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Abstract: Computer vision methodologies using machine learning techniques usually consist of the
following phases: pre-processing, segmentation, feature extraction, selection of relevant variables,
classification, and evaluation. In this work, a methodology for object recognition is proposed.
The methodology is called PSEV-BF (pre-segmentation and enhanced variables for bird features).
PSEV-BF includes two new phases compared to the traditional computer vision methodologies,
namely: pre-segmentation and enhancement of variables. Pre-segmentation is performed using the
third version of YOLO (you only look once), a convolutional neural network (CNN) architecture
designed for object detection. Additionally, a simulated annealing (SA) algorithm is proposed for the
selection and enhancement of relevant variables. To test PSEV-BF, the repository commons object in
Context (COCO) was used with images exhibiting uncontrolled environments. Finally, the APIoU
metric (average precision intersection over union) is used as an evaluation benchmark to compare
our methodology with standard configurations. The results show that PSEV-BF has the highest
performance in all tests.

Keywords: pre-segmentation; simulated annealing; YOLOV3; COCO; semantic segmentation

1. Introduction

Environmental scientists often use birds to understand ecosystems because birds
are sensitive to environmental changes [1]. As a result, there are many protected areas
around the world dedicated to the conservation of bird species. However, identifying and
classifying birds using conventional artificial vision is a difficult task. This is a particularly
complicated problem for images where occlusion is present in uncontrolled environments.

Computer vision is a field of artificial intelligence that attempts to extract meaningful
information by analyzing and processing image patterns. Additionally, this field, has
several branches: classification, object localization, object detection, object recognition,
and segmentation.

Object recognition is a task that identifies an object present in images or videos. It is
one of the most important applications of machine learning and deep learning. The purpose
of this field is to recognize the content of an image using machine learning techniques or
deep learning architecture.

Figure 1a shows the classical computational vision methodology for object recognition
in computer vision. The other alternative is to use a deep learning architecture (Figure 1b).
As we can see, the latter is less interpretable because it is equivalent to a black box where
the main processes of feature extraction and selection are hidden. This paper proposes a
methodology that combines elements of the two methodologies.
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such as the object’s contrasting background, height, distance from the camera, and 
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Figure 2. Challenge examples: (a) the bird appears occluded. (b) The appearance of haze in the im-

age softens the color of the background. (c) The image appears with blur to the camera angle [2]. 

Therefore, in order to recognize an object, the methodology considers tasks, such as 

object detection and segmentation. Segmentation is the principal problem and is our focus 

in this work. 

The segmentation goal is to identify the pixels belonging to the target object or region 

of interest (ROI). However, determining the optimal number of regions per image is very 

time-consuming and computationally expensive. Segmentation methods based on pixel-

by-pixel classification can be broadly divided into two families: semantic segmentation 

and instance segmentation. The first type separates all pixels that belong to the same object 

class. The second identifies each of the objects present in the image as an individual. 

Traditionally, variable or feature selection is performed using composite variables, 

such as the principal component analysis technique (PCA) [3–5] and other classification 

methods [6]. Composite variables are methods that simplify the sample space of variables 

by normalizing linear combinations of them. However, in recent years, there have been 

published methods for improving feature selection by incorporating combinatorial 

Figure 1. (a) Traditional computer vision methodology with ML. (b) Deep learning computer
vision methodology.

Object recognition is considered one of the critical problems because there are several
challenges to deal with images, such as:

A. Occlusion, i.e., obscuring part of the object by equal or unequal elements of the
scene, Figure 2a.

B. Environmental artifacts, such as rain and fog, which can affect the quality of the
image, Figure 2b.

C. Uncontrolled environments are caused by the lack of a protocol for image captures,
such as the object’s contrasting background, height, distance from the camera, and
light correction, Figure 2c.
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Figure 2. Challenge examples: (a) the bird appears occluded. (b) The appearance of haze in the image
softens the color of the background. (c) The image appears with blur to the camera angle [2].

Therefore, in order to recognize an object, the methodology considers tasks, such as
object detection and segmentation. Segmentation is the principal problem and is our focus
in this work.

The segmentation goal is to identify the pixels belonging to the target object or region
of interest (ROI). However, determining the optimal number of regions per image is very
time-consuming and computationally expensive. Segmentation methods based on pixel-
by-pixel classification can be broadly divided into two families: semantic segmentation
and instance segmentation. The first type separates all pixels that belong to the same object
class. The second identifies each of the objects present in the image as an individual.

Traditionally, variable or feature selection is performed using composite variables,
such as the principal component analysis technique (PCA) [3–5] and other classification
methods [6]. Composite variables are methods that simplify the sample space of variables
by normalizing linear combinations of them. However, in recent years, there have been
published methods for improving feature selection by incorporating combinatorial opti-
mization methods [7–12] and model selections for machine learning [13]. For this reason,
in this paper, we propose including an enhanced method for feature selection using the
simulated annealing (SA) algorithm, a metaheuristic for combinatorial optimization, which
is used to improve the feature set selected with the PCA technique.
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We present a new methodology for object recognition called PSEV-BF (pre-segmentation
and enhanced variables for bird features) that uses the pre-segmentation information
before segmentation to refine the delimited area. This methodology has the phases of
pre-processing, pre-segmentation, segmentation, ROI feature extraction, enhancement of
relevant variables, and classification.

