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Abstract: In this paper, we discuss regression analysis of bivariate interval-censored failure time data
that often occur in biomedical and epidemiological studies. To solve this problem, we propose a
kind of general and flexible copula-based semiparametric partly linear additive hazards models that
can allow for both time-dependent covariates and possible nonlinear effects. For inference, a sieve
maximum likelihood estimation approach based on Bernstein polynomials is proposed to estimate
the baseline hazard functions and nonlinear covariate effects. The resulting estimators of regression
parameters are shown to be consistent, asymptotically efficient and normal. A simulation study is
conducted to assess the finite-sample performance of this method and the results show that it is
effective in practice. Moreover, an illustration is provided.
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1. Introduction

In this article, we discuss a regression analysis using the marginal additive hazards
model on bivariate interval-censored data. Interval-censored data refer to failure times that
are observed to only belong to an interval rather than being known with absolute certainty.
These types of data frequently occur in various areas, including biomedical and epidemio-
logical investigations [1]. It is easy to see that the most commonly studied right-censored
data can be seen as a special case of interval-censored data, and it is important to note that
the analysis of interval-censored data is typically far more difficult than right-censored data
research. Bivariate interval-censored data occur when there exist two correlated failure
times of interest and the observed times of both failure events suffer interval censoring.
Clinical trials or medical studies on several events from the same individual such as eye
disease studies often yield bivariate interval-censored data. The purpose of this article is
to propose a flexible regression model which can process bivariate interval-censored data
when the main interest is on the risk differential or excess risk.

There are several methods available for regression analysis of univariate interval-
censored data arising from the additive hazards model. Refs. [2,3], for example, investigated
the problem for case I interval-censored or current state data, a special form of interval-
censored data in which the observed time contains zero or infinite. The former discussed
an estimating equation approach and the latter considered an efficient estimation approach.
More recently, Ref. [4] studied the same issue as Ref. [2] but with some inequality constraints,
and Ref. [5] proposed a sieve maximum likelihood approach. Moreover, Ref. [6] developed
several inverse probability weight-based and reweighting-based estimation procedures
for the situation with missing covariates, while Ref. [7] presented an efficient approach for
general situations.
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A large number of approaches have been established for modeling bivariate interval-
censored survival data and three types of methods are generally used. One is a marginal
method that relies on the working independence assumption [8,9]. Another commonly used
approach is the frailty-model-based method, which employs the frailty or latent variable to
build the correlation among the associated failure times [10,11]. Ref. [12] proposed a frailty
model method for multivariate interval-censored data with informative censoring. The
third type of method is the copula-based approach, which gives a different, specific way
to model two dependent failure times. One advantage of the approach is that it directly
connects the two marginal distributions through a copula function to construct the joint
distribution and uses the copula parameter to determine the correlation. This distinguishing
characteristic makes it possible to represent the margins independent of the copula function.
This advantage is appealing for the points of both modeling and interpretation views.
Among others, Ref. [13] discussed this approach based on the marginal transformation
model with the two-parameter Archimedean copula. Ref. [14] proposed a copula link-based
additive model for right-censored event time data. Moreover, Ref. [15] proposed a copula-
based model to deal with bivariate survival data with various censoring mechanisms. In the
following, we discuss the regression analysis of bivariate cases by employing the method
in [13]. More specifically, we propose a kind of semiparametric partly linear additive
hazards model.

Partly linear models are becoming more and more common since they combine the
flexibility of nonparametric modeling with the simplicity and ease of interpretation of
parametric modeling. It is presumptive that the marginally conditional hazard function has
nonlinear relationships with some covariates but linear relationships with others [16–18]. In
practice, nonlinear covariate effects are typical. For instance, in some medication research,
the influence of the dosage of a particular medication may reach a peak at a certain
dosage level and be maintained at the peak level, or it may diminish after the dosage level.
Although there is a fair amount of literature in this field, to the best of our knowledge, there
does not seem to exist a study considering this for bivariate interval-censored survival data.

The presented model involves two nonparametric functions, one identifies the baseline
cumulative hazard function and another describes the nonlinear effects of a continuous
covariate. In the following, the two-parameter Archimedean copula model is employed for
the dependence and more comments on this is given below. Moreover, a sieve maximum
likelihood estimation approach is developed to approximate two involved nonparametric
nuisance functions by Bernstein polynomials. The proposed method has several desirable
features: (a) it allows both time-dependent covariates and the covariates that may have
nonlinear effects; (b) the two-parameter Archimedean copula model can flexibly handle
dependence structures on both upper and lower tails and the strength of the dependence
can be quantified via Kendall’s τ; (c) the sieve maximum likelihood estimation approach by
Bernstein polynomials can be easily implemented with the use of some existing software;
(d) as is seen in the simulation study, the computation is both stable and efficient. Note that
the method given by [13] only allows for linear covariate effects.

More specifically, in Section 2, after recommending some notation, assumptions and
models that would be used throughout the paper, the resulting likelihood function is
presented. In Section 3, we first describe the proposed sieve maximum likelihood estimation
approach and then present the asymptotic properties of the proposed estimators. Section 4
presents a simulation study for the assessment of the finite sample performance of the
proposed estimation approach, and the results indicate that it works well as expected.
In Section 5, an illustration is provided by using a set of data arising from the Age-Related
Eye Disease Study (AREDS), and Section 6 gives the conclusion with some discussion and
concluding remarks.

2. Assumptions and Likelihood Function

Consider a study consisting of n independent subjects. Define Tij as the failure time
of interest associated with the ith subject of the jth failure event. Suppose that for Tij, the
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two observation times are given by (Uij, Vij] such that Uij < Tij ≤ Vij. In addition, suppose
that for the ith subject, the p-dimensional covariate vectors are possibly time-dependent
and denoted by Xi1 and Xi2 and the single continuous covariates Zi1 and Zi2 are related to
Ti1 and Ti2, respectively. More details on them are given below. Here, we assume that Xi1
and Xi2 or Zi1 and Zi2 could be the same, entirely different, or they also could have some
common components. Then, the observed data are as follows:

O = {Oi =
(
Uij, Vij, Xij, Zij

)
; i = 1, . . . , n, j = 1, 2}.

Note that when Vij = ∞, Tij is right-censored and when Uij = 0, Tij is left-censored.
Moreover, it is assumed that given the covariates, the interval censoring is independent of
the failure times Tij [1].

Given some covariates, define Sij
(
tij|Xij, Zij

)
= P

(
Tij > tij|Xij, Zij

)
as the marginal

survival function of Tij, and

S(ti1, ti2|Xi1, Xi2, Zi1, Zi2) = P(Ti1 > ti1, Ti2 > ti2|Xi1, Xi2, Zi1, Zi2) ,

is the joint survival function of Ti1 and Ti2. For the covariate effects, suppose that given Xij
and Zij, the marginal hazard function of Tij is defined as follows:

hj(t|Xij, Zij) = λj(t) + βTXij(t) + g(Zij),

where λj(t) denotes an unknown baseline hazard function, β is an unknown regression
coefficient vector, and g(·) is an unknown, smooth nonlinear regression function. That is,
Tij follows a partially linear additive hazards model, in which Zij represents the covariate
that may have nonlinear effects on Tij. Correspondingly, Tij has the cumulative hazard

Hj(t|Xij, Zij) =
∫ t

0
hj(s|Xij, Zij)ds = Λj(t) + βTWij(t) + g(Zij) t,

where Λj(t) =
∫ t

0 λj(s)ds, Wij(t) =
∫ t

0 Xij(s)ds, and we have that

Sij(t|Xij, Zij) = exp[−
∫ t

0
hj(s|Xij, Zij)ds] = exp[−Hj(t; Xij, Zij)]

= exp
[
−{Λj(t) + βTWij(t) + g(Zij)t}

]
, i = 1, · · · , n, j = 1, 2,

(1)

It is worth noting that for the simplicity of the expressions and calculations, we assume
that both linear and nonlinear covariates effects are the same for the two associated failure
times of interest [19,20]. It is simple to extend the following method to the situation where
the covariate effects are different.

