ϕi(N, v, γ)− λi ϕl(N, v, γ) = λl ϕi(N, v, γ \ {l}) = λlρ

λ
i (N, v, γ \ {l}), (5)

the last equality holds because of the induction hypothesis.
The c− 1 linear equations in (4), the |γ|C | equations in (5) and the mixed component

efficiency equation form a linear system in c + |γ|C | independent equations with c + |γ|C |
variables, which has a unique solution, ρλ. The proof of the independence of the equations
is given in the Appendix A.

A trivial consequence of previous theorem is the following corollary that introduces a
new characterization for the mixed value defined in [12].

Corollary 2. The mixed value is the unique mixed allocation rule on CSN satisfying mixed
component efficiency and mixed fairness.

Theorem 2. The weighted mixed value is the unique mixed allocation rule on CSN satisfying mixed
component efficiency, weighted balanced contributions and weighted mixed balanced contributions.

Proof. It has already been proved that the weighted mixed value satisfies these three
properties. Reciprocally, let us suppose ϕ is a mixed allocation rule satisfying them,
(N, v, γ) ∈ CSN , λ is a vector of weights and C ∈ N/γ. We prove that ϕ(N, v, γ) =
ρλ(N, v, γ), by induction on |γ|, the cardinality of γ.

If |γ| = 0, the result is trivial using the mixed efficiency in the (singleton) connected
component C. Suppose the result is true for |γ| ≤ k− 1 and consider (N, v, γ) with |γ| = k.
If C is a singleton, again the mixed efficiency determines the value of the node-player.
Otherwise, for i, j ∈ C, as ϕ satisfies the weighted balanced contributions property:

λj[ϕi(N, v, γ)− ϕi(N, v, γ−j)] = λi[ϕj(N, v, γ)− ϕj(N, v, γ−i)]

or equivalently

λj ϕi(N, v, γ)− λi ϕj(N, v, γ) = λj ϕi(N, v, γ−j)− λi ϕj(N, v, γ−i).
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Using the induction hypothesis (recall that |γi| ≥ 1 and |γj| ≥ 1 as i, j ∈ C, a connected
component),

λj ϕi(N, v, γ−i)− λi ϕj(N, v, γ−j) = λjρ
λ
i (N, v, γ−i)− λiρ

λ
j (N, v, γ−j),

and using that ρλ also satisfies the weighted balanced contributions property,

λjρ
λ
i (N, v, γ−i)− λiρ

λ
j (N, v, γ−j) = λjρ

λ
i (N, v, γ)− λiρ

λ
j (N, v, γ),

and, thus,

λj ϕi(N, v, λ)− λi ϕj(N, v, λ) = λjρ
λ
i (N, v, λ)− λiρ

λ
j (N, v, λ), (6)

for all i, j ∈ C. Moreover, as ϕ satisfies the weighted mixed balanced contributions property,
given l ∈ γ and i ∈ C

λi[ϕl(N, v, γ)− ϕl(N, v, γ−i)] = λl [ϕi(N, v, γ)− ϕi(N, v, γ \ {l})].

Then,

λi ϕl(N, v, γ)− λl ϕi(N, v, γ) = λi ϕl(N, v, γ−i)− λl ϕi(N, v, γ \ {l})

= λiρ
λ
l (N, v, γ−i)− λlρ

λ(N, v, γ \ {l}), (7)

the last equality holding by the induction hypothesis. If |C| = c and, without loss of generality,
C = {1, 2, . . . , c}, from (6), (7) and the mixed component efficiency we have the following
linear system with c + |γ|C| in the variables ϕi(N, v, γ), i ∈ C, and ϕl(N, v, γ), l ∈ γ|C :

λ1 ϕi(N, v, γ)− λi ϕ1(N, v, γ) = λ1ρλ
i (N, v, γ)− λiρ

λ
1 (N, v, γ) for i = 2, . . . , c

λi ϕl(N, v, γ)− λl ϕi(N, v, γ) = λiρ
λ
l (N, v, γ−i)− λjρ

λ(N, v, γ \ {l}) for l ∈ γ|C

∑
i∈N

ϕi(N, v, γ) + ∑
l∈γ

ϕl(N, v, γ) = v(N).

All these equations are linearly independent (the proof mimics the corresponding
Theorem 1 and then it is omitted) and thus the system has a unique solution that necessarily
coincides with ρλ.