The rest of the paper is organized as follows. Section 2 presents related work with a
qualitative comparison of object recognition. Section 3 presents the formulation and descrip-
tion of all phases of the proposed methodology. Section 4 defines the data, performance
metrics, and tools used in this work. In Section 5, we present the proposed algorithms and
their tuning method and show the application of the methodology to the dataset presented
in the paper. Finally, we compare the results with the classical methodology. Section 6
presents our conclusions.

2. Related Works

In this section, several works related to the problems of computer vision phases are
discussed. For instance, in the work of [14], a feature selection algorithm based on genetic
programming (GP) is proposed. In [14], the segmentation and classification of horses
and airplane images were implemented using parsimony GP features selection (PGP-FS),
nondominated sorting GP feature selection (NSGP-FS), and strength Pareto GP feature
selection (SPGT-FS) algorithms. These features were subjected to the decision tree, naive
Bayes, and multilayer perceptron classifiers from the Weka tool. A total of 52 features were
extracted in terms of Gabor filter, color, and statistical values based on a grayscale. The
accuracy, F1, precision, and recall metrics were used. The selection method shows that, on
average, 15 features are selected from the original 52.

There are works related to the segmentation and classification of images of skin lesions.
For instance, in [15], the authors used the PCA technique and the Boltzmann entropy
method to select a set of features. Feature selection was performed by considering the score
(variance explained) of each PCA component. The features considered were color, texture,
and shape, resulting in a total of 3849 features. By using PCA and Boltzmann methods, the
number of features was reduced to 449. The selection of features was validated using the
metrics DICE, Jaccard index, Jaccard distance, and Seg diameter. The selected features were
classified using the following machine learning models: support vector machine (SVM),
decision trees (DT), bagged trees (BT), subspace discriminant analysis (SDA), weighted-K
nearest neighbor (W-KNN), fine-K nearest neighbor (F-KNN), subspace-K nearest neighbor
(S-KNN), linear discriminant analysis (LDA), quadric discriminant analysis (QDA), cubic-
support vector machine (C-SVM), and quadric-support vector machine (Q-SVM). The
classifiers were validated using the metrics of sensitivity, specificity, accuracy, and F-score.

In 2018, Sharif and collaborators proposed a methodology for citrus disease detection
using optimized weighted segmentation and feature selection [16]. The processing phase
consists of a top-hat filter to eliminate noise elements and a Gaussian filter to soften the
image and eliminate high-intensity fluctuations. In the segmentation phase, they used
a combination of segmentation techniques with weight assignment and relevance map,
which allow for retaining the elements of the image with high contrast. The extracted
features are related to color, texture, and geometric features, giving a total of 270 features.
PCA is used to obtain a score corresponding to the explained variance of the components.
Entropy and skewness are calculated for each component to select a vector of 100 features
with the highest percentages. These features were obtained by training K-nearest weighted
(KNN), ensemble boosted trees (EBT), DT, and LDA classifiers and then evaluating them by
10-fold. Validation of the methodology was performed using the metrics positive false rate,
negative false rate, positive true rate, negative false rate, positive predictive value, false
detection rate, area under the curve, and accuracy. The authors showed that their results
can keep up with the current state-of-the-art methods.

Rehman et al., in 2018, applied a feature selection for image segmentation to detect
glaucoma in the optic disk region using several parameters [17]. Additionally, in pre-
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processing, a bilateral filter was applied to allow the removal of noise, a clipping that
allows the activation of a threshold criterion to keep objects with high intensity and discard
unwanted background noise, and finally, the normalization of the red (R) channel of the
image to obtain information about the exciters searched. Statistical, text on the map,
and fractal features were used in the segmentation phase. Then, a selection process was
performed according to the method of minimal redundancy

(
MI (A, B)

)
. These features

were trained using SVM, random forest (RF), AdaBoostM1, and rus boost classifiers. The
model was validated using the metrics of sensitivity, specificity, similarity coefficient DICE,
precision, and area overlap based on the confusion matrix, with results competing with
other state-of-the-art methods.

More recently, deep-learning-based methods were used for bird detection [18–22],
classifying bird images [23], and recognizing birds [24]. For instance, [21] used the convolu-
tional neural network (CNN) and you only look once V3 (YOLOV3) for the detection of
birds from images. In this work, the authors propose a CNN with similar architecture to the
Darknet-53 network. The model was validated using the accuracy metric and comparing it
with similar architectures, such as region-based convolutional neural network (R-CNN),
VGG-16 + SVM, and YOLO. Additionally, Q. Ou et al., in a previous work in 2020, used you
only look once (YOLO) architecture to identify birds. Other works propose hybrid methods
to improve bird detection and identification [25]. Kumar and Das, in 2018, proposed a
R-CNN [26], which was used for obtaining binary masks of the ROI, and it was trained
with instances from the Commons Object in Context (COCO) database.

Table 1 shows a summary of the most important aspects of the related works compared
with our proposal. The first column has the name of the method used and its reference. The
second column determines whether birds are the object of interest. The third and fourth
columns indicate whether the images used are occluded and if they are in uncontrolled
environments. The fifth through seventh columns indicate whether the methodology of
the work was subjected to pre-processing, pre-segmentation, or segmentation. The eighth
column indicates the number of selected features. The ninth column, named “Enhanced
features”, indicates whether specific methods for improving the variable selected by PCA
were used or not. Finally, the last column indicates whether classification techniques were
used. Table 1 shows the topics considered in different methodologies and related to this
work. We observe that pre-segmentation and enhanced features are not commonly used.

Table 1. A comparison between the principal topics of the methodology of the related works.