It follows from Sklar’s theorem [21] that if the marginal survival functions Sij(·) are
continuous, there exists a unique copula function Cξ(·, ·) on [0, 1]2 such that Cξ(s1, 0) =
Cξ(0, s2) = 0, Cξ(s1, 1) = s1 and Cξ(1, s2) = s2, and it gives

S(ti1, ti2|Xi1, Xi2, Zi1, Zi2) = Cξ(Si1(ti1|Xi1, Zi1), Si2(ti2|Xi2, Zi2)), ti1, ti2 > 0.

Here, the parameter ξ generally denotes the correlation or dependence between Ti1
and Ti2. As mentioned above, a significant advantage of the copula representation above is
that it separates the correlation from the two marginal distributions [22]. There exist many
copula functions and among others, one type of the most commonly used copula functions
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for bivariate data is perhaps the Archimedean copula family. By following [13], we focus
on the flexible two-parameter Archimedean copula model given by

Cϕ,ω(s1, s2) =

[
1 +

{(
s−1/ω

1 − 1
)1/ϕ

+
(

s−1/ω
2 − 1

)1/ϕ
}ϕ]−ω

= µ
(

µ−1(s1) + µ−1(s2)
)

, ϕ ∈ (0, 1], ω ∈ (0, ∞),
(2)

where µ(s) = µϕ,ω(s) = (1 + sϕ)−ω and µ− is the generalized inverse of µ, which is defined
as µ−(y) = inf{x ∈ R : y ≤ µ(x)}, y ∈ R. The detailed derivation and more comments can
be found in Chapter 5 of [23].

As mentioned before, the two parameters ϕ and ω in the copula function above are
the association parameters, representing the correlation in both the upper and lower tails.
In particular, when ϕ = 1, the copula model above is equal to the Clayton copula [24],
while if ω → ∞, the copula model becomes the Gumbel copula [25]. In other words,
the two-parameter copula model is more flexible and has the Clayton or Gumbel copula as
special cases. It is well-known that another commonly used measure for the correlation is
Kendall’s τ, and it has an explicit connection with ϕ, ω as

τ = 1− 2ϕω/(2ω + 1).

Under the assumptions above, the observed likelihood function has the form

Ln(S1, S2, ϕ, ω|O) =
n

∏
i=1

P(Ui1 < Ti1 6 Vi1, Ui2 < Ti2 6 Vi2|Yi1, Yi2)

=
n

∏
i=1
{P(Ti1 > Ui1, Ti2 > Ui2|Yi1, Yi2)− P(Ti1 > Ui1, Ti2 > Vi2|Yi1, Yi2)

−P(Ti1 > Vi1, Ti2 > Ui2|Yi1, Yi2) + P(Ti1 > Vi1, Ti2 > Vi2|Yi1, Yi2)}

=
n

∏
i=1
{S(Ui1, Ui2|Yi1, Yi2)− S(Ui1, Vi2|Yi1, Yi2)− S(Vi1, Ui2|Yi1, Yi2)

+S(Vi1, Vi2|Yi1, Yi2)}

=
n

∏
i=1

{
Cϕ,ω [S1(Ui1|Yi1), S2(Ui2|Yi2)]− Cϕ,ω [S1(Ui1|Yi1), S2(Vi2|Yi2)]

−Cϕ,ω [S1(Vi1|Yi1), S2(Ui2|Yi2)] + Cϕ,ω [S1(Vi1|Yi1), S2(Vi2|Yi2)]
}

,

(3)

where Yi1 = (Xi1, Zi1), Yi2 = (Xi2, Zi2). Let η = (β, ϕ, ω, Λ1, Λ2, g), all unknown parame-
ters. The next section proposes a sieve approach for the estimation of η.

3. Sieve Maximum Likelihood Estimation

It is well-known that directly maximizing the likelihood function Ln(η|O) = Ln(S1, S2,
ϕ, ω|O) = ∑n

i=1 L(η; Oi) can provide an estimate of η. On the other hand, it is inappropriate
for this situation, as it involves infinite-dimensional functions Λj(t) and g(·). For this,
according to [26] and others, we suggest using the sieve method to approximate these
functions based on Bernstein’s polynomial first, and then maximize the likelihood function.

Specifically, define Θ = A⊗M⊗M⊗G, the parameter space, and

A =
{
(β, ϕ, ω) ∈ Rp × R(0,1] × R+, ‖β‖+ ‖ϕ‖+ ‖ω‖ ≤ K

}
,

in which ⊗ denotes the Kronecker product, and K is a nonnegative constant. Additionally,
M denotes the subset of all bounded and continuous, nondecreasing, nonnegative func-
tions within [c1, d1], 0 6 c1 < d1 < ∞. Similarly, G denotes the collection of all bounded
and continuous functions within [c2, d2], the support of Zij. In practice, [c1, d1] is generally
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valued as the large and minimum values of all observation times. In the following, define
the sieve parameter space

Θn =

{
ηn =

(
βT , ϕ, ω, Λn1, Λn2, gn

)T
∈ A⊗Mn ⊗Mn ⊗ Gn

}
.

In the above,

Mn = {Λnj(t) =
m1

∑
k=0

φ∗jl Bl(t, m1, c1, d1) :
m1

∑
l=0

φ∗jl 6 Mn; 0 6 φ∗j0 6 · · · 6 φ∗jm1
; j = 1, 2},

and

Gn = {gn(z) =
m2

∑
k=0

αkBk(z, m2, c2, d2) :
m2

∑
k=0
|αk| 6 Gn}

with

Bk(x, m, c, d) =
(

m
k

)(
x− c
d− c

)k(
1− x− c

d− c

)m−k
, k = 0, . . . , m,

the Bernstein basis polynomial with the degrees m1 = O(nν1) and m2 = O(nν2) for some
fixed ν1, ν2 ∈ (0, 1), and Mn and Gn being some positive constants. To estimate η, define
η̂n = (β̂n, ϕ̂n, ω̂n, Λ̂n1, Λ̂n2, ĝ) as the value of η by maximizing the log-likelihood function

`n(η; O) = log Ln(η; O) =
n

∑
i=1

log L(η; Oi). (4)

Note that one of the main advantages of Bernstein polynomials is that they can easily
implement the nonnegativity and monotonicity properties of Λj(t) by the reparameter-
ization φ∗j0 = eφj0 , φ∗jl = ∑l

i=0 eφji , ∀ 1 ≤ l ≤ m1 [26]. In addition, of all approximation
polynomials, they have the optimal shape-preserving properties [27]. By the way, they are
easy to use because they do not need interior knots. In the above, for simplicity, the same
basis polynomial is used for Λ1 and Λ2. Moreover, note that this approach can be rela-
tively easily implemented as discussed below, although it may seem to be complicated. In
practice, one need to choose mj (j = 1, 2). We suggest employing the Akaike information
criterion (AIC) defined as

AIC = −2`n(η̂n) + 2(p + m1 + m2 + 2 + 2).

In the above, the form in the second bracket is the number of unknown parameters
in the model [28], where p denotes the dimension of β; m1 + 1 and m2 + 1 represent the
degree of the Bernstein polynomials (i.e., m1 + m2 + 2); and the last number denotes the
dimension of correlation parameters ϕ and ω.