Corollary 3. The mixed value defined in [12] is the unique mixed allocation rule on CSN satisfying
mixed component efficiency, balanced contributions and mixed balanced contributions.

The following theorem introduces a third characterization of the weighted mixed
value. The proof is straightforward from the proof of the previous theorem and is omitted.

Theorem 3. The weighted mixed value is the unique allocation rule on CSN satisfying mixed com-
ponent efficiency, weighted balanced link contributions and weighted mixed balanced contributions.

Corollary 4. The mixed value defined in [12] is the unique allocation rule on CSN satisfying mixed
component efficiency, balanced link contributions and mixed balanced contributions.

5. Conclusions and Final Remarks

In this paper we introduced the weighted mixed value to allocate value for players and
links in communication situations in which players and/or links have different importance.
In this way, the defined value is useful to assign an outcome in situations in which players
and their relations have asymmetrical importance, such as the following: social networks,
in which players and the intensity of the relations have different importance, wireless
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networks with different information trust, network settings with variable flows, peer-to-
peer data transfer, etc.

We characterized the value using variations of the classical properties for graph
games, such as component efficiency, fairness, balanced contributions and balanced link
contributions. The different characterizations obtained also hold for the mixed value (when
it is assumed that players and links have no different weights). In Table 1 we present
comparison of the properties satisfied by this value and the mixed value, the Myerson
value and the position value.

Table 1. Comparison of the properties of the values.

Weighted Mixed Value Mixed Value Myerson Value Position Value

Component efficiency × × X X
Mixed component efficiency X X × ×
Fairness X∗ X X ×
Mixed fairness X∗ X × ×
Weighted mixed fairness X × × ×
Balanced contributions X∗ X X ×
Mixed balanced contributions X∗ X × ×
Weighted mixed balanced contributions X × × ×
Balanced link contributions X∗ X × X
Weighted balanced link contributions X × × ×

* Only for equal weights.

The obtained results can be generalized in several ways by using something other than
the weighted Shapley value to allocate in the pseudogame (see for example [27,28]). More-
over, it seems interesting to us to analyze the relationship between the value introduced in
this paper and the results for multigraph games obtained in [13].
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Appendix A

The matrix of coefficients of the system, M, is defined by blocks, and given by(
A B
C D

)
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where A is a c× c-matrix given by

A =


λ1 −λ2 0 · · · 0
λ1 0 −λ3 · · · 0
· · · · · · · · · · · · · · ·
λ1 0 0 · · · −λc
1 1 1 · · · 1


B is a c× |γ|C |-matrix given by

B =


0 0 0 · · · 0
0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0
1 1 1 · · · 1


and D is the |γ|C | × |γ|C | diagonal matrix:

D =


−λ1(l1) 0 0 · · · 0

0 −λ2(l2) 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · −λ|γ|C |(l|γ|C |

)


where λi(li) is the weight of one of the nodes on which the link li is incident, for i =
1, . . . , |γ|C |. Finnaly C is a c× |γ|C |matrix in which the kth row (0, . . . , 0, λlk , . . . , 0) and λlk
is placed in the position corresponding to k(lk).

Then, det(M) coincides with det(H) if H is obtained adding to the cth row, the (c+ 1)th
row divided by λ1(l1), the (c + 2)th row divided by λ2(l2) and so on. And thus,

det(M) = det(H) =

∣∣∣∣∣∣∣∣∣∣

λ1 −λ2 0 · · · 0
λ1 0 −λ3 · · · 0
· · · · · · · · · · · · · · ·
λ1 0 0 · · · −λc
a1 a1 a1 · · · ac

∣∣∣∣∣∣∣∣∣∣
· (−1)|γ|C |

|γ|C |

∏
j=1

λj(lj)

in which a1, a2, . . . , ac are greater or equal than 1. It is easy to see that∣∣∣∣∣∣∣∣∣∣

λ1 −λ2 0 · · · 0
λ1 0 −λ3 · · · 0
· · · · · · · · · · · · · · ·
λ1 0 0 · · · −λc
a1 a1 a1 · · · ac

∣∣∣∣∣∣∣∣∣∣
= λc−2

1

c

∑
i=1

λiai.

Then det(M) 6= 0 which completes the proof.
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