Method Birds Occlusion UE Pre-P Pre-S Seg. Feature
Selection

Enhanced
Feature

Classifiers
ML

Genetic Programing [14] 7 7 3 7 7 3 3 3 3
Classical- PCA/SVM [15] 7 7 7 3 7 3 3 7 3
Classical-PCA/SVM [16] 7 7 7 3 7 3 3 3 3

Classical- Minimum
Redundancy/SVM [17] 7 3 7 3 7 3 3 7 3

Deep CNN-53 [21] 3 3 3 3 7 7 7 7 3
Deep CNN-19 [25] 3 3 3 7 7 7 7 7 3

CNN-Transfer Learning [26] 3 3 3 7 7 3 3 7 3
CNN-16 [1] 3 7 3 3 7 7 3 7 3

PSEV-BF
(proposal) 3 3 3 3 3 3 3 3 3

UE: uncontrolled environment, Pre-P: pre-processing, Pre-S: pre-segmentation, Seg: segmentation.

3. Proposed Methodology

The proposed PSEV-BF methodology (Figure 3) consists of seven phases for training
and six for testing: pre-processing, pre-segmentation, segmentation, ROI feature extraction,
optimal variable selection, classification, and evaluation. In this section, all phases of this
work are described in detail. 4
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3.1. Pre-Processing

The pre-processing of images is used to enhance their visual quality where several
problems could be eliminated, such as brightness effects, illumination problems, and
blurring due to poor contrast [16,27]. An image with low contrast affects the accuracy of
segmentation and, hence, the rest of the phases. In this paper, a contrast enhancement
technique based on the Gaussian smoothing function and histogram equalization is applied.
First, the image contrast is increased by adding a histogram equalization filter. Then, the
Gaussian smoothing filter is applied. The enhancement procedure is described in the
following steps:

Step 1. Histogram equalization of an image is a transformation that aims to obtain
a uniform distribution for each intensity level of an image. Said simply, it adjusts the
image intensities to enhance contrast, as well as Equations (1) and (2). An image histogram
is formed by tabulating the number of times that each intensity occurs throughout the
image [28].

pr(rk) =
nk

MN
; (1)

T(rk) = (L− 1)
k

∑
j=0

pr
(
rj
)
| k = 0, 1, 2, . . . , L− 1, (2)

where pr is the probability density function of f ; nk denotes the number of pixels that
have intensity k; MN is the total number of pixels in the image; and L is the number
of pixel intensity levels in the image. The application of this operation transforms the
histogram into a histogram with a perfectly uniform shape across all gray levels. During
the transformation, all pixels of one gray level are converted to another gray level, and the
histogram is distributed over the entire available area, separating the occupations of the
individual levels as much as possible.

Step 2. Applying the Gaussian smoothing function. Let I(x, y, z) be the original image
in a RGB, and G(x, y) is a Gaussian function defined as:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (3)

where x is the distance from the origin of the horizontal axis, y is the distance from the
origin in the vertical axis, and σ is the standard deviation of the Gaussian distribution.

3.2. Pre-Segmentation

Pre-segmentation is a stage where different techniques can be applied to approximate
the coordinates where the object of interest is roughly located within an image. There are
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several works in the literature that use bounding boxes to determine the position of objects
of interest, with YOLO being one of the most used methods. YOLO [29] is a convolutional
neural network for object localization, very fast for real-time applications, and has several
versions. YOLOV3 architecture [30] is composed of two main principal processes: a feature
extractor called Darknet-53 and a convolutional method of the detection itself. Figure 4
shows a block diagram for YOLOV3.
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Figure 5 presents Darknet-53, which is a CNN with 53 layers of depth organized in
five blocks of convolution layers, where each layer is a feature extractor. The last block
of convolution layers contains the most important information obtained from this CNN,
which is used to extract three detections of different scales.
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Figure 5. Architecture of Darknet53.

A convolutional set is a process to change the dimensionality of the outputs of Darknet-
53, which come from the last three blocks. Figure 6 shows a convolutional set flow, which
consists of a sequence of two convolutional filters: 1 × 1 and 3 × 3. A 1 × 1 convolutional
filter allows one to obtain a feature map with a single dimension (WidthxHightx1). Usually,
this filter is applied before an expansion filter: 3 × 3 convolution or 5 × 5 convolution.
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YOLOV3 [31] predicts a target value for each bounding box using logistic regression.
The bounding box prediction consists of five components, as we see in Equation (4).

y = (x1, y1, x2, y2, con f idence) (4)

where (x1, y1, x2, y2) coordinates represent the center of the box concerning the location
of the grid cell. These coordinates are normalized between 0 and 1. The confidence value
indicates how likely it is that the box contains an object and how accurate the bounding
box is. The pre-segmentation phase is a critical stage for obtaining accurate segmentation
results. For comparison purposes, it should be included in the results stage.

3.3. Segmentation

The segmentation phase aims to refine or adjust the region bounded by the coordinates
from pre-segmentation to select a region of bird and no-bird. Figure 7a shows an example
of the segmentation phase proposed to delineate regions for birds and non-birds based on
the coordinates obtained by pre-segmentation. The adjustment of the pre-segmentation
coordinates is defined by two configurations:
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Figure 7. The region selected as bird and non-bird: (a) YOLOV3 coordinates; (b) the provisional
region as a bird; and (c) the provisional region as non-bird.