For the maximization of the log-likelihood function ln(η; O) over the sieve space
Θn or the determination of η̂n = (β̂T

n , ϕ̂n, ω̂n, Λ̂n1, Λ̂n2, ĝ)T , we suggest first determining
the initial estimate of η and then applying the Newton–Raphson approach to maximize
`n(β, ϕ, ω, Λn1, Λn2, gn; O). In the numerical study section, one can use the R function
nlm for the maximization. For the determination of the initial estimates, the following
procedure can be applied.

• Step 1: obtain (β̂(0), Λ̂(0)
n1 , ĝ(0)) by maximizing the log marginal likelihood function

under the observation data on the Ti1’s;
• Step 2: obtain Λ̂(0)

n2 by maximizing the log marginal likelihood function under the
observation data on the Ti2’s;

• Step 3: obtain the initial estimates (ϕ̂(0), ω̂(0)) of ϕ and ω by maximizing the joint

sieve log likelihood function `n(β̂(0), ϕ, ω, Λ̂(0)
n1 , Λ̂(0)

n2 , ĝ(0)n ).
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Now, we establish the asymptotic properties of η̂n. Define η1 = (β1, ϕ1, ω1, Λ1
1, Λ1

2, g1) ∈
Θn and η2 = (β2, ϕ2, ω2, Λ2

1, Λ2
2, g2) ∈ Θn, and their distance has the form

d(η1, η2) =
{
‖β1 − β2‖2 + |ϕ1 − ϕ2‖2 + |ω1 −ω2|2 + ‖Λ1

1 −Λ2
1‖2

2 + ‖Λ1
2 −Λ2

2‖2
2 + ‖g1 − g2‖2

2

}1/2
.

In the above,
∥∥Λj

∥∥2
2 =

∫
[
(
Λj(u)

)2
+
(
Λj(v)

)2
]dFj(u, v) with Fj(u, v) denoting the

joint distribution function of the U′js and V′j s, j = 1, 2. Let the true value of η be denoted
η0 = (β0, ϕ0, ω0, Λ10, Λ20, g0).

Theorem 1 (Consistency). Suppose that Conditions 1–4 given in Appendix A hold. Then, we
have d(η̂n, η0)→ 0 almost surely as n→ ∞.

Theorem 2 (Convergence rate). Suppose that Conditions 1–5 given in the Appendix A hold.
Then,

d(η̂n, η0) = Op(n−min{qν1/2,(1−ν1)/2,rν2/2,(1−ν2)/2}),

where ν1 ∈ (0, 1) and ν2 ∈ (0, 1) such that m1 = o(nν1), m2 = o(nν2), and q and r are defined in
Condition 4 of Appendix A.

Theorem 3 (Asymptotic normality). Suppose that Conditions 1–5 given in Appendix A hold.
Then, we have

n1/2(b̂n − b0)→d N
{

0, I−1(b0)
}

,

where b̂n = (β̂T
n , ϕ̂n, ω̂n)T , b0 = (β(0)T , ϕ0, ω0)

T ,

I(b0) = P
{

˙̀ b(η0)− ˙̀ Λ1(η0)[h∗Λ1
]− ˙̀ Λ2(η0)[h∗Λ2

]− ˙̀ g(η0)[h∗g]
}⊗2

,

w⊗2 = wwT for an arbitrary vector w, and ˙̀ b(η0), ˙̀ Λ1(η0)[hΛ1 ], ˙̀ Λ2(η0)[hΛ2 ], ˙̀ g(η0)[hg] are the
score statistics defined in Appendix A.

We sketch the proofs of the theorems above in Appendix A. Note that based on
Theorem 2, one can get the optimal rate of convergence min(nq/2(1+q), nr/2(1+r)) with
v1 = 1/(1 + q) and v2 = 1/(1 + r). Specifically, it becomes n1/3 with r = 2 or q = 2 and
increases while q and r increases. Theorem 3 demonstrates that the suggested estimator of
the regression parameter is nonetheless asymptotically normal and effective even when the
total convergence rate is less than n1/2. It is clear that to give the inference of the suggested
estimators, we need to estimate the variance or covariance matrix of β, ϕ and ω. However,
it can be seen from Appendix A that obtaining their consistent estimators would be difficult.
As a result, we propose using the simple nonparametric bootstrap approach [29], which
is well-known for offering a direct and simple tool for estimating covariances when no
explicit formula is given. It looks to work well, according to the numerical analysis below.

4. A Simulation Study

In this section, we present some simulation studies conducted to evaluate the finite
sample performance of the sieve maximum likelihood estimation approach suggested in
the preceding sections. Three scenarios for covariates were taken into account in the study.
The first one was to generate the single covariates Xi’s to follow the Bernoulli distribution
with the success probability 0.5 and Zi’s to follow the uniform distribution over (0, 1).
In scenario two, we considered the same Zi’s as above but generated a two-dimensional
vector of the covariate (X1, X2)

T with X1 ∼ Bernoulli (0.5) and X2 ∼ U(0, 1). For scenario
three, we first generated covariates Xi’s and Zi’s as in scenario one and then replaced Xi by
Xi exp(t). That is, we had time-dependent covariates.

To generate the true bivariate failure times (Ti1, Ti2) under model (1), one needed to
generate ui2 and wi from the uniform distribution over (0, 1) independently for the first step
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and solve ui1 from the equation wi = h(ui1, ui2) = ∂Cξ(ui1, ui2)/∂ui2 for a given copula
function Cξ . Then, the two dependent survival times ti1 and ti2 were obtained based on
ti1 = S−1

1 (ui1) and ti2 = S−1
2 (ui2), respectively, with hj(t|X, Z) = 2 + βX + sin( 1

2 πZ) or
hj(t|X, Z) = 2 + βX + Z2, j = 1, 2. In order to generate the censoring intervals or the
observed data, we assumed that each subject was assessed at discrete time points, and the
length of two contiguous observation times followed the standard exponential distribution.
Then, for every subject, Uij was valued as the last assessment time before Tij, and Vij was
equal to the first assessment time behind Tij. The length of the study was determined
to yield about a 20% right-censoring rate. On the Bernstein polynomial approximation,
by following [13], we set m1 = m2 = 3 and φ1k = φ2k and also took a Kendall’s τ equal to
0.3 for the weak dependency and 0.6 for the strong dependency. The results given below
are based on 1000 replications and 100 bootstrap samples for the variance estimation.

Tables 1 and 2 present the results based on n = 20, 50, 100, 300, 400 given by the
proposed estimation procedure on the estimation of the regression parameter β and the
dependence parameter τ with the true β0 = 0 or 0.5 and g(z) = sin( 1

2 πZ) or g(z) = z2,
respectively. The table consists of the bias of estimates (Bias) determined by the difference
value between the mean of the estimates and the real value, the sample standard error (SSE)
of the estimates based on 1000 replications, the mean of the estimated standard errors (ESE)
(for one replication, we obtained the estimated standard errors based on 100 bootstrap
samples and computed the average of the 1000 estimated standard errors), as well as the
95% empirical coverage probabilities (CP). The tables show that the proposed estimator
was seemingly unbiased, and the variance estimation procedure seemed to perform well.
Moreover, all empirical coverage probabilities were close to the nominal level 95% when the
sample sizes were increasing, indicating that the normal approximation to the distribution
of the proposed estimator seemed reasonable. Moreover, as expected, the results got better
in general with the increasing sample size.

Table 1. Estimation results on β and τ with g(z) = sin( 1
2 πz).