Configuration 1: the pre-segmentation coordinates are reduced by 50%. Pixels within
the range of Configuration 1 are classified as birds (Figure 7b). The coordinates of Configu-
ration 1 are described below:

Given a coordinate vector, Equation (4), with values [x1, y1, x2, y2], the width of the
region, wx = x2 − x1, and the height of the region, hy = y2 − y1, are determined, and the
region of the bird is defined in Equations (5)–(7):

x
′
1 = x1 +

wx

4
; x
′
2 = x2 −

wx

4
(5)
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y
′
1 = y1 +

hy

4
; y
′
2 = y2 −

yx

4
, (6)

w
′
x =

wx

2
; h
′
y =

hy

2
(7)

where (x1, x2) and (y1, y2) are the coordinates from the origin (0, 0) in the horizontal and
vertical axis, respectively; (x′1, x′2) and (y′1, y′2) are the new coordinates in the horizontal
and vertical axis.

Configuration 2: pre-segmentation coordinates are increased by 20%. Pixels outside
Configuration 2 are classified as non-birds, Figure 7c. The coordinates of Configuration 1
are described below.

Given a coordinate vector, Equation (4), with values [x1, x2, y1, y2], the width of the
region wx = x2 − x1, and the height of the region hy = y2 − y1, are determined, and the
region of the non-bird is defined in Equations (8)–(10) with the coordinates (x′′ 1, x′′ 2) and
(y′′ 1, y′′ 2):

x
′′
1 = x1 +

wx

4
; x
′′
2 = x2 −

wx

4
(8)

y
′′
1 = y1 +

hy

4
; y
′′
2 = y2 −

yx

4
, (9)

w
′′
x = wx +

wx

2
; h
′′
y = hy +

hy

2
(10)

where (x1, x2), (y1, y2), (x′1, x′2) and (y′1, y′2) were previously defined for Equa-
tions (5)–(7).

The regions defined in Equations (5)–(10) are the pixels that are activated for feature
extraction. The pixels between the bird and non-bird regions are not considered in the
feature extraction phase. The label of a feature vector is assigned according to the region in
which it is located.

3.4. Feature Extraction

Color features are extracted from 15 × 15 pixel regions, called super pixels, which
represent a set of smoothed and enhanced images. The color features refer to the statistical
behavior of the regions in each channel of the color models. The color models were selected
according to the current state-of-the-art methods, and they are are HSI, CMYK, LAB, and
XYZ. The variance and standard deviation are the features extracted for each channel.

Haralick texture features [32] are common texture descriptors in image analysis based
on the concept that texture and hue are related. The features are determined using a
correlation matrix of the intensity levels of an image, the gray-level co-occurrence matrix
(GLCM). The number of gray levels in the image determines the size of the GLCM. Figure 8
shows an example of how the GLCM is determined [33].

GLCM starts with the transformation of an original image in RGB to a grayscale
image, represented in Figure 8a,b. In the second step, an occurrence matrix M(i, j) is
created, i.e., the values at the positions in (i, j) represent the number of times the gray
level intensity value i is a neighbor of the gray level intensity value j, as we showed in
Figure 8c. After obtaining the occurrence matrix, M(i, j), the values (i, j) are normalized,
as shown in Figure 8d. Finally, the resulting matrix p(i, j) is suitable for the application
of the Haralick texture features (Figure 8e). Table 2 shows the notation of the variables
involved in the calculation of the Haralick texture features. The first column represents
the variable number; the second column shows the notation of the variables; and the third
column describes the meaning of the notation.
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image, (b) gray intensity levels of the RGB image, (c) GLCM co-occurrence matrix of the gray
intensity levels, (d) normalized GLCM matrix between 0 and 1, (e) texture equations extracted from
the normalized GLCM matrix.

Table 2. Notation for the calculation of Haralick texture features. Source: [33].

Num. Notation Meaning Description

1 p(i, j) Values i, j in the normalized GLCM
2 N Number of gray levels

3 px(i)
N
∑

j=1
p(i, j)

4 py(j) N
∑

i=1
p(i, j)

5 µx
N
∑

i=1
i·px(i)

6 µy
N
∑

j=1
j·py(j)

7 σ2
x

N
∑

i=1
(i− µx)

2·px(i)

8 σ2
y

N
∑

j=1

(
j− µy

)2·py(j)

9 px+y(k) N
∑

i=1

N
∑

j=1
p(i, j)2

∣∣∣∣∣ i + j = k

10 px−y(k) N
∑

i=1

N
∑

j=1
p(i, j)2

∣∣∣∣∣ |i− j| = k

11 HX −
N
∑

i=1
px(i)·logpx(i)

Used for determining
12 and 13 equations in

this work.
12 HY −

N
∑

i=1
py(i)·logpy(i)

13 HXY −
N
∑

i=1
p(i, j)·logp(i, j)

14 HXY1 −
N
∑

i=1

N
∑

j=1
p(i, j)·log

∣∣px(i)·py(j)
∣∣

15 HXY2 −
N
∑

i=1

N
∑

j=1
px(i)·py(j)·log

∣∣px(i)·py(j)
∣∣
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Table 3 lists all the texture features used in this work. The first column represents the
number of features; the second column is a name feature; in the third column, we have
given an equation for the name feature.

Table 3. Haralick texture features are used in this paper.

Num. Feature Name Equation

1 Autocorrelation [34] N
∑

i=1

N
∑

j=1
(i·j)p(i, j)

2 Cluster prominence [32] N
∑

i=1

N
∑

j=1
(i + j− 2µ)3 p(i, j)

3 Cluster shadow [32] N
∑

i=1

N
∑

j=1
(i + j− 2µ)4 p(i, j)

4 Contrast [32] N
∑

i=1

N
∑

j=1
(i− j)2 p(i, j)

5 Correlation [32] N
∑

i=1

N
∑

j=1

(i·j)p(i,j)
σxσy

6 Difference entropy [32] −
N−1
∑

k=0
px−y(k)logp(k)

7 Difference variance [32] N−1
∑

k=0

(
k− µx−y

)2 px−y(k)

8 Dissimilarity [32] N
∑

i=1

N
∑

j=1
|i− j|·p(i, j)

9 Energy [32] N
∑

i=1

N
∑

j=1
p(i, j)2

10 Entropy [32] N
∑

i=1

N
∑

j=1
p(i, j)logp(i, j)

11 Homogeneity [34] N
∑

i=1

N
∑

j=1

p(i,j)
1+(i+j)2

12 Information measure of
correlation 1 [32]

HXY−HXY1
max(HX, HY)

13 Information measure of
correlation 2 [32]

N
∑

i=1

N
∑

j=1

√
1− exp[−2(HXY2− HXY)]

14 Inverse difference [35] N
∑

i=1

N
∑

j=1

p(i,j)
1+|i−j|

15 Maximum probability [32] maxp(i, j)
16 Sum average µx+y [32] 2N

∑
k=2

kpx+y(k)

17 Sum entropy [32] −
2N
∑

k=2
px+y(k)logpx+y(k)

18 Sum square [32] N
∑

i=1

N
∑

j=1
(i− µ)2 p(i, j)

19 Sum variance [32] 2N
∑

k=2

(
k− µx+y

)2 px+y(k)

3.5. Variable Feature Selector

The SA algorithm was proposed by Kirkpatrick in 1983 [36]. SA represents the thermo-
dynamic process of heating and cooling metal to increase its ductility and is an optimization
method to find near-optimal solutions to non-deterministic polynomial-time hardness (NP-
hardness) combinatorial problems [37].

According to related work, the PCA technique is often used as a selector of relevant
variables. This technique consists of describing the data in terms of new variables, called
components. The components are ordered according to their explained variance, which
represents the percentage of retention of the original information. However, each compo-
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nent is composed of a linear combination of all the original variables. Therefore, it can be
said that PCA is a dimensionality reducer and not a variable selection method.

To solve the problem, a hybrid algorithm based on the simulated annealing (SA)
technique and principal component analysis (PCA) was developed, which is called SA-
PCA. SA-PCA has, as its solution, a binary vector with a length of 43, which is the number
of descriptors that color and texture present in this work. The initial solution is established
by PCA from the percentage contribution of the component variables, with the highest
percentage of variance being explained. Figure 9 shows an example of the representation
of the initial solution for this work. The values 0 and 1 indicate whether a variable has
been selected.
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The definition of the SA-PCA parameters was subject to a tuning process [37], which is
discussed in more detail in Section 4.4. Algorithm 1 shows the proposed SA-PCA algorithm,
which is based on Kirkpatrick simulated annealing [36]. First, lines 2 to 5 define the initial
solution, Si, and the objective function, Enew, which is associated with this solution. It is
defined as the best solution found so far. Line 6 verifies that the best solution found so far
has reached the minimum value.

SA-PCA is defined with two principal cycles (lines 7 and 8). Here, it is traditionally
checked whether the initial temperature, Ti, has reached the final temperature, Tf , and
whether the metropolis cycle has reached its maximum length, Lmax, or if there is a state of
convergence. The temperature, Ti, is to be adjusted by the parameter α, line 29. The inner
cycle performs a search for a new solution, Xnew, until a stochastic equilibrium, L{max}, is
reached at each low temperature by the parameter β. Lmax is adjusted by parameter β in
line 30. This algorithm allows the acceptance of bad solutions by the Boltzmann acceptance
criterion in line 25.

The SA-PCA algorithm has a perturbation phase, called perturbationroullete, which
includes a roulette method with the purpose of increasing the probability of selection
on those variables that have been part of good solutions in the past cycles (line 9). The
acceptance criterion of a solution is given by the change in the value of the objective function
between the actual solution, Eold, and the new solution, Enew, i.e., ∆E = Enew − Eold,
where it is accepted if ∆E ≤ 0, as seen in lines 11, 18 to 24. Otherwise, the Boltzmann-
Gibbs distribution [38], which is a decision or probability mechanism, and it is applied to
determine if the bad solution is randomly accepted.

The convergence of the algorithm is defined in two cases of stable states: reaching
the minimum value of the objective function, as well as stagnation. Stagnation is defined
by r successive repetitions of the value of the objective function of the new solution, Enew,
and the parameter r = 5. The convergence criterion in lines 33–35 means that convergence
exists if the initial temperature Ti is within 5% of the final temperature Tf .

3.6. Classification

A random forest (RF) is an algorithm usually used for classification, which is composed
of several decision tree classifiers, and it uses the average performance of the ensemble of
classifiers to improve prediction accuracy, with the goal of optimizing the ensemble. Since
the individual trees are randomly perturbed, the forest benefits from a wider exploration of
the space of all possible predictors in the tree, which, in practice, result in better predictive
performance [39]. The most important aspects to consider in a RF are the number of
decision trees in forest, M, the function to measure the quality of the prediction, and the
maximum depth of the decision trees. A decision tree with M leaves divides the feature
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space into M regions, Rm, 1 ≤ m ≤ M [40]. For each tree, the prediction function f (x) is
defined as:

f (x) =
M

∑
m=1

cm ∏(x, Rm) (11)

∏(x, Rm) =

{
1, i f x ∈ Rm
0, otherwise

(12)

where M is the number of regions in the feature space, Rm is a region appropriate to m, and
cm is a constant suitable to m in Equation (12). The hyperparameters of the classifier RF are
discussed in more detail in Section 4.3.