β̂ τ̂

τ n β Bias SSE ESE CP Bias SSE ESE CP

0.3 20 0 −0.047 1.611 2.702 1.000 −0.145 0.477 2.262 0.991
0.5 0.029 1.747 3.164 0.998 −0.119 0.541 1.842 0.987

50 0 0.034 0.692 0.831 0.978 −0.061 0.276 0.304 0.982
0.5 0.021 0.642 0.806 0.988 −0.048 0.286 0.303 0.977

100 0 −0.008 0.468 0.477 0.952 −0.022 0.145 0.172 0.978
0.5 0.009 0.469 0.498 0.965 −0.015 0.157 0.179 0.975

300 0 −0.004 0.254 0.254 0.949 −0.008 0.072 0.079 0.959
0.5 −0.007 0.271 0.263 0.940 0.003 0.073 0.081 0.961

400 0 0.003 0.219 0.220 0.951 −0.011 0.063 0.065 0.956
0.5 −0.005 0.237 0.228 0.940 −0.000 0.061 0.067 0.958

0.6 20 0 −0.080 1.718 3.595 1.000 −0.051 0.413 2.797 0.979
0.5 0.035 1.751 3.564 1.000 −0.029 0.403 2.639 0.979

50 0 −0.023 0.578 0.749 0.983 0.015 0.177 0.233 0.980
0.5 0.025 0.576 0.799 0.990 −0.012 0.202 0.236 0.965

100 0 −0.012 0.367 0.393 0.962 0.013 0.103 0.132 0.954
0.5 0.020 0.365 0.418 0.973 0.007 0.114 0.137 0.958

300 0 −0.007 0.201 0.206 0.956 −0.009 0.064 0.066 0.933
0.5 0.015 0.206 0.215 0.962 0.005 0.064 0.069 0.931

400 0 0.006 0.178 0.177 0.949 −0.008 0.055 0.056 0.932
0.5 0.011 0.188 0.184 0.946 0.001 0.055 0.057 0.945
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Table 2. Estimation results on β and τ with g(z) = z2.

β̂ τ̂

τ n β Bias SSE ESE CP Bias SSE ESE CP

0.3 20 0 −0.045 1.737 2.162 1.000 −0.138 0.485 2.536 0.983
0.5 0.074 1.922 2.941 0.997 −0.108 0.435 1.260 0.987

50 0 0.045 0.732 0.919 0.983 −0.052 0.215 0.249 0.993
0.5 0.076 0.767 0.961 0.989 −0.046 0.209 0.248 0.985

100 0 −0.010 0.509 0.531 0.956 −0.024 0.122 0.149 0.971
0.5 0.027 0.511 0.552 0.967 −0.019 0.120 0.145 0.979

300 0 −0.009 0.280 0.285 0.950 −0.013 0.060 0.066 0.956
0.5 −0.013 0.296 0.296 0.947 −0.005 0.057 0.064 0.968

400 0 −0.004 0.247 0.245 0.948 −0.010 0.052 0.055 0.960
0.5 −0.016 0.252 0.253 0.951 −0.003 0.056 0.057 0.956

0.6 20 0 0.157 1.767 2.243 1.000 −0.046 0.361 1.798 0.974
0.5 0.195 2.134 2.373 0.997 −0.034 0.329 0.636 0.972

50 0 0.034 0.608 0.815 0.989 −0.029 0.158 0.208 0.984
0.5 0.025 0.632 0.843 0.979 −0.018 0.170 0.237 0.984

100 0 −0.008 0.403 0.435 0.965 −0.020 0.096 0.116 0.969
0.5 0.028 0.417 0.449 0.963 0.014 0.095 0.118 0.970

300 0 −0.003 0.222 0.225 0.956 −0.016 0.052 0.057 0.960
0.5 0.020 0.231 0.234 0.953 −0.010 0.057 0.058 0.956

400 0 −0.001 0.199 0.195 0.957 −0.018 0.046 0.048 0.936
0.5 0.011 0.195 0.201 0.946 −0.006 0.050 0.052 0.952

The estimation results obtained under scenario two for the covariates are given in
Table 3; the sample size was n = 200 or 400 with the true (β1, β2)

T = (0, 0)T or (0.1, 0.1)T

and g(z) = sin( 1
2 πZ). Table 4 contains the estimation results obtained with the time-

dependent covariates based on β0 = 0, 1 or 0.5 as well as n = 200 or 400, and the other
values being the same as in Table 1. They again indicated that the proposed method
seemed to perform well for the estimation of the regression and association parameters.
Furthermore, the results generally became better when the sample size increased.

Table 3. Estimation results on β and τ with g(z) = sin( 1
2 πz) and two covariates.

n = 200 n = 400

Param True Value Bias SSE ESE CP Bias SSE ESE CP

β1 0 0.010 0.457 0.433 0.950 0.007 0.318 0.299 0.948
β2 0 0.010 0.571 0.550 0.947 0.007 0.392 0.380 0.947
τ 0.3 −0.009 0.089 0.103 0.963 −0.003 0.064 0.065 0.936

β1 0.1 −0.007 0.316 0.321 0.959 0.006 0.218 0.221 0.953
β2 0.1 −0.009 0.532 0.557 0.954 0.006 0.386 0.385 0.951
τ 0.3 −0.005 0.092 0.105 0.967 −0.003 0.063 0.066 0.943

β1 0 −0.015 0.244 0.258 0.960 −0.009 0.176 0.177 0.948
β2 0 −0.015 0.461 0.448 0.938 −0.004 0.300 0.308 0.947
τ 0.6 −0.001 0.081 0.083 0.931 −0.006 0.056 0.058 0.949

β1 0.1 −0.003 0.257 0.261 0.955 0.003 0.183 0.179 0.945
β2 0.1 −0.003 0.434 0.452 0.964 0.003 0.316 0.309 0.941
τ 0.6 0.002 0.080 0.084 0.931 0.001 0.055 0.056 0.938
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Table 4. Estimation results on β and τ with the time-dependent covariates.

β̂ τ̂

n τ β Bias SSE ESE CP Bias SSE ESE CP
200 0.3 0 −0.016 0.265 0.270 0.946 −0.025 0.098 0.113 0.974

0.5 0.027 0.279 0.286 0.948 −0.012 0.098 0.117 0.970
1 0.023 0.301 0.310 0.954 −0.007 0.102 0.123 0.963

0.6 0 0.025 0.231 0.234 0.942 −0.016 0.090 0.095 0.940
0.5 0.046 0.233 0.243 0.957 −0.008 0.092 0.094 0.948
1 0.042 0.259 0.265 0.945 −0.010 0.093 0.095 0.936

400 0.3 0 0.006 0.222 0.204 0.945 −0.004 0.060 0.070 0.957
0.5 0.026 0.203 0.198 0.944 −0.003 0.068 0.071 0.959
1 0.008 0.207 0.214 0.954 0.003 0.070 0.074 0.953

0.6 0 0.020 0.159 0.165 0.953 −0.010 0.062 0.062 0.941
0.5 0.038 0.155 0.163 0.952 −0.003 0.060 0.062 0.943
1 0.028 0.182 0.183 0.946 0.005 0.061 0.063 0.936

To assess the performance of the proposed method on the estimation of the non-
linear function g, we repeated the study given in Table 1 with four different g functions,
g1(z) = sin(2πz), g2(z) = cos(2πz), g3(z) = − 5

3 + 5z2, and g4(z) = −z+ 5z3, and n = 200.
Figures 1 and 2 show the average of the estimated g for each of the four cases with β = 0 and
τ = 0.3 or τ = 0.6, respectively. The solid red lines represent the genuine functions, while
the dashed blue lines represent the estimations. They show that the proposed method based
on Bernstein polynomials seemed to perform reasonably well for the different Kendall’s
τ considered, including a weak or strong dependency. We also took into account various
configurations and got comparable outcomes.
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Figure 1. Estimated g with β = 0 and τ = 0.3; the solid red lines represent the real functions
and the dashed blue lines show the estimated functions. (a) g(z) = sin(2πz); (b) g(z) = cos(2πz);
(c) g(z) = 5

3 − 5z2; (d) g(z) = −z + 5z3.
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Figure 2. Estimated g with β = 0 and τ = 0.6; the solid red lines represent the real functions
and the dashed blue lines show the estimated functions. (a) g(z) = sin(2πz); (b) g(z) = cos(2πz);
(c) g(z) = 5

3 − 5z2; (d) g(z) = −z + 5z3.

5. An Illustration

In this section, we illustrate the proposed procedure by using the data from the Age-
related Eye Disease Study (AREDS) [30], a clinical experiment tracking the development of
a bilateral eye disease, age-related macular degeneration (AMD), provided the CopulaCenR
package in version 4.2.0 of R software [31]. Each participant in the research was monitored
every six months (during the first six years) or once a year (after year 6) for about 12 years.
At each appointment, each participant’s eyes were given a severity score on a range of 1 to
12 (a higher number signifying a more serious condition).Moreover, the time-to-late AMD,
which is the interval between the baseline visit and the first appointment at which the
severity score reached nine or above, was computed for each eye of these subjects. Either
interval censoring or right censoring was applied to the observations at both periods.

The data set consisted of n = 629 subjects and in the analysis below, we focused on the
effects of two covariates, SevScaleBL for the baseline AMD severity score (a value between
one and eight with a higher value indicating more severe AMD) and rs2284665 for a genetic
variant (zero, one and two for GG, GT and TT) of the AMD progression. In order to use the
proposed method, we set rs2284665 to be X and SevScaleBL to be Z since the latter could be
viewed as continuous. For the identifiability of the model, both X and Z were standardized
and thus had the support [0, 1]. Moreover, various degrees of Bernstein polynomials were
considered, such as m1 = m2 = 3, 4, 5, 6.

Table 5 gives the analysis results obtained by the suggested estimation approach. They
include the estimated effect of the covariate rs2284665 and Kendall’s τ along with the
estimated standard errors and the p-value for testing the effect to be zero. One can see that
the results were consistent with respect to the degree of the Bernstein polynomials and
suggested that the minor allele (TT) had a significantly “harmful” effect on AMD progres-
sion. Moreover, the estimated Kendall’s τ was 0.389, suggesting a moderate dependence
of the AMD progression between the two eyes. Figure 3 gives the estimated effect of the
SevScaleBL, which indeed seemed to be nonlinear. To be more specific, the increased risk of
AMD patients was associated with higher severity scores. The findings reached here were
in line with those of other researchers who examined this subject [15]. It is worth pointing
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out that the conclusion of [15] was obtained under the proportional odds model and they
could not visualize nonlinear covariate effects as in Figure 3.

Table 5. Analysis results for the AREDS data.

β τ

Bernstein Polynomials EST ESE p-Value EST ESE

m1 = 3, m2 = 3 0.041 0.009 <0.000 0.473 0.043
m1 = 4, m2 = 4 0.046 0.008 <0.000 0.416 0.056
m1 = 5, m2 = 5 0.034 0.008 <0.000 0.389 0.048
m1 = 6, m2 = 6 0.024 0.009 0.011 0.388 0.056
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Figure 3. Estimated nonlinear effect of SevScaleBL for the illustration.

6. Concluding Remarks

In the preceding sections, the regression analysis of bivariate interval-censored sur-
vival data was considered under a family of copula-based, semiparametric, partly linear
additive hazards models. As discussed above, one significant advantage of the models
was that they only needed to handle the two marginal distributions via a copula function
with the copula parameter determining the dependence. For inference, a sieve maximum
likelihood estimation procedure with the use of Bernstein polynomials were provided,
and it was shown that the resulting estimators of the regression parameters were consis-
tent and asymptotically efficient. Furthermore, the simulation studies suggested that the
recommended approach worked effectively in practical situations.

It is worth emphasizing that the main reason for using Bernstein polynomials to
approximate the infinite-dimensional cumulative hazard function Λj(t) and nonlinear
covariate effects g(·) was its simplicity. Other smoothing functions, such as spline func-
tions [20], could also be used, and estimation procedures similar to the one described above
could be developed. In order to implement the approach, we needed to choose the degrees
m1 and m2. As discussed above, a common method is to consider different values and
compare the resulting estimators. Certainly, developing a data-driven approach for their
selections would also be helpful.

In this paper, we focused on the additive hazards model. Other models, for example,
the proportional hazards model, are sometimes more popular. It is well-known that the
latter is more suitable for the situation where one is interested in the hazard ratio, whereas
the former fits better if the excess risk or the risk differential is what is most important.
However, there seems to be little literature on how to choose the better model or develop
some model-checking methods, which is attractive research for the future.
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Appendix A. Proof of Asymptotic Properties

This appendix begins by describing the necessary regular conditions, which are similar
to those generally used in the interval-censored data literature [32,33], and then sketch the
proof of the asymptotic results given in Theorems 1–3.

Condition 1. There exists a positive number δj such that P
(
Vj −Uj > δj

)
= 1, j = 1, 2.

Condition 2. (i) There exist 0 < c1 < d1 < ∞ such that P(c1 ≤ Uij < Vij ≤ d1) = 1, j =
1, 2. (ii) The covariate Xj’s are bounded; in other words, there exists x0 > 0 that makes
P(|X| ≤ x0) = 1, where j = 1, 2. The distribution of the Xj’s is not focused on any proper
affine subspace of Rp. (iii) For some positive constant K, given the set of all observation
times V , suppose the conditional density of Zj is twice continuously differentiable and has
a bound within

[
K−1, K

]
on [c2, d2] a.s.

Condition 3. After substituting Λj with hj, the likelihood function can be rewritten as
L(β, ϕ, ω, h1, h2, g). Define

µT L̇(β, ϕ, ω, h1, h2, g) = µT
1

∂L
∂β

+ µ2
∂L
∂ϕ

+ µ3
∂L
∂ω

+ µ4
∂L
∂h1

+ µ5
∂L
∂h2

+ µ6
∂L
∂g

with µ = (µT
1 , µ2, µ3, µ4, µ5, µ6)

T . There exist l∗j , r∗j ∈ [c1, d1] where there exist p + 5 var-

ious sets of (X1, X2) so that when µT L̇(β0, ϕ0, ω0, Λ10, Λ20, g0; O∗) = 0 in which O∗ =
{u∗j , v∗j , Xj, Zj) for every p + 5 sets of values, one can conclude v = 0(p+5)×1.

Condition 4. There exist 0 < m1 < m2 < ∞ satisfying m1 < Λj0(c1) < Λj0(d1) < m2,
and Λj0 is strictly increasing and continuously differentiable until a q-order within [c1, d1],
j = 1, 2. In addition, g0 is continuously differentiable until an r-order within [c2, d2].
Additionally, (β(0)T , ϕ0, ω0)

T denotes an interior point in A ⊆ Rp ×R(0,1] ×R+.
Condition 5. There exists ε > 0, for every |η − η0| < ε, P{`n(η; O) − `n(η0; O)} �

−d2(η, η0), in which `n(η; O) is the log-likelihood function acquired before, and � denotes
that “the left-hand side is smaller than the right, until a constant time”.

It is worth noting that Conditions 1–5, except Condition 3, are usually employed
in interval-censored failure time research [26,34,35]. Condition 3 helps to ensure the
parameters’ identifiability and ensure the effective Fisher information matrix is always
positive [26,35].

Proof of Theorem 1. Define `(η; Oi) as the log-likelihood for only one observation Oi, and
Θn = A⊗Mn ⊗Mn ⊗Hn. Let L = {`(η; Oi) : η ∈ Θ} denote a class of functions, and let
Pn and P denote the empirical and true probability measures, respectively. Then, following
a similar calculation as in Lemma 1 in [19], the bracketing number of L is (until a constant
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time) in a bound of (1/ε)2m1+m2+p+2. Therefore, following Theorem 2.4.1 in [36], we can
get L is a Glivenko–Cantelli class. Thus,

sup
η∈Θn

|(Pn − P)`(η; O)| → 0 a.s.