Algorithm 1 SA-PCA based on Kirkpatrick [36].

function SimulatedAnnealing
(

Ti, Tf , β, α , Lmax, ε
)

1: Xold ← solution()
2: Xbest ← Xold
3: Eold ← objFunction()
4: Ebest ← Eold
5: if (Ebest 6= 0) then
6: while(Ti > Tf and ¬converge)
7: while(L < Lmax and ¬converge)
8: Xnew ← perturbationroullete(Xold)
9: Enew ← objFunction(Xnew)

10: ∆E← Enew − Eold
11: if(Enew = ε)
12: converge
13: end if
14: if(converge(metropoly))
15: converge
16: end if
17: if(∆E ≤ 0)
18: Xold ← Xnew
19: Eold ← Enew
20: if(Eold < Ebest)
21: Xbest ← Xold
22: Ebest ← Eold
23: endif
24: elseif (random(0, 1) > e

−∆E
Ti )

25: Xold ← Xnew
26: Eold ← Enew
27: endif
28: Ti ← α Ti
29: Lmax ← β Lmax
30: endwhile
31: if

(
Ti ≥ 0.95 Tf

)
32: if(converge(Temp))
33: converge
34: endif
35: endif
36: endwhile
37: return Xbest, Ebest
38: endif
39: endfunction
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4. Experimental Setup
4.1. Data

For this work, 263 images of birds were used. The set of images was divided into
193 images for training and 70 images for testing.

The image set was categorized by large and medium bird objects. The classification is
based on the evaluation criteria in the competencies of the COCO [2] database, in which
the object area in pixels is defined:

• Medium objects: (32 × 32, 96 × 96) pixels
• Large objects: greater than 96 × 96 pixels

4.2. Metric

The metric used to evaluate the performance of the model is average precision inter-
section over union (APIoU), shown in Equation (13).

APIoU =
m

∑
i=1

TPi
FPi + TPi

(13)

where m is the number of images, TP are the true positives, and FP are the false positives
for image i. The first APIoU threshold is from 0.05 to 0.95; and the second APIoU is 0.75 to
0.95, called APIoU75.

4.3. Classifier Setup

Classifier selection was performed to compare random forest and multi-perceptron
classification performance using the WEKA tool. The classifiers were selected based on
related work. The observations used consist of two vector sizes. The first consists of
43 features and one label, and the second consists of 14 features and one label. The latter is
obtained by the selection phase of the relevant variables.

Table 4 shows the results obtained from the correct and incorrect classification of the
observations. The set of observations was divided into three different sets: training set
used, cross-validation, and 70–30% split. The used training set builds the classifier from all
observations and re-applies all those observations to the classifier. Cross-validation splits
the data into 10 sets (usually) of equal size, and each set is split into training and testing.
Construct a classifier using the training data from each set, which is applied to the test data
from each set to obtain an average performance. Split 70–30% is to divide the data into
training and test, build the classifier with the training data, and measure performance with
the test data. Table 4 shows that random forest obtained better classification performance
on the three ensembles with data splitting.

Table 4. WEKA results of classifiers.

Classify Split Data Total Instances Correctly Classified
Instances

Incorrectly Classified
Instances

Random Forest Use training set 16,988 16,978 (99.94%) 10 (0.05%)
Cross-validation 16,988 12,892 (75%) 4096 (24.11%)
Split 70–30% 5096 (30%) 3853 (75.6%) 1243 (24.4%)

MLP Use training set 16,988 11,963 (70.4%) 5025 (29.5%)
Cross-validation 16,988 11,649 (68.5%) 5339 (31.4%)
Split 70–30% 5096 (30%) 3494 (68.5%) 1602 (31.4%)

RF is one of the machine learning classification and regression methods. Table 5 shows
the parameters of the random forest classifier. The RF method was executed using the
Sklearn library. The tuning was subjected to the random grid search method. The first
column lists the parameters obtained that were assigned a configuration different from the
default values. The second column shows the values assigned to the parameters. The third
column briefly describes each of the parameters.
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Table 5. Hyperparameters of the random forest classifier.

Parameters Value Description

n_estimators 1400 The number of trees in the forest
max_depth 80 The maximum depth of the tree.

max_features Auto The number of features to consider when looking for
the best split: max_features=sqrt(n_features)

4.4. Tuned SA Enhancement Algorithm

The SA algorithm is used as a randomized optimization method to find a subset of
features (variables) that performs better than the original 43 features.

The parameters of this model are the following: initial temperature Ti = 1570.29, final
temperature Tf = 0.01, metropolis length Lmax = 198, α = 0.95, β = 1.02, and perturbation
rate = 0.10.

4.5. Color and Texture Features

In this work, a total of 43 features were extracted, 26 corresponding to color and
17 corresponding to texture. The color characteristics are two measures of central ten-
dency: standard deviation and variance. The color models are HSI, CMYK, LAB, and XYZ,
which are the color characteristics being extracted for each channel. Texture characteristics
are obtained by generating the GLCM matrix.

Table 6 lists the features selected by the PCA and SA techniques, the latter being the
proposed enhancement algorithm. The first column shows the method, the second and
third columns list the color and texture characteristics selected by each method, and the
fourth column shows the total characteristics of each method.

Table 6. Features selected by the PCA and SA.