Let H(η; O) = −`(η; O), for any ε > 0, define Kε = {η : d(η, η0) ≥ ε, η ∈ Θn}, κ1n =
supη∈Θn

|(Pn − P)H(η; O)|, and κ2n = PnH(η0; O)− PH(η0; O). Hence, we can conclude
that

inf
Kε

PH(η; O) = inf
Kε

{PH(η; O)− Pn H(η; O) + PnH(η; O)} ≤ κ1n + inf
Kε

Pn H(η; O). (A1)

If η̂n ∈ Kε, we can get

inf
Kε

Pn H(η; O) = Pn H(η̂n; O) ≤ Pn H(η0; O) = κ2n + PH(η0; O). (A2)

Then, we can prove δε > 0 based on the proof by contradiction under Condition 3. Com-
bining (A1) and (A2), we have

inf
Kε

PH(η; O) ≤ κ1n + κ2n + PH(η0, O) = κn + PH(η0, O),

in which κn = κ1n + κ2n, so that κn ≥ δε, where δε = infKε PH(η; O)− PH(η0, O). This
gives {η̂n ∈ Kε} ⊆ {κn ≥ δε}. Based on Condition 1 and together with the strong law of
large numbers, we have κ1n + κ2n → 0 a.s. Hence, ∪∞

k=1 ∩
∞
n=k {η̂n ∈ Kε} ⊆ ∪∞

k=1 ∩
∞
n=k

{κn ≥ δε}, which proves that d(η̂n, η0)→ 0 a.s. The proof of Theorem 1 is complete.

Proof of Theorem 2. We verify Conditions C1–C3 in [37] to derive the rate of convergence.
Define ‖u‖ as the Euclidean norm of a vector u, ‖h‖∞ = supx |h(x)| is the supremum

norm of a function h, and ‖h‖L2(P) =
(∫
|h|2dP

)1/2. Moreover, let P denote a probability
measure. After that, for the convenience of understanding the proof as follows, we define
Θqr = A⊗Mq ⊗Mq ⊗ Gr, whereMq is the sets of Λj, and Gr is the sets of g. q and r are
as defined in Condition 4. It is noteworthy that Θqr is completely the same as Θ except
for the notation. Similarly, Θqr

n is the corresponding sieve space containingMq
n and Gr

n.
First, as a result of Condition 5, we can verify that Condition C1 directly stands. That
is, P{`(η0; O)− `(η; O)} � −d2(η, η0) for any η ∈ Θqr

n . Second, we verify Condition C2
in [37]. Based on Conditions 1–4, one can easily find that for every η ∈ Θqr

n ,

P{`(η; O)− `(η0; O)}2 � |b− b0|2 + P
[
{Λ1(l1)−Λ10(l1)}2 + {Λ1(r1)−Λ10(r1)}2

]
+ P

[
{Λ2(l2)−Λ20(l2)}2 + {Λ2(r2)−Λ20(r2)}2

]
+ P{g(Z1)− g0(Z1)}2 + P{g(Z2)− g0(Z2)}2 = d2(η, η0),

in which b = (βT , ϕ, ω)T , and this implies that for any η ∈ Θqr
n , supd(η,η0)6ε var{`(η0; O)−

`(η; O)} 6 supd(η,η0)6ε P{`(η0; O)− `(η; O)}2 � ε2. Thus, Condition C2 from [37] holds
when the sign β in their paper is equal to one. In the end, one needs to verify Condi-
tion C3 of [37]. Define the class of functions Nn = {`(η; O)− `(ηn0; O) : η ∈ Θqr

n } and
let N[ ](ε,Nn, L∞) denote the ε-bracketing number related to L∞ norm of Nn. Then, we
have N[ ](ε,Nn, L∞) � (1/ε)c1m1+c2m2+p+2 by following similar arguments as in Lemma
A3 of [13], where k1, k2 > 0, and p + 2 is the dimensionality of b. By following the
fact that the covering number is always smaller than the bracketing number, we have
log N[ ](ε,Nn, L∞) � (k1m1 + k2m2 + p + 2) log(1/ε) � nν1+ν2 log(1/ε). Therefore, Con-
dition C3 in [37] is satisfied under 2r0 = ν, and r = 0+ in their sign. Hence, τ of Theorem 1
in [37] on page 584 may be equal to (1− ν1)/2− {log(log n)}/(2 log n). Because the part
behind the minus is close to zero with n→ 0, one can set a ν̃1 a little bigger than ν1 so as
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to get (1− ν̃1)/2 6 τ with a large n. Let ν̃1 replace ν1 but keep the same notation with ν1,
then the new constant τ′ = (1− ν1)/2.

Notice that from Theorem 1.6.2 in [38], there are Bernstein polynomials Λjn0 ∈ M
q
n

that make ‖Λjn0 = −Λj0‖∞ = O(n−q/2), j = 1, 2. Similarly, there also exists a function
gn0 ∈ Gr

n satisfying ‖gn0− g0‖∞ = O(n−r/2). Then, the sieve approximate error ρ(πnη0, η0)
in [37] is O(n−qν1/2). Therefore, applying the Taylor expansion to P{`(η0; O)− `(η; O)}
surrounding η0, then plugging in ηn0 = (βT

0 , ϕ0, ω0, Λ1n0, Λ2n0, gn0)
T , the Kullback–Leilber

pseudodistance of η0 and ηn0 follows

K(ηn0, η0) = −P
{
`(ηn0; O)− `(η(0); O)

}
=− 1

2
P
{ ῭Λ1Λ1(η0; O)[Λ1n0 −Λ10, Λ1n0 −Λ10] + ῭Λ2Λ2(η0; O)[Λ2n0 −Λ20, Λ2n0 −Λ20]

+ 2῭Λ1Λ2(η0; O)[Λ1n0 −Λ10, Λ2n0 −Λ20]
}
− P

{ ῭gg(η0; O)[gn0 − g0, gn0 − g0]
}

+ o(d2(ηn0, η0))

�‖Λ1n0 −Λ10‖2
2 + ‖Λ2n0 −Λ20‖2

2 + o
(
‖Λ1n0 −Λ10‖2

2 + ‖Λ2n0 −Λ20‖2
2

)
+ ‖gn0 − g0‖2

2 + o
(
‖gn0 − g0‖2

2

)
�O

(
n−qν1

)
+ O

(
n−rν2

)
= O

(
n−min(qν1,rν2)

)
.

The first equality holds due to the first derivative of P`(η; O) at η0 being equal to zero.
As for the penultimate inequality, it holds because all the derivatives and second-order
derivatives of the log-likelihood are bounded. Furthermore, since ‖Λjn0 −Λj0‖2 6‖Λjn0 −
Λj0‖∞ = O(n−qν1/2), and ‖gn0 − g0‖2 6‖gn0 − g0‖∞ = O(n−rν2/2), we can get the last
inequality, so that K1/2(η0, ηn0) = O(n−qν1/2) +O(n−rν2/2) = O(n−min(qν1/2,rν2/2)). Hence,
by Theorem 1 in [37], the convergence rate of η̂n is

d(η̂n, η0) = Op

{
max

(
n−(1−ν1)/2, n−qν1/2, n−(1−ν2)/2, n−rν2/2

)}
= Op

(
n−min{qν1/2,(1−ν1)/2,rν2/2,(1−ν2)/2}

)
.

The proof of Theorem 2 is complete.

Proof of Theorem 3. Let us sketch the proof of Theorem 3 in five steps as follows.
Step 1. We first calculate the derivatives regarding η =

(
βT , ϕ, ω, Λ1, Λ2, g

)T , such
that ˙̀ Λj(η; O)[hΛj ],

˙̀ g(η; O)[hg] and so on; now, we omit (η; O) in the following formula
for convenience in Step 1.