Method Color Feature Texture Feature Total Feature

PCA technique

std_S, var_S,
std_Y_cmyk, std_K,
var_K, std_L, var_L,

var_A, var_B_lab,
std_X, std_Z, var_X,
var_Y_xyz, var_Z

- 14

SA Enhancement
Algorithm

std_H, std_S, var_I,
std_M, var_C, var_K,
std_L, std_A, var_A,

var_Y_xyz, var_z

Correlation,
diference_entropy,
diference_variance

14

5. Results

We test our PSEV-BF methodology with a dataset from the COCO database. We
evaluate our proposed methodology with APIoU’s mean semantic segmentation metrics
for medium and large objects. In this section, we show the results obtained in the tuning
phase and the selection of relevant variables for SA, as well as the performance of the
model’s pre-segmentation and classification processes.

In the study of the better model, two distinct phases in computer vision were imple-
mented and tested. The first phase, pre-segmentation, was a CNN architecture presented
in Section 3.2, consisting of locating the regions where ROI is found; YOLOV3 was used
for this purpose. The coordinates provided by YOLOV3 allow the determination of the
region where the object of interest could be located, which is performed during the seg-
mentation phase.

We used the simulated annealing (SA) algorithm as a selector for relevant variables
to improve the training phase in the classification process. SA-PCA used a random forest
classifier. SA configures the initial solution using the variables obtained by PCA. It also
uses a perturbation method using a roulette wheel. In Table 7, we observe the solutions of
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SA-PCA that were proposed. The first column indicates the number of runs, the second
column shows the number of features selected in each run, and the third column is the
objective function associated with the number of variables selected. The choice of a solution,
i.e., a set of variables, obtained by the SA-PCA, is defined by the size of the solution and
the objective function, the latter being the most important. Thus, Table 7 shows that, by
using 14 variables, an objective function with a lower error rate is obtained. Therefore,
these characteristics are used as relevant variables.

Table 7. Results of the SA-PCA algorithm with RF.

Number Number Variable Selected Objective Function

1 16 28.02
2 18 28.14
3 14 25.12
4 11 27.85
5 13 29.30
6 12 39.03
7 14 32.06
8 10 32.97
9 10 36.97
10 17 32.36
11 16 30.89
12 18 27.96
13 18 28.38
14 17 28.39
15 11 34.38

Minimal 10 25.12
Maximal 18 39.03

Standard Deviations 3.02 3.83

The classification performances for two groups of bird sizes are given in Table 4.
We observe the comparative performance of the proposed methodology with different
configurations: Methodology 1 (M1), Methodology 2 (M2), and Methodology 3 (M3).
The M1 configuration applies the traditional processes of pre-processing, classification,
evaluation, and a superpixel technique. M2 involves the same traditional process but
does not use superpixels, although a variable selection method is implemented. M3 only
implements a pre-segmentation phase with YOLOV3. Additionally, finally, our proposal
PSEV-BF includes all the configurations proposed in this work. It is important to clarify
that all methodologies use pre-segmentation with YOLOV3 for comparison purposes.

In Table 8, the first column indicates the size of the birds used: large or medium. The
second column lists the different methodologies, labeled M1, M2, M3, and our PSEV-BF. The
third and fourth columns indicate, with 3, whether the superpixel technique is used in the
pre-segmentation, segmentation, or enhanced feature phase, and it indicates 7 otherwise.
Finally, the last two columns are the results from APIoU with two thresholds: 0.5 to 0.95
and 0.75 to 0.95.
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Table 8. Performance of PSEV-BF methodology vs alternative configurations.

Size Object Method SuperP. Pre-S. Seg. Enhanced Feature
Metric

APIoU APIoU75

Large

PSEV-BF 3 3 3 3 0.5485 0.8614
M1 3 3 7 7 0.5256 0.8235
M2 7 3 3 3 0.5481 0.8347
M3 7 3 7 7 0.4133 0.8459

Medium

PSEV-BF 3 3 3 3 0.3613 0.8097
M1 3 3 7 7 0.3264 -
M2 7 3 3 3 0.3325 0.8097
M3 7 3 7 7 0.3483 0.8097

Super P.: super pixels; Pre-S: pre-segmentation; Seg: segmentation.

In Table 8, the results show that the proposed PSEV-BF methodology for large objects
has values around 50% for the APIoU metric and 80% for the APIoU75 metric. On the other
hand, medium-sized objects have values around 36% for the APIoU metric and 80% for the
APIoU75 metric for the M2 and M1 methodologies. However, M1 for medium-sized objects
did not obtain images with a higher value than the 75% threshold of the APIOU75 metric,
and they were not calculated. The average processing times obtained by the PSEV-BF in
large and medium objects were 78.03 and 3.07 s, respectively. Additionally, the processing
time for the M1 methodology for large objects was 90.09 s, and, for medium objects, it was
9.01. In the case of M2 and M3 methodologies, the superpixel is not included, and the
time processing is not reported because the time exceeds the maximum time allowed for
each image.

In Figure 10, we present the performance of the different configurations of the pro-
posed method based on the APIoU metric with a threshold starting at 0.5 for large and
medium size objects and reaching values around 50%. In Figure 10a, we show that our pro-
posal achieves a performance of 54% accuracy for large objects, with a difference of about
12% with the M3 methodology, which achieves the lowest accuracy. The M2 and M3 method-
ologies obtained APIoU values very close to those of the PSEV-BF methodology. They are
involved in at least two of the proposed processes: superpixel and pre-segmentation.
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Figure 10. Results of the methodology compared with different configurations based on the APIoU
metric for (a) large objects and (b) medium objects.