To obtain the score functions of Λj, j = 1, 2. Let yΛj(tj) ∈ HΛj = {yΛj : yΛj =
∂Λjξ

∂ξ |ξ=0, Λjξ ∈ Mq} denote an arbitrary parametric submodel of Λj, in which yΛj(tj)

satisfies the Fréchet derivative limξ→0{Λj
(
tj + ξ

)
−Λj

(
tj
)
− yΛj

(
tj
)
ξ}/ξ = 0. Similarly,

we can also define a submodel of g noted by yg(tj) ∈ Hg. Moreover, note

`(η; t1, t2, Y) = log S(t1, t2 | Y)

= −ω log

1 +

[(
exp(

1
ω
(Λ1(t1) + h(t1; Y)))− 1

) 1
ϕ

+

(
exp(

1
ω
(Λ2(t2) + h(t2; Y)))− 1

) 1
ϕ

]ϕ
,

and

J = 1+

[(
exp(

1
ω
(Λ1(t1) + h(t1; Y)))− 1

)1/ϕ

+

(
exp(

1
ω
(Λ2(t2) + h(t2; Y)))− 1

)1/ϕ
]ϕ

,
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where Y = (X, Z) and h(t; Y) = βTW(t) + g(Z)t. The score function along yΛj(tj) is

˙̀ Λj (η; t1, t2, Y)[yΛj ] =

−1
J

1 +

 exp
(

1
ω (Λj′

(
tj′
)
+ h(tj′ ; Y))

)
− 1

exp
(

1
ω (Λj

(
tj

)
+ h(tj; Y))

)
− 1

1/ϕ


ϕ−1

exp
(

1
ω
(Λj

(
tj

)
+ h(tj; Y))

)
× yΛj

(
tj

)
,

with j, j′ ∈ {1, 2}, hΛj

(
tj
)
∈ Mq−1 and Λj ∈ Mq. Analogously, we have the derivatives

with respect to g as

˙̀ g(η; t1, t2, Y) =

−1
J


1 +

exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

ϕ−1

exp
(

1
ω
(Λ1(t1) + h(t1; Y))

)
t1

+

1 +

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

ϕ−1

exp
(

1
ω
(Λ2(t2) + h(t2; Y))

)
t2

× yg,

with g(z) ∈ Gr, and yg
(
tj
)
∈ Gr−1.

The second-order derivatives of `(η; t1, t2, Y) have the form

῭Λ1Λ1(η; t1, t2, Y)[yΛ1 , ỹΛ1 ]

=


−1

J

1 +

exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ


ϕ−1

exp
(

1
ω
(Λ1(t1) + h(t1; Y))

)

+
1
J

1 +

exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ


ϕ−2

exp
(

2
ω
(Λ1(t1) + h(t1; Y))

)(
1− 1

ϕ

)

×
(

exp
(

1
ω
(Λ2(t2) + h(t2; Y))

)
− 1
)1/ϕ(

exp
(

1
ω
(Λ1(t1) + h(t1; Y))

)
− 1
)−1−1/ϕ

+
1
J2

1 +

exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ


2ϕ−2

exp
(

2
ω
(Λ1(t1) + h(t1; Y))

)
× 1

ω
yΛ1(t1)ỹΛ1(t1),

῭Λ1Λ2 (η; t1, t2, Y)[yΛ1 , hΛ2 ] =
῭Λ2Λ1 (η; t1, t2, Y)[hΛ2 , hΛ1 ]

=


−1

J

1 +

 exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ


ϕ−2

1(
exp

(
1
ω (Λ1(t1) + h(t1; Y))

)
− 1
)

×
(

1− 1
ϕ

)
+

1
J2

1 +

 exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ


2ϕ−2


× 1
ω

exp
(

1
ω
(Λ1(t1) + h(t1; Y) + Λ2(t2) + h(t2; Y))

)
yΛ1 (t1)yΛ2 (t2)

×

 exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ−1

.
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῭Λ1g(η; t1, t2, Y)
[
yΛ1 , yg

]
=1

J

[(
exp(

1
ω
(Λ1(t1) + h(t1; Y))− 1

)1/ϕ

+

(
exp(

1
ω
(Λ2(t2) + h(t2; Y))− 1

)1/ϕ
]ϕ−1

×
[(

exp(
1
ω
(Λ1(t1) + h(t1; Y))− 1

)1/ϕ−1
exp(

1
ω
(Λ1(t1) + h(t1; Y))× t1

+

(
exp(

1
ω
(Λ2(t2) + h(t2; Y))− 1

)1/ϕ−1
exp(

1
ω
(Λ2(t2) + h(t2; Y))× t2

]

−

1 +

 exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ

−1 exp

(
1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ

×
[(

exp(
1
ω
(Λ1(t1) + h(t1; Y))− 1

)
exp(

1
ω
(Λ2(t2) + h(t2; Y))× t2

+

(
exp(

1
ω
(Λ2(t2) + h(t2; Y))− 1

)
exp(

1
ω
(Λ1(t1) + h(t1; Y))× t1

](
1− 1

ϕ

)}

×

1 +

 exp
(

1
ω (Λ2(t2) + h(t2; Y))

)
− 1

exp
(

1
ω (Λ1(t1) + h(t1; Y))

)
− 1

1/ϕ


ϕ−1

exp(
1
ω
(Λ1(t1) + h(t1; Y))

× 1
J

1
ω

yΛ1 (t1)yg,

Similarly, we can derive ῭bb, ῭
Λjb[yΛj ] and ῭gb[yg] as, respectively, the derivatives of ˙̀ b,

˙̀ Λj [yΛj ] and ˙̀ g[yg] with respect to b.
῭bΛj

[yΛj ],
῭Λj′Λj [yΛj′

, yΛj ],
῭ΛjΛj [yΛj , ỹΛj ] and ῭gΛj [yg, yΛj ] are, respectively, the deriva-

tives of ˙̀ b, ˙̀ Λj′
, ˙̀ Λj and ˙̀ g[yg] with respect to Λj, j, j′ ∈ {1, 2}.

῭bg[yg], ῭Λjg[yΛj , yg] and ῭gg[yg, yg] are, respectively, the derivatives of ˙̀ b, ˙̀ Λj [yΛj ]

and ˙̀ g[yg] with respect to g.
Step 2. Consider the classes of functions D1 = { ˙̀ b(η) : d(η, η0) ≤ δ}, D2 =

{ ˙̀ Λj(η)[yΛj ] : d(η, η0) ≤ δ} and D3 = { ˙̀g(η)[yg] : d(η, η0) ≤ δ}. We need to show
these three function classes are Donsker for any δ > 0. We determine the bracketing
number of D1 in order to demonstrate that it is Donsker. In accordance with [37], we have
log N[ ](ε,D1, L2) � max(m1, m2) log(δ/ε) for 0 < ε < δ. This results in a finite-valued
bracketing integral according to Theorem 2.8.4 of [36]. Hence, the class D1 is Donsker.
Similar justifications support that G2 and G3 are also Donsker.

Step 3. Following similar arguments as in Lemma 2 of [19] and the properties of the
score statistic, there exist y∗Λj

∈ Mq−1 and y∗g ∈ Gr−1 satisfying

P ˙̀ b(η0) = 0, P ˙̀ Λj(η0)[y∗Λj
] = 0, P ˙̀g(η0)[y∗g] = 0. (A3)

Let η̂n denote the estimators of the sieve log-likelihood and y∗Λj ,n
is the projection of

y∗Λj
ontoMn, j = 1, 2. We get

Pn ˙̀ Λj(η̂n)[y∗Λj
] =Pn ˙̀ Λj(η̂n)[y∗Λj ,n] + P ˙̀ Λj(η0)[y∗Λj

− y∗Λj ,n] + (Pn − P) ˙̀ Λj(η̂n)[y∗Λj
− y∗Λj ,n]

+ P
{

˙̀ Λj(η̂n)[y∗Λj
− y∗Λj ,n]− ˙̀ Λj(η0)[y∗Λj

− y∗Λj ,n]
}

=(I) + (I I) + (I I I) + (IV).