In Figure 10b, we observed that the PSEV-BF achieves a performance of 36% accuracy
for medium size objects, with a difference of about 4% from the M1 methodology, which
achieves the lowest accuracy. The M3 methodology shows values close to those of the
proposed method, and these are involved in pre-segmentation.

In Figure 11, we can observe the performance of the different configurations of the
proposed method based on the APIoU metric, with a threshold starting at 0.75 for large- and
medium-sized objects and reaching values around 80%. Figure 11a shows that our proposal
achieves a performance of 86% accuracy for large objects, with a difference of about 4% with
the M1 methodology, which achieves the lowest accuracy. The M3 methodology shows
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values very close to those of the PSEV-BF methodology; these are involved in at least two
of the proposed processes: superpixel and pre-segmentation.
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Figure 11. Results of the comparison of methodologies with different configurations based on the
APIoU75 metric using (a) large objects and (b) medium objects.

In Figure 11, we present the performance of the methods for medium- and large-
sized objects, considering those images that reach a threshold equal or greater than 75%
(APIoU75). In Figure 11b, we observe that PSEV-BF methodology, as well as M2 and M3,
achieve an accuracy of 80% for medium-sized objects. On the contrary, the methodology
M1 fails to obtain an accuracy above a threshold of 75%.

Figure 12 shows some examples of objects with large sizes processed. Figure 12a
shows the images segmented by COCO; Figure 12b shows the adaptation resulting from
the segmentation phase. Finally, Figure 12c shows some of the cases obtained using the
PSEV-BF methodology. We observe that the pixels corresponding to non-birds (black blocks)
are part of the background. Likewise, about 86% of the pixels corresponding to birds were
correctly classified.
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Figure 13 shows some examples of objects with large sizes that are processed with
occlusion. Figure 13a shows that the white pixels correspond to birds, and the black pixels
correspond to non-birds (or wrongly classified pixels). Likewise, about 86% of the pixels
corresponding to birds were correctly classified.
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Figure 14 shows some examples of objects with medium sizes processed by the PSEV-
BF methodology. We observe, in the last column, the pixels corresponding to birds (white
pixels) which were correctly classified in the first row.
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Finally, Figure 15 shows some examples of objects with medium sizes processed with
occlusion by the PSEV-BF methodology. We observe, in the last column, that the pixels
corresponding to birds were correctly classified.
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6. Conclusions

In this paper, we presented a bird detection and classification methodology called
PSEV-BF (pre-segmentation and enhanced variables for bird features), which uses pre-
segmentation and a simulated annealing algorithm with principal component analysis
called SA-PCA, proposed to enhance variables. PSEV-BF incorporates a new methodology
compared to modern methods. Moreover, it can be applied to images with occlusions and
uncontrolled environments.

The methodology of PSEV- BF consists of the phases of preprocessing, pre-segmentation,
segmentation, feature extraction, relevant variables selection, and classification. Prepro-
cessing includes histogram equalization and Gaussian filtering for image enhancement
and smoothing. For pre-segmentation, a CNN detection technique, YOLOV3, was used
to provide a vector of coordinates. The coordinates delineate a region that has a high
probability of belonging to a bird.

Segmentation refines the coordinates obtained from pre-segmentation by redefining
the given region. The inner region of the coordinates is reduced by 50% and catalogued as
foreground pixels. The outer region of the coordinates is increased by 20% and cataloged
as background pixels. A superpixel technique was used in feature extraction to obtain
a 43-feature vector with color and texture. The superpixel technique covers an area of
15 × 15 pixels.

We compare our methodology with the traditional methodology. The methodology
was tested with bird category images from the COCO database. The images were classified
according to the size of the desired object: large and medium. A total of 193 images were
used for training and validation of the classifier, and 70 images were used for testing. The
test images are divided into large and medium groups, which correspond to 35 images
per group. A total of 16,988 feature vectors were used as samples for the training and
validation of the random forest classifier.
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PSEV-BF was compared with the M1, M2, and M3 methodologies. These methodolo-
gies differ in configuration from the proposed methodology. For large objects, PSEV-BF and
M2 show values with an approximate accuracy of 54% with the APIoU metric, whereas
M2 does not have the superpixel phase. First, M1 and M2 use at least two of the proposed
methods in the methodology. However, M3 does not use the proposed phases, resulting
in 41% accuracy of the APIoU metric, which is the lowest value among the compared
methodologies. Secondly, M2 does not use the superpixel method, which leads to a very
similar accuracy value compared to PSEV-BF, while M1 has a difference of 2% compared to
M2. We can say that using the proposed processes for large objects improves the accuracy
of the methodology.

For objects classified as medium size, the methodology of PSEV-BF shows values with
an approximate accuracy of 36% of the APIoU metric. First, M1 shows 32% accuracy, which
is the lowest value among the compared methodologies. This means that the effects are
very large when segmentation and enhanced variables are not used. PSEV-BF and M1
differ by 4%, and the difference is due to the use of a superpixel method. We find that, in
PSEV-BF in medium-sized objects, prediction accuracy is improved.

This paper presents a methodology for pre-segmentation, the variable selection
method, and feature extraction employing superpixels. Once the methodology is tuned, it
can be used to solve object identification problems, for example, classification by type of
bird or other objects faster than traditional methods.

For future work, we propose using similar techniques for supervised image segmenta-
tion. PSEV-BF was not designed for recognizing species of birds. We plan to incorporate
other strategies for pre-segmentation, enhanced feature variables, and classification for
recognizing different species.
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