(A4)

Following the discussion about the proof for Theorem 5.3 of [34], we can derive
that part (I) is equal to op(n−1/2). In addition, (II) is also equal to op(n−1/2) based on



Axioms 2023, 12, 198 17 of 19

(A3). We can acquire (III) as op(n−1/2) due to D2 being Donsker. As for the fourth term
(IV), on account of Theorem 2 and employing the first-order linear expansion of ˙̀ Λj(η̂)

around η0, one can get (IV) is op(n−1/2) as well. Summating the four terms, we have
Pn ˙̀ Λj(η̂n)[y∗Λj

] = op(n−1/2). Likewise, we have the property of Pn ˙̀ g(η̂n)[y∗g]. Hence, we
have

Pn ˙̀ b(η̂n) = op(n−1/2), Pn ˙̀ Λj(η̂n)[y∗Λj
] = op(n−1/2), Pn ˙̀ g(η̂n)[y∗g] = op(n−1/2). (A5)

Step 4. Combining (A3) and (A5), we can easily show that

Pn
{ ˙̀ b(η̂n)− ˙̀ b(η0)

}
= −(Pn − P) ˙̀ b(η0) + op(n−1/2),

Pn

{
˙̀ Λj(η̂n)[y∗Λj

]− ˙̀ Λj(η0)[y∗Λj
]
}
= −(Pn − P) ˙̀ Λj(η0)[y∗Λj

] + op(n−1/2),

Pn

{
˙̀ g(η̂n)[y∗g]− ˙̀ g(η0)[y∗g]

}
= −(Pn − P) ˙̀ g(η0)[y∗g] + op(n−1/2).

(A6)

Furthermore, based on some arguments in the proof of Theorem 3.2 in [13], there exists
a neighborhood of (b0, Λ10, Λ20, g0) as {(b, Λ1, Λ2, g) : |b − b0| + ‖Λ1 − Λ10‖2 + ‖Λ2 −
Λ20‖2 + ‖g− g0‖2 6 Cn−ξ}, where ξ = min{(1− ν1)/2, qν1/2, (1− ν2)/2, rν2/2}. Then,
applying the Taylor expansion for `Λj(η)[y

∗
j ] yields

P(`Λj(η)[y
∗
j ]− `Λj(η0)[y∗j ]− ῭

Λjb(η0)[h∗j ](b− b0)− ῭ΛjΛj(η0)[y∗j , Λj −Λj0]

− ῭ΛjΛj′
(η0)[y∗j , Λj′ −Λj′0]− ῭Λjg(η0)[y∗j , g− g0]) = op(n−1/2),

(A7)

where j, j′ ∈ {1, 2}. Likewise, it is also easy to get the property of `b(η) and `g(η)[y∗g].
Note that the derivatives of the score statistics are bounded. After applying Taylor series
expansions about η0 to (A6), and combining the Equations (A7), we have

P ῭bb(η0)(b̂n − b0) + P ῭bΛ1(η0)[Λ̂1,n −Λ10] + P ῭bΛ2(η0)[Λ̂2,n −Λ20] + P ῭bg(η0)[ĝn − g0]

= −Pn ˙̀ b(η0) + op(n−1/2),

P ῭
Λjb(η0)[y∗j ](b̂n − b0) + P ῭ΛjΛj(η0)[y∗j , Λ̂j,n −Λj0] + P ῭ΛjΛj′

(η0)[y∗j , Λ̂j′ ,n −Λj′0]

+ P ῭Λjg(η0)[y∗j , ĝn − g0] = −Pn ˙̀ Λj(η0)[y∗j ] + op(n−1/2),

P ῭gb[y∗g](b̂n − b0) + P ῭gΛ1 [y
∗
g, Λ̂1n −Λ10] + P ῭gΛ2 [y

∗
g, Λ̂2n −Λ20] + P ῭gg[y∗g, ĝn − g0]

= −Pn ˙̀ g(η0)[y∗g] + op(n−1/2).

(A8)

Taking the first equality in (A8) and subtracting the second and third equalities, we
have

P( ῭bb(η0)− ῭
Λ1b(η0)[h∗Λ1

]− ῭
Λ2b(η0)[h∗Λ2

]− ῭gb(η0)[h∗g])(b̂n − b0) = −Pn
{ ˙̀ b(η0)

− ˙̀ Λ1(η0)[y∗Λ1
]− ˙̀ Λ2(η0)[y∗Λ2

]− ˙̀ g(η0)[y∗g]
}
+ op(n−1/2).

(A9)

Step 5. Define Q = −P( ῭bb(η0; O) − ῭
Λ1b(η0; O)[y∗Λ1

] − ῭
Λ2b(η0; O)[y∗Λ2

] − ῭gb(η0;
O)[y∗g]) and B = P`∗(η0; O)⊗2 = P{`∗(η0; O)`∗(η0; O)T}; then, we have

Q = P( ˙̀ b(η0; O)− ˙̀ Λ1(η0; O)[y∗Λ1
]− ˙̀ Λ2(η0; O)[y∗Λ2

]− ˙̀ g(η0)[y∗g])
⊗2

= P`∗(η0; O)⊗2 = B,

where `∗(η0; O) = ˙̀ b(η0; O)− ˙̀ Λ1(η0; O)[y∗Λ1
]− ˙̀ Λ2(η0; O)[y∗Λ2

]− ˙̀ g(η0; O)[y∗g]. Next, we
need to verify Q is nonsingular. If Q is a nonsingular matrix, then we can conclude
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v = (vT
1 , v2, v3)

T = 0 from vTQv = vT P`∗(η0; O)⊗2v = 0. Moreover, one is enough to show
if vT`∗(η0; O) = 0, then v = 0. Thus, we have

vT`∗(η0; O) = vT
{

˙̀ b(η0; O)− ˙̀ Λ1(η0; O)[y∗Λ1
]− ˙̀ Λ2(η0; O)[y∗Λ2

]− ˙̀ g(η0; O)[y∗g]
}

=

{
vT

1
∂L
∂β

(η0; O) + v2
∂L
∂ϕ

(η0; O) + v3
∂L
∂ω

(η0; O) +
∂L

∂Λ1
(η0; O)[−vTy∗Λ1

]

+
∂L

∂Λ2
(η0; O)[−vTy∗Λ2

] +
∂L
∂g

(η0; O)[−vTy∗g]
}

1
L(η0; O)

,

(A10)

where η0 = (β(0)T , ϕ0, ω0, Λ10, Λ20, g0) and L(η0; O) is the likelihood function. Under our
Condition 3, (A10) is equal to zero only if v = 0. As a consequence, we have verified Q
is nonsingular.

Substitute Q into (A9), we get

−Q(b̂n − b0) = −Pnl∗(η0; O) + op(n−1/2).

This implies that

√
n(b̂n − b0) = Q−1n1/2Pnl∗(η0; O) + op(1)→d N

{
0, Q−1B(Q−1)T

}
. (A11)

Since Q = B = P`∗(η0)
⊗2, we obtain Q−1B(Q−1)T = Q−1 , I−1(b0). Thus, n1/2(b̂n−

b0)→d N
{

0, I−1(b0)
}

, with I(b0) = P`∗(η0)
⊗2 and `∗(η0) being the efficient score function

of b0. Now, we complete the proof of Theorem 3.